

ISSN 0105-8517

Some Results on Uniform Arithmetic

Circuit Complexity

Gudmund S. Frandsen
Mark Valence
David A. Mix Barrington

DAIMI PB - 343
January 1991

COMPUTER SCIENCE DEPARTMENT
AARHUS UNIVERSITY
Ny Munkegade, Building 540

DK-8000 Aarhus C, Denmark

Some Results on Uniform Arithmetic Circuit
Complexity.

Gudmund S. Frandsen 123
Computer Science Department
Aarhus University
DK-8000 Aarhus C, Denmark
gsfrandsen@daimi.aau.dk

Mark Valence
Department of Mathematics and Computer Science
Dartmouth College
Hanover, NH 03755, USA
kurash@dartmouth.edu

David A. Miz Barrington *
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003, USA
barrington@cs.umass.edu

January 23, 1991

!This research was partially carried out, while visiting Dartmouth College, New Hampshire
?This research was partially supported by the Danish Natural Science Research Council
(grant No. 11-7991).

3This research was partially supported by the ESPRIT II Basic Research Actions Program
of the EC under contract No. 3075 (project ALCOM).

#This research was supported by NSF Computer and Computation Theory grant CCR-
8714714

Abstract

We introduce a natural set of arithmetic expressions and define the
complexity class AE to consist of all those arithmetic functions (over the
fields Fzn) that are described by these expressions.

We show that AE coincides with the class of functions that are com-
putable with constant depth and polynomial size unbounded fan-in arith-
metic circuits satisfying a natural uniformity constraint (DLOGTIME-uni-
formity).

A l-input and l-output arithmetic function over the fields Fy» may
be identified with an n-input and n-output Boolean function when field
elements are represented as bit strings.

We prove that if some such representation is X-uniform (where X is P
or DLOGTIME) then the arithmetic complexity of a function (measured with
X-uniform unbounded fan-in arithmetic circuits) is identical to the Boolean
complexity of this function (measured with X-uniform threshold circuits).

We show the existence of a P-uniform representation and we give partial
results concerning the existence of representations with more restrictive
uniformity properties.

Introduction

When a family of circuits is constructed to compute a function, some kind
of uniformity restriction is usually applied, in order that the circuits may
be feasible to construct. Traditionally, uniformity constraints have been
specified by requiring some description of the circuits to be generated or
accepted by a machine of bounded complexity [Bor77, Ruz81, BDG].

More recently, a different approach using expressibility has arisen.
Some complexity classes defined in terms of functions computable by
uniform circuit families coincide with classes of functions that are speci-
fied using logic expressions with Boolean operators and various predicates
and quantifiers [Imm87, Imm8&9, BIS90).

The first author has participated in the development of an algebraic
model of computation based on circuits that use arithmetic gates over
characteristic 2 finite fields [BFS88]. By representing field elements as
bit strings, it is shown that the (non-uniform) complexity measure of
a Boolean function measured in the arithmetic model (size/depth of cir-
cuits using unbounded fan-in [], ©-gates) is identical to the (non-uniform)
complexity measured in a Boolean model (size/depth of circuits using
threshold circuits) up to a polynomial blow up in size and a constant
factor in depth. In this sense, one may regard the arithmetic model of
computation as an abstraction of the Boolean model.

The possibility of a similar uniform relationship depends on finding
suitably uniform representations of the family of fields involved. In this
paper, we consider P-uniformity and DLOGTIME-uniformity.

* P-uniformity is a very basic kind of uniformity [All89]. A P-uniform
family of circuits is computationally feasible to construct. Recent results
show how to construct an irreducible polynomial over F; in deterministic
polynomial time [Sho90]. This fact allows us to find a P-uniform rep-
resentation of the characteristic 2 finite fields, which in turn leads to a
P-uniform version of the result in [BFS88].

It is not clear whether a P-uniform family of circuits corresponds to an
algorithm of complexity proportional to the size/depth of the family, since
constructing the circuit for a specific input size may require polynomial
sequential time. When the computational powers are comparable, it is
still possible that an essential part of the computation is carried out by the
circuit constructor rather than the circuit itself. This has motivated the
study of more restrictive kinds of uniformity, where the resources spent

in accepting or generating a description of some circuit family correspond
more closely to (or strictly dominate) the size/depth of the family itself
[Ruz81].

We shall use the restrictive DLOGTIME-uniformity measure proposed
for studying the substructure of NC! [BIS90]. Usually, time complexities
below linear are not considered, but it is possible to give a meaning-
ful definition of TIME(log(n)) using a random access input tape [Ruz81].
DLOGTIME-uniformity is defined in terms of this complexity class.

We construct a DLOGTIME-uniformly “strong” (see definition 3.3) rep-
resentation of the fields Fan (n # 0 mod 4) using a recent result about
the existence of both self-dual and normal bases for these fields [LeWe88].
This allows a DLOGTIME-uniform version of one of the two inclusions in the
main equivalence result from [BFS88]. The use of DLOGTIME-uniformity
has the advantage that our results are valid for any less restrictive kind
of uniformity.

It is known that the class of functions computed by DLOGTIME-uniform
families of circuits that have polynomial size and constant depth coincides
with the class of functions that are described by logic expressions, pro-
vided the allowed types of quantifiers in the expressions correspond to
the allowed types of gate in the circuits [lmm89, BIS90].

We prove an arithmetic analogue to this result involving a natural and
robust class of arithmetic expressions. Basically, we allow the usual arith-
metic operations in an expression: +, -, (-)POWer pbound pbound iy
the important restriction that bound must be a polynomial expression in
indices and n. (If the restriction is omitted, we can express functions that
are equivalent to the discrete logarithm, and there is little hope of finding
polynomial size circuits for such functions using known techniques.)

All our results can be rephrased for some other fixed finite charac-
teristic. If the characteristic is unbounded then we inherit various prob-
lems from the non-uniform case (see [FrSt88]) in addition to new ones
concerning the construction of suitable prime numbers and irreducible
polynomials.

SECTION 1

Uniform Logic Circuits and Logical Expres-
sions

Definition 1.1
Unbounded Fan-in Logic Circuits

An unbounded fan-in logic circuit is a directed acyclic graph with n ex-
ternal nodes (input gates) and arbitrarily many internal nodes (func-
tion gates). Each internal node computes a function of arbitrarily many
Boolean inputs (fan-in) and one Boolean output that feeds into arbitrar-
ily many other gates (fan-out). Gates whose outputs feed no other gate
produce the final output for the circuit.

The depth of a logic circuit is the length of the longest path from the
output gate to one of the input gates. The size of a circuit is the number
of gates it has. Both of these values are measured as functions of the
number of input gates, n.

A family of circuits {C,} is a set consisting of one circuit C, for each
input size n > 1. We denote by SIZE-DEPTH(S(n), D(n)) the class of
functions computed by circuit families with size S(n) and depth D(n).

When circuits use AND, OR and NOT gates the functions in SIZE-DEPTH
(n°®, log?(n)) form the complexity class AC?, collectively known as the
AC hierarchy.

Remark: The above definitions are standard (see [BIS90, CSV84,
Imm89, Ruz81]). In this paper we are mainly concerned with circuit
families of polynomial size. ‘

The class AC and its subclass AC® are further characterised in [FSS84,
BIS90, Imm89]. [FSS84] also prove that AC’ is properly contained in AC!.

We are interested in two functions with slightly more power than the
standard functions of AC. These two functions, Threshold and Majority,
are now defined.

Definition 1.2
Threshold and Majority Functions
Threshold functions are of the form:

5

m
Th:"(x) =1iff Ewia:,- 2 t
i=1
where x = (21,...,2) is the vector of Boolean inputs, w = (wy, ..., Wy,)
is a vector of integers, called the weights, and the threshold, t, is also an
integer.
Threshold circuits are logic circuits in which the function gates com-
pute Threshold functions.
Majority functions are of the form:

Maj™(x) = 1 iffg;lx,» > 15

where X = (21, ..., Zm) is the vector of Boolean inputs.

We define a Majority /Negation circuit as a logic circuit utilizing ar-
bitrary fan-in Majority gates and unary Negation (—) gates. We also
restrict the inputs of the Majority gates by prohibiting any two inputs
from coming out of the same source.

TC' consists of those families of functions {f,} that are computed by
a family of Majority /Negation circuits of polynomially bounded size and
depth O(log'(n)).

Remark: Other definitions of Threshold functions allow the weights
to be real-valued, put bounds on them, or do not include weights at all
(see [BFS88, CSV84, SkVa85]). Nonuniform complexity measures based
on these different types of threshold and majority/negation gates are all
equivalent up to polynomial size and constant depth, i.e. TC' is a robust
class (See [BFS88, MTT60, Mur71]).

We shall use restrictive uniformity properties in the definition of com-
plexity classes, and unbounded fan-in or unbounded weights at threshold
gates can not be tolerated. Hence, we define TC' in terms of the very
simple Majority gate. This is similar to the approach in [BIS90].

It is a well known fact, that TC' contains AC* and for i = 0, the
containment is proper [FSS84].

Definition 1.3

Direct Connection Languages and Uniform Circuit Families

The Direct Connection Language (DCL) of a circuit family {C,} is a set
of tuples, each of which partially describes one gate of one circuit, C,.

6

Given the DCL of a circuit family {C,}, we should be able to construct
every C, with some Turing Machine. Typically (see [Ruz81, BIS90]), a
tuple from a DCL is of the form (n, @, t, b, p), where n denotes the input
size of the circuit to construct, and a is the number of a gate of type t,
to which the output of gate number b is an input. A padding string p
(containing arbitrary symbols) is included in the tuple so that its overall
length is n. There may be other elements in the tuple, depending on the
type of circuit being constructed.

A family of logic circuits {C,} is X-uniform, for complexity class X,
exactly when the DCL describing {C,} is in X.

Clearly, if X; C X; then an X;-uniform family of circuits is also Xs-
uniform.

Remark: The notion of the direct connection language of a circuit was
introduced in [Ruz81] (for gates with fan-in 2) and in [BIS90] (for gates
with unbounded fan-in). :

Traditionally, P-uniformity has been defined by requiring that a stan-
dard encoding of the circuit can be generated in polynomial time [AII89].
For polynomial size circuits, that definition is equivalent to the above
one.

The use of a single circuit language allows us to speak of X-uniformity
independently of X with more ease, though we shall only use X =P or X =
DLOGTIME. The latter is defined now.

Definition 1.4
Logarithmic Time Turing Machines and DLOGTIME

A logarithmic time Turing machine has one read-only tape containing the
input of length n, a constant number of work tapes, and a special address
tape, used for accessing specific cells of the input tape. The machine is
required to run in O(logn) time. At each step of its computation, the
machine can access one bit of the input by writing on its address tape the
position of the bit it wishes to read (the position is written as a binary
integer, so O(logn) time is needed to write it).

The class DLOGTIME is the class of languages accepted by log time
Turing machines.

Remark: The Turing machines described above may at first appear
severely limited in their computational power. They can, however, find

the length n of their input by binary search and perform arithmetic and
relational operations on the numbers in the range 0 to n°() (see [BIS90]).

Definition 1.5
First Order Expressions

The set of First Order expressions is defined inductively in terms of some
infinite set I of indices (variables):

e Each index ¢ ranges over values between 1 and n inclusive, where
n is the input size.

o The basic expressions are:

1. the bit values false and true

2. the predicate X (i) (written x;) where ¢ € I, which is true iff
the #’th bit of the input string is 1

3. the binary predicate BIT(, j), i, j € I, which is true iff the
i’th bit in the binary expansion of j is 1.

o Fori, j € IU{1,n}, we include the expressions (2=7),and (i < j).

o If e and f are expressions, then we may form new expressions 3i.(e),
Vi.(e),eV f, e f, ~e, where i € I.

For an expression e to be well formed it should have no free variables,
i.e. FV(e) =0, where FV is defined inductively:

FV(false) = FV (true) = 0,

FV(X(3)) = {i},

FV(BI1(,) = FV(i =) = FV(i < j) = {i, 7} n],
FV(3i.(e)) = FV(Vi.(e)) = FV(e) \ {i},

FV(eV f) = FV(eA f) = FV(e) UFV(f),

FV(=e) = FV(e).

A well formed expression describes a family of functions {f,} (one for
each input size).

The complexity class FO consists of those families of functions f, :
{0,1}* — {false, true} that are described by (well formed) First Order
expressions.

We extend FO to form the complexity class FO+Maj by allowing the
Majority quantifier M. If e is an FO+Maj expression, we can construct
the new expression Mi.(e), which is true iff e is ¢rue for more than half
of the possible values of <.

Remark: The complexity class FO (and FO+Maj) has been studied
in [BIS90]. The definition of the complexity class FO in terms of logic
expressibility is a special instance of a more general framework developed
in [Imm87, Imm89). '

For later use, we mention some results:

Fact 1.1
1. DLOGTIME C FO
2. FO+Maj = DLOGTIME-uniform TC®

3. The problem of computing the sum of n n-bit numbers is in
DLOGTIME-uniform TC?

Remark: All these results are proved in [BIS90].

SECTION 2

Uniform arithmetic circuits and arithmetic
expressions.

Definition 2.1
Uniform Arithmetic Circuits in Finite Fields of Characteristic 2.

An unbounded fan-in arithmetic circuit in the field F3. uses the following
types of gate

1. unbounded fan-in sum (T) gates,
2. unbounded fan-in product (II) gates,
3. single input conjugation (¥, 0 < j < n) gates.

It may use a constant g for which it is only known that g generates the
field, i.e. Fau = F3(g).

No multiple wires are allowed, i.e. two wires into the same gate must
originate at different gates or inputs.

The size of a circuit is the number of gates, and the depth is the
length of the longest directed path from an input to an output. A family
of arithmetic circuits {C,} consists of a circuit C, for each field Fjn
(n > 1). Size and depth of the family are measured as functions of n.

The DCL for a family of arithmetic circuits consists of all tuples of the
form (n,a,t,,b, p) for which gate number @ in C,, (which uses arithmetic
over Fy) is of type t € {sum, product, conjugation, constant, input}.
The field j holds an integer when the type is conjugation (-25) or input
(x;). b is the number of some gate whose output is one of the inputs
to gate number a. Each tuple contains a padding string so that its total
length is n (the numbers n, a, t, j, b and p are written as binary integers).
We shall look at polynomial size circuits.

A family of arithmetic circuits is DLOGTIME-uniform (resp. P-uniform),
if its DCL is accepted in time O(log(n)) (resp. n°1) by some determin-
istic Turing Machine.

Remark: This definition is a uniform version of one given in [BFS8§],
with some important modifications. We include conjugation gates and
exclude multiple wires. Multiple wires are irrelevant for ©-gates since

10

the characteristic is two, and multiple wires into a product gate can be
replaced by a small circuit of depth 2 using conjugation gates in the first
level and a single product gate in the second level. Hence, our defini-
tion and the definition in [BFS88] yield equivalent complexity measures
up to polynomial size and constant depth. Our version allows a DCL
with words of length O(log(n)) for polynomial size circuits, whereas a
multiplicity of up to 2® — 1 might require n bits to specify.

Definition 2.2

Arithmetic expressions.

The set of arithmetic expressions is defined inductively in terms of some
infinite set I of indices.

e The basic expressions are:

1. g, a constant that generates the field, Fan = Fy(g).
2. x;, where i € I, the ith argument (input) to f,.

o Ife and f are expressions, then we may form new composite expres-
sions ©2_; e, 1%, €, e+ f, e- f and €*, where i € I and b € TUZ[n].

For an expression e to be well formed it should have no free variables,
i.e. FV(e) =0, where FV is defined inductively:

° FV(g) =0,
FV (=) = {i},
FV(Siie) = FV(li- e) = (FV(e) \ {i}) U {5}, where j € I,
FV(ziYe) = FV (Y e) = FV (e) \ {3}, where p(n) € Z[n],
FV(e+f)=FV(e-f) = FV(e)UFV(f),
FV(e*) = FV(e) U {i}.

A well formed expression describes a family of functions {f,} (one for
each field).

The complexity class AE consists of those families of functions f, :
Fg,(.“) — Fy» that are described by arithmetic expressions.

11

Example 2.1

The canonical field functions norm and trace are in AE, as are the constant
functions 0 and 1:

° N(m) =T, 122‘,

o Tr(z) =3t 2%,

¢ 1= N(g),

e 0=1+1=g+g.
Division is also expressible:

Hzﬁ—z n—1 zi

1 _ s
¢ =iz =1lin T

Lemma 2.1

Given a polynomial p(n), there exists a family of constant functions f,
in AE and a constant ny such that the value of f, is an element in Fy. of
order at least p(n) provided n > n,.

Proof:

Define the expression
A(il’iﬂ’ ---,‘il) = gil +g"’ T gi‘

By varying iy,13,...,4; the expression A can denote at least (?) dif-

ferent elements, since g, g?%,g° ..., g" are linearly independent (this is a
consequence of g being a generating element).

The number of elements in Fa» that have order at most p(n) is bounded
by w2 #(i) < p(n)?, where ¢ denotes the totient function.

By choosing I = 2 - deg(p) + 1, we will have ") > p(n)? for n

¢
sufficiently large, and some choice of parameters for A will give an element
of order at least p(n).

The following expression checks whether a possible choice of parame-
ters leads to an element of sufficiently high order:

#(n)
B('il,ig,...,i;-) = N([II(A(il,iz, ...,’ig)m + 1)),

12

which equals 1 iff the order of A(i1,43,...,%) is greater than p(n).

There may be several elements of high order and we will construct an
expression that chooses the lexicographic first string 1,43, ..., % that leads

to an element of sufficiently high order.

0(313121 ,'il)
Hu_l H13=1 HJa— 2] 1-[:'%:1 (1 T B(jlaj?s :Jl))
H;az-_—l H?g: L H;Z:l (1 + B(il}jh 331))

HJJ‘- (1 +B(i1,i2,...,j¢))
0 some string 71, ja, ooy J1 (<tes 11,82, ..., In) Satisfies
= order(A(j1, ja, ---,ji)) > p(n)
1 otherwise

We have used index bounds i; — 1 in the summation above. However
that does not increase our expressive power:

Te=110+(E- 1N +9))

for j < n, since g has order at least n 4 1.
Our complete expression for an element of high order is

- Z Z E C(il,iz, ...,’i]‘) . B(’il,?:z, ...,?:1) 4 A(il,?:z, ...,’t‘:t)

f1=1iz=1 =1

Lemma 2.2

Identify bits with the field elements 0,1. Then FO+Maj C AE in the fol-
lowing sense. Let f, € FO+Maj and let p(n) be some polynomial. Define
a function hy, on the field F3» by hy = fy(n), i.e. by, takes p(n) arguments.
Then h, € AE.

Proof

‘We know h,, can be described by a logic expression, so it suffices to provide
an inductive translation £ from logic expressions to arithmetic expressions

13

that preserves 0,1 under the usual semantics. Below we will assume
that b denotes a field element of order at least 2p(n)? (by Lemma 2.1).
Translations for the bits 0 and 1 were presented in Example 2.1.

1. £(—e) =14 E(e) \‘ﬁ
2. E(e1 Ae) = E(e1)E(ez) |
3. E(Vi.e) =W £(e)

4. (i < j) =iz, N(b* +), where k is not in {3, j}.

5. E(i=j4)=1+ N('b" + ¥)

To specify the BIT-predicate, we first define translations for less
complex logic expressions: i

E(i=j+k)=1+N(b+¥ .bF)

E(i=37-k)=1+ N + (b)F)

E(“iis 0odd”) = £(3j.i = 25 + 1)

£(“i is power of 2”) = E(VjVk.(i = j - k A “j is 0dd”) — j =1)

E(i=27) = E(“i is power of 2”).
(1+NOB-b+1IE, pE(“k is power of 2”)))

where b* =1+ z(b— 1) for z € {0,1}
6. E(BIT(i,5)) = £(FkIL(k < 2) A (U is 0odd”) A (§ = k +1 - 29))
7. E(Mi.e) = SEO(1 + £(25 < p(n))) - (1 + N(+ [pE@)))

Remark: The logic expression for BIT is taken from [BIS90).

Lemma 2.3 %
DLOGTIME C AE, when bits are identified with the field elements 0, 1.

14

Proof:

DLOGTIME C FO by fact 1.1, so the result is a consequence of the above
lemma.

]

Lemma 2.4

Let {fs} be computed by a DLOGTIME-uniform family of arithmetic cir-
cuits Cy, of polynomially bounded size and constant depth. Then {fa}is
in AE.

Proof:

The direct connection language L for {C,} is described by an arithmetic
expression ey according to lemma 2.3. Without loss of generality, we
may assume that, for some constant k, each of the first 5 components in
a 6-tuple in L takes exactly [log(n*)] bits to specify. Define

e;(n,a,t,j,b) = original expression ey, with x; replaced by
T ERF < nt < 2 (
£(i < | ABIT(i,n))
+E(I <i<2lA(3j.j+1=1iABII(j,a)))
Fo.+E(4 < i <5LA(35.5+ 4 =i ABIT(4,b)))
)

The AE macros below are constructed so that our final expression is
simpler to read:

Tlh ﬂi
type(a,t) =1+ -Hu,l_ll(l + ej(n,a,t,j,b))
J: =

nt n
indez(a,j) =1+ [TI(1 + €%(n, a,t,5,b))
i=1b=1

n* nk

z'nput(a, b) =14 illl]:[1(1 & e},(n,a,tsja b))
=1)=

15

Using these macros we can give a recursive expression for the value
computed at a particular gate:

= type(a, sum) - Ti-, input(a, b) - value(b)
+ type(a, product) - ey (1 + (value(b) + 1) - input(a, b))
+ type(a,conjugation)- ‘
T, £ (input(a, b) - value(b))” - index(a, j)
+ type(a,input) - Ti, z; - indez(a, j)
+ type(a,constant) - g

value(a)

By convention the output is computed by gate number 0, so the arith-
metic expression for f, is value(0), where the expression for value has
been substituted in recursively, but only a constant number of fimes, since
the depth of the circuits C, are known to be bounded by a constant.

[}

Lemma 2.5

Every arithmetic function f, in AE has DLOGTIME-uniform arithmetic cir-
cuits of polynomially bounded size and constant depth.

Proof:

We define an operator C, inductively, that creates the n’th circuit, given
an expression without free variables:

1. Cp(e;s - €3) = A Il-gate with two inputs, namely the outputs from
Cn(e1) and Ca(e3).

2. Ca(e1 + €3) : This is similar.

3. Ca(TI%., €) = A TI-gate with b inputs, one input from the 01'1tput of
each of the b circuits Cy(e[i — 1]),Ca(eli = 2]),...,Caleli — b]),
where b is an integer that may depend on n.

4. Cu(xt., €) : This is similar.

5. Cn(ez“)} = A conjugation gate with the appropriate integer parame-
ter. Note that j is an integer, since expressions has no free variables.

6. Ca(z;) = A gate that connects up to the appropriate input. (As
above, j is an integer).

16

7. Ca(g) = A constant gate.

It may be necessary to add a polynomial number of dummy gates to
satisfy the “no multiple wires” requirement, e.g. when forming circuits
from the expression [1%; z;.

The depth of the circuits Cy(e) will be some constant ¢; dependent
on e, and the maximal number of inputs to any gate will be n®2, hence we
may assign gate numbers of ¢; blocks of c;[log(n)] bits each to specify
the path from the output gate (number 0) to the gate in question.

The log-time Turing Machine that recognises the DCL starts by find-
ing the length n of its input (n, a, t, j,b, p) by binary search (see Definition
1.5), and checks that it starts with n. The expression e is stored in the
finite control and allows the machine to check that a,b are legal gate
numbers, that b is connected to a (the significant part of a is a prefix of
b), that index j is correct (it is identical to one of the bit blocks of a) and
that the type ¢ is correct.

=}

Theorem 2.1

The class of functions computed by DLOGTIME-uniform arithmetic circuits
of polynomially bounded size and constant depth coincides with AE.

Proof:
This is immediate from Lemmas 2.4 and 2.5.

a

Remark: The theorem is not sensitive to the exact definition of AE. If
arbitrary polynomial expressions in indices and n are allowed in upper
and lower bounds of summations and products, then it is not difficult to
see that the proof of lemma 2.5 still holds.

For exponential bounds the case is different. The power series f,(z) =
b BT ﬁ;w" yields the last bit of the discrete logarithm of z (# 0) with
respect to the the base g, when g is a primitive root in Fy.. It is an

open (and presumably difficult) problem, whether f, has polynomial size
circuits. '

17

SECTION 3

Representations of Finite Fields of Charac-
teristic 2.

Fact 3.1
F;- is a vector space.

Fy. can be regarded as an n-dimensional vector space over F,.

Let f. be an irreducible polynomial over F; of degree n. Then
F[z]/(f.) is isomorphic to Fy«. If g is a root of f, then 1,g,4% 4% ...,g™!
are linearly independent and form a polynomial basis for Fy» over Fs.

If the elements g,gz,g",gﬂ',...,g'zﬂ_1 (all the conjugates of a single el-
ement g € Faa) are linearly independent then they form a normal basis
for an. .

The trace function Tr : Fyu — F is defined by Tr(z) = £ 2%
Two bases by,bs,...,b, and ¢, ¢y, ...,c, are dual (complementary, trace-
orthogonal) if

1ifi=j
FelE = { 0 if i #j

A basis is self-dual if it is its own dual.

Every finite field of characteristic 2 has a polynomial basis, a normal
basis and a self-dual basis (and possibly many of each).

The dual basis to a normal basis is also normal and the field F;. has
a both normal and self-dual basis precisely when n # 0 mod 4

Remark: The last statement about the existence of a basis that is both
normal and self-dual was only proved recently [LeWe88]. The remaining
facts with historical notes may be found in [LiNi83].

The following definitions 3.1, 3.2, 3.3 and 3.4 are all adapted from
non uniform versions in [BFS88], as are lemmas 3.1 and 3.2.

Definition 3.1
Representations.

A representation of Fz. is a family of bijections ¢, : Fz» — {0,1}" It
defines which element is associated with which bit string. In particular it

18

defines the representation of the generating element g used in definitions
2.1 and 2.2.

Remark: One might consider more general representations, e.g. in-
volving redundancy [FrSt88]. For technical simplicity, we stick to the

defined set of representations, though our results are valid in a more
general setting.

Definition 3.2
Good representations

Let X € {P,DLOGTIME}. {¢,} is a X-uniformly good representation if there
exists X-uniform families of majority/negation circuits (1 < j < n) (N >
2
) San : {0,13¥ - {0,1}"
P,y :{0,1}"¥ - {0,1}"
ci . {0,1}* - {0,1}"
G.:e— {0,1}"

all of constant depth, the first two of size (nV)°(), the last two of size
n°0); satisfying

Sun(Ba(s2), e bnlen)) = 6a(35 %)

P (6a(21), vy bulem)) = qsn(ﬁl)

Ci(#n(21)) = ¢a(2¥)
Gn = ¢5u(9)
for all z; € Fn

Remark: Intuitively field arithmetic can be implemented efficiently in
a good representation.

Definition 3.3
Strong Representations

Let X € {P,DLOGTIME}. {¢,} is a X-uniformly strong representation, if
there exist X-uniform constant depth, polynomially bounded size (in n)

19

arithmetic circuits
int Fon — Fou

0n i Fopn — i

satisfying

on(2) = ¢a(2)

in(¢a(2)) = 2
for all field elements z. Here we have regarded {0,1} both as Boolean
values and as members of Fan.

Remark: Intuitively a strong representation is one that can be ac-
cessed efficiently from within the field.

Definition 3.4

Equivalent Representations

Let X € {P,DLOGTIME}. A representation ¢, : F» — {0,1}" translates
X-uniformly into a representation 8, : F3» — {0,1}" (written ¢, <y 6,)
iff there exists a family of X-uniform constant depth, n°(!) size major-
ity /negation circuits Ty : {0,1}* — {0,1}" satisfying T,(¢a(z)) = 0n(2)
for all z € Fsn. ¢, and §, are X-uniformly eguivalent representations
(written ¢, =y 0,,) iff ¢n <y 0, and 6, <; ¢n.

Remark: Two equivalent representations can be regarded as being
one, since conversion between them is very fast.

Remark 3.1

In the following, we will several times assume that we can replace (sim-
ulate) all gates in a X-uniform family of arithmetic (majority/negation)
circuits by small majority /negation (arithmetic) circuits taken from a
X-uniform family, and as a result still have a X-uniform family of circuits.

We shall in each case assume that gate numbers in the new circuit are
pairs (a,b), where a is a gate number in the original circuit, and bis a gate
number in the small circuit that simulates gate number a. Furthermore,
we construct a machine to accept the connection language of the new
circuits by letting the finite control contain the cross product of all the
finite controls in the machines that exist due to the assumed X-uniformity
of the constituent circuit families.

20

Lemma 3.1

Let X € {P,DLOGTIME}. If ¢, is X-uniformly good and 4, is X-uniformly
strong then ¢, and v, are X-uniformly equivalent.

Proof:

To prove the equivalence, we show the existence of translations both
ways: The arithmetic circuits i, (o,) that exists due to 7, being strong
may be simulated by majority/negation circuits via the representation
®» by using the circuits Sna, Pau, CJ and G, that exist due to ¢,
being good. The simulation preserves uniformity by remark 3.1. To
make the constructed circuits be a complete translation proving 1, < ¢,
(#a < %), we must preprocess the input string by attaching small circuits
that when input a bit 0/1 outputs the ¢, representation of the field
element 0/1 (postprocess the output string by attaching small circuits
that outputs the bit 0/1 when input the ¢, representation of the field
element 0/1). The pre- and post-processing can be done uniformly by
using the expressions for 0 and 1 that are given in example 2.1 to generate
circuits (lemma 2.5). For the post-processing we use in addition that the
representation is a bijection.

O

Lemma 3.2

Let X € {P,DLDGTIME}. If ¢y, is X-uniformly good(strong) and ¢, and ¥,
are X-uniformly equivalent, then ¢, is X-uniformly good(strong).

Proof:

We must prove that 1, is good. The proof is similar for the different
kind of gates, so we will just consider how to implement summation.
Since ¢, and 1, are equivalent, we can translate the v, representation
of the input elements into a ¢, representation of the same elements, and
do the summation using that ¢, is good, followed by a translation back
to the 1, representation. Composition of circuits preserves uniformity.
To prove “strong” version of the statement, we need to make similar
considerations, with one complication introduced: The majority /negation
circuits that exist for translation between the representations must be

21

simulated by arithmetic. If the translation is known to be DLOGTIME-
uniform then we can use fact 1.1 and lemmas 2.2, 2.5. In the general
case, we may use lemma 2.5 and the proof of lemma 2.2 to obtain small
arithmetic circuits to simulate single majority /negation gates and then
call upon remark 3.1 to ensure that the resulting family of arithmetic
circuits is X-uniform.

0

Definition 3.5
Polynomial, Normal and Self-dual Representations.

A family of bases (one base for each field) gives rise to a corresponding
basis representation ¢, defined by ¢,(Tr, aib;) = (a1,as,...,a,), where
a; € {0,1} and b, by, ..., by, is the basis for Fan.

When all the bases are either polynomial, normal or self-dual then
a polynomial, normal or self-dual basis representation is obtained. For
a polynomial (1,h, k2, ...,h""!) or normal (h,h? kY, ...,h?""") representa-
tion, the constant g, is identified with the basis generator h: ¢(g) = ¢(h).

Lemma 3.3
Construction of basis representations.

There is a deterministic algorithm that on input = in time O(n**¢) returns
a normal basis g, g%, ...,g%" " (represented by an irreducible polynomial of
degree n of which g is a root) for F=. If n # 0 mod 4 then the normal
basis will be self-dual.

Proof:

Shoup has recently shown how to find an irreducible polynomial over F,
of specified degree n in time O(n***) deterministically [Sho90].

Given the irreducible polynomial we may simulate arithmetic in the
field via a polynomial basis. This allows to apply some other recent
results: ‘

Bach, Driscoll and Shallit show how to find a normal basis (expressed
in terms of the polynomial basis) in time O(n*) deterministically [BDS90).

22

Lempel and Weinberger show how to find a self-dual normal basis in
Fy (when one exists) given a normal basis [LeWe88]. They do not anal-
yse the time efficiency of their algorithm. However, a simple inspection
reveals that it may all be done in time O(n*).

We have now found g expressed in terms of the original polynomial ba-
sis. To find the irreducible polynomial satisfied by g, we simply compute
the expression (z — g)(z — g%) - ... (x — g¥"7")

O

Lemma 3.4

There exists a P-uniformly strong representation that is DLOGTIME-uni-
formly strong for the subclass of fields Fy», where 7 # 0 mod 4.

Proof

Let ¢, be the normal representation corresponding to the normal bases
that are generated by the algorithm in the proof of lemma 3.3.
We note that 4, (from Definition 3.3) is characterised by

n—1 .
iﬂ(aﬂsah ---)an—l) = Z a'igz"
i=0

By lemma 2.5 it follows that i, has appropriately uniform circuits.

The dual basis to g,g?...,g°" " is also normal and let it be generated
by h. In terms of h, we can characterise the j'th output of o, (from
Definition 3.3) as follows

on(a); = :Z:Tr(gz‘hzj)a,- = il"r((r_lz;%1 a,;gzi)hzj) =Tr(a- hzj).

The last part of the lemma now follows by noting that for » % 0 mod
4, h = g, and the use of lemma 2.5 on the above expression for o,.
In the case n = 0 mod 4 we may compute k from g. The trace equation

o [1i=0
T’(g'h2)={0 i=1,.,n—1

yields n linear equations with the n unknowns h, h?,...,h%"™". So an ex-
pression for A may be found in polynomial time by using linear algebra.
Intermediate expressions are reduced using the minimal polynomial for
g, which is found in polynomial time by lemma 3.3.

23

O

Remark: There may well be a DLOGTIME-uniformly strong representa-
tion of all fields F3-, but the non-existence of a both self-dual and normal
basis for Fsn, when n = 0 mod 4, makes a different proof technique nec-
essary. A self-dual basis exists in each of these fields, but it is not clear
how to find one efficiently [Lem75, SeLe80]. A self-dual basis in the hand
might be of no help anyway, since it could be difficult to express all basis
elements {by, by, ..., b,} uniformly in terms of g.

A partial solution is known, however. If {ay,...,ar} and {by,..., 0}
are self-dual bases in Fy and Fy respectively, where ged(k,l) = 1, then
{a:dbjli = 1,..,k and j = 1,...,l} is a self-dual basis for Fou. Hence,
it suffices to construct self-dual bases for the fields Fom, n > 2. This
is of course possible for any specific of these fields, e.g. if h is a root in
zt+2¥+22+z+1 (i.e. his of order 5) then {h,1+h?, k%, 14+ h%} is a self-
dual basis in F'3:. Based on h, one may construct a DLOGTIME-uniformly
strong representation for the fields Fyn, where n = 4 mod 8.

Lemma 3.5

There exists a P-uniformly good representation.

Proof:

Let ¢, be the polynomial representation defined by the basis 1, g, ..., g**
and let v, be the normal representation defined by the basis g, ¢2, ..., g*"
where g in both cases is the element found in the proof of lemma 3.3.

By lemma 3.3, we can find the irreducible polynomial f, of g in poly-
nomial time and hence we can also compute the matrices to convert
between the two bases in that time showing that ¢, =p 1n.

We must show how to construct the circuits S, v, Pax, CJ and G, in
time (nN)°(). Since the two representations are equivalent and by the
proof of lemma 3.2, we need only construct each circuit for either 4, or

¢y in order to prove that both ¢, and 4, are P-uniformly good.

1. Constant gate G,: This gate outputs (1,0,0,...,0) in the normal
representation.

2. Conjugation gate Ci: This gate makes a cyclic shift of the bits in
the normal representation.

24

3. Sum gate S, y: This gate is identical in both representations. It

uses n parity sub gates, each of fan-in N.

. Product gate P, y: This gate is the most complicated to implement.

We choose the polynomial representation.

In the non uniform version [BFS88], the product polynomial is com-
puted modulo a lot of low degree, pairwise prime, irreducible poly-
nomials and reconstructed using the Chinese remainder theorem
followed by a modulo f, operation. Since polynomial arithmetic
modulo a low degree irreducible polynomial represents arithmetic
in a smaller characteristic two field, it is implemented by convert-
ing to discrete logarithms in this field and doing an addition of the
resulting binary integers.

This proof carries over to the uniform case without too great diffi-
culty. The most important uniformisation details are:

- Finding the necessary irreducible polynomials: To implement

a product gate P, y with N inputs, we need to form the prod-
uct of N polynomials each of degree at most n — 1. Hence if
we form the product modulo some polynomial h of degree at
least n.V, we can recover the full product.
We choose h(z) = 2™ _ z. h(z) factors completely over
the field Fypiognny. Hence over Fy, all irreducible factors of h(z)
are pairwise prime and each have degree at most [log(nV)].
All factors may be found in time (nIN)?() by an exhaustive
search using trial division.

- Taking discrete logarithms (and anti-logarithms) in small fields:
Since each of the small fields contain at most 2/°6(*¥)] < 2N
elements, we can afford to find a primitive element by ex-
haustive search and compute a complete table of the discrete
logarithms (and antilogarithms) with respect to this primitive
element. All of this can be done in time (nN)°()

- Adding binary integers: For each of the small fields the loga-
rithms are added using the circuits from fact 1.1.

Applying the Chinese Remainder Theorem: If ry(z),r3(z), ...,
ri(z) are the remainders modulo hy(z), hy(z), ..., hi(z) of r(x)
then r(z) = TX,; ri(z)ci(z)di(z) modulo (h(z) = I, hi(z)),

1

25

where c;(z) = h(z)/hi(z) mod hi(z) and di(z) is chosen such
that ¢;(z)d;(z) = 1 mod hi(z). Clearly all of c;(z) and di(z)
can be computed in time (Nn)°0).

O

Remark: It may be that the notion of “P-uniformity” in the statement
of lemma 3.5 can be replaced by a more restrictive kind of uniformity,
but the basic problem of finding an appropriate irreducible polynomial
seems to require the power of P with present techniques [Sho90].

Theorem 3.1

Regard the elements of F2» as bit strings (by virtue of some P-uniformly
good and strong representation that is DLOGTIME-uniformly strong for the
subclass of fields determined by n # 0 mod 4). Let {f.} be an n-input,
n-output Boolean function and let Z(n) > n, D(n) > 1. Then

1. {fn} is computed by P-uniform majority/negation circuits of size
Z(n)°() and depth O(D(n)) iff {fa} is computed by (single input
and output) P-uniform arithmetic circuits of size Z(n)°(") and depth
O(D(n))-

2. For the subclass of fields Fy» where n # 0 mod 4 a stronger state-
ment is valid:

If {f.} is computed by DLOGTIME-uniform majority/negation cir-
cuits of size Z(n) and depth D(n) then {f,} is computed by (sin-
gle input and output) DLOGTIME-uniform arithmetic circuits of size
Z(n)°() and depth O(D(n)).

Proof:

By lemma 3.4 there exists a P-uniformly strong representation ¢, that is
DLOGTIME-uniformly strong on the restricted class of fields.

By Lemmas 3.1, 3.2 and 3.5 we know that any such ¢, is also P-
uniformly good. Hence it is possible to identify field elements and bit
strings as assumed in the initial statement of the theorem.

Assume that C, is a family of X-uniform (where X is P or DLOGTIME)
n-input, n-output majority /negation circuits. By remark 3.1 and lemmas

26

2.2, 2.5, we obtain an equivalent X-uniform n-input, n-output family of
arithmetic circuits. The latter circuits are transformed into circuits with
a single input and a single output, by attaching the circuits i, and o,
that exists due to ¢, being strong. This proves part 2 and half of part 1.

Assume that D, is a family of P-uniform arithmetic circuits each with
a single input and a single output. Using the circuits S, y, P, x, CJ and
G, that exists due to ¢, being good, we simulate the arithmetic circuits
(using remark 3.1) to obtain n-input, n-output majority/negation circuits
as stated in part 1.

)

Corollary 3.1

Regard the elements of F» (n # 0 mod 4) as bit strings (by virtue of
some DLOGTIME-uniform strong representation). Then TC® C AE,

Proof:

This is a consequence of Theorems 2.1 and 3.1 (part 2).

27

References

[Allg9]

[BDS90]

[BDG]

[BIS90]

[Bor77]

[BFS8S]

[CSV84]

[FrSt8s)

[FSS84]

[[mm87]

[Imm89]

Allender, E. W., P-Uniform Circuit Complexity. Journal of
the ACM, 36 (1989), pp. 912-928. :

Bach, E., Driscoll, J. and Shallit, J., Factor Refinement. In
Proceedings of the First Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM 1990, pp. 201-211.

Balcédzar, J. L., Diaz, J. and Gabarrd, J., Structural Com-
plezity. Springer Verlag, 1988 (Vol. 1), 1990 (Vol. 2).

Barrington, D. A. M., Immerman, N. and Straubing, H.,
On Uniformity within NC!. Journal of Computer and System
Seciences, 41 (1990), pp. 274-306.

Borodin, A., On Relating Time and Space to Size and Depth.
SIAM Journal on Computing, 6 (1977), pp. 733-744.

Boyar, J., Frandsen, G. S. and Sturtivant, C., An Arithmetic
Model of Computation Equivalent to Threshold Circuits. To
appear in Theoretical Computer Science. Early version as
Technical Report, DAIMI PB-239, Aarhus University, 1988.

Chandra, A. K., Stockmeyer, L. and Vishkin, U., Constant
Depth Reducibility. STAM Journal on Computing, 13 (1984),
pp. 423-439.

Frandsen, G. S. and Sturtivant, C., The Depth Efficacy of
Unbounded Characteristic Finite Field Arithmetic. Technical
Report, DAIMI PB-240, Aarhus University, 1988.

Furst, M., Saxe, J. B. and Sipser, M., Parity, Circuits and the
Polynomial Time Hierarchy. Mathematical Systems Theory,
17 (1984), pp. 260-270.

Immerman, N., Languages that Capture Complexity Classes.
SIAM Journal on Computing, 16 (1987), pp. 760-778.

Immerman, N., Expressibility and Parallel Complexity.
SIAM Journal on Computing, 18 (1989), pp. 625-638.

28

[Lem75]

[LeWe8S8]

[LiNi83]
[Mur71]

[MTT60]

[Ruz81]

[SeLe80]

[Sho90]

[SkVa8s]

Lempel,A., Matrix Factorization over GF(2) and Trace-
Orthogonal Bases of GF(2"). SIAM Journal on Computing, 4
(1975), pp. 175-186.

Lempel, A. and Weinberger, M. J., Self-Complementary Nor-
mal Bases in Finite Fields. SIAM Journal on Disrete Math-
ematics, 1 (1988), pp. 193-198.

Lidl, R. and Niederreiter, H., Finite Fields. Encyclopedia of
Mathematics and its Applications 20. Addison Wesley, 1083.

Muroga, S., Threshold Logic. Academic Press, New York,
1971.

Muroga, S., Toda, I. and Takasu, S., Theory of Majority
Decision Elements. J. Franklin Inst., 271 (May 1961), pp.
376-418. Originally in J. Inst. Electron. Comm. BEng., Japan,
Vol 43, nos 10 and 12 (Oct. and Dec 1960). (In Japanese).

Ruzzo, W. L., On Uniform Circuit Complexity. Journal of
Computer and System Sciences, 22 (1981), pp. 365-383.

Seroussi, G. and Lempel, A., Factorization of Symmetric Ma-
trices and Trace-Orthogonal Bases in Finite Fields. SIAM
Journal on Computing, 9 (1980), pp. 758-767.

Shoup, V., New Algorithms for finding Irreducible Polyno-
mials over Finite Fields. Mathematics of Computation, 54
(1990), pp. 435-447.

Skyum, S. and Valiant, L. G., A Complexity Theory Based
on Boolean Algebra. Journal of the ACM, 32 (1985), pp
484-502.

29

	Sada-122c13022617450_0001
	Sada-122c13022617450_0002
	Sada-122c13022617450_0003
	Sada-122c13022617450_0004
	Sada-122c13022617450_0005
	Sada-122c13022617450_0006
	Sada-122c13022617450_0007
	Sada-122c13022617450_0008
	Sada-122c13022617450_0009
	Sada-122c13022617450_0010
	Sada-122c13022617450_0011
	Sada-122c13022617450_0012
	Sada-122c13022617450_0013
	Sada-122c13022617450_0014
	Sada-122c13022617450_0015
	Sada-122c13022617450_0016
	Sada-122c13022617450_0017
	Sada-122c13022617450_0018

