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Abstract

Let arithmetic pseudo-NCk denote the problems that can be solved
by log space uniform arithmetic circuits over the finite prime field Fp

of depth O(logk(n + p)) and size (n + p)O(1).
We show that the problem of constructing an irreducible polyno-

mial of specified degree over Fp belongs to pseudo-NC2.5.
We prove that the problem of constructing an irreducible polyno-

mial of specified degree over Fp whose roots are guaranteed to form a
normal basis for the corresponding field extension pseudo-NC2-reduces
to the problem of factor refinement.

We show that factor refinement of polynomials is in arithmetic
NC3. Our algorithm works over any field and compared to other known
algorithms it does not assume the ability to take p’th roots when the
field has characteristic p.
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Introduction

We study parallel arithmetic computation over both a general field and over
finite prime fields.

We consider problems that have known feasible solutions (sequential or
probabilistic). However, the study of deterministic parallel algorithms can
give new insight into the structure of a problem.

We focus on minimising the circuit depth (parallel time). Only secondar-
ily, will we consider the exact exponent of the processor bound.

Model of Computation.

We choose log space uniform arithmetic circuits as our model of computation.
We allow only gates for the usual arithmetic operations (+, ·,−, /) and the
constants 0, 1. By excluding arbitrary constants, we need not define how a
log space TM should represent fancy constants in connection with uniformity
requirements. Other constants (in the prime field concerned) can be built
explicitly from 0, 1. See [Ebe89] for a discussion of constants and uniformity.

Boolean operations may be simulated arithmetically (using field constants
0 and 1). However, inputs and outputs will be field elements only, and these
are treated atomically, i.e. we can not access their possible bit representations
(at least not directly). For an overview of different arithmetic models of
parallel computation (circuits and PRAM’s) see [KaRa90].

We shall use the following complexity classes and notions of reduction:

1. Let F denote an arbitrary field. We define arithmetic NCk to consist of
those problems with domain Fn that are solved by log space uniform
circuits of depth O(logk(n)) and size nO(1).

2. Let Fp be the unique prime field with p elements. We define pseudo-
NCk to be those problems with domain Fn

p that are solved by log space

uniform (in n and p) circuits of depth O(logk(n+p)) and size (n+p)O(1).

We say that problem A pseudo-NCk-reduces to problem B, when we can
solve A using log space uniform arithmetic circuits with oracle gates for
B such that the circuits have depth O(logk(n+p)), size (n+p)O(1) and
only a constant number of oracle gates occur on any path from an input
to an output. In this way, we know that if B belongs to pseudo-NCl so
does A, provided l ≥ k.
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When restricting computations to finite fields it turns out that deterministic
polynomial time solutions for some natural problems (polynomial factorisa-
tion and construction of q’th nonresidues) are known only when the char-
acteristic is included in the input size. For parallel computations a similar
phenomenon occurs for modular exponentiation. This is the motivation for
our definition of pseudo-NCk.

Problems considered.

For the first two problems, we only consider polynomials over finite prime
fields. Let Fp be the finite prime field with p elements for a prime p.

1. Irreducible Polynomial Construction is the following problem: Given
n ∈ N find an irreducible monic f ∈ Fp[x] of degree n.

A solution to the problem gives normal basis guarantee if the roots of
f form a basis for Fpn over Fp.

2. Polynomial Factorisation is the following problem: Given monic f ∈
Fp[x] of degree n, find the unique minimal set of monic irreducible
polynomials {g1, g2, ..., gk} ⊂ Fp[x] such that f =

∏k
i=1 gni

i for suitable
ni ∈ N.

For the last problem, we consider polynomials over a general field F.

3. Polynomial Factor Refinement is the following problem: Given mo-
nic f1, f2, ..., fk ∈ F[x], find monic g1, g2, ..., gl ∈ F[x] such that (i)
gcd(gi, gj) = 1 for i �= j and (ii) for all i, fi =

∏l
j=1 g

nij

j , for some
integer exponents nij. The refinement is parsimonious if (iii-a) for all
j, gcd(n1j, n2j, ..., nkj) = 1. The refinement is square free if (iii-b) for
all j, gj is square free.

Summary of technical results.

Our primary result is:

1. The problem of constructing an irreducible polynomial is in arithmetic
pseudo-NC2.5
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The bottleneck of the construction is factor refinement, by means of which
we can also give a normal basis guarantee:

2. The problem of irreducible polynomial construction with normal basis
guarantee pseudo-NC2-reduces to the problem of factor refinement.

As a byproduct, we also prove

3. The problem of polynomial factorisation pseudo-NC2-reduces to the
problem of factor refinement.

We solve the problem of factor refinement for general fields:

4. The problem of parsimonious factor refinement is in arithmetic NC3.

Our algorithm can be used for integers as well as for polynomials, and we
prove

5. If the gcd of a set of integers can be found in Boolean NCk (k ≥ 2),
then the parsimonious factor refinement of two integers can be found
in Boolean NCk+1.

Related work.

We do not know of any earlier parallel algorithm for the construction of
irreducible polynomials. The first deterministic algorithm for the problem
appears in [Sho90a]. Probabilistic algorithms are not difficult to construct,
since irreducible polynomials are rather abundant, see e.g [Ben81]. The prob-
lem of constructing normal bases were considered by [Lün85, BDS90].

Deterministic algorithms for polynomial factorisation appeared already
in [Ber67]. [Gat84] shows that the problem of polynomial factorisation
over Fp is in probabilistic pseudo-NC2. The newer results of [Mul87] and
[BKR86, KKS90] actually implies that the probabilistic parts can be made
deterministic (by increasing the depth to O(log3(n + p))).

Factor refinement has been considered by [Lün85, BDS90], who both
provide sequential solutions. The combined work of [Gat84, BKR86, KKS90]
gives a parallel solution for square free factor refinement that in addition to
arithmetic operations assumes the ability to extract p’th roots, when the
characteristic of the field is p.
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Open questions.

1. Is polynomial factor refinement in arithmetic NC2 ?

2. Can we construct irreducible polynomials with normal basis guarantee
in arithmetic NC2 ?

- Theorem 3.(1-2) gives an affirmative answer for restricted degrees.

3. Do the problems that we consider have parallel solutions of cost effi-
ciency comparable to the best sequential solutions ?

- Theorem 4 gives an affirmative answer in a very restricted case.
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Arithmetic NCk.

In this section, we consider arithmetic computations over an arbitrary field
F. We summarise some known results about arithmetic NCk membership.
The results on linear algebra will be used extensively later. In addition we
present a new result on parsimonious factor refinement.

Fact 1.

1. Let M be an n × n matrix over F. Then the problems of computing
the determinant, the inverse (if exists) and the rank of M all belong to
arithmetic NC2. (The rank, an integer, is represented in unary.)

2. Let f1, f2, ..., fk ∈ F[x] and let n be the degree of
∏k

i=1 fi. Then the
problems of computing gcd(f1, f2, ..., fk) and computing the quotient
and remainder of the division f1/f2 both belong to arithmetic NC2.

The computation of determinant and inverse was proven to be in arith-
metic NC2 by [Csa76] (for fields of characteristic 0) and by [BGH82] and
[Ber84] (for general fields). The latter result was inspired by [VSBR83]. A
simple and uniform construction for general fields appeared in [Chi85].

[Mul87] reduced the computation of matrix rank to a determinant com-
putation.

Fast parallel circuits for polynomial division were presented in [Ebe89].
For our purposes a reduction to matrix determinant and inversion suffices
[Gat84].

The problem of computing the gcd of two polynomials was reduced to
matrix inversion/determinant in [BGH82] and the computation of the gcd of
many polynomials was reduced to the computation of matrix rank in [Gat84]
combined with [BGH82].

Theorem 1.

The problem of parsimonious factor refinement is in arithmetic NC3.

Proof
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We call a set of polynomials F relatively square free, if the parsimonious
refinement of F = {f1, ...fk} into G = {g1, ..., gl}, where fi =

∏l
j=1 g

nij

j

satisfies that nij ∈ {0, 1} for all i, j.

We shall show that given F then the problem of computing a relatively
square free set F ′ such that F and F ′ have identical parsimonious
refinements belongs to NC3.

The remaining problem of refining F ′ into factors that are pairwise
prime belongs to NC3 by the algorithm in [KKS90]. The latter algorithm
is presented in a context where it gets only square free inputs, but it
works also for a relatively square free set of inputs.

Consider the following parallel algorithm. When the algorithm is input
a set F = F0 ⊆ F[x] it will iteratively compute F1, F2, ... where Fi+1 is
identical to Fi except that zero or more polynomials in Fi have been
split into two or more factors in Fi+1. No factors are lost, i.e. if a
polynomial can be expressed as a product of powers of elements in Fi

then the same is true for Fi+1.

Algorithm 1

input: F = {f1, f2, ..., fk}
output: H = {h1, h2, ..., hl} such that

i. H is relatively square free.

ii. The parsimonious refinements of F and H are identical.

method:

procedure rsq(F );
F0 := F ;
i := 0;
repeat

Fi+1 := ∪e∈Fi
split(e, Fi);

i := i + 1;
until Fi = Fi+1;
RETURN(Fi);

end;

where
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procedure split(e, {f1, f2, ..., fk});
m := deg(e);
for i ∈ [1, ..., k] in parallel do

di := gcd(e, fi) · e/gcd(e, fm
i );

od;

c := gcd(d1, d2, ..., dk);
for i ∈ [0, ..., m] in parallel do

bi := gcd(e, ci);
od;
for i ∈ [1, ..., m] in parallel do

ai := bi/bi−1;
od;
RETURN({a1, a2, ..., am} \ {1});

end;

We shall argue that the algorithm is partially correct. Let {g1, ..., gl}
be the parsimonious factor refinement of F . Define Nij = {n|∃f ∈
Fi. gj divides f precisely n ≥ 1 times}. We can express the correct
termination of the algorithm by the condition

(a) Fi+1 = Fi if and only if Nij = {1} for all j.

To prove (a), we follow the execution of a single phase in detail.

Consider the call split(e, {f1, ..., fk}) and assume e =
∏

g
mj

j , fi =∏
g

nij

j . In the first step, we compute

di =
∏

{j|nij=0}
g

mj

j ·
∏

{j|nij>0}
g

min{mj ,nij}
j

Let nj = min{i|nij>0}{nij}. Then the next step computes

c =
∏

{j|mj �=0}
g

nj

j

If nj is less than mj for some j’s, e will be split into nontrivial factors:

bi =
∏
j

g
min{mj ,inj}
j
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and
ai =

∏
{j|mj≥inj}

g
nj

j ·
∏

{j|inj>mj≥(i−1)nj}
g

mj mod nj

j

This combined with gcd(Nij) = 1 for all i, j proves (a), and we have
demonstrated the partial correctness of the program. In addition, we
have also proved

(b) Ni+1,j = {n mod min(Nij)|n ∈ Nij} ∪ {min(Nij)} \ {0}.

¿From (b) it follows that if Nij �= Ni+1,j �= Ni+2,j then min(Nij) ≥
min(Ni+1,j) + min(Ni+2,j). By induction, we may thus prove that if k
iterative calls of split are needed before Nij = {1} then n ≥ min(N0,j) ≥
φk, where φk is the kth Fibonacci number. Since φk grows exponentially
in k, we conclude that the algorithm stops within O(log(n)) iterative
calls of split. Each execution of split can be handled in depth O(log2(n))
by fact 1. This proves the depth bound of the theorem.

✷

Algorithm 1 can also be used for computation on integers in the usual
binary representation. We need only replace each reference to degree with
a reference to number-of-bits. Since division and iterated multiplication of
integers is known to be in Boolean NC2 (If P-uniformity suffices then circuits of
depth O(log(n)) and size nO(1) do the job [BCH86]), we have in fact proved:

Corollary 1.

If the problem of computing the gcd of a set of integers is in Boolean
NCk (k ≥ 2), then the problem of computing the parsimonious factor
refinement of a set of integers is in Boolean NCk+1.

9



Representations of Finite Extension Fields.

In this section, we establish the mathematical preliminaries for the algo-
rithmic constructions in the next section. Our construction of irreducible
polynomials will be divided into cases according to the multiplicative struc-
ture of the degree wanted. The basic idea is borrowed from [Sho90a]. He
considers 3 distinct cases:

1. Combining irreducible polynomials of prime power degrees n1, n2, ...,
nk into a single irreducible polynomial of composite degree n =

∏k
i=1 ni.

2. Constructing irreducible polynomials of prime power degree n = pr,
where p is the characteristic of the field.

3. Constructing irreducible polynomials of prime power degree n = qr,
where q �= p.

Shoup was not concerned with normal bases. By changing the details of the
constructions in the cases (1) and (2), we make it possible to give (preserve)
the normal basis guarantee, with no extra computational cost. We have not
succeeded to do so in case (3). Instead, we shall call upon the standard
method for constructing normal bases from polynomial bases. A major part
of case (3) is the construction of field elements that are q’th nonresidues. The
method used by [Sho90a] requires iterative polynomial factorisation. Since
we have not been able to bound the number of iterations sufficiently, we
present a different construction, which in fact is also due to Shoup [Sho90b].

Definitions.

Let p be a prime and let n be a positive integer. We let Fpn denote the
unique degree n extension field over the prime field Fp.

1. Let fn ∈ Fp[x] be irreducible of degree n. Let α be a root of Fp. Then
Fp[x]/(fn), Fp(α) and Fpn are all isomorphic.

The elements 1, α, α2, α3, ..., αn−1 are linearly independent and form a
polynomial basis for Fpn (over Fp).

If the elements α, αp, αp2
, ..., αpn−1

(all the roots of fn) are linearly in-
dependent, then they form a normal basis for Fpn (over Fp).

Every finite field Fpn has at least one normal basis.

10



2. If f ∈ Fp[x] then let f̂ ∈ Fp[x] be the linearised polynomial defined by

f̂(x) =
∑

j cjx
pj

, when f(x) =
∑

j cjx
j. It is the case that f̂ g = f̂ ◦ ĝ =

ĝ ◦ f̂ .

For α ∈ Fpn let µα ∈ Fp[x] be the minimum degree polynomial such
that µ̂α(α) = 0. If β ∈ Fpn then µβ(x) divides xn − 1 and β generates
a normal basis precisely, when µβ(x) = xn − 1.

3. Let a ∈ Fpn .

Let q be a prime. a is a q’th nonresidue (in Fpn) if the equation xq−a =
0 has no solution over Fpn .

a is a primitive root (for Fpn) if the order of a in the multiplicative
group F∗

pn is pn − 1. It is the case that a is a primitive root if and only
if a is a q’th nonresidue for all q that divides pn − 1.

These definitions with many results can all be found in the encyclopedic
exposition of [LiNi83].

Fact 2.

Let p be a prime and let n be a positive integer.

1. Let n = n1 · n2, where gcd(n1, n2) = 1 and let Fpn1
∼= Fp(α1) and

Fpn2
∼= Fp(α2). Then Fpn ∼= Fp(α), where α = α1 + α2.

2. Let α0 = 1 and let αr be a root of the polynomial xp − x − ∏r−1
i=0 αp−1

i .
Then Fppr ∼= Fp(αr).

3. Let q be a prime and r a positive integer (q �= p).

If q = 2 and p = 3 mod 4 then let m = 2, otherwise (q �= 2 or p =
1 mod 4) let m be the order of p modulo q.

Let α be any qth nonresidue in Fpm , let β be a root of xqr − α and let

γ =
∑m−1

i=0 βpi·qr

, then Fpm ∼= Fp(α), Fpm·qr ∼= Fp(β), and Fpqr ∼= Fp(γ).

4. Let q, m be as in (3). Define s by pm − 1 = qs · t, where q does not
divide t.

11



Let f1(x), ..., fs(x) ∈ Fp[x] satisfy that f1(x) is an irreducible factor of
xq−1 + xq−2 + ... + x + 1 and fk(x) is an irreducible factor of fk−1(x

q)
for 2 ≤ k ≤ s.

Then fk(x) has degree m (with the exception that f1(x) = x + 1 when
q = 2 and p = 3 mod 4) and any root α of fk(x) satisfies that αqk

= 1
and αqk−1 �= 1 for 1 ≤ k ≤ s. If α is a root of fs(x), then α is a q’th
nonresidue in Fp(α) ∼= Fpm .

5. Let f ∈ Fp[x] have degree n and assume f is the product of k dis-
tinct irreducible factors each of which has degree d, f =

∏k
j=1 gj. De-

fine c ∈ Fp[x][y] by c(y) =
∏d

i=1(y − xpi
) and define h0, h1, ..., hd−1 ∈

Fp[x] by c(y) = yd +
∑d−1

i=0 hiy
i. Then {g1, g2, ..., gm} = parsimonious-

factor-refinement(∪d−1
i=0 ∪c∈Fp {gcd(f, hi − c)}).

6. Let α be given such that Fp(α) ∼= Fpn . For i = 0, 1, 2, ..., n − 1, let
fi = µαi . Let {g1, g2, ..., gk} = parsimonious-factor-refinement({f0,
f1, ...fn−1}), and let nij be defined by fi =

∏k
j=1 g

nij

j . For j = 1, 2, ..., k
choose b(j) ∈ {0, ..., n − 1} such that nb(j),j = maxi{nij}. Let hj =

fb(j)/g
nb(j),j

j , then β =
∑k

j=1 ĥj(α
b(j)) generates a normal basis for Fp(β) ∼=

Fp(α).

Fact 2.(1)-(4) are proved in [Sho90a] where these and fact 2.(5) are used for
the first efficient deterministic construction of irreducible polynomials.

Fact 2.(2) originates earlier in [AdLe86].
Fact 2.(5) is proved in [Sho90c] where it is used for one of the most efficient

deterministic factorisation algorithms. The idea of constructing separation
sets that allow complete factorisation by a final factor refinement goes back
to [Ber67].

Fact 2.(6) have been used by several sources for constructing normal bases
[Lün85, BDS90].

To support parallelism and to some extent avoid factor refinement in our
construction of normal bases (fact 2.(6)), we also use the following results:

Theorem 2.

Let p be a prime and let n be an integer.
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1. Let n = n1 · n2, where gcd(n1, n2) = 1 and let Fpn1
∼= Fp(α1) and

Fpn2
∼= Fp(α2). Then Fpn ∼= Fp(α), where α = α1·α2. If α1, α2 generate

normal bases for Fp(α1) and Fp(α2) respectively, then α generates a
normal basis for Fp(α).

2. Let α0 = 1 and let αr be a root of the polynomial xp − αp−1
r−1x − 1 for

r ≥ 1. Then Fppr ∼= Fp(αr).

Let βr = α−1
r and let γr = αp−1

r . Then βr and γr both generate normal
bases for Fppr ∼= Fp(βr) ∼= Fp(γr). In addition βr is a root of xp +

(
∑r−1

i=0 βi)x
p−1 − 1 and γr is a root of xp +

∑p−1
i=1 (−1)iγp−i

r−1x
i − 1.

3. Let α be given such that Fpn ∼= Fp(α). Let q be a prime such that q
divides pn−1. If l satisfies that pl > n2 then the set {αl+

∑l−1
i=0 ciα

i|ci ∈
Fp} contains a q’th nonresidue.

Proof

1. Fp(α) ∼= Fpn1·n2 : Assume that Fp(α) is contained in some proper sub-
field Fpn1·n2/r (r prime) of Fpn1·n2 . without loss of generality, we can
assume that r|n1. Hence both α2 and α1 · α2 (and therefore also α1)
is in Fpn1·n2/r contradicting the fact that Fp(α1, α2) ∼= Fpn1·n2 (because
gcd(n1, n2) = 1).

α generates a normal basis: We must prove that
∑n−1

i=0 ciα
pi

= 0 implies
that ci = 0 for all i. We represent the numbers i ∈ {0, 1, 2, ..., n− 1} as
i = (j, k), where j = i mod n1, k = i mod n2 and the equation becomes

0 =
∑n1−1

j=0

∑n2−1
k=0 c(j,k)(α1α2)

p(j,k)
=

∑n1−1
j=0 (

∑n2−1
k=0 c(j,k)α

pk

2 )αpj

1 . We may
conclude that c(j,k) = 0 for all (j, k) if (i) α1 generates a normal basis
for Fp(α1, α2) over Fp(α2) and if (ii) α2 generates a normal basis for
Fp(α2) over Fp. (ii) is given by assumption, so we need only worry
about (i).

Proof of (i): We must prove that the elements of N = {αpin2

1 |i =

0, 1, ..., n1 − 1} = {αpi

1 |i = 0, 1, 2, ..., n1 − 1} are linearly independent
over Fp(α2). By assumption N is a a normal basis over Fp. Hence
the polynomial basis P = {1, α1, α

2
1, ..., α

n1−1
1 } can be expressed as an

linear combination of the elements of N . But P is a basis for Fp(α1, α2)
over Fp(α2) and therefore, so is N .
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2. The proof will use induction on r.

Fp(αr) ∼= Fpr : By definition αr is a root of xp − αp−1
r−1x − 1, which

implies that αp
r = αp−1

r−1 · αr + 1. By induction on k, we find that

αpk

r = αr · αpk−1
r−1 +

∑k
i=1 αpk−pi

r−1 = αpk

r−1(αr · α−1
r−1 +

∑k
i=1(α

−1
r−1)

pi
). If

we can prove that k = pr is the smallest k for which the equation
αpk

r = αr is possible, then we will have proved that xp − αp−1
r−1x − 1 is

irreducible over Fp(αr−1) and Fp(αr) ∼= Fppr . First, we deduce that
such a minimal k must be a multiple of pr−1. This follows because
γr−1 = (αp

r−1)/αr and by inductive assumption Fppr−1
∼= Fp(γr−1). We

know that αppr−1

r−1 = αr−1 and
∑pr−1

i=1 (α−1
r−1)

pi
= c �= 0, since α−1

r−1 = βr−1

generates a normal basis for Fppr−1 by inductive assumption. Hence,

αppr−1

r = αr +cαr−1 and αpjpr−1

r = αr +jcαr−1, where the term (jcαr−1)
does not vanish unless j is a multiple of p.

Fp(βr) ∼= Fp(γr) ∼= Fppr : Clearly, Fp(βr) ∼= Fp(αr). In addition, note

that αp
r − αp−1

r−1αr − 1 = 0 implies that αp−1
r = αp−1

r−1 + α−1
r . Hence,

αp−1
r =

∑r
i=0 α−1

i , and we find that βr = α−1
r is a root of the polynomial

xp + (
∑r−1

i=0 βi)x
p−1 − 1. The equation γr = γr−1 + βr also implies that

Fp(γr) ∼= Fppr . To find the minimal polynomial for γr, we note that
γp

r = γp
r−1 +βp

r = γp
r−1 +1− γr−1β

p−1
r = γp

r−1 +1− γr−1(γr − γr−1)
p−1 =

γp
r−1 + 1 − γr−1

∑p−1
i=0 (−1)iγp−1−i

r−1 γi
r. When reorganising terms, we find

that γr is a root of xp +
∑p−1

i=1 (−1)iγp−i
r−1x

i − 1.

βr and γr both generate normal bases: In the fields, we work with,
normal basis generators can be characterised in a very simple way, viz.
δ ∈ Fppr generates a normal basis for Fppr if and only if

∑pr−1
i=0 δpi �= 0.

To see the truth of this, we use that µδ(x) divides xpr −1. But xpr −1 =
(x−1)pr

. Let g(x) = (x−1)pr−1 =
∑pr−1

i=0 xi, then δ generates a normal
basis if and only if µδ does not divide g if and only if ĝ(δ) �= 0.

Next observe that
∑pr−1

i=0 γpi

r−1 = p · ∑pr−1−1
i=0 γpi

r−1 = 0, which implies

that
∑pr−1

i=0 γpi

r =
∑pr−1

i=0 βpi

r and we need only prove that βr generates a

normal basis. βr, β
ppr−1

r , βp2·pr−1

r , ..., βp(p−1)·pr−1

r are the p distinct roots

of the polynomial xp + γr−1x
p−1 − 1. Hence,

∑p−1
i=0 βpi·pr−1

r = −γr−1 and∑pr−1
i=0 βpi

r = −∑pr−1−1
i=0 γpi

r−1 �= 0 by inductive assumption.

3. In [Sho90b] it is proved that for l satisfying pl > c · n6 · log4(p) the set
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{αl +
∑l−1

i=0 ciα
i|ci ∈ Fp} contains a primitive root for Fp(α), where c is

a universal constant. However, when we merely want a q’th nonresidue
one may relax the lower bound on l to pl > n2.

Define Al ⊆ Fp[x] to be all monic polynomials of degree l. Let Bl =
{f(α)|f ∈ Al}. If l ≥ n then Bl = Fp(α), and clearly contains a
q’th nonresidue. Hence, we may assume that l < n: In that case
Bl ⊆ Fp(α)∗ and we can split Bl in q’th powers Bl,q and q’th nonresidues
Bl − Bl,q.

Let χ : Fp(α)∗ → C be a multiplicative character of order q, then

1

q

q−1∑
i=0

χi(β) =

{
1 for β ∈ Bl,q

0 for β ∈ Bl \ Bl,q

For β ∈ Bl, let fβ ∈ Al be the unique polynomial such that fβ(α) = β.
Define Λ(β) to be the degree of g if fβ is a power of some irreducible
g ∈ Fp[x] and 0 otherwise. Define S(l) =

∑
β∈Bl

Λ(β) and Sq(l) =∑
β∈Bl,q

Λ(β). Then S(l) = pl and Sq(l) =
∑

β∈Bl
(1

q

∑q−1
i=0 χi(β))Λ(β) =

1
q
S(l) + 1

q

∑q−1
i=1 (

∑
β∈Bl

χi(β)Λ(β)).

[Sho90b] proves that

(a) |∑β∈Bl
χ(β)Λ(β)| ≤ (n − 1)

√
pl for l ≥ 1.

Hence, we get S(l) − Sq(l) ≥ q−1
q

pl − q−1
q

(n − 1)
√

pl = q−1
q

√
pl(

√
pl −

(n − 1)), and Bl − Bl,q is nonempty, when
√

pl > (n − 1) and l ≥ 1.

✷

Fact 2.(4) shows how to construct a q’th nonresidue by s iterative factorisa-
tions. The best bound on s in terms of p and n that we have managed to
prove is the trivial one (a < log(p) ·n/ log(n)). That is not good enough for a
pseudo-NC-algorithm, and theorem 2.(3) will be the basis of our construction
of q’th nonresidues.

The direct normal basis construction of Theorem 2.(1)-(2) will turn out
to allow NC2-networks, whereas the reduction of normal basis construction to
factor refinement will only be pseudo-NC2 and factor refinement requires NC3

networks to our best knowledge.
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Arithmetic pseudo-NCk.

In this section, we prove the main result of the paper. As far as possible, we
try to make our constructions in arithmetic NC rather than pseudo-NC, and
we do succeed in two of the three subcases arising when constructing irre-
ducible polynomials (theorem 3.(1-2)). The subproblems that seem to require
the power of pseudo-NC are modular polynomial exponentiation, polynomial
factorisation and construction of q’th nonresidues.

Contrary to our earlier resolution to disregard processor efficiency, we
exhibit a very processor efficient construction of degree 2r polynomials over
F2.

Definitions.

Let p be a prime.

1. Modular Polynomial Exponentiation is the following problem: Given
f, g ∈ Fp[x] and r ∈ N, where f has degree n, g has degree < n and
r < pn then compute (gr mod f).

Fact 3.

1. Modular Polynomial Exponentiation is in pseudo-NC2.

[FiTo88] proves that polynomial modular exponentiation is in Boolean NC2,
provided that p is bounded by nO(1). Their construction does, however, lead
to an arithmetic pseudo-NC2 network when p is unbounded.

Theorem 3.

Let p be a prime and let n be a positive integer.

1. Let n =
∏k

i=1 ni, where gcd(ni, nj) = 1 for i �= j. The problem of con-
structing an irreducible f ∈ Fp[x] of degree n, when given irreducible
f1, f2, ..., fk ∈ Fp[x] of degrees n1, n2, ..., nk respectively is in arithmetic
NC2.

If the roots of f1, f2, ..., fk are known to form normal bases for their
respective field extensions, then so will the roots of f .
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2. Let n = pr. The problem of constructing an irreducible f ∈ Fp[x] of
degree pr is in arithmetic NC2.

The roots of f is guaranteed to form a normal basis for Fp[x]/(f).

3. Let n = qr, where q �= p is a prime. The problem of constructing an
irreducible f ∈ Fp[x] of degree qr pseudo-NC2-reduces to the problem
of polynomial factorisation.

4. The problem of polynomial factorisation pseudo-NC2-reduces to the
problem of parsimonious polynomial factor refinement.

5. The problem of constructing an irreducible f ∈ Fp[x] of degree n, such
that the roots of f form a normal basis for Fpn , pseudo-NC2-reduces to
the problem of parsimonious factor refinement.

6. The problem of irreducible polynomial construction lies in pseudo-NC2.5.

Proof:

1. We shall use theorem 2.(1). Assume that we have irreducible poly-
nomials f1, ..., fk of degrees n1, ..., nk with roots α1, ..., αk. Let α =∏k

i=1 αi. We know that Fp(α1, α2, ...αi) is a degree ni extension over
Fp(α1, α2, ..., αi−1) since gcd(ni, nj) = 1 for i �= j. Hence, the set
M = {αl1

1 αl2
2 · ... · αlk

k |li = 0, 1, 2, ..., ni − 1 for i = 1, 2, ..., k} forms a
basis for Fp(α) over Fp. We want to find the unique monic polynomial
f(x) = xn +

∑n−1
i=0 cix

i such that f(α) = 0. The coefficients ci can be
found in arithmetic NC2 by solving a system of linear equations, if we
know the representation of 1, α, α2, ..., αn in terms of the basis M . We
note that αi = αi

1α
i
2...α

i
k. The representation of each αi

j in terms of

the polynomial basis {1, αj, α
2
j , ..., α

nj−1
j } is found in arithmetic NC2 by

a single modulo operation. Finally, we multiply out (also in arithmetic
NC2) to find the representation of αi in terms of M .

2. Let αr be defined as in theorem 2.2. We wish to find the unique monic
g ∈ Fp[x] of degree pr such that g(αr) = 0. We shall later show how
to get a polynomial f with normal basis guarantee from g. We know
that Fp(αk) is a degree p extension over Fp(αk−1) for all k ≥ 1. Hence
the set M = {αl1

1 αl2
2 · ... · αlr

r | lk = 0, 1, 2, ..., p − 1 for k = 1, 2, ..., r}
forms a basis for Fp(αr) over Fp. If we can find the representation of

17



1, αr, α
2
r , ..., α

pr

r in terms of M , then we may find the coefficients of g
in arithmetic NC2 by the strategy used in the proof of part (1) of this
theorem.

We still need to show how to find the representation of αl
r in terms

of M . Let l =
∑r

i=0 aip
i be the base p representation of the integer

l < pr+1. Then

(a) αl
k =

∏r
i=0(α

pi

k )ai .

In the proof of theorem 2.(2) we found that αpi

k = αk ·αpi−1
k−1 +

∑i
j=1 αpi−pj

k−1

for i ≥ 0. We may insert this expression into (a) and in depth O(log2(n))
multiply out to find numbers cij ∈ Fp such that

(b) αl
k =

∑T (l)
i=0

∑l−i
j=0 cijα

i
kα

j
k−1, where T (l) =

∑r
i=0 ai.

By using (b) for a substitution into the right hand side of it self, and
possibly repeating this process a few times, we find numbers dij ∈ Fp

such that

(c) αl
k =

∑p−1
i=0

∑l−i
j=0 dijα

i
kα

j
k−1.

The computation of (c) from (b) takes at most depth O(log∗(n)
log(n)), since T (T (T (...T (l)...))) ≤ p − 1 for at most O(log∗(n)) it-
erations of T .

For k = 1, 2, ..., r we iteratively find expressions for αl
k in the base

{αl1
1 αl2

2 · ... · αlk
k | l1, l2, ..., lk = 0, 1, 2, ..., p − 1}. In the beginning, we

simply insert α0 = 1 into (c) to get the expression for αl
1 by collecting

terms. Each step in the iteration consists in substituting the result from
the last step into the right hand side of (c) and multiplying out. There
are r steps, each of which can be done in depth O(log(n)). Hence, the
complete construction of the irreducible polynomial g is in arithmetic
NC2.

Our remaining concern is the normal basis guarantee. g has the root αr.
We want to find f that has the root βr = α−1

r . If g(x) = xn +
∑n−1

i=0 bix
i

then f(x) = xn +
∑n−1

i=0 (bn−i/b0)x
i.

3. Next, let us construct a polynomial of degree qr, where q �= p. Find m
according to fact 2.(3). Find f1(x) as an irreducible factor of xq−1 +

18



... + x + 1 using polynomial factorisation. Let f(x) = f1(x) (except for
q = 2 and p = 3 mod 4 in which case f(x) = f2(x) = x2 + 1). Then
f(x) has degree m. Let α be a root of f . An element β �= 0 in Fp(α)
is a q’th nonresidue if and only if β(pm−1)/q �= 1. Hence, we compute
((xl +

∑l−1
i=0 cix

i)(pm−1)/q mod f(x)) using theorem 2.(3), for all choices
of c0, c1, ..., cl−1. At least one set of coefficients, e.g. (d0, d1, ...dl−1)
leads to a value �= 1. Then β = αl +

∑l−1
i=0 diα

i is a q’th nonresidue.
Find the irreducible polynomial g(x) for β by solving a linear system
of equations. Let γ be a root of g(xqr

) that is irreducible of degree mqr

(fact 2.(3)). Compute δ =
∑m−1

i=0 γpiqr

in terms of γ and find the degree
qr minimal polynomial h(x) of δ by solving yet another linear system
of equations.

4. Let f have the complete factorisation f =
∏n

i=1

∏ni
j=1 g

nij

ij , where gij is
irreducible of degree i and gij1 �= gij2 when j1 �= j2. We wish to find
the gij’s.

We start by making a distinct degree factorisation (an old technique).
The polynomial xpk −x is the product of all irreducible polynomials in
Fp[x] that have a degree dividing k. Hence, compute

(a) ak = gcd(f, xpk − x) =
∏

i|k
∏ni

j=1 gij, for k = 1, 2, ..., n.

(b) bk = ak/ gcd(ak,
∏k−1

i=1 ai) =
∏nk

j=1 gkj, for k = 1, 2, ..., n.

In (a) we first compute a′
k = xpk

mod f using fact 3.(1) and next we
compute gcd(f, a′

k − x) using fact 1.(2).

The remaining problem may be characterised as follows: Factor b =∏m
j=1 gj, where each gj ∈ Fp[x] is irreducible of degree d and gi, gj are

distinct if i �= j.

We use fact 2.(5) and compute:

(c) c(y) = (y−x) · (y−xp) · ... · (y−xpd−1
) mod b(x) = h0(x)+h1(x) ·

y + h2(x) · y2 + ... + hd−1(x) · yd−1 + yd

(d) {g1, g2, ..., gm} = parsimonious-factor-refinement(∪d−1
i=0 ∪c∈Fp

{gcd(b, hi − c)})
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5. Parts (1-4) of this theorem shows how the construction of an irreducible
polynomial of degree n pseudo-NC2-reduces to the problem of factor re-
finement. In (3) we give no guarantee that the roots of the constructed
polynomial form a normal basis. However, such a guarantee can be
extended using factor refinement (and fact 2.(6)):

Let f ∈ Fp[x] be irreducible of degree n. Let α be a root of f . Find fi =
µαi for i = 0, 1, ..., n−1. fi is found by computing αi, αip, ...αipn−1

in the
polynomial basis {1, α, α2, ..., αn−1} and solving (checking singularity)
of suitable systems of linear equations. This is all in pseudo-NC2 by fact
1.(1) and fact 3.(1). Next, we construct {g1, ..., gk} by factor refinement
of {f0, f1, ..., fn−1}. The remaining part of the construction of a normal
basis generating element β in terms of α is in pseudo-NC2 (fact 2.6).
Finally, find the irreducible polynomial for β.

6. Theorems 3.(1-5) and 1 combined show that the construction of irre-
ducible polynomials with normal basis guarantee is in pseudo-NC3, and
it appears that the bottleneck is factor refinement. Actually, factor
refinement occurs in only two connections:

(a) When factoring xq−1 + ... + x + 1 to find an irreducible f(x) of
degree m.

(b) When constructing a normal basis from a polynomial basis.

The (b)-bottleneck is easily avoided by dropping the normal basis guar-
antee and be satisfied with any irreducible polynomial of the proper
degree. The (a)-bottleneck could be avoided by making a recursive call
of the whole construction algorithm and in this way find an irreducible
polynomial of degree m. However, in the worst case the recursion
depth could be O(log(n)), and we would still only have a pseudo-NC3

algorithm.

The trick lies in combining the two ideas, if m is “small”, then we make
a recursive call, otherwise ((q − 1)/m is “small”) and it turns out that
we can relatively fast find an irreducible factor of degree m.

To analyse this approach, we will need to know the following:

(c) If f ∈ Fp[x] of degree n is the product of n/m distinct factors,
each of degree m, then an irreducible factor of f can be found in
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depth O(log2(n + p) · log(n/m))

To prove (c), we use fact 2.(5), but we stop before doing the factor
refinement, when we have computed the set F = ∪m−1

i=0 ∪c∈Fp{gcd(f, hi−
c)}. F must contain at least one polynomial f1 of degree d1, where
m ≤ d1 ≤ n/2. This is because

∏
c∈Fp

gcd(f, hi − c) = f for any fixed i,
and ∪c∈Fp{gcd(f, hi − c)}, can not be {f, 1} for all i, if m �= n. Hence,
by log(n/m) recursive steps each of depth O(log2(n + p)), we can find
an irreducible factor of f .

Next we need the following:

(d) The recurrence relation

T (n) = 1 + max1≤m≤n min{log(n/m), T (m)} for n ≥ 2 and

T (1) = 1
2
.

is satisfied by

T (n) = 1
2

+
√

2 log(n) for n ≥ 1.

For fixed n ≥ 2, and 1 ≤ m ≤ n, this particular solution satisfies

log(n/m) is decreasing in m,

T (m) is increasing in m and

log(n/m) = T (m), when m = n · 2 1
2
−
√

2 log(n).

Based on (d), we choose a recursive call of our irreducible polynomial

construction algorithm, when (i) m < n · 2 1
2
−
√

2 log(n) and otherwise (ii)
we find an irreducible factor of xq−1+ ...+x+1. From (d) we know that
in case (i) T (n) dominates 1 + T (m) and in case (ii) T (n) dominates
1 + log(n/m). Hence, by (c) we conclude that it is possible to find
an irreducible polynomial in total depth O(log2(n + p) · T (n)), which
implies the statement, we were to prove.

We still need to prove (d), though. Note that T (m) is an increasing
function in m and that log(n/m) is a decreasing function in m (for n
fixed). Hence, max1≤m≤n min{log(n/m), T (m)} is obtained for an m
such that log(n/m) = T (m). It is now a routine calculation to verify
the correctness of the remaining assertions in (d).
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✷

We have so far not concerned ourselves with optimising the circuit-size/processor-
number in our results. All our constructions so far have used matrix inversion
or determinant computations, which are very processor expensive operations
[KaRa90]. However, we can improve upon the construction of theorem 3.(2)
when p = 2:

Theorem 4

1. Over the field F2 an irreducible polynomial of degree n = 2r may
be constructed with log space uniform arithmetic circuits of depth
O(log2(n)) and size O(n2).

The roots of the constructed polynomial form a normal basis for F2n .

Proof

1. Assume αr is a root of x2 +αr−1x+1 and α0 = 1, according to theorem
2.(2). We shall iteratively construct f1, f2, ..., fr such that fi = gi +
αr−ihi, where gi, hi ∈ Fp[x]. It will be the case that fi ∈ Fp(αr−i)[x]

has degree 2i and has the roots α2j2r−i

r for j = 0, 1, ..., 2i − 1. Clearly,
f1(x) = x2 +αr−1x+1 and fi(x) = (gi−1(x)+αr−i+1hi−1(x)) ·(gi−1(x)+

α22r−i

r−i+1hi−1(x)). The elementary symmetric functions of α2j2r−i

r−i+1 (j =
0, 1) are the coefficients of the polynomial x2 + αr−ix + 1, i.e. σ1(...) =
αr−i and σ2(...) = 1. Using these facts, we may compute fi from fi−1

in depth O(log(2i)). We thus find the coefficients of fr in arithmetic
NC2. Using that α0 = 1, fr will in fact be the sought for polynomial.

✷

Example

To appreciate the simplicity of the construction in the proof of theorem
4, we give a demonstration:

(a) Let g0(x) = x and h0(x) = 1.
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(b) Compute gi(x) = gi−1(x)2 + hi−1(x)2, hi(x) = gi−1(x)hi−1(x) and
ki(x) = gi(x) + hi(x) for i ≥ 1.

The computation will yield the following sequence of polynomials, where
ki(x) is irreducible over F2 and the roots of ki(x) form a normal basis
for F2i :

g1(x) = x2 + 1

h1(x) = x

k1(x) = x2 + x + 1

g2(x) = x4 + x2 + 1

h2(x) = x3 + x

k2(x) = x4 + x3 + x2 + x + 1

g3(x) = x8 + x6 + x4 + x2 + 1

h3(x) = x7 + x

k3(x) = x8 + x7 + x6 + x4 + x2 + x + 1

etc.

✷
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