
Tailorable Systems:

Design,

Support,

Techniques,

and Applications

Jawahar Malhotra

Ph.D. Thesis

Department of Computer Science, Aarhus University

Aarhus, January 1994



Department of Computer Science

Aarhus University

Ny Munkegade 116

DK-8000 Aarhus C, Denmark

E-mail: malhotra@daimi.aau.dk

Copyright c1994 by Jawahar Malhotra



To Dad

here's another one to add to your list





Abstract

A tailorable system is one that can be tailored in its use-environment, without any changes

to the source-code of the original system. Such a system must allow its users to make

signi�cant changes to its functionality, but without any modi�cations to its source-code.

One way to accomplish this is to write the system in a manner such that changes to

the system's functionality can be made by extensions to its source-code as opposed to

modi�cations of its source-code. A system written in this manner is an extensible system.

The goal of this dissertation is to study the problems encountered in the process of de-

veloping highly extensible systems, and in the process of tailoring them. The study is

logically divided into four major parts: (1) design deals with issues in the design of exten-

sible systems, (2) support explores the language-level and compiler-level support necessary

for developing extensible systems, (3) techniques illustrates some tested techniques for de-

veloping extensible systems, and (4) applications deals with the application of the other

three parts to create tailorable applications in speci�c domains.

The main contributions of this dissertation include: (1) an approach for implementing

tailorable systems based on embedding an interpreter into a framework-instance with

open points, (2) a technique for making interpreted objects persistent, (3) identi�cation of

language mechanismswhich are suitable for writing tailorable systems, (4) an investigation

of the relationship between object-oriented programming concepts and extensibility, (5)

dynamic extensibility in Beta, and, in general, in any static object-oriented language, (6)

a tailorable hypermedia system which allows source-level tailoring in order to de�ne new

media-types, (7) a technique for making a batch-oriented direct-manipulation-based user-

interface generator interactive, (8) techniques for the implementation of an interpreter

for an object-oriented language like Beta, (9) a comprehensive overview of the area of

tailorable systems, and (10) many large working systems like the Beta interpreter, and

the tailorable hypermedia system.

The dissertation comprises of �ve, independently written, related papers. \On the Con-

struction of Extensible Systems" presents an approach for the construction of extensible

systems and focuses on the language mechanisms which allow extensible systems to be

constructed. \Dynamic Extensibility in a Statically-compiled Object-oriented Language"
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presents a technique for introducing dynamic extensibility in Beta; as part of this tech-

nique it presents a Beta-interpreter library with its API. \On the Implementation of an

Interpreter for Building Extensible Applications" presents the implementation details of

the Beta interpreter, discussing only the interesting issues. \Extensibility as the basis

for Incremental Application Generation" presents a technique for using the interpreter

to transform a user-interface generator, which generates code in Beta, from a batch-

oriented system into an interactive system. \Building Tailorable Hypermedia Systems:

the embedded-interpreter approach" presents an approach for building tailorable systems

in the domain of hypermedia systems.
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Chapter 1

Overview

1.1 Introduction

A tailorable system is one that can be tailored in its use-environment, without any changes

to the source-code of the original system. Such a system must allow its users to make

signi�cant changes to its functionality, but without any modi�cations to its source-code.

One way to accomplish this is to write the system in a manner such that changes to

the system's functionality can be made by extensions to its source-code as opposed to

modi�cations of its source-code. A system written in this manner is an extensible system.

The goal of this dissertation is to study the problems encountered in the process of de-

veloping highly extensible systems, and in the process of tailoring them. The study is

logically divided into four major parts: (1) design deals with issues in the design of exten-

sible systems, (2) support explores the language-level and compiler-level support necessary

for developing extensible systems, (3) techniques illustrates some tested techniques for de-

veloping extensible systems, and (4) applications deals with the application of the other

three parts to create tailorable applications in speci�c domains.

A system can be tailorable statically or dynamically. A statically-tailorable system is

more like a development framework, while a dynamically-tailorable application is a ready-

to-run application which can be extended during execution. Many of the issues in the

construction of statically and dynamically tailorable applications are the same. Although

this dissertation touches upon the static issues, the main goal is to develop dynamically

tailorable applications.

As examples of tailorable systems consider a spreadsheet system which allows its users to

de�ne new types of cells, e.g. video cells, or a hypermedia system which allows its users

to de�ne new media-types.

1



The area of tailorable systems overlaps with many areas of computer science. The primary

areas touched upon in this work include object-oriented programming and languages, com-

piler and interpreter design and implementation, reection and meta-level architectures,

and tool-integration techniques.

The dissertation is organized as a collection of �ve related papers:

1. On the Construction of Extensible Systems (Chapter 2) (summary: Section 1.5.1).

2. Dynamic Extensibility in a Statically-compiled Object-oriented Language (Chap-

ter 3) (summary: Section 1.5.2).

3. On the Implementation of an Interpreter for Building Extensible Applications

(Chapter 4) (summary: Section 1.5.3).

4. Extensibility as the basis for Incremental Application Generation (Chapter 5) (sum-

mary: Section 1.5.4).

5. Building Tailorable Hypermedia Systems: the embedded-interpreter approach

(Chapter 6) (summary: Section 1.5.5).

All the papers have a common underlying theme, but are otherwise written independently.

They share common terminology and discuss related issues. The papers appear here in

almost their original form. The bibliographies from the individual papers have been

merged into one common bibliography for the entire dissertation. In addition, the primer

on Beta has been removed from the papers which had it, and now appears as an appendix

(Appendix A) of the dissertation.

Figure 1.1 presents an overview of all the papers: for each paper, the area of focus is

illustrated. Overlapping areas indicate some common material covered by the papers.

(1) presents an approach for the construction of extensible systems and focuses on the

language mechanisms which allow extensible systems to be constructed. (2) presents

a technique for introducing dynamic extensibility in Beta; as part of this technique it

presents a Beta-interpreter library with its API. (3) presents the implementation details

of the Beta interpreter, discussing only the interesting issues. (4) presents a technique

for using the interpreter to transform a user-interface generator, which generates code

in Beta, from a batch-oriented system into an interactive system. (5) presents an ap-

proach for building tailorable systems in the domain of hypermedia systems; unlike the

abstract discussion in (1), this discussion is based on a real experiment: a large tailorable

hypermedia system.

This overview paper begins with some motivation for studying the area of tailorable

systems. It identi�es some of the interesting problems in building tailorable systems.
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Figure 1.1: An overview of the papers

It summarizes the main contributions of the dissertation as a whole. It also contains a

summary of each of the papers in the dissertation. In addition to just describing the

papers, it attempts to bring out the relationships between them; the overlaps between

material in various papers are also identi�ed. Descriptions of the various working systems

built as part of this dissertation-work, and not contained in one of the other papers, are

also presented. This paper also quanti�es the software-development e�ort that underlies

the dissertation, by listing the sizes of the various systems built. The paper includes an

extensive section on related work; the coverage here has greater breadth, and in some cases

depth, than the related-work sections in any of the individual papers. Conclusions drawn

from the dissertation as a whole are presented. The paper ends with an identi�cation of

future directions for the work presented.

1.2 Why tailorable systems?

Recently, there has been a trend in the software-development industry to produce highly

tailorable systems: Microsoft Word and Microsoft Excel are examples of highly customiz-

able systems. This is in spite of the fact that producing a tailorable system is more

expensive than producing a non-tailorable one. It is driven by the realization that a

�nished non-tailorable software system cannot possibly meet the needs of all users and

use-organizations. The system must be tailorable in order to be able to �t the user's



requirements.

The need for tailorable systems is also well established by many researchers. In [Nyg89],

Nygaard, in his article on Profession Oriented Languages, claims:

It is commonly argued that users in the future should be given tools for modi-

fying and extending information systems.

In [BBE90], the authors present some of the problems in the enhancement of the Customer

Service System in a bank. They claim the following:

We believe that many problems are connected to the attitude that computer

systems are �nished products.

Suchman and Trigg, in [ST91], claim that:

... e�ective design involves a co-evolution of artifacts with practice. Where

artifacts can be designed by their users, this development goes on over the

course of their use.

Henderson and Kyng, in [HK91], claim that one of the goals of their work is to contribute

to the creation of systems that better �t work situations, as well as the aims and intentions

of the people using the systems.

This implies a view of design as a process that is tightly coupled to use and

that continues during the use of a system.

There is even an argument in the context of groupware [Gre91]:

For groupware to be considered successful, it must be usable and acceptable

by most, if not all, members of the group. ... the notion of personalizable

groupware is proposed, de�ned as a system whose behavior can be altered to

match the particular needs of group participants and of each group as a whole.

In [TMH87], the authors state:

The need for adaptable systems stems from a common complaint of users that

their systems don't \�t" either the particular task they are doing, their style of

working, or their personal sense of aesthetics. This situation leads to one of

several outcomes: (1) the users live with the unsatisfactory state of a�airs (or



stop using the system), (2) the system is modi�ed to meet the new requirements

(involving, say, a minor \tweak" at the user site, another iteration in a rapid

prototyping sequence, or a massive redesign and re-implementation), or (3)

the user produces the new system behavior without help from programmers or

designers. Though there are certainly cases when (1) or (2) are desirable, we

feel that systems designed to support option (3) hold the greatest promise for

success in the long run.

The underlying message in all of these statements is the same: in order for a system to

be more e�ective and usable, it must be tailorable in its use environment.

There are additional arguments for building tailorable systems. A tailorable system acts

as a catalyst for new ideas: advanced users can easily experiment with various extensions,

leading to some very creative uses of the system, not conceived of at development time.

GNU Emacs [Sta84] is a good example of this. A tailorable system also o�ers better

possibilities for integration with other systems. Certain types of tailorable systems, like

the Silica window system [Rao91], or the Common Lisp Object System (CLOS) with

the Meta Object Protocol (MOP) [KdRB91], also allow the user to make certain parts

of the original implementation more e�cient. In Silica, for example, a user can build a

spreadsheet system by using a window for each cell in the spreadsheet. Normally the

overhead of doing this would be prohibitive, but in Silica, once can tailor the window

concept for use in a spreadsheet, thus eliminating this overhead.

1.3 Challenges in Developing Tailorable Systems

This section summarizes the interesting challenges in the development of tailorable sys-

tems.

System development typically comprises of many phases: e.g. requirements analysis, mod-

eling, design, implementation, use. In building a tailorable system, one can focus on each

of these phases to determine what new issues must be considered. For example, in the

requirements-analysis phase, one typically captures the current requirements of the user.

In order to create the requirements for a tailorable system, however, it is also necessary

to capture domains of anticipated changes in the system. If the system is to be used

by a group of users, it is impossible for them all to be comfortable with the same set of

requirements. It is inevitable that there will be di�erences in how the system will be used

by di�erent users. These di�erences must be captured as much as possible. In addition,

foreseen organizational changes should be taken into account. In short, any circumstances

which could a�ect the use of the system must be captured. Hence, instead of ending up



with requirements for a single system, one should end up with requirements for a range

of systems. An interesting research problem is to try to formalize the analysis phase for

a tailorable system. [Tri93] explores this line of thought in considerable detail.

The modeling phase can also be extended to handle tailorable systems. Here, the initial

model, produced using conventional techniques, must go through a process of generaliza-

tion. Instead of just modeling the speci�ed system, the model should capture the problem

domain in general. This process will lead to insights into which aspects of the system

should be tailorable. Such a modeling exercise is described in [KN93]. Another interesting

research problem would be to study the modeling phase for tailorable systems.

Analysis and modeling, however, haven't been the subject of this dissertation. Although

they have been examined in some detail, there still remains much to be done in those

areas. An experimental approach, in which these phases are conducted for a variety of

real tailorable systems, is probably the best one to adopt.

The focus of this dissertation is primarily on the design, and implementation phases, with

some discussions on the use phase. In the design phase, the model is transformed into an

implementation architecture. A number of decisions are made during this phase. These

inuence the tailorability of the resulting system. Taking the example of a hypermedia

system, the model of the system may describe the structure of a media-type and the

various operations on it. It doesn't say anything about how the implementation of a

media-type should be organized. There are endless choices to be made. Tailorability

concerns can constrain this set of choices. The hypermedia system presented in Chapter 6

implements a media-type in many di�erent layers; this is primarily to make the system

highly tailorable, as well as easily portable. This is one of the problems addressed by this

dissertation.

In the implementation phase, the architecture must be realized in some programming

language. The types of tailorability described by the requirements, the model, and the

architecture, must be realizable in the chosen programming language. This dissertation

examines language-level issues; it captures what exactly is needed, in terms of a language,

in order to implement tailorable architectures.

Most dynamically-tailorable systems today are of two types: (1) developed in a dynamic

language, with tailoring supported by the language and its environment, and (2) developed

in a static language with tailoring supported by an embedded interpreter/compiler for

some static or dynamic scripting language. Notecards [TMH87] is an example of (1).

Microsoft Excel [Mic93], ACE [JNZM93], Emacs [Sta84] are examples of (2). For reasons

discussed in Chapter 2, and justi�ed time and again, this dissertation deals with systems

of type (2). However, instead of using the approach in which a scripting language, di�erent

from the original development language, is used, it chooses to use the original language



as the scripting language. This, in addition to being potentially more powerful than some

ad hoc scripting language, also allows direct access to the internals of the original system.

In addition, as is shown in the thesis, it makes it next to trivial to introduce dynamic

tailorability into a system which is designed to be tailorable.

This does, however, create new problems to be dealt with. Since the original development

language is a static one, a scheme must be devised for handling dynamic extensions. In

fact, the language chosen by the dissertation is the statically-compiled, object-oriented,

block-structured, strongly- and statically-typed language Beta [MMPN93]; Chapter 2

motivates this choice of language in great detail. In order for a system to accept Beta

as the \scripting" language, it must be able to compile or interpret Beta code in its

own context. The problem then is to build stand-alone systems, written in Beta, which

can accept extensions, written in Beta, at run-time. The problem is made more di�cult

because of the fact that Beta is very static in nature.

Beta applications often use a persistent store or an object-oriented database (OODB) to

store object instances. In general the classes describing these object instances are compiled

into the application saving or loading the objects. Once the application is extensible, new

classes, and hence new object instances, which are not compiled into the application,

can exist at run-time. A problem arises when these object instances are saved into the

persistent store or OODB, for, if later, they are loaded by an application which has not

been extended appropriately, the results will be unexpected.

The use phase is when the user tailors the system. There are many problems that can

be examined here. The most interesting ones deals with comprehension of the system in

order to tailor it. This is not dealt with directly in this dissertation. Other researchers are

working on this area (see Section 1.6). This dissertation does illustrate the type of e�ort

required of the user in order to tailor a hypermedia system. Also addressed is the issue of

building domain-speci�c tailoring tools in order to simplify the task of the tailoring user.

Today, a number of tailorable systems exist. Some of these applications o�er shallow

tailoring (e.g. Microsoft Excel), where macros can be built, or the user-interface can be

reorganized. Others o�er deep tailoring (e.g. Emacs [Sta84], Notecards [TMH87]), where

signi�cant changes to the original functionality can be made. There are, however, only

a few published systematic approaches to building tailorable systems. In the reection

community, there is work on building meta-level architectures ([KdRB91, CM93]); the

focus of this work is however the domain of programming languages and their implemen-

tation, although [CM93] uses reection in order to implement distribution. The problem

of presenting a systematic approach for building a tailorable system is addressed by this

dissertation: it describes an approach for building tailorable hypermedia systems.



1.4 Main Contributions

This section summarizes the main contributions of this thesis.

1. An approach for implementing tailorable systems. This approach can be stated

simply as \framework-instance + interpreter + open-points = tailorable system."

2. A technique for making interpreted objects persistent.

3. Identi�cation of language mechanisms which are suitable for developing tailorable

systems.

4. An investigation of the relationship between object-oriented programming concepts

and extensibility.

5. Dynamic extensibility in Beta, and, in general, in any static object-oriented lan-

guage. The thesis shows how to write a Beta application which is dynamically

extensible in the sense of Smalltalk, but without all the overhead of having the

development environment.

6. A tailorable hypermedia system which allows source-level tailoring of the type found

in dynamic environments like Smalltalk and Lisp.

7. A technique for making a batch-oriented direct-manipulation-based user-interface

generator interactive. This technique is based on extensibility and the incremental

generation of source-code.

8. Techniques for the implementation of an interpreter for an object-oriented language

like Beta. In particular, the ability to load an interpreted class into the execution

of a compiled program, and allow the interpreted class access to symbols, compiled

or interpreted, de�ned in its scope.

9. Comprehensive overview of the area of tailorable systems.

10. Many large working systems: an interpreter for Beta, an interactive Beta environ-

ment, a tailorable hypermedia system. The total development e�ort amounts to

approximately 15,000 lines of Beta source-code.

1.5 Summaries of the papers and other work

This section summarizes each of the papers contained in the dissertation. It relates them

to each other and also describes work not contained in any of the papers.



1.5.1 On the Construction of Extensible Systems

This paper, included as Chapter 2, presents an approach for the construction of highly

extensible systems. The approach is based on constructing the system so that it archi-

tecturally resembles a piece of computer hardware. Language mechanisms that enable

and encourage the construction of systems in this style are identi�ed and discussed. The

paper demonstrates, by an example, the construction of an extensible system. It also ex-

amines the relationship between object-oriented languages and extensibility. It does this

by viewing extensions with respect to the inheritance hierarchy of a system, and examines

the types of changes one can make to the hierarchy by writing and installing extensions.

The chapter uses, as an example, a spreadsheet system which allows its users to specialize

existing cell-types and introduce new cell-types. The system is dynamically tailorable,

and the tailoring process does not require the original source-code or development envi-

ronment. This example is similar to the one used in Chapter 3 (summary: Section 1.5.2).

There, the example is used to illustrate the API of the interpreter, while here the focus is

on the design approach and the implementation techniques for constructing an extensible

application. This chapter discusses the component-level architecture of the system. The

interpreter, to be completely described in Chapter 3, is used here to show how a system

can be made dynamically tailorable.

The chapter shows the architecture of the spreadsheet system in Beta. The construction

is done in the hardware style. The construction illustrates the language mechanisms that

enable and encourage this style of construction. It illustrates techniques for implementing

an extensible system. The abstract code of a statically-extensible spreadsheet system is

presented. In this system, text cells and picture cells are supported, and the behavior of

both can be extended without any changes to the original system.

The various language mechanisms (block structure, virtual patterns, further binding of

virtuals, inner construct, nested specialization, patterns as �rst-class values) are discussed

in the context of their role in implementing an extensible system. The avor of extensi-

bility is di�erent from that of, say, Lisp where most of the original system can be changed

by extensions. Here, the idea is that of controlled extensibility: allow the user to extend

things, but in a controlled and regulated manner.

The use of pattern variables and patterns as �rst-class values is explored to introduce

dynamic extensibility into this spreadsheet system. The construction of a spreadsheet

system, in which the text and picture cell-types can be dynamically tailored, and new

cell-types dynamically introduced, is shown. The introduction of a video cell to this

system is illustrated.

The chapter also explores how such a hardware-style construction would work in another



language like Smalltalk or C++.

Various alternatives for processing extensions to a system dynamically, in the context

of the executing system, are explored: (1) an ordinary non-incremental compiler with a

traditional linker/loader, (2) an incremental compiler, and (3) an embedded interpreter.

The relationship between object-oriented language concepts and extensibility is explored.

To do this, the di�erent types of changes one can make to a system are classi�ed. For

each class of changes, it is examined if they can be accommodated by making extensions

to the system. This study is presented in a general language-independent manner.

The primary contributions of this chapter are in the area of Design and Techniques, with

minor contributions in the Support area.

1.5.2 Dynamic Extensibility in a Statically-compiled Object-

oriented Language

The goal of this paper, included as Chapter 3, is to show how one can have dynamic

extensibility in a language, without having all the safety and e�ciency problems that

normally accompany it. This is accomplished by introducing dynamic extensibility in

Beta. A technique for doing this is presented. A part of this technique relies on an

embeddable interpreter for Beta. The API for this interpreter is presented, and its use

illustrated. It is shown that, using this approach, one can still write safe and e�cient

Beta programs, only now the programs are dynamically extensible. A couple of additional

applications of the Beta interpreter are also presented: an interactive Beta environment,

and its use in a source-level debugger. Ideas on supporting dynamic extensibility in other

static languages are also presented.

This chapter also uses the spreadsheet example which is similar to the one presented in

Chapter 2 (summary: Section 1.5.1). It presents a technique for introducing dynamic

extensibility into this spreadsheet system. The technique is based on embedding the

Beta interpreter into the application. Interpreted code then runs in the context of the

extensible application. There is no need for the source-code of the original application,

or the original development environment. The API for the interpreter is designed to

allow easy embedding of the interpreter into the application, and to allow extensions in

arbitrary lexical scopes of the program being extended. The details of how each of the API

functions work is presented. The details of the incorporation of an interpreted extension

pattern into a running program are also presented.

The chapter touches upon a few implementation issues like type-checking of the extension

and the access of compiled object-code from the interpreted code. It illustrates how



objects which are partly compiled and partly interpreted come into existence and how

they are implemented. The treatment here is quite super�cial; the paper in Chapter 4

(summary: Section 1.5.3) presents the implementation of the interpreter in greater detail.

The paper also presents some additional applications | in addition to dynamic extensibil-

ity | of the interpreter. An interactive development environment with a read-eval-print

loop, as in Lisp systems, has been built for Beta. Another application of the interpreter is

in the source-level debugger for Beta. Here, it is proposed that the debugger support the

execution of arbitrary Beta code at break-points by invoking the interpreter to evaluate

the code in the context of the break-point.

The feasibility of this approach to introduce dynamic extensibility in other languages

is explored. The set of requirements imposed on a language and its implementation

are identi�ed. It is then examined if languages like Simula, Ei�el, and C++, and their

respective representative implementations, satisfy these requirements.

Statistics of the interpreter's performance and their comparison with the performance of

compiled code are also presented. The overhead of embedding the interpreter into various

Beta applications is presented. The results presented in the paper haven't changed much

since the writing of the paper, as there hasn't been any e�ort on pro�ling the interpreter

code and improving its performance.

The primary contributions of this paper are in the Support area. There is also a little

mention of Applications and Techniques.

1.5.3 On the Implementation of an Interpreter for Building

Extensible Applications

This paper, presented in Chapter 4, describes the implementation of the interpreter; its

contribution is primarily in the support of extensible systems. The interpreter's API is

�rst mentioned in Chapter 2 (summary: Section 1.5.1) and is elaborated upon in Chapter 3

(summary: Section 1.5.2). This chapter picks up where Chapter 3 leaves o� and proceeds

to describe, in detail, how the interpreter features, used there, are implemented. The

focus of the presentation is on aspects of the implementation that involve the following:

1. handling a static object-oriented language.

2. embedding the interpreter into any Beta application and, thereby, allowing exten-

sions access to the application's internals.

3. speci�cation of interpretation-context in calls to the interpreter.



4. intermixing of compiled and interpreted code.

5. working with a statically- and strongly-typed language, and ensuring the continued

type-safety of the extended application.

6. returning patterns as closure objects.

These also happen to be the novel aspects of the implementation. This is not an attempt

to describe the entire implementation of the interpreter.

This chapter uses, as an example, a graphical editor to illustrate the types of extensions

the interpreter is designed to support. It sets up the stage with a scenario in which the

graphical editor with an ordinary window is extended, via the interpreter, to an editor

with a color window. It then illustrates the interpreter implementation using this scenario.

It shows exactly what happens when the color-window code is loaded by the interpreter.

In particular, it shows:

1. The process of constructing the pattern closure for the color-window extension pat-

tern. This process is presented in various stages:

(a) The installation of the extension into the speci�ed scope of the application

being extended is described.

(b) The type-checking of the extension and the construction of a symbol-table

for it are described. It is shown how the symbols used in the de�nition of

the extension are resolved into runtime entities in the executing application.

Pattern names get resolved into addresses of prototypes, variable names get

resolved into addresses of locations they refer to.

(c) Building the prototype: the construction of the various parts of the proto-

type is illustrated. The Inner Dispatch Table, and the Virtual Dispatch Table

are focussed. The structure of interpreter-generated object-code stubs is illus-

trated in a machine-independent manner. These stubs are used to interface

interpreted objects with compiled ones.

(d) Getting the environment object in order to build the closure.

(e) Building the pattern closure from the prototype and the environment object.

2. Use of the returned pattern closure. It illustrates the creation and execution of a

color-window instance.

The chapter also introduces a slight variant of the API function MakeDeclExecutable de-

scribed in Chapter 3. Instead of calling the interpreter with an explicit context argument



and an environment object, the interpreter is invoked with a closure. This, as explained

in the chapter, is conceptually cleaner and less error-prone. With the original approach, it

was possible for the user to specify incompatible values for the two arguments by passing

an environment object which didn't correspond to the given context. With this re�ned

approach, such a situation is impossible.

1.5.4 Extensibility as the basis for Incremental Application

Generation

This paper, presented in Chapter 5, describes an application of the interpreter. It presents

an approach for making a direct-manipulation-based user-interface generator incremental,

and hence interactive. It introduces the notion of incremental code-generation.1 The main

concept utilized here is also extensibility of the type described in Chapters 2 and 3. The

e�ect of using this approach is a reduction of the time required between the edit and use

phases of a user-interface generator.

The technique is described in the context of a user-interface generator known as the

ApplBuilder. The original ApplBuilder is batch-oriented: every time an interface is edited,

it regenerates the code for the a�ected parts of the application; this code must then

be compiled and linked before the edited component can be used. With the proposed

approach, the ApplBuilder becomes interactive: it generates code incrementally; this

code is an extension to the original application; hence, it can be dynamically loaded into

the application via the interpreter embedded within the application. There is no need to

recompile the application.

To put this in the context of tailorable systems, observe that the ApplBuilder can be

viewed as a tailoring tool, and the application whose interface is being edited as the

tailorable application. Instead of writing code to tailor the application, the user edits the

interface of the application using direct-manipulation, and possibly specifying new code

for the behavior of the various user-interface components. The ApplBuilder takes care of

doing the source-code-level tailoring. This is a tool for tailoring the user-interface aspects

of an application; similar tools can be constructed for other aspects of an application, e.g.

for tailoring the media-types of a hypermedia system.

The result of this paper can also be viewed outside the context of tailorable systems.

In that case, it is a \compilation" technique which is somewhere in the middle of the

continuum between batch compilation and incremental compilation. It gives the e�ect

of incremental compilation, with some execution overhead, but without having all the

complexity of incremental compilation.

1Not machine code, but code in a high-level language like Beta.



This chapter uses the Find-File dialog from the Macintosh Finder as an example. It

illustrates the code generated for this dialog. Then, for each edit operation possible in

the ApplBuilder, it shows how the ApplBuilder can generate code for the edited dialog,

such that the new code is an extension of the original code. In other words, this newly

generated code is such that \original-code + new-code = edited-dialog." Here + denotes

the dynamic loading of new-code into original-code. This approach is shown to work even

when these edit operations are composed arbitrarily. This proves that any sequence of

changes to the dialog can be handled via this approach. The techniques for generating

these extensions rely on the ideas presented in Chapter 2.

Also introduced, in this chapter, is the notion of an extension server. This is used by

the ApplBuilder to register extensions. The application being edited gets updated by

consulting this extension server, and invoking the interpreter embedded within it to load

the extension.

The ApplBuilder needs to be adapted in order to use this approach. It now has two modes

of code-generation: extension-ready code-generation, and extension code-generation. The

extension-ready mode is non-incremental; code for the entire application is generated

and needs to be compiled and linked as usual. This code is, however, similar to that of

the dynamically-extensible applications presented in Chapters 2 and 3. This is, thus, an

example of how such extensible applications can be mechanically generated. The exten-

sion code-generation mode is the incremental mode in which extensions to the original

application are generated. These modes are discussed in this chapter.

The results of this chapter have been tested by manually generating code using the de-

scribed techniques. The automation of this approach is forthcoming.

1.5.5 Building Tailorable Hypermedia Systems: the embedded-

interpreter approach

Chapter 6 presents this paper as the logical conclusion of all of the other papers. Using

most of the techniques presented in the other papers, it presents a general approach for

constructing tailorable systems in the domain of hypermedia systems.

There are a number of results in this chapter. First, it shows a general technique for

implementing a tailorable system: a tailorable system is an instantiation of an object-

oriented framework with open-points which can be �lled via an embedded interpreter. It

presents a hypermedia development framework whose architecture is suited for this type of

instantiation into a tailorable system. It presents an implementation technique for making

interpreted objects persistent. These are objects that are generated from classes which are



interpreted extensions to the program; thus there is a possibility that the corresponding

class may not be de�ned when such an object is accessed. It presents a speci�c tailorable

hypermedia system, which is source-code-level tailorable, and can be tailored to support

arbitrary new media-types. It presents some insight on the survivability of extensions

when a new version of a tailorable system is released. Finally, it compares this approach

for building tailorable systems with approaches in which the development environment

and source-code are available, concluding with overhead measurements that establish the

viability of this approach.

The results are presented in the context of a hypermedia development framework known

as the DeVise Hypermedia (DHM) framework. The chapter establishes a scenario in which

a user of a DHM system wants to include drawings, made with his/her favorite drawing

editor, into hypermedia documents made with this DHM system. The DHM system,

unfortunately, has support only for text and �le components: text components support

within-component links, and �le components support only whole-component links. For-

tunately, the DHM system is tailorable; the user tailors it to use the drawing editor. The

user is now able to include drawings in hypermedia documents, with support for within-

component linking; i.e. the individual elements of the drawings may serve as anchors for

links.

The chapter begins with the above scenario and illustrates the user's interaction with the

tailorable hypermedia system in order to tailor it to have the drawing media-type.

The architecture of this tailorable DHM system is described by illustrating, �rst, the

architecture of the underlying framework. The instantiation of this framework into a

system, which has open points, and the interpreter embedded within it, is then illustrated.

The ease of construction of this tailorable system is emphasized.

The framework architecture comprises of four layers: Application which contains the ap-

plications used to manipulate the various media, Presentation which abstracts the appli-

cations for the remainder of the DHM system, Runtime which implements the transient

behavior of a DHM session, and Storage which implements the storage aspects of the

various media into a persistent store or OODB.

The tailoring e�ort on the part of the user is illustrated by presenting class-diagrams.

These show clearly what the user needs to write in order to integrate the drawing editor

with the hypermedia system. The class interface of the user's original drawing editor

is shown. The drawing editor is specialized to support linking operations which get

implemented in terms of the hypermedia system. The hypermedia system's Presentation

layer is also specialized to de�ne a new presentation class which can interact with the

drawing editor. The simplicity of this code is emphasized.



Since drawings now belong to hypermedia documents, it must be possible to save them into

the persistent store, or OODB, as parts of hypermedia documents. A technique to do this

safely is illustrated. Should a hypermedia document containing such a drawing component

be opened in a hypermedia system without the drawing extension, the extension gets

installed automatically.

The chapter also has a brief discussion on the problem that extensions made on one

version of a system are often incompatible with a newer version of the system. The main

point made, and justi�ed, is that because extensions, written for the types of tailorable

systems described here, don't have unrestricted access to the system, they are more likely

to survive new versions of the system.

This chapter also presents the tailorability overhead for the hypermedia system. In terms

of size, it shows that the tailorable hypermedia system is 2.3 MB larger than the non-

tailorable version. This �gure includes the increase in size of the executable, and all

the additional information necessary for tailoring the executable. This is small, when

compared with tailoring environments where the entire development environment and

source-code of the original system must be present. More details and comparisons are in

Chapter 6.

1.5.6 The system-development e�ort

Underlying this dissertation is a substantial system-development e�ort. A number of

working systems exist at the time of this writing. These include an embeddable Beta

interpreter in the form of a library. This reliably supports almost the entire Beta language.

An incremental read-eval-print toploop for Beta, which utilizes this library, also exists.

This allows interactive and incremental evaluation of Beta programs.

A tailorable drawing editor, used originally for some experimentation, and later for the

hypermedia system, exists. A tailorable hypermedia system with support for new media-

types is available. The interpreter was also integrated with sif, the syntax-directed editor

for Beta programs. In this version of sif, the active window can be interpreted. An

integration of the interpreter with a drawing tool called DesignEnv was also completed.

Finally, a number of smaller tailorability experiments, which generally comprised of taking

an existing Beta application, adding open points to it and embedding the interpreter

within it, were also conducted.

The Beta interpreter comprises of 12,101 lines of Beta code, 135 lines of C, and 191 lines

of assembly code. The Beta code count does not include the type checker. If the Beta

source �les are measured using wc -l, the total count comes to 17,713. If blank lines are

deleted from these �les, the count is reduced to 15,126. Assuming that approximately



20% of this is comments, the count is further reduced to the 12,101. The e�ort involved

in the miscellaneous tailorability experiments amounted to 300 lines of Beta code; this

�gure includes only the code needed to make the systems tailorable, not the original code

of the system.

The tailorable hypermedia system amounted to a total of 2,146 lines2 of Beta code. This

does not include the code for the entire hypermedia system; only the code written to

make it tailorable, the code for the drawing editor, and the tailoring code for the drawing

media-type.

1.6 Related Work

There are a number of di�erent areas of work that have something in common with

tailorable systems. This section is, therefore, organized by the area of work.

1.6.1 Support for dynamic extensibility

In dynamic languages, such as Smalltalk [GR83], Common Lisp [Ste90], CLOS [BDG+89],

and Self [US87], the ability to handle dynamic extensions is inherent. In all of these lan-

guages, it is possible to write the types of dynamically extensible stand-alone applications

we have described here. There is no need for any additional support. In these languages,

the compiler is just another object/function which can be invoked to compile some new

code dynamically. In addition, due to the dynamic semantics of the language, the runtime

system is organized in a way that permits dynamic modi�cation of the executing program.

The process of building an application, which is usually done by picking the \root" ob-

ject/function of the application and asking the system to save an image, automatically

includes the compiler, if necessary, in the stand-alone application.

The Smalltalk compiler is just another object which is part of the Smalltalk environment.

It may be sent \eval" messages with the source-code to be evaluated. The resulting value,

a compiled-method object, can be made a method of some class, by simply inserting it in

the appropriate dictionary. If method lookups are cached, it may be necessary to ush

the cache. All of this can be done by any Smalltalk program. Common Lisp systems and

CLOS implementations have similar capabilities. CLOS, for example, provides access to

its interpreter, its compiler, and its binding environment. Using these, any CLOS program

can evaluate new code and install it in the environment. Self also provides programs access

to its compiler. In Self, it is possible to change the slots of an object, and even change

2after deleting blank lines.



its parent(s), all in a running program. There is additional discussion of these issues in

Section 3.6.

In our work, we have chosen to work with static languages and introduce dynamic ex-

tensibility into it. Static languages o�er many bene�ts such as potentially more e�cient

programs, strong static type checking, greater program readability, etc. By introducing

dynamic extensibility in Beta, we are narrowing the gap between dynamic languages, such

as Smalltalk, and static languages, such as Beta. We are getting the dynamic bene�ts of

Smalltalk-like languages without giving up all the bene�ts of programming in Beta.

Introducing dynamic extensibility into static languages can be done in many di�erent

ways. Incremental compilation is a technique which can produce a new executable for a

program with a minimal amount of recompilation. [Hed92] contains a thorough discus-

sion of incremental compilation and a semi-automatic scheme for generating incremental

compilers for object-oriented languages. When incremental compilation is combined with

an execution model which can handle changes to the program during execution, one gets a

Smalltalk-like dynamic execution environment. [HM87] presents such an execution model

and shows its use in supporting exploratory programming in Simula. The authors il-

lustrate a technique for handling changes to a program during its execution, with the

ability to continue execution with the change. So, when there is a change to the program,

the incremental compiler is used to recompile only the necessary parts, and the recom-

piled parts are incorporated into the current execution. They present an execution model

which describes the instance world of a program execution. They then illustrate the e�ect

of modi�cations to the description world, i.e. the program description, on the instance

world. They handle issues such as what should happen to existing instances when they

are incompatible with the modi�ed program description. Other environments which sup-

port correction of errors during program execution are DICE [Fri84], and LOIPE [Fei82].

Although these approaches can be used to construct dynamically extensible systems like

the ones we have constructed, they o�er more functionality than is necessary for building

tailorable systems. They are able to handle arbitrary program modi�cations, while all we

are looking to support is arbitrary extensions. Sections 2.4 and 3.6 compare our approach

with incremental compilation.

There has also been prior work in introducing dynamic extensibility into Beta [AF89]. In

this approach, a dynamic linker and loader are implemented and embedded into the ex-

tensible system. The Beta compiler, which exists as a separate process, is used to compile

extensions. The embedded linker and loader are used to load the compiled extensions.

This is described in Section 2.4. More recently, a general purpose dynamic and incremen-

tal linker, based on shared libraries, is being made part of the Beta environment [Fre93].

Extensible systems built using this linker will be of the same type as those described

in [AF89].



Another widely-adopted approach for building extensible systems is to develop the system

in any suitable language, and then embed into the system an interpreter/compiler for a

scripting language. The primitives operations of this scripting language provide access to

the internals of the system. Users can generally combine these primitives, using the con-

structs provided by the scripting language, to tailor the system. These scripting languages

range from simple, as is the language in Microsoft Excel, to completely general purpose,

as is Lisp in GNU Emacs [Sta85]. Another example is the ACE environment [JNZM93]

where an interpreter for Scheme [Bet89] is embedded into the system, solely for the pur-

pose of providing tailorability. Such an approach to building extensible systems is not

suitable for the type of source-level tailorability we have illustrated in this work. It would

be signi�cantly more di�cult, though not impossible, to write the types of extensions we

write for the hypermedia system (Chapter 6), if all we had was an interpreter for Scheme

or Lisp embedded within the system. This would hold even if the hypermedia system had

been implemented in Lisp or Scheme; in this case, we would no longer have the extensi-

bility mechanisms of object-oriented languages. Further treatment of some of these issues

is in Section 3.6.

Python [vd91] is an object-oriented language with an interpreter written in C. It has

access to many modules e.g. window management and UNIX functions. An application

can embed this interpreter into itself, thus getting a tailoring language. This would be

similar to the scripting-language approach, except that the scripting language would also

be object-oriented.

Another unpublished report worth mentioning is one that discusses the dynamic exchange

of Beta systems [KMMPN86]. The ideas here are the predecessors of pattern closures as

they exist in Beta today.

The architecture of the interpreter built for Beta is similar to that described in [Lie87]

in that it comprises of interpretation methods which belong to classes representing the

various syntactic constructs in Beta. Hence, every type of node in the Beta Abstract

Syntax Tree has an interpretation method.

1.6.2 Meta-level architectures and reection

Systems with meta-level architectures, such as CLOS systems with the metaobject pro-

tocol (MOP) [KdRB91], are also highly tailorable. In CLOS with the MOP, it is possible

to tailor the semantics of the language. Every class, for example, has a metaobject; as

a result, introspection and analysis of the classes in a system is possible. It is even pos-

sible to create new classes programmatically. It is possible to introduce specialized class

metaobjects, and as a result, support di�erent types of inheritance semantics on a per-



class basis. In fact, it is also possible to de�ne specialized generic-function and method

metaobject classes, along with a Beta-like inner construct, to get Beta-like semantics

in which superclass methods are executed before methods from subclasses, with control

being transferred via the inner construct. [Kic92] contains a motivating discussion on

building abstractions that are open. It is argued here that the traditional notion of a

black-box is inadequate, and that a meta-level adjustment interface is also necessary for

�ne-tuning the abstraction. This is presented in a little more detail in Section 4.5.

Another example of the use of a meta-level architecture in a language setting is [MC93]. A

kernel implementation for a prototype-based object-oriented language is presented along

with a metalevel architecture. Using the metalevel interface, it is possible to extend

the kernel to implement the semantics of various prototype based languages such as Self.

[CM93] presents a meta-level architecture for C++ programs in which classes and methods

may be declared reective. This is used to implement distribution. For more details see

Section 3.6.

Languages aren't the only domain in which meta-level architectures are useful. The Silica

window system [Rao91] has a meta-level architecture. Here the notion of implementational

reection, which is a broader view of reection and can be applied to the design of various

kinds of systems, is introduced. It illustrates how a spreadsheet system can be built using

windows to represent each cell. This is a natural choice, as the window system already

implements much of what is needed in the spreadsheet. Typically, the cost of using a

window per cell would be prohibitive. Windows are generally heavy-weight objects with

a lot of overhead. Cells are, however, simpler than windows in some respects: they don't

overlap, they all share a number of properties, etc. The paper shows how, using metalevel

programming, it is possible to create a tailored window system in which the windows are

�ne-tuned to be cells in a spreadsheet: the storage of the windows (cells) is organized as

a 2-d array indexed by location in the grid, the hit-detection function is replaced by one

which uses simple arithmetic and array reference, etc.

The Apertos operating system is an object-oriented operating system with a metalevel

architecture [Yok93]. Described here is a technique for constructing an object-oriented

operating system and its kernel, which divides objects implementing system facilities and

applications into two types: base-level objects and metaobjects. This allows various types

of tailoring of the operating system e.g. the scheduling and memory management policies.

There is also work on a reective toolkit for CSCW systems [Dou93a, Dou92, Dou93b].

Illustrated here are examples of situations in CSCW toolkits where metalevel program-

ming would be useful. These example include the locking policy for shared objects, the

degree of sharing, and the data distribution policy. The idea is for the toolkit to avoid

implementing any one policy and allow the toolkit user to tailor the toolkit, using the



metalevel interface, with the appropriate policies before using it to build actual CSCW

systems.

The work in this dissertation is not based directly on creating meta-level architectures.

Instead, using the interpreter, the user reects upon the implementation of the system in

order to tailor it. Using a meta-level architecture is orthogonal to using the embedded

interpreter approach. In fact, Beta systems with meta-level architectures could have an

embedded interpreter. Instead of just tailoring the base-level classes, the interpreter could

also be used to tailor the meta-level classes, thus giving the user more tailoring power.

The approach for building tailorable hypermedia systems (Chapter 6) does use a kind of

metaobject to store the type-information for media-types.

1.6.3 On the comprehension of systems for tailoring

In order to tailor a complex system, it is important to be able to understand the system.

There is some research in this area. [MY89] describes a representation for design based

around a semi-formal notation which allows explicit representation of alternative design

options and reasons for choosing among them. This representation is meant to improve the

coherence of designs, and hence make it easier for end-users to comprehend the system for

tailoring purposes. [M�r93] talks about designs made especially for tailorability. He also

advocates coupling the artifact with rationale. He argues that by coupling uninterpreted

design rationale (such as pictures, diagrams, stories, usage scenarios, and argumentation)

with formal software artifacts, the casual computer user will get enough of background

understanding of the artifacts to be able to make meaningful changes to them without

understanding the implementation language itself.

[Oss87] discusses a mechanism for specifying the structure of large systems; this could

prove useful for gaining an understanding of the system before attempting to tailor it. He

introduces the notion of a grid; a grid speci�cation identi�es the system layers explicitly,

and speci�es the system structure and access restrictions in terms of these layers. It

emphasizes human readability and uses some novel techniques to make the global structure

of large systems clear and visible. Such a speci�cation for a system like the hypermedia

(Chapter 6) would be useful; the information used by the end-user to tailor the hypermedia

system could be presented in the form of a grid speci�cation.

[FGNR92] presents an integrated domain-oriented design environment in which human-

computer cooperative problem-solving tools are embedded into knowledge-based design

environments. Such an environment allows designers access to relevant knowledge at

each stage of the software development process. They describe knowledge access as the

cycle of location, comprehension, and modi�cation. They present techniques to reduce the



cognitive cost in dealing with a huge amount of knowledge. They also present examples of

domain-oriented design environments. Although their environments are geared towards

system designers and builders, the ideas can be applied to construct similar domain-

oriented tailorability environments. These could contain knowledge about the tailorable

system and the problem domain, and have tools to help with the process of location,

comprehension, and modi�cation.

[Joh92] presents a technique for documenting frameworks. The documentation consists

of a set of patterns,3 called a \pattern language." He shows that, for a framework, a set

of patterns can be designed to illustrate the purpose of the framework, the techniques for

using the framework, and the detailed design of the framework. As tailorable applications

have much in similar to frameworks | they are instances of a framework | patterns can

be used to describe them as well. The author also concludes that patterns are a good

way to describe frameworks as �rst-time users of a framework will not usually want to

know exactly how it works, but will only be interested in solving a particular problem.

The same argument applies for users | not necessarily �rst-time | of a tailorable system

when they are attempting to tailor the system; they are only interested in the particular

feature they want to tailor, and not knowing all the details of the system.

The specialization interface of a class has been the subject of recent research. This is in

addition to the use interface which is what the user of the class sees. The specialization

interface is that through which the class is extended | by de�ning new subclasses and

appropriate methods. In [KL92], the problem of specifying the specialization interface is

addressed. There is a conict between describing enough of the internal workings of a

class so that it can be specialized, and avoiding saying so much that the implementor of

the class has no room to work. This conict is addressed in great detail. A type system for

the specialization interface is proposed in [Lam93]. Both of these papers provide valuable

techniques for specifying tailoring interfaces which can help in the comprehension of the

system being tailored.

1.6.4 Examples of tailorable systems

GNU Emacs [Sta84, Sta85] is a highly tailorable text editor. It is written in C and

has, embedded within it, a lisp interpreter. The interpreter has access to many of the

C-level functions. The editor can be tailored in many ways. First, new lisp functions

can be written and de�ned as user-invocable commands. The bindings for the various

input devices (keyboard, pointer) can be changed by the user. Furthermore, existing

commands can be modi�ed by attaching user-de�ned functions onto the provided hooks

3not to be confused with Beta patterns.



(or callbacks). GNU Emacs has been highly customized, and today, numerous packages,

which customize it in various ways (e.g. language-speci�c modes, mail, news), exist.

Commercially, there are systems likeMicrosoft Excel [Mic93] and Microsoft Word [Mic91].

In Excel, for example, it is possible to construct macros (commands) which are written

in a simple scripting language, and in terms of its primitive operations. The menu-bar

and the tool-bar are also highly customizable. Furthermore, various highly customized

spreadsheets can be created by de�ning various constraints between the cells. This pro-

cess, however, can be viewed as just using the system rather than tailoring it. Word

o�ers similar capabilities in that its entire menu-bar and tool-bar can be customized. In

addition, these systems also have a notion of an \add-on" by which, other independently

development sub-components | like a dictionary, or a bibliography manager | can be

loaded into the system, even during execution.

Hypercard [Goo87] can be viewed in two equally justi�able ways: as an end-user pro-

gramming environment, or as a tailorable stack manager. It is an end-user programming

environment as users construct various applications with it, applications which may or

may not be based on cards. It is a tailorable stack manager for it provides a generic stack

concept and allows users to customize this stack in a variety of ways. Hypercard uses

a simple scripting language known as Hypertalk [App88]. This language allows one to

de�ne the behavior of various aspects of a stack and the cards that comprise the stack.

It is an example of a domain-speci�c end-user language, specialized to handle cards and

stacks.

Applescript [App92] is a general scripting language available on the Macintosh. The prim-

itives of this language provide access to various scriptable applications on the Macintosh.

The language resembles Hypertalk in many ways. As an example, a script to ask Excel

to open a speci�ed worksheet, select a range of cells, and plot a chart with them, can

be written. When such a script is evaluated, in possibly another application, appropriate

apple-events are generated and sent to Excel, which must process them and execute the

speci�ed commands. In this way the user can tailor his/her workspace. In some script-

able applications, every menu-item is implemented by an Apple-script. This script may

be edited by the end-user, thus o�ering the user some potential to tailor the application

itself.

In the Unix environment, there are a number of tailorable applications. The various

shells, available under Unix, have con�guration �les which allow customization through

the setting of variables and the de�nition of new commands. The X Window system can

be tailored in a variety of ways: from choosing window managers to setting the defaults

for various applications. Even X servers can be extended to support additional features.

[Rya90] contains a survey of various scripting languages.



[ZC92, JNZM93] presents a framework for interactive, extensible, information-intensive

applications. A part of this framework is an extension language. The unit of program-

ming in this language is like a formula. These formulas are like the types found in

spreadsheets, only they are generalized. This is because their applications support other

visual formalisms in addition to spreadsheet-like grids of cells. The extension language is

processed by an embedded Scheme interpreter. This interpreter is able to call new C++

functions without itself being modi�ed or even recompiled. In this way the end-user gets

access to the internals of the original application.

A text editor with support for extensible objects oating in text is presented in [Szy92].

In this model, a text is a sequence of elements. Each such element is either a normal

character, or an instance of some extension class. Implementing new classes is the primary

way of extending the editor. This simple model of extensibility o�ers the tailor a number

of possibilities.

[MCLM90] describes a tailorable system based around the use of distributed on-screen

buttons. Buttons are screen objects in Xerox Lisp which look \pressable." When pressed

they carry out an action. They can be used without any understanding of the details of the

encapsulated action, and thus are a convenient way to tailor the Xerox Lisp environment

for individual user needs. The paper discusses various tailoring techniques centered around

buttons. Their claim is that this with this approach, they were able to enable non-

programmers to tailor their own workstation environment. This, they claim, is because

they have a tailoring architecture which supports a large number of tailoring techniques

at di�ering levels of complexity.

Aquanet [MHRJ91] is a hypertext tool with a goal to provide users with the ability

to customize knowledge structures for their speci�c task. This is accomplished through

schemas; every session is controlled by a schema that de�nes a set of allowable basic objects

and relation types. It de�nes the nature and organization of the knowledge structure the

user can construct.

SHARE [Gre91] is a \policy-free" view-sharing system whose kernel supports primitives

upon which one can build a broad range of policies to manage oor control. View-sharing

software allows any unaltered single-user application to be brought into a meeting. In

such a system, it is important that it be possible to switch between di�erent policies

depending on user preferences and the operating environment. SHARE supports this by

providing an extensive library of oor-control policies for groups to choose from. The

paper claims that programming the policies proved easy and quick, but it doesn't say if

this programming is meant to be done by the end-users.

The Intermedia system [Mey86] is discussed in some detail in Chapter 6. It is a frame-

work for building hypermedia applications. Notecards [TMH87] is also presented in some



detail in the same chapter. It provides the user with a semantic network of electronic

notecards interconnected by typed links. The system's goal is to be adaptable; it does

this (1) through being exible: this stems from the multiple interpretations of individual

cards and links depending on the context; (2) through being parameterized: for example,

one parameter determines whether Browsers distinguish link types by di�erent styles of

dashing or whether all link types are drawn the same; (3) though being integratable: for

example, it has been used to provide access to remote databases and also been inter-

faced to a mail system; (4) through being tailorable: for example, users may create new

functionality by using the programmer's interface, which can allow users to modify the

characteristics of individual cards and links as well as for building new structures.

This dissertation presents techniques for building tailorable applications like these and

more. The focus of this dissertation has not been so much on inventing scripting languages

as it has been on presenting general techniques for building tailorable systems. Once

a tailorable architecture for an application is designed, the scripting language can be

easily constructed as a specialization of Beta. This dissertation also shows how to build

applications which allow source-level tailoring, as in Notecards and Intermedia, but with

a smaller overhead.

1.6.5 Language-level issues in developing extensible systems

Although the title of the section is generally applicable to any language, most of the

discussion here is about object-oriented languages.

[NS90] presents a discussion of tailorability in Beta. This is also discussed in some detail

in Section 2.6. [N�r92] de�nes the notion of an open point and shows how open points

can be implemented in various languages. An open point is a behavioral parameter of an

executable program. The paper elaborates on the hook mechanism in Lisp environments

and proposes a set of tools which support the �lling of these open points. Our work has

also concentrated on developing applications with open points, an open point in Beta

being a pattern variable. The hypermedia system in Chapter 6 has open points which get

�lled by the interpreter. Section 2.6 has more details on this.

A natural way to extend a system is to merge its inheritance hierarchy with another,

possibly sparse, inheritance hierarchy, resulting in a new system. Such an approach is

presented in [OH92]. The motivation for their work is similar to ours: to extend (or

tailor) existing systems. They propose an approach in which extensions of all kinds are

clearly separated from the base hierarchy. The entire system is obtained by combining

the extension hierarchies with the base hierarchy. Sequences of successive extensions can

be combined, parallel extensions can be combined, and the base hierarchy can be replaced



without changing the extension hierarchies. They also outline a technique for implement-

ing such hierarchy combination. Their approach is declarative and hence, conceptually,

clean. The extension developer simply writes the sparse hierarchy and then merges it

using some high-level merge operations; the implementation takes care of the rest. The

tailorable systems described in this dissertation also support some form of hierarchy com-

bination. For example, in the hypermedia system (Chapter 6), the base-hierarchy| which

is the hierarchy of the hypermedia system | is being extended by a sparse hierarchy |

which is the hierarchy of the drawing media-type | to yield an extended system. Our

approach is, however, more imperative and less general. Given the semantics of Beta, and

the organization of its runtime system, it would be di�cult to support all their hierarchy

combinations operations dynamically and e�ciently. This is also related to the discussion

in Section 2.4. Note also that the Beta compiler, in combination with its fragment system,

provides a similar form of hierarchy combination, although it does this statically.

Subject-oriented programming [HO93] is an approach to programming which facilitates

the development and evolution of suites of cooperating applications. Applications coop-

erate both by sharing objects and by jointly contributing to the execution of operations.

One of the stated requirements is that unanticipated new applications, including new

applications that serve to extend existing applications in unanticipated ways, must be

supported. Building a system in a subject-oriented style thus results in a highly exten-

sible (and hence tailorable) system: all objects de�ned in a subject-oriented manner are

freely extensible by any other applications.

Traces [Kic93] is an object-oriented language concept which supports specialization of ob-

jects in cases which are ordinarily di�cult to handle. The example used is that of a graph-

ics editor in which line segments can be moved and resized freely. An end-programmer

extends the system by adding a new kind of line segment, with the specialized behavior

that its slope cannot be changed. The graphics editor has an operation which groups a

collection of lines to form a polygon. It would be desirable that a polygon formed with a

�xed-slope line should not allow rotation, as this will change the slope of the line. How

then can the graphics editor be implemented in order to create this specialized polygon,

whenever it comes across a �xed-slope line. The idea in the paper is to attach a trace,

which is a packet of behavior, to the �xed-slope line object. This trace automatically

propagates to the object's progeny, where it installs the appropriate behavior. So, a

trace, which restricts the rotation of polygons, is attached to all �xed-slope line objects.

When they form a polygon, they a�ect the polygon object's rotation behavior. This tech-

nique is useful in the implementation and tailoring of a tailorable system. Without it, the

end-programmer would have to ensure that when they specialize a line into a �xed-slope

line, they must also specialize polygon into a non-rotating polygon. In addition, they

must specialize the polygon-creation code to create such a specialized polygon if a �xed-



slope line is involved. In the context of the hypermedia system described in Chapter 6

one could imagine attaching a trace to a drawing-component object such that it a�ected

the behavior of the session manager, e.g. modi�ed the saving/loading routines. So, for

example, every time a session manager object was created, and a drawing-component was

part of it, the session manager object would be specialized.

Much research has also been done on creating tailorable programming environments.

Much of this generally boils down to tool-integration problems and techniques. It is

however relevant to the area of tailorable systems, as many times, tailoring a system is

equivalent to integrating it with another. This is true for the hypermedia system de-

scribed in Chapter 6. Here, tailoring the system to add the drawing media-type involves

integrating the drawing editor into the hypermedia system. Harrison and Ossher address

the problem of adding new tools to an integrated set and extending existing tools with-

out invalidating the existing tools [HO90a, HO90c]. They have an approach to object

de�nition which emphasizes the need to facilitate extension without disruption. [HO90b]

motivates the need for extensible programming. It, like us, also claims that extension

can be achieved without access to source-code. It introduces the notion of extension by

addition, and the concept of a subdivided procedure. A subdivided procedure has an

interface, a subdivision speci�cation, and one or more bodies. When it is called, its sub-

division speci�cation is evaluated and the selected body executed. The technique allows

new bodies to be added to an application without any need to recompile the application.

Such a technique could be implemented in Beta, or any other object-oriented language. In

Beta, for example, a pattern could be declared as subdivided. With its declaration, a sub-

division criteria, and a default \body" | which would be an object descriptor | would be

provided. Furthermore, it would be possible to add new bodies | descriptors which are

extensions of the default descriptor | as additional de�nitions of this subdivided pattern.

Each additional body would have a selection value. Such additional body declarations

may appear separate from the subdivided pattern declaration. So, a subdivided pattern

would denote a set of object descriptors rather than a single one. At every use of such a

subdivided pattern, the subdivision criteria would be evaluated, and the body with the

matching selection value selected. Thus, the de�nition of the pattern would depend on

the result of the evaluation. If the language supported such a mechanism, it would be

simple to use the interpreter to dynamically add new bodies to a subdivided pattern, thus

providing another way to achieve dynamic extensibility.

1.6.6 Discussion of tailorability issues

The development of an environment in which designers and end-users work together build-

ing systems just as easily as building a model house using Lego bricks is the subject



of [KN93]. They have developed a domain model and an application framework support-

ing project management in general, and quality management in particular. Their idea

is to build a hierarchy of specialized development environments, each of which comprises

of a domain model component, and an application framework. Such a domain-speci�c

development environment will be more comprehensible to users with knowledge of the

domain. It will be possible to base tailoring and adaptation of these systems on concepts

largely inherited from the domain.

It is worth mentioning the work on component-oriented software development [NGT92].

They de�ne application engineering as the activity of abstracting the domain knowledge

for selected application domains, developing reusable software components to address

these domains, and encapsulating this knowledge into generic application frames (GAFs).

Application development is then the activity of instantiating a speci�c application from

a GAF to meet some particular requirements. This, in some ways, is similar to the

ideas in [KN93]. A component-oriented software system will be tailorable, at least at the

component level.

[Tri93] addresses the relationship between participatory design and tailorability. He ar-

gues, among other things, that decisions and tradeo�s encountered in the design process

of a tailorable system can be inuenced by closer contact with users.

As mentioned in the section motivating the development of tailorable systems, there

is much research work that argues for the need for tailorable systems. This work in-

cludes [HK91, ST91, BBE90, Nyg89]. [Mac90] presents a study of how users within an

organization share customizations of software.

1.7 Conclusions

A systematic approach for building tailorable systems has been developed. Issues includ-

ing the design, the language mechanisms, the support systems, the implementation, and

the tailoring process have been covered. It has been demonstrated that dynamically tai-

lorable systems, with support for source-level tailoring, can be built relatively easily using

this approach. Furthermore, these tailorable systems are not muchmore complicated than

their non-tailorable counterparts. The introduction of a few well-placed open points is all

that is necessary to make the system dynamically tailorable. It has also been shown that

the overhead incurred by making applications tailorable using this approach is minimal.

Tailorable systems built using this approach are like specialized domain-oriented pro-

gramming languages/environments. Taking the hypermedia system (Section 6.4.1) as

an example, the domain-oriented language comprises of Beta classes like the instance-



presentation class along with its relevant methods, and the session-manager class along

with its methods. One �rst thinks of tailoring at this level of abstraction. A tailor might

think of tailoring the system as follows: (1) Make a specialized presentation class which

invokes operations in the specialized drawing editor, (2) make a specialized drawing editor

that invokes linking operations in the hypermedia system and provides support for the

presentation-class protocol. This is clearly a domain-oriented algorithm: it is expressed

in terms of domain-oriented concepts.4 The bene�t of this is clear: a hypermedia system

user can understand such an algorithm. In fact, with a little training, which need not

involve Beta, he/she could even start creating such algorithms. The crucial point here is

that having such a domain-oriented language makes the tailoring aspects comprehensible

for the user.

The algorithm above is, however, not su�cient to implement the drawing media-type.

It is necessary to move down a level of abstraction and think about the methods of the

presentation class and the drawing editor. This is also supported by the language. As an

example, the tailor can now think: the hasSelectedObjectmethod of a drawing presentation

object should call selectionEmpty in the specialized drawing editor to determine if the

editor has a selected object. Moving down another level, one could think of the X-

windows level, where code must be written to handle the addition of a new link menu

to the drawing editor. Finally, there is the lowest level where one programs in Beta and

thinks of just patterns, objects, and variables. The development of the lower levels will

most likely be done by a programmer with training in Beta. The central point here is

that the tailoring language supports all these levels of programming. It is a hierarchical

domain-oriented language.

To conclude this line of thought, such a hierarchical domain-oriented language is crucial

to the success of tailorable systems. It is a di�cult task to eliminate5 the lower-level

layers: the low-level Beta, or any other language, code is necessary; it is the simplest way

to concretely and precisely express the algorithm. However, it is possible to hide this

low level behind progressive layers of abstractions which move towards domain-oriented

concepts. This way, the end-users without Beta knowledge will understand, and tai-

lor, at the domain-oriented level, while the end-programmers will tailor the lower levels.

Furthermore, one can implement domain-oriented environments, say based on visual pro-

4one can question if a presentation class is a hypermedia-domain concept or just an implementation

concept? I will assume it is a hypermedia concept, for it is not unreasonable to expect a hypermedia user

to understand the concept of a presentation for a media.
5I a referring to the various attempts to create visual programming languages. Some of them have

tried to replace even simple expressions like `2 + 3' by a dataow diagramwhich expresses the same thing,

only in a lot more space. My personal experience has been that this is really not useful. I believe that

while visual languages will work well with higher-level domain-oriented concepts, they will fail miserably

if they try to eliminate simple programming-language constructs, like expressions, with visual constructs.



gramming, to support the domain-oriented layers, leaving the domain-independent layers

to be programmed using conventional languages.

The study of various language mechanisms has revealed that features such as those present

in Beta are well suited for developing tailorable systems. The requirement that extensions

re�ne, and not replace, existing behavior is really a bene�t. It leads to extensions that

are easier to construct, maintain, and understand. In addition, as has been argued in

section 6.6, it leads to extensions that have a better chance at surviving new versions

of the system. The ability to write nested patterns also proves useful in implementing

systems according to the hardware metaphor. Pattern variables, and patterns as �rst-class

values, have proved central to the approach. They have allowed for the implementation of

hardware-like slots and boards. The uni�cation of all abstraction mechanisms into a single

pattern mechanism has resulted in a much cleaner approach for developing extensible

systems. As a result, the interpreter's API is small but, at the same time, general. It can

handle extensions to any aspect of the system.

It is still not clear as to which approach for making a system dynamically tailorable is best.

The embedded-interpreter approach has worked well and has the bene�t of producing a

stand-alone application with low overhead. On the other hand, compiling the extensions

is appealing as it would deliver better performance for the extensions. One solution to

this might be to develop a low-overhead embeddable compiler with a dynamic linker. In

fact, replacing the core of the interpreter with a code-generator would do exactly this.

Introducing dynamic extensibility into a static language has worked well. It has had

no inuence on the implementation of static programs: they are still implemented as

e�ciently and safely as they always were. There has been no change in the runtime

system of the Beta system. It has not required any signi�cant change in the style of

coding of Beta programs. The extensions are also safe: they are checked at load time.

The only potential problem is the e�ciency of the interpreted code. This work has taken

static languages, like Beta, a notch towards dynamic languages like Smalltalk.

In my opinion, the dynamic aspect is essential if we are to build tailorable systems. One

could argue that one should just use a language like Smalltalk or Self and not bother with

using Beta, especially if it is so much work to add dynamic behavior to it. In some cases,

this argument would hold. Beta, however, is claimed to be an industrial language with

support for programming-in-the-large. Therefore, if one wanted to build a large industrial

system, one would choose Beta over Smalltalk. At the same time, I would like to add

that Smalltalk is quickly becoming an industrial language. In addition, recent work has

shown how to add strong typing to Smalltalk in an industrial setting. This has moved

Smalltalk a notch towards Beta. So, eventually, the choice may depend on the needs of

the system one is building, and of course on the availability of trained developers.



Building the underlying domain model for a tailorable system is a complex task. There

is a need for extensive domain knowledge, the type of knowledge that average system

developers don't have. It is imperative that some of the potential users be involved in

this process. During the course of this work, I came to a stage where I had to decide which

application domain to test my ideas on. I was interested in building a tailorable system in

the �nancial engineering domain. When I got to evaluating this option, however, I found

that my limited domain-speci�c knowledge was entirely insu�cient to make a tailorable

system. Even if I could have come up with a limited domain model of the system, it

would have been impossible to determine what types of tailorability to support. When

I contacted a colleague who had worked in the area of �nancial systems, he reinforced

my feeling that attempting to build a tailorable system in the �nancial domain, without

involving a person who worked in that domain, would not produce anything useful. He

suggested that I try to work in some system-development related domain; it was then

that I decided to work with the DeVise hypermedia system. The crucial point here is that

creating a domain model for a tailorable system is a complex and domain-knowledge-based

task.

Building a good tailorable system is de�nitely an iterative process. Once one has a

working system that one can experiment with, new ideas for tailoring it emerge. This was

my experience with the hypermedia system and with the many additional experiments

I conducted. Once I had used the system, it was much easier to formulate tailorability

ideas. The tailorable hypermedia system went through a few revisions before it arrived

at the version presented here.

A question I asked my self throughout the work with the hypermedia system, was: how

much knowledge of the system does the tailor need in order to tailor it to support a new

media type? When I went through the process of understanding the hypermedia system,

in order to make it tailorable, I had a number of questions which included the follow-

ing: What were the primary objects? What was the causal relationship between them?

What were the relationships between their lifetimes? What were their responsibilities?

Which other objects did they use to support them? How was a media-type represented

in the system? Answers6 to these questions helped me understand the overall structure,

organization, and dynamic behavior of the system. All of this information, however, is

not necessary for the tailor. In fact, as shown earlier, knowledge of the presentation class

and the session manager class are all that is necessary to tailor the hypermedia system.

At the same time, this knowledge is de�nitely not su�cient to gain any real insight into

the operation of the hypermedia system. So, should the tailor decide to do some non-

standard tailoring, he/she will be inadequately prepared. Therefore, it may be necessary

to document more than just the relevant open points.

6One of the original developers was available to answer these questions.



The individual papers also have their own conclusions; see Sections 2.7, 4.4, 5.4, and 6.7.

1.8 Future Work

1.8.1 Learning to develop better tailorable systems

During the course of the dissertation work, a series of experiments were conducted. These

involved the drawing editor which was later used for the hypermedia system. The goal

of the experiments was two-fold: (1) determine the limits of extension via specialization,

and (2) create the requirements for a tailoring environment by recording the types of

information used by the tailor in the process of tailoring the drawing editor. The collected

data revealed �rst that there were certain types of extensions that were very intuitive to

pose, but were quite di�cult to handle. An example was the introduction of a multi-

sided polygon to the drawing editor; the editor had built-in support for rectangles, lines,

and circles. The problem was that the editor had, built into it, the assumption that

each type of graphical object would require a �xed number of coordinates to represent:

e.g. a line would need 2, a circle 2, and a rectangle also 2. Therefore, adding a multi-

sided polygon, each of whose instances could require a di�erent number of coordinates to

represent, while possible in terms of the language, would cause interaction problems with

other parts of the drawing editor. Furthermore, there was no simple way to change that

built-in assumption without actually redesigning the editor by modifying its source-code.

Note that this situation was not setup deliberately; it simply happened as part of the

experiment. It is my feeling that there are probably many more such situations in an

application of reasonable complexity, and there is need for techniques to either (1) design

the system so that such assumptions are not made, or (2) make it possible to modify

these assumptions via specializations. Continuing such experimental work with the idea

of constructing such techniques would be a useful area of future work.

1.8.2 Developing tools for tailoring

Another part of the collected data shows the types of information about the drawing

editor used in tailoring it. Attempts were made to tailor the editor in the following ways:

add a multi-sided polygon, add a rotate 20 degrees command (the system already had

a rotate for other angles), add a new attribute for all graphical objects, add an align

command. The data reveals that, in the case of the multi-sided polygon, for example,

much information scattered all over the editor's code was used. It was simple enough to

see that a polygon should be a specialization of the graphical-object class, and that it



should implement certain methods, but much harder to see how it should interact with its

environment | i.e. how it should implement the methods. In fact, not even the original

code contained this information. Knowledge of the protocol between graphical objects and

their environment was used in order to construct the polygon de�nition. Hence, there is

a need for tools that can record and supply this information in a language-independent

manner. There is much to be learnt and understood before such tools can be constructed.

An idea would be to take the data collected from the experiment, record the information

in a hypertext document, and experiment with this setup.

Part of the information presented by such a tool could be generated automatically from

the system's sources, and the rest would have to be provided by the system developer.

A number of experiments can be done to determine exactly what can be automatically

generated and how. How should the system developer specify this additional information?

1.8.3 Implementing new language features

Another interesting area of work is at the language level. We have made it possible to

introduce new Beta patterns into an running Beta program, but only at points where

there are declared pattern variables. An interesting variation on this would be to allow

any (not necessarily used through a pattern variable) pattern in a Beta program to be

replaced by a dynamically-loaded one. A scheme to handle this could be devised. One

would have to resolve problems of the following nature: what should be done to active

instances of the old pattern? Should they be upgraded to the replacement pattern, and

if so, how? What about objects who have the instances of the replaced pattern as inline

objects? How can one upgrade these? The solution to many of these problems lies in

a slightly di�erent, more exible, and less e�cient, runtime representation. Can this be

avoided? The introduction of virtual patterns as super-patterns is something that was

attempted by the original Beta implementations, and abandoned subsequently due to the

ine�ciencies introduced by it. It is, however, a powerful mechanism in the construction

of extensible systems and should be supported. As previous attempts to implement it

have revealed that it is expensive to implement, tests should be conducted to determine

exactly how expensive it is. It is entirely possible that the bene�ts will outweigh the cost.

1.8.4 Developing Beta systems with metalevel architectures

Metalevel architectures o�er the possibility to do a variety of things to the system they

represent. These include �ne tuning, introspection, and tailoring. How could one intro-

duce mechanisms, to implement systems with metalevel architectures, in a language like



Beta? In particular, an obvious experiment would be to create a general purpose metalevel

architecture for the hypermedia system. Just as in the Silica window system [Rao91], the

fundamental aspects of the behavior of a window and its relationships with other windows

were captured by metaobjects, so should similar aspects of a media-type be captured in

metaobjects. This could be a re�nement of the metaobjects already present in the hy-

permedia system. Currently, for a media-type, we have a metaobject which speci�es its

presentation behavior, its instantiation behavior, and its storage behavior. It is possible

to change any of these by specifying a new class for any of them. The behavior of a

media-type can, however, be represented at a �ner level: e.g. its presentation behavior is

composed of its linking behavior, its editing behavior, and its viewing behavior. All of

these could be made metaobjects. The advantage would be that all of these would then

be manipulable by the tailor. Furthermore, the major hypermedia protocols should also

be identi�ed in order to allow the tailor to change relevant functionality.

1.8.5 Specifying the specialization interface for open points

Specifying the specialization interface of open points could help in the tailoring process.

Taking the hypermedia example again, it should be possible to specify, in some formal

or semi-formal manner, the exact interface that a specialization of the presentation class

should see. This need not necessarily be the same as the interface that a user of the pre-

sentation class would see ([Lam93]). The interface should also include information about

the environment visible to the specialization. This is because, in Beta, the open point

may be nested in some block, and there may be a number of names visible in its environ-

ment. Some of these names may be relevant to the specialization. In the hypermedia, for

example, the specialized drawing editor accesses the current session object. Experiments

in writing the speci�cation of open points, based on the techniques in [Lam93], would be

a useful area of future work.

1.8.6 The impact of distribution on extensibility

Assume a system has an object which is an instance of an interpreted extension pattern.

Assume, further, that a reference to this instance is made available to another remote

system through some distributed object facility. If the corresponding extension pattern

has not been installed in the remote system, how should the remote system handle this

object? A possible solution may be to use an approach similar to the persistent-store

approach presented in Section 6.5. An interesting area of work would be the identi�cation

of such problems and the creation of appropriate solutions.
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Abstract.

Extensible systems are systems which can be extended, by adding new code, without

requiring any modi�cation to the original system's source code, without recompilation of

the original system, and possibly, without even having access to the original source code.

An approach which enables the construction of highly extensible systems is described. It is

based on a metaphor: construct the system so it resembles a piece of computer hardware,

in that it has a mother-board with slots, and extension boards that plug into these slots.

Language mechanisms, that support the construction of systems in this manner, are

described. Concrete examples of this approach are presented. The realization of these

mechanisms in the programming language Beta, an object-oriented language, are shown.

The approach is general enough to be adaptable to other languages. Three alternative

techniques for processing extensions are discussed. An attempt is made to classify all

changes that can possibly be made to an object-oriented system. This is used to determine

which types of changes can be supported, by installing extensions in a possibly redesigned

system, rather than by modifying the source code and recompiling.
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2.1 Introduction

This report describes work in the context of the DeVise project at Aarhus University.

The overall goal of the DeVise project is to create concepts and tools for experimental

system development. A subgoal is to explore the area of user-tailorable systems. To

support tailorable systems, one needs the concept of system extensibility, especially of

the dynamic kind. Hence, the area of extensible systems been explored in order to gain

some insight into what support a programming language should provide to allow extensible

systems to be written.

An extensible system tends to have wider applicability than a rigid one. This is because

more people can adapt it to their use situation. It also tends to have a longer lifetime as it

can grow with the user's needs. Furthermore, it acts as a catalyst for new ideas: advanced

users can easily experiment with various extensions, leading to some very creative uses of

the system not conceived of at development time. GNU Emacs [Sta84] is a good example

of this.

By an extensible system, is meant one that is executable, yet has the potential of accepting

new code; code which may either replace or enhance existing parts. Furthermore, in order

to make the extension, there should be no need for the source code of the original system

(only symbol-table information is required), nor, preferably, should there be any need

for the entire development environment. Needless to say, the source code of the original

system must not be modi�ed or require recompilation. In the terminology of [N�r92]

who introduces the notion of an open point as a behavioral parameter of a program, an

extensible system is a system with open points.

When one tries to develop a system under such constraints a number of interesting issues

arise.

� Structuring the System to be Extensible. A system comprises of a number

of components.1 What should these components be, and how should they be or-

ganized, so that signi�cant changes in the behavior of the system can be e�ected

by replacing these components by newer versions? If the components are too �ne-

grained, simple changes of behavior will involve many components, thus making the

extension process laborious and error-prone. If they are not comprehensible in their

own right, they will be di�cult to extend. A good component-level architecture will

also make it easier for the person tailoring the system to gain an overall understand-

ing of the system and to identify which components need to be replaced in order to

install a certain extension.

1By components is meant the parts (functions, procedures, classes, modules,...) of the application.



� Writing Open Components. There is a need to write components in a way

such that they may be specializable later without changing their original source

code. This is essential if the system is to be extensible without modi�cation of the

original sources. Callbacks or hooks are an example of a mechanism for writing

functions/procedures which may be extended without modi�cation of the original

sources.

� Ensuring a small Semantic Gap. End-users typically know what functionality

they would like to change or add. It is not very easy for them to �nd what they

need to specialize or to �nd exactly where they should add it. Hence, there is a

need to write the system components in a way such that they correspond, more or

less, to the functionality of the system. This will reduce the semantic gap, thus

facilitating the location of code. Tool support can also aid this process. So, it is

imperative that all the bits and pieces that go together to implement some feature

of the system be packaged together, as much as possible, within a component.

� Installing Extensions. Once an extension has been written (i.e. an original com-

ponent has been located, comprehended, and specialized), it is still necessary to

make the compiled application use the specialized version instead of the original

version. In a language with dynamic scoping (e.g. Smalltalk [GR83]), the replace-

ment could be done by giving the extension the same name as the original. But,

in a language with static scoping, this would not work. There is a need for some

additional mechanism to support this; e.g. use variables: if the original component

was referred to through a variable, then assigning the new extension to that variable

would have the desired e�ect.

It is interesting to examine the types of language mechanisms necessary to handle these

issues.

Using an example of a spreadsheet system, and the programming language Beta, tech-

niques and language mechanisms which help write such extensible applications are il-

lustrated. Beta is a strongly-typed, statically-scoped, block-structured, object-oriented

language in the spirit of Simula [DMN68].

The hardware metaphor which suggests that a system be structured so it resembles a piece

of computer hardware, in that it is has a mother-board with slots and extension boards

that plug into these slots, is introduced. This simple metaphor proves surprisingly useful

in guiding the overall architecture of the extensible system. Various language mechanisms

that support this approach are identi�ed; their realizations in Beta are illustrated and

discussed. The author feels that Beta has a number of interesting features that make it

particularly elegant for writing extensible systems.



In addition to exploring the construction of extensible systems, this report also explores

the extension process; i.e. handling extensions. Extensions must be processed, i.e. com-

piled, or interpreted, before they can be installed into the extensible system. Three

alternatives for processing extensions are explored.

In order to gain an understanding of the power of this approach, an attempt is made

to classify all changes that can possibly be made to an object-oriented system. This is

used to determine which types of changes can be supported, by installing extensions in a

possibly redesigned system, rather than by modifying the source code and recompiling.

Section 2.2 describes, as an example, an extensible spreadsheet system which is charac-

teristic of the types of extensible systems this work tries to support. Section 2.3 presents

guidelines for constructing extensible systems and then illustrates how the spreadsheet

system can be constructed in accordance with these guidelines, using Beta as the program-

ming language. Section 2.4 covers the alternatives available when it comes to processing

extensions. Section 2.5 examines the types of changes one can make to an application

and shows if they can be supported by the extensibility mechanisms presented earlier.

2.2 The spreadsheet example

As an example, consider an extensible spreadsheet system which allows users to specialize

existing cell-types and de�ne new types of cells; e.g. cells, which are designed to contain

free-format text, can be specialized to support formatted text, or, a new type of cell which

contains video can be de�ned. These changes or additions should be de�nable by the user

and incorporable into the application executable without recompilation of the original

sources.

This incorporation could happen dynamically, during the execution of the spreadsheet

system; the spreadsheet system could load the new extension. It could also happen

statically; the extension could be patched into the original executable yielding a new

extended executable.

It is important to keep in mind that it is the end-user2 of the spreadsheet system who,

without having access to the source code of the system, and preferably without having

the original development environment, will write these extensions.

2who, probably, should be a programmer, better known as a super-user.



2.3 Building the extensible spreadsheet in Beta

The problem then, is to write such an extensible spreadsheet application and to identify

what special language mechanisms were used to accomplish this task.

Computer hardware is designed to be highly extensible. This is primarily because it is not

very easy and economical to produce completely new hardware each time an extension

has to be made. What aspects of hardware make it so extensible? It is primarily the

overall architecture which comprises of a mother board with slots. Much of the extensible

functionality resides on extension boards which are plugged into these slots. Users can

typically handle the following tasks themselves:

� add a new board in an empty slot

� specialize an existing board (e.g. add new memory SIMMs)

� replace an existing board by a newer version

If software could be constructed in this manner, similar bene�ts could be availed of. One

way to look at it is as follows: the mother board of a program is the main program and

the slots are open points (e.g. callbacks in many languages). The extension boards are

the various software components (classes, procedures, functions, types, ...) which �ll the

open points. This structure (of mother board, slots and components) can be replicated

within each software component.

Extending a software system can then be viewed as a process very similar to extending

a piece of computer hardware. With software, in addition, to just swapping boards, it

would also be possible to allow users to construct new boards (generally by modifying

existing ones). It may also be possible to support modi�cations of the mother board.

The development of the spreadsheet application in Beta follows this theme: it is con-

structed in the manner prescribed above. The construction is presented in stages |

primarily to illustrate all the features without too much complexity. In the �rst attempt,

is presented a version which doesn't allow dynamic extensibility. It serves to introduce

the general framework of the application and acts as a reference with which to compare

the dynamically extensible version. The second attempt presents a version which can be

dynamically extended.

Appendix A presents a brief introduction to Beta.3 It is recommended that the reader

glance briey at it.

3For a detailed description of Beta see [KMMPN87, MMPN93].



2.3.1 The �rst attempt

Here is an abstract presentation of a spreadsheet system. Only details relevant to this

discussion are presented. SpreadSheetSystem is declared as a Beta pattern; nested within

it are declarations of Cell, TextCell and PictureCell; the latter two are sub-patterns of

the �rst. A few variables, Row etc., are declared. Finally, there is the do-part which is

the body of SpreadSheetSystem; it gets executed when SpreadSheetSystem is executed; it

creates instances of TextCell and PictureCell.

Listing 1.

SpreadSheetSystem:

(# Cell: (* Cell pattern *)

(# loc: @Position;

draw:< (# ...INNER... #); (* ':<' means virtual declaration *)

edit:< (# ...INNER... #);

update:< (# ...INNER... #)

#)

TextCell:< Cell (* TextCell specialization of Cell *)

(# value: @Text;

(* '::<' means further binding of virtual *)

draw::< (# do ... textOutput value; INNER ... #);

edit::< (# do ... invoke text editor on cell; INNER ... #);

update::< (# do ... recalculate value; draw; INNER ... #)

#);

PictureCell:< Cell (* PictureCell specialization of Cell *)

(# value: @Bitmap;

draw::< (# do ... bitmapOutput value; INNER... #);

edit::< (# do ... invoke bitmap editor on cell; INNER ... #);

update::< (# do ... recalculate value; draw; INNER ... #)

#);

Row: [100]^Cell; (* array of references to Cell objects *)

Sheet: [100]^Row; (* array of references to Row objects *)

aRow: ^Row; (* reference to a Row object *)

do ...

Sheet[10][] -> aRow[]; (* Get and store REFERENCE to row 10 *)

(* create a text cell at position (10,10) *)

new(TextCell) -> aRow[10][]; (* ref to new text cell in col 19 *)

aRow[10].edit; (* invoke edit pattern on this new cell *)

(* create a picture cell at position (10,11) *)

new(PictureCell) -> aRow[11][];



aRow[11].edit;

aRow[10].update;

...

#)

To run this spreadsheet system, one must create an instance of SpreadSheetSystem and

execute it in some runtime environment.

Listing 2.

main:

(# SpreadSheetSystem: (# ... #);

aSpreadSheet: ^SpreadSheetSystem;

do ...

new(SpreadSheetSystem) -> aSpreadSheet[];

aSpreadSheet; (* execute the system *)

...

#)

If this were a real implementation of a spreadsheet system, rather than just an illustrative

one, the do-part of the SpreadSheetSystem would invoke some user-interface loop which

would present some standard spreadsheet-like interface. Statements such as new(TextCell)

etc., shown being executed directly in the do-part, would typically be executed indirectly

through this user-interface. As the user-interface aspect is not relevant to this discussion,

it has been omitted for the sake of simplicity.

When main executes SpreadSheetSystem, by creating an instance of it and executing that

instance, control is in the do-part of the spreadsheet pattern. The new(TextCell) creates

an instance of the TextCell pattern and stores a reference to it in position (10,10) of

the sheet. When the method draw, for example, is invoked on this instance of TextCell,

execution begins in the draw method declared in Cell; when it hits the INNER construct

it enters the draw method declared in TextCell. Upon completion of this, control returns

to the draw method in Cell at the statement following the INNER. The same applies for

the other virtual methods in TextCell and PictureCell.

In this implementation of the spreadsheet system, the following language mechanisms are

utilized to implement the system so it is extensible:

� Block Structure. Block structure allows one to construct a software system as

one would construct a hardware device i.e. as a number of sub-units (boards or

components) which are part of a larger unit and so on. As in a piece of hardware,



there are component boards, in a software system there are blocks. Nesting of

blocks, as in Beta and Simula, allows one to model the building blocks of a system

at a coarser level than just ordinary unnested classes. It also serves to package

together related functionality. For example, the SpreadSheetSystem pattern models

a spreadsheet building block and the TextCell pattern models a text-cell building

block.

Once a system is structured in the form of such building blocks, making extensions is

conceptually easier: replace the appropriate building block by an extended version.

This is similar to what happens in the hardware world: a computer's networking ca-

pabilities are extended by replacing its existing ethernet board with a newly released

version.

� Virtual Patterns. A virtual pattern allows one to model a component that is open

i.e. has some deferred functionality, yet, possibly has some default behavior. They

are essential if one has to write components which must be extensible without any

changes to their original de�nition.

In Beta, patterns unify types, classes, procedures, and functions. As a result, the

concept of virtual pattern in Beta, spans all of these related concepts of virtual types,

virtual classes etc. Sandvad and N�rgaard, in their report [NS90], show how virtual

patterns can be used to defer actions, values, and substance i.e. declare components

in which these aspects may be speci�ed later or their existing de�nitions specialized,

all without modi�cation to their original de�nitions.

In the example, Cell is written with virtual procedures (deferred action): draw,

edit, and update. In addition, SpreadSheetSystem is written with virtual classes

(deferred substance): TextCell and PictureCell.

� Further binding of virtuals in all specializations. In Beta, unlike Simula and

most other object-oriented languages, a further binding of a virtual does not override

the original de�nition or previous bindings. For example, in SpreadSheetSystem in

the declaration of TextCell, the further binding of draw doesn't override the original

declaration of draw in Cell; it extends it. In a further specialization of TextCell,

a further binding of draw would not override the original declaration in Cell, nor

would it override the binding in TextCell; it would extend them.

This allows for multiple levels of re�nement and is particularly useful as it allows

an extension made to an extended component to behave as expected. With over-

riding, an extension made to an already extended component would end up losing

its previous extensions unless it was explicitly programmed to utilize them, thus

putting an additional responsibility on the shoulders of the extension programmer.



Put simply, with the Beta model for further bindings, by making an extension it

isn't possible to easily break what already works.

� The INNER construct. This allows one to specify precisely when, in an extensible

action component, control should be transferred to the specialization. It models the

fact that the extensible component decides when the extension should be invoked;

not the other way around. Extensions don't need to be concerned with specifying

when they should be invoked.

� Nested Specialization. In other words, the ability to build a new component

from an existing one by specializing some nested component. For example, one

could specialize the TextCell component by creating a new spreadsheet system as

a specialization of the old:

Listing 3.

NewSpreadSheetSystem: SpreadSheetSystem (* create new system *)

(# (* identical to old, except: *)

TextCell::< (* text cells are slightly different *)

(# (* in their edit command *)

edit::< (# do ... issue warning; INNER #);

#)

#)

A new spreadsheet system has been constructed, reusing the old, and specializing

TextCell to issue a warning whenever edited. This is equivalent to constructing a

new piece of hardware by copying most of the old and replacing some of the old

parts by new extended versions. This is an elegant, powerful, and conceptually clear

way to specify an extension to a system.

Building a new executable

In order to build an executable for the NewSpreadSheetSystem shown above, it is nec-

essary to write a new main (similar to the one for SpreadSheetSystem) and to compile

and link it into a new executable. For this process, only the object code for the original

SpreadSheetSystem and the necessary symbol-table information is necessary. No modi�-

cations to, or recompilations of, the original source code are necessary.

Another approach that uses Beta's pattern variables (see Appendix A.1), the interpreter

(see [Mal93a]), and doesn't require the rewriting, or recompilation, of main, can be written

as:



Listing 4.

main:

(# SpreadSheetSystem: (# ... #); (* same as original declaration *)

theSpreadSheetSystem: ##SpreadSheetSystem; (* pattern variable *)

do

(* load extended version *)

(extensionFile) -> interpret -> theSpreadSheetSystem##;

if theSpreadSheetSystem## = NONE then (* extended version not found *)

(* install default version *)

SpreadSheetSystem## -> theSpreadSheetSystem##;

theSpreadSheetSystem; (* execute the installed version *)

#)

The original main has been rewritten to be extensible. An executable obtained by com-

piling this main behaves as follows: upon startup, it attempts to load an extension from

a designated extension �le. If found, the extended version of the spreadsheet system is

loaded and executed, else the original default version is executed. To extend the system,

one simply needs to put the source code for an extension such as NewSpreadSheetSystem

in the designated extension �le and restart the executable. No compilation or linking is

required.

The extension is loaded via the interpreter. The return value of the interpreter is a

value denoting a pattern. It is like a function-closure; it is called a structure value in

Beta terminology. Structure values are stored in pattern variables. In the code above,

theSSSystem is a pattern variable. These concepts of pattern variables and structure

values are discussed in Appendix A.1.

The problems of processing extensions are covered in more detail in Section 2.4.

Problems with the �rst attempt

It is possible to construct a new spreadsheet system using the old. It isn't possible to

modify the old system in place. To get the e�ect of an extension, the new system must

be started instead of the old. It isn't possible to make extensions dynamically i.e. during

the execution of the old system, as it is necessary to abort the execution of the old system

and execute the new system.

As a result of this, it is impossible to write a spreadsheet system which has a command,

which allows its user to specify the code for a new cell type and, upon completion, allows

the system to resume execution with the new cell type de�ned.



2.3.2 The second attempt

To make the spreadsheet dynamically extensible, we must de�ne it as follows. Lines

marked with a vertical bar are changed/added with respect to the �rst attempt.

Listing 5.

DynExSpreadSheetSystem:

(# Cell: (* Cell pattern *)

(# loc: @Position;

draw:< (# ... #);

edit:< (# ... #);

update:< (# ... #)

#)

| TextCellDefault: Cell

(#

>>Identical to definition of TextCell in SpreadSheetSystem<<

#)

| PictureCellDefault: Cell

(#

>>Identical to definition of TextCell in SpreadSheetSystem<<

#)

| TextCell: ##TextCellDefault; (* pattern variables *)

| PictureCell: ##PictureCellDefault;

| xxxCell: ##Cell;

Row: [100]^Cell;

Sheet: [100]^Row;

aRow: ^Row;

do ...

(* store defaults in pattern variables *)

| TextCellDefault## -> TextCell##;

| PictureCellDefault## -> PictureCell##;

...

(* create a new text cell via pattern variable *)

new(TextCell) -> aRow[10][];

...

(* create a new picture cell via pattern variable *)

new(PictureCell) -> aRow[11][];

...

(* create a new xxxCell *)

| new(xxxCell) -> aRow[12]^;



...

#);

TextCell and PictureCell have been renamed to TextCellDefault and PictureCell-

Default. Pattern variables, with names TextCell and PictureCell, and types TextCell-

Default and PictureCellDefault respectively, have been declared. The default patterns

for text and picture cells (i.e. TextCellDefault and PictureCellDefault) have been stored

in the corresponding pattern variables. With the exception of the use of the pattern

variable xxxCell, this version of the spreadsheet (DynExSpreadSheetSystem) will behave

identical to the previous version (SpreadSheetSystem).

DynExSpreadSheetSystem, however, leaves open the possibility of change in the de�nition

of its text and picture cells, as well as the introduction of a new cell type, all without

any modi�cation, or recompilation of its source code. If the following statement were

compiled into the above application, executing it would change the pattern denoted by

the pattern variable TextCell to a dynamically-loaded extension (which must be sub-

pattern of TextCellDefault).

Listing 6.

(TextCell Extension Source Code) -> interpret -> TextCell##

Here, TextCell Extension Source Code is the source code of this extension, presumably

obtained from the user. Execution can resume after this statement; there is no need to

restart the entire spreadsheet system. All uses of TextCell will see the new extended

version once this statement has been executed. An example of a text cell extension could

be the following:

Listing 7.

TextCellExtension: TextCellDefault

(# edit::< (# do ... issue warning; INNER; #)

#)

If in an execution of DynExSpreadSheetSystem, the above extension were loaded, all sub-

sequently created text cells would issue a warning every time they were edited.

Using pattern variables and the interpreter in this manner, it is possible to write systems

which allow parts to be dynamically replaced by specialized parts, all without any modi-

�cations, or recompilations of the original source code. It isn't even necessary to restart

the application.



This example also de�nes the pattern variable xxxCell. This is de�ned in order to allow

the introduction of new types of cells, as opposed to changing the behavior of existing

types of cells. If the following statement were compiled into DynExSpreadSheetSystem,

executing it would store a new dynamically loaded pattern (which must be a sub-pattern

of Cell) in xxxCell.

Listing 8.

(NewCell Source Code) -> interpret -> xxxCell##;

Once again, NewCell Source Code is the source code of the new cell type, obtained from

the user, and could contain, for example, the following:

Listing 9.

VideoCell: Cell

(# value: @Video;

draw::< (# ... playVideo value; INNER ... #);

edit::< (# ... invoke video editor on cell; INNER ... #)

update::< (# ... recalculate value; draw; INNER ... #)

#);

DynExSpreadSheetSystem could load such a de�nition, enabling it to support video cells,

a feature that was not conceived of at development time.

Pattern variables truly allow one to model the concept of slots in hardware. Given a

system, we can replace what is contained in a pattern variable or add something into an

empty pattern variable, all without building a new system. This is exactly how it is in

the hardware world.

Virtual patterns don't accomplish this. A virtual pattern also denotes a kind of slot,

but a slot with something already built into it; that pre-built part cannot be removed or

replaced. To put something new into this slot, one must replicate the entire machine; the

new component then becomes a pre-built part of the same slot in the replicated machine.

This is e�ective in software as this replication process is relatively easy and cheap.

2.3.3 Comparison with other languages

It is interesting to see how extensions can be de�ned in procedural languages such as

Pascal [JWMM85] and C [KR88]. In these languages, everything is modeled as types



and procedures (or functions). For example, one may model a Cell by declaring a record

type, a create function which returns newly allocated space for a Cell record, and func-

tions/procedures which model the operations that can be performed on Cells. We can

de�ne an extension of a Cell (e.g. to a VideoCell) by de�ning a new record type called

VideoCell which must include all the �elds of a Cell along with any additional �elds.

In other words, it isn't possible to construct software in the \hardware style" advocated

earlier. It is possible to view procedures/functions as the component boards and pro-

cedure/function variables as slots; this is not very useful for extensibility purposes as

the granularity of the components is very �ne. Furthermore, other features useful in the

construction of extensible systems, e.g. reuse, small semantic gap, etc. are not easily

realizable in these imperative languages.

Other OO languages, such as Smalltalk [GR83], C++ [ES90], and CLOS [Kee89], sup-

port reuse, easy de�nition of extensions, small semantic gap, etc. Smalltalk, and CLOS,

due to their dynamic nature are very suitable for writing, processing, and installing dy-

namic extensions. With CLOS, in addition, it is also possible to use the Meta Object

Protocol [KdRB91], a powerful means to extend and tailor a system.

All of these languages, however, lack some of the features identi�ed as useful for con-

structing extensible systems. These include block structure, virtual patterns (as opposed

to just virtual methods), further bindings, the inner construct, and pattern variables.

2.3.4 Summary

An approach for constructing statically and dynamically extensible systems has been

presented. The approach is based on constructing software in a manner analogous to

hardware in order to attain high degrees of extensibility. The primary language mecha-

nisms that make this type of construction possible are identi�ed, related to the hardware

metaphor, and discussed.

Using this approach, and the language Beta, extensible systems can be elegantly con-

structed. Furthermore, the construction of extensions is also simple and elegant.

2.4 Processing Extensions

Given the executable for an extensible system (along with some signature information)

and the source code for an extension, it must be possible to process (compile or interpret)

the extension in the context of the extensible system. The goal is to arrive at a new

executable which includes the extension.



If the extension is to be processed statically (Section 2.3.1), then a compiler, which can

handle separately-compiled parts, and a linker are all that is needed. The extension can

be compiled as a separate module using the signature information about the object code

that is part of the executable; it can then be linked with the original executable to produce

the new executable.

Processing the extension dynamically is a little more di�cult. It should be possible for an

executing application to load the extension into itself and continue execution. A number

of alternatives are possible; here are a few:

1. Ordinary (non-incremental) compiler with a dynamic linker and loader.

2. Incremental Compilation and Execution environment.

3. An interpreter compiled into the extensible application.

2.4.1 Ordinary compiler with a dynamic linker and loader

When the application needs to load an extension it invokes the compiler, providing it

the source code of the extension. The compiler may or may not be embedded within

the application. If it isn't, then it can be invoked via the appropriate inter-process-

communication routines. The compiler must be capable of handling separately compiled

units; it is the responsibility of the application to package the extension as a separately-

compilable unit. Once the compilation is complete, the application invokes a dynamic

linker and loader to load the resulting object code into the current execution. The loader

provides the application with a reference to the extension. This is used to incorporate the

extension into the application's execution.

This approach was adopted by [AF89] in their attempts to introduce extensibility into

Beta applications. In their implementation, an extension is packaged as a separately-

compilable module upon which a compile process is started. The compiled code is then

linked and loaded into the { possibly executing { system.

2.4.2 Incremental Compilation and Execution environment

Given a set of modi�cations to an application's source code, and its executable, an incre-

mental compiler is capable of producing a new executable with as little recompilation as

necessary. Furthermore, some environments (such as the Mj�lner Orm system [Mag93])

are even capable of resuming the original execution after such a recompilation.



In a system like the Mj�lner Orm System, the extensible application would have to be

executed within the provided execution environment. An extension could be installed

by using the environment to suspend execution, incrementally compile the extension and

produce a new executable, and continue execution. Note that in this scenario it is the

environment and not the application that is responsible for installing the extensions.

This is clearly a useful approach; it is also more general, as arbitrary changes to the

original application can be supported. The types of extensions presented in this report

don't require any changes to the source code of the original application; they don't require

the generality of incremental compilation. Hence, if one is only interested in these types

of extensions, incremental compilation is a bit of an overkill.

2.4.3 Interpreter compiled into the extensible application

The interpreter is embedded within the application. When the application needs to load

an extension it invokes this interpreter, providing the source code of the extension as an

argument. The interpreter processes this source code, creates appropriate runtime objects

in the current execution's image, and returns a reference to this interpreted entity. The

application then refers to the extension via this reference.

If the extension refers to a symbol already de�ned in the system being extended, the

interpreter should be able to resolve this to the appropriate compiled part of the system.

It should not require the referred part to also be interpreted.

Should the extension refer to a symbol in a library not already part of the system being

extended, the interpreter should be able to incrementally load and link the necessary

libraries into the extensible system before resolving the name to the appropriate compiled

part.

It is also possible to design the interpreter to exist as a separate entity i.e. not embedded

within the application. The application could then interact with it as it does with the

compiler and dynamic linker/loader.

The Beta interpreter

An embeddable interpreter for Beta has been built and is described in [Mal93a]. It

is written almost entirely in Beta, has an object-oriented design, and interprets Beta

Abstract Syntax Trees directly. Compiled code may invoke interpreted code and vice-

versa. The interpreter is packaged as a library with an Application Programmer's Interface

(API) which includes the following:



AddDecl: (context * declText) -> ()

MakeDeclExecutable: (context * originObject * declText -> executablePattern)

These are functions which a Beta program can use to load extensions via the interpreter.

The function MakeDeclExecutable returns a reference to the interpreted pattern; a refer-

ence which can be executed. To build a Beta application which uses the interpreter, one

simply includes a �le de�ning the interface to the interpreter, and uses the above func-

tions. When the Beta system links the application, the interpreter is embedded within

it.

2.5 Extensions as viewed from the Inheritance Hi-

erarchy

It is useful to classify the di�erent types of changes one can make to an application. One

can then determine if it is possible to program the application so that these classes of

changes can be accommodated without modi�cation to the original sources i.e. by simply

loading extensions into the application. In other words, it helps answer the question:

what kind of changes, to the application, can be made by simply loading new extensions?

For an object-oriented application, one possible way to classify changes is to view them as

di�erent types of modi�cations of the application's inheritance hierarchy. The following

list contains such a classi�cation of changes along with suggestions for how they could be

accommodated in Beta.

1. Modi�cation of a leaf node i.e. a pattern not used as a super-pattern. If the modi�ed

leaf node cannot be expressed as a sub-pattern of the original, then it becomes nec-

essary to replace the original by the modi�ed at the source-code level and recompile.

If the modi�ed leaf node can be expressed as a sub-pattern of the original, then this

can be supported. The modi�ed leaf node can be loaded as an extension and all

points in the executable that referred to the original can be made to point to the new

e.g. by using a pattern variable. For example, if one wanted to handle modi�cations

of a pattern P, which was not used as a super-pattern, by loading extensions, one

could declare a pattern variable PV of type P and replace all uses of P with PV. Then,

modi�ed versions of P could be loaded and, provided they were sub-patterns of P,

could be assigned to PV. The resulting application would behave as if it had been

compiled with the modi�ed P instead of the original.



2. Modi�cation of a non-leaf node i.e. a pattern used as a super-pattern. Once again,

if the modi�ed version cannot be expressed as a sub-pattern of the original, then

the change has to be made at the source-code level and the application recompiled.

If it can be expressed as a sub-pattern, it is possible to load it as an extension and,

with one exception, update all references to the original by the new version. The

exception: patterns for which the original was a super-pattern cannot be updated

to have the new version as a super-pattern. This is because, in Beta, super-patterns

cannot be dynamically changed. This is a limitation with the implementation of

Beta.

It seems logical to use pattern variables to solve this problem in the following way:

Listing 10.

WindowP : Component(# #)

Window : ##WindowP; (* pattern variable *)

Dialog : Window (# ... #); (* pattern variables used *)

TextEditor : Window (# ... #); (* as super-patterns *)

With this setup, one can dynamically change the super-pattern of Dialog and

TextEditor to a specialization of WindowP by assigning to the pattern variable Window.

A modi�cation of WindowP could be loaded as an extension and stored in Window; as

a result all uses of the pattern variable Window would get the updated version. The

problem is that the current implementation of Beta doesn't allow pattern variables

to be used as super-patterns. It is possible to implement this feature; it would add

overhead which would be experienced even when it was not used, a good reason to

disallow it.

3. Addition of a leaf node. This amounts to loading a new pattern, which could be a

sub-pattern of some existing pattern, and executing it. This can be handled easily.

4. Addition of a non-leaf node. This amounts to loading a new pattern, which is

a sub-pattern of some existing pattern, and making it the super-pattern of some

existing pattern. If it were possible to dynamically change super-patterns, this type

of change could be accommodated.

5. Other modi�cations of tree structure e.g. change the super-pattern of a pattern.

These cannot be supported without making source changes and recompiling. Once

again, dynamically changeable super-patterns would solve this problem.



2.6 Related Work

[NS90] present a detailed discussion of reusability and extensibility in the Beta system.

Their work has also been a source of inspiration for this work. Their focus is \extensibility

of software components with the point of view of reusability." In other words, if one has

a library with a class de�ning a general purpose window, how can one reuse (in another

application) the class while extending and customizing it to one's needs. Although we

also need such capabilities, we are also interested in how these extensions can be made in

a \ready to run" or running application. This work has built upon their work, especially

in the area of using virtual patterns to defer speci�cation of action, substance, and values.

Another inspiration for this work has been the report [N�r92] which explores the concept

of an open point. An open point is de�ned as a behavioral parameter of a program.

With respect to Beta, N�rmark doesn't talk about pattern variables and also states that

\...open points simulated via virtual patterns are closed too early relative to the execution

of the program." This report shows that with the availability of pattern variables and the

Beta interpreter, this is no longer true. N�rmark also discusses the issue of documenting

open points.

Meyer, in his book [Mey88], addresses extendibility as an external quality factor of a

software system. He describes extendibility as \the ease with which software products

may be adapted to changes of speci�cations." He identi�es the concepts of polymorphism

and dynamic binding as concepts that support extendibility. The two principles proposed

by him as essential for improving extendibility, design simplicity and decentralization, are

fully supported by the views presented in this report.

The seminal system and paper on extensible systems is [Sta84]. Stallman presents a list

of language requirements for the purpose of writing extensible systems. Among these, he

lists dynamic scoping and no typing as essential. This work shows that this is not entirely

true; it demonstrates that extensible systems can be written in a static-scoped language

with static type-checking.

Notkin and Griswold [NG87] describe an extension interpreter which relies on call arbitra-

tion, dynamic linking, and multi-language extensions. The extension interpreter is able

to load an application's object code, given its interface speci�cation. It is also able to

interpret one or more extensions, written in any extension programming language. The

extension(s) may use the procedures of one or more loaded applications, thus extending

each of them and creating a single extended application.

In [OH92], the authors show how the inheritance hierarchy of an application can be

extended by merging it with another, possibly sparse, extension hierarchy. An interesting



discussion of extensible visual formalisms, including extensible spreadsheets, is presented

in [JNZM93, ZC92].

On the comprehension of systems, in order to tailor them, M�rch [M�r93] argues that the

rationale for the system design should be coupled with the system and provided to the

person tailoring the system. Ossher [Oss87] also discusses a mechanism for specifying the

structure of large systems; this could be prove useful for gaining an understanding of the

system before attempting to tailor it.

Reective techniques are also useful for writing extensible systems. The more an imple-

mentation is reected, the more information there is available at runtime, thus making

it easier to process and install extensions e�ciently. The book [KdRB91] presents an

excellent and detailed discussion of the use of reective techniques for making extensions

in CLOS. There is also some work on reection and C++ [CM93]; here a version of C++

called OpenC++ is presented. In OpenC++ classes, and selected methods within them,

may be declared reective. Reective classes have metaobjects which can be used to

extend or change the semantics of method calls.

The idea of pattern variables was originally introduced in [AF89]. In their report, Agesen

and Fr�lund present a mechanism for building extensible systems using dynamic linking

and loading. We have built upon their ideas in coming up with a general extensibility

mechanism for Beta.

In practical use today are applications on the Apple Macintosh which utilize the concept

of \add-on." So, an application extends itself dynamically by loading an add-on which

blends in with the original application. The add-on shares the original system's runtime

environment. As an example, spelling checkers are generally add-ons which are loaded

by word processors when needed. The word-processor and the spell add-on communicate

using some event mechanism. The Macintosh add-on concept can be elegantly modeled

using the mechanism we provide.

Listing 11.

WordProcessor:

(# SpellCheck: ##AddOn;

do ...loadAddOn -> SpellCheck;

...SpellCheck...

#)

Here AddOn is a prede�ned pattern which describes the interface common to all AddOns;

loadAddOn loads a precompiled version of SpellCheck; we could also have used the inter-

preter instead. Then, a spelling checker can be de�ned and loaded dynamically into the

word processor.



[PSS87] presents a discussion of the Beta shadow language. Their focus is primarily in

designing techniques to monitor and debug programs. In a sense, they want to support the

age-old debugging technique of putting print statements into programs without actually

modifying the source code of the program or recompiling the program. This is equivalent

to extending the original application without changing its source code or recompiling it,

something similar to what has been described in this report. They propose a runtime

representation amenable to extensibility e.g. consult a jump table after each statement.

Although interesting, such an approach would exact a high e�ciency overhead. [BO86]

also presents techniques useful for monitoring and debugging of, primarily concurrent,

Beta programs.

[TMH87] describe the concept of system adaptability. According to them, a system can

be adaptable in four ways: it can be (1) exible (2) parameterized (3) integratable (4)

tailorable. Our focus has been primarily in �nding techniques to support (3) and (4).

Although we don't say much about these concepts in this paper, we agree that these are

useful concepts in the world of the application builders and users. We feel that the choice

of how the application should be adaptable and what tailorability language should be

presented to the end-user is left entirely up to the application designers and builders.

2.7 Conclusions

This report has identi�ed techniques and language mechanisms useful for constructing

extensible systems. The usefulness of these mechanisms is premised upon the belief that

computer hardware is highly extensible in its construction and hence, software that can

be constructed in a similar manner will also be highly extensible. This simple metaphor

has proven surprisingly useful in guiding the overall architecture of the extensible system.

This approach to writing extensible systems relies heavily on the power of object-oriented

programming in creating highly reusable, generic, polymorphic, and encapsulated com-

ponents. In particular, it is the polymorphic nature of the extensible application's code

(its pattern variables) that allows one to replace a pattern by its sub-pattern, in the

executable, without requiring a recompilation of the code that uses the pattern.

The usefulness of these mechanisms has been backed by examples written in Beta. Elegant

techniques for writing extensible systems and for extending them have been demonstrated.

In addition to the illustrative examples presented here, these concepts have been tested in

much larger practical examples. In all cases, they have worked as expected. The approach

and mechanisms are not limited to Beta; they can be adapted to other languages.

For processing extensions, the interpreter approach has been successful. The interpreter



has also proven useful for a number of additional applications, like an incremental exe-

cution environment, and a source level debugger. The overheads of embedding the inter-

preter into an application have not been much; for most reasonable sized applications, it

has not even doubled the size of the executable.

Extensibility is generally introduced at the expense of e�ciency. It may be acceptable

for the extensions to be less e�cient than pre-built parts. It is, however, less desirable

to sacri�ce the e�ciency of pre-built parts in order to allow them to be extensible. A

system which doesn't use the extensibility features shouldn't have to pay for them, while

one that does use them should still run acceptably e�ciently.

In the presented approach, open points are introduced by using pattern variables. These

introduce a level of indirection and, hence, some overhead which is experienced even when

pre-built parts are used. A solution would be a scheme which doesn't require all uses of

a pattern to be via a pattern variable, yet allows the pattern to be dynamically replaced.

This could be done if one could know all the use points, in the executable, of the pattern.

One could then patch these to correspond to the new pattern.

2.8 Future Work

Object-oriented modeling techniques are geared for producing highly reusable compo-

nents. These components are designed to be reusable as library components | they can

be reused when constructing a new application, or another part of the same application.

This is useful in designing components for extensible systems; here also, components are

reused, albeit in a di�erent manner. One can view the process of extending a system

as identifying a component, reusing it to make a new specialized version, and replacing

the original with the new version. It is, however, possible that certain bits of function-

ality of the extensible application, that would normally not be modeled by the standard

techniques, need to be modeled when designing an extensible system. For example, in a

spreadsheet system, using standard techniques, one may blend the constraint solver into

the functionality of the cells. But this would not be so desirable if one wanted to make

this constraint solver extensible. We plan to study how the standard techniques need to

be modi�ed to produce models for extensible systems.

Tailorability issues come heavily into play while mapping this object-oriented model into

an implementation. It is how the various modeled components are put together into a

working application that determines how easily one will be able to replace them with

specialized versions. We plan to explore techniques for mapping object-oriented models

into implementations that are tailorable.



As an end-user of an application, one is not so aware of the internal program structure

of the application. One deals with concepts in the application domain and not in the

programming domain e.g. it is easier to phrase a statement like \when I select that win-

dow" rather than \when that window object receives a mouseDown message followed by

a mouseReleased message." Object-oriented programming has reduced this gap between

application-world concepts and programming-world concepts by allowing real world ob-

jects to be modeled by program objects. There still remains, however, quite a gap between

these two worlds. We would like to build tools which allow users to identify extension

points in terms of the functionality-view of the application rather than the source-code

view of the application. We are also interested in developing techniques and tools which

enable the user to comprehend the system being tailored.

The concepts presented in this report are being tested currently in the context of a large

application: the DeVise Hypermedia System. This application has already been built

in Beta and doesn't have any explicit support for being extensible. It is now being

made extensible using the approach presented here. It is hoped that this experiment,

in addition to yielding a highly extensible hypermedia system, will also lead to some

design guidelines for extensible systems and some ideas for languages and environments

for writing extensions.

The relation between reective techniques and extensibility is also an item of future

work. It is clear that much can be gained, in terms of extensibility, by reecting the

implementation of a system. The interesting issues will be to determine how this can be

done e�ciently.
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Abstract.

Statically-typed object-oriented compiled languages, like Simula, Beta, Ei�el, are de-

sirable because of the safety and e�ciency of the resulting code. Dynamically-typed,

interpreted languages, like Smalltalk, are useful as they provide the possibility of dynam-

ically extending a program. In this paper, we reconcile the safety and e�ciency goals of

compiled languages with the bene�ts of interpreted languages by presenting an embed-

dable interpreter for a compiled language, namely Beta. The interpreter is designed to

be embedded into any compiled Beta application, thus enabling it to accept dynamic ex-

tensions. This paper examines the Application Programmer's Interface to the interpreter

and illustrates some aspects of our implementation.
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3.1 Introduction

Statically-typed object-oriented compiled languages | e.g. Simula [BDMN73], Beta

[MMPN93], Ei�el [Mey88] | are desirable because of the safety, e�ciency, and read-

ability of the resulting code. Dynamically-typed, interpreted languages | e.g. Smalltalk

[GR83] | are useful as they provide, among other things, the possibility of dynamically

extending a program. In other words, it's possible to incorporate new code into an already

compiled, and possibly executing, application without recompiling the application.

Our goal is to allow type-safe dynamic extensibility in a compiled language, namely Beta,

without sacri�cing the e�ciency of the already compiled parts. We want to be able

to write Beta applications that can extend themselves dynamically. One technique for

supporting dynamic extensibility is to build an incremental compiler as has been done

for Simula in the Mj�lner Orm system [Mag93]. Another is to build an interpreter which

can interface with the compiled parts of the application. We have taken the interpreter

approach for Beta; we have built an interpreter which can be embedded into a compiled

Beta application i.e. it can be invoked from a compiled Beta application to dynamically

interpret programs in the context of the application. The interpreter is provided as a

library with an Application Programmer's Interface (API) and must be linked into the

compiled application.

Our motivation for introducing dynamic extensibility in Beta is our need for building

dynamically tailorable applications. We envisage, developing in Beta, a class of applica-

tions similar in terms of customizability and extensibility to GNU Emacs [Sta84]. It is

an established fact that object-oriented techniques are well suited for writing extensible

software: classes may be extended by de�ning subclasses. Our goal is to exploit these

techniques in a dynamic setting.

As an example of such an application, consider an extensible spreadsheet application

which allows end-users to de�ne new types of cells. The application has a command

named De�ne New Cell. The user de�nes a new cell type by executing this command

and providing the Beta code for the class declaration of the new cell type e.g. a VideoCell.

Upon completion of this command, the application extends its Create command to include

VideoCell as one of the possibilities. Selecting VideoCell creates a video cell (or converts

an existing cell into a video cell) using the user-supplied declaration.

Given such functionality, users will be able to customize the spreadsheet application

according to their own needs, or extend it with functionality they �nd lacking. The

use of object-oriented techniques, such as specialization and virtuals, will allow them to

reuse parts of the original application, thus minimizing the e�ort required to write the

extensions. While such extensions may be installed by recompiling the entire application



with the extensions, the ability to install the extensions dynamically is far more appealing

to end-users.

The interpreter is a means of processing these extensions dynamically. The spreadsheet

application is compiled with the interpreter embedded within it. The De�ne New Cell

command uses the interpreter to process the user-supplied Beta code.

We use the word extension rather than modi�cation. An interpreter supporting dynamic

modi�cations would allow for the possibility of dynamically replacing compiled code with

interpreted code, thus allowing a self-modifying program to be written. This is not our

goal, although it would be a useful side-e�ect for a certain class of applications such as

development environments and debuggers. We touch upon this issue again later.

This work shows that it is possible to write a dynamically extensible application in a com-

piled, statically-typed, block-structured, object-oriented language; an application which

allows the extension language to be the same as that in which the original application

was written. This is accomplished without sacri�cing any of the good properties of the

language e.g. typing and block-structure. Furthermore, it shows that this can be ac-

complished, without much overhead, by embedding an interpreter into the extensible

application. It presents a small, yet general, API for the interpreter. To the best of

our knowledge, such an embeddable interpreter is not available for any of the other well

known compiled object-oriented languages.

3.1.1 Background

The interpreter is part of the Mj�lner Beta System (MBS) [MI92b]. All programs in

the MBS are stored in Abstract Syntax Tree form (AST).1 The static-semantics checker

works on ASTs too; it is responsible for type-checking as well as generating a symbol-

table. In the MBS, this symbol-table is not a separate entity; it is encoded directly into

the AST. The code generator emits assembly code in the appropriate assembly language

e.g. MC68000 assembly on the HP Series 400 machines. To produce an executable, the

MBS relies on tools from the environment in which it is running. For example, under

UNIX, it uses the standard assembler, linker, and loader to assemble, link and execute

programs. Both compiled Beta modules and executable Beta programs conform to the

a.out �le format (under UNIX).

1The reader may safely think of ASTs as source code text except in places where we talk of semantically

decorated ASTs. In that case it is equivalent to the source code plus the symbol table.



3.1.2 Overview

Dynamic Extensibility using an embeddable interpreter is illustrated further in Section 3.2.

The interpreter API, and the implementation of the supporting interpreter core, are pre-

sented in Section 3.3. The example presented here illustrates the use of the interpreter in

a dynamically extensible system. The interpreter may also be used to build an interactive

development environment or to enhance the functionality of a debugger. These applica-

tions are shown in Section 3.4. The applicability of these concepts to other languages is

also discussed (Section 3.5).

In order to be comfortable with the examples presented, it is recommended that the reader

glance at the brief Beta primer (Appendix A).

3.2 Achieving Dynamic Extensibility | the general

idea

Figure 3.1 presents an overview of the interpreter and its environment in the context of the

spreadsheet example. This view is abstract; it is incomplete with respect to many details.

Its purpose is to present an idea of how the interpreter �ts into the traditional model of

an application. It does this by showing the relevant parts and their interactions (invoca-

tions and information access). The interpreter is shown embedded within the Spreadsheet

application (host-application). The large box labeled SPREADSHEET APPLICATION is

the executable produced by the Beta compiler from the AST labeled SPREADSHEET

APPL. (this is the source code for the spreadsheet application). The interpreter comprises

of the Application Programmer's Interface (API) via which the host-application invokes

the interpreter to install new de�nitions, and the core which is the part responsible for

actual interpretation. The interpreter is designed to work directly on semantically dec-

orated Abstract Syntax Trees (ASTs); no intermediate code is generated. The ASTs

labeled VideoCell and AudioCell are user-supplied dynamic extensions to the spreadsheet

application; they contain declarations for the corresponding classes.

Within the application, the De�ne New Cell command implementation invokes the in-

terpreter, via its API, providing it with the code to be interpreted and some context

information i.e. the context (within the host-application's source code) in which inter-

pretation should take place (arrow 1; Figure 3.1). Let's assume this code is the AST

VideoCell. The interpreter pre-processes the AST VideoCell, producing some run-time

\entities" which allow compiled parts of the application to view VideoCell as if it were

also compiled. The box labeled VideoCell represents such an \entity" produced by the
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Figure 3.1: The interpreter and its environment

interpreter. With this, we can say that the application has been extended by VideoCell. A

reference to this run-time \entity" is returned to the caller (arrow 1, backwards). One may

think of this return value as a closure denoting the class (similar to function-closures in

functional languages). We also assume that De�ne New Cell extends the Create command

with an option for video cells which uses the returned reference to create them.

When the user attempts to create a video cell, the implementation of the create command

invokes VideoCell via the returned reference (arrow 2). Control is transferred by VideoCell

to the interpreter core (arrow 3) which accesses the AST for VideoCell and interprets

it. During interpretation, it may come across references to compiled parts of the host-

application. It resolves these into addresses by accessing the host-application AST and

the machine-code symbol table. It then accesses the compiled code (arrow 4).

3.3 The Interpreter API

The Application Programmer's Interface (API) to the interpreter de�nes the necessary

functions (known as patterns in Beta) for applications to interface with the interpreter.



It has been designed to allow the following operations on the host-application:

� Add new pattern (class) de�nitions to any context (block).

� Execute a new pattern (class) in any context (block).

Intuitively, a context denotes a block in the source program; it is a static property of the

program; it is not an object. The API comprises of the following patterns (functions):2

AddDecl : (context * declText) -> ()

MakeDeclExecutable : (context * originObject * declText)

-> executablePattern

getCurrentContext : () -> context

getEnclContext : context -> context

getCurrentObject : () -> object

getOrigin : object -> object

AddDecl can be used by an application to add a new pattern declaration to itself; this

declaration then becomes available to subsequent declarations within its scope; it is not

directly executable by the caller of AddDecl. MakeDeclExecutable, in addition to adding

the pattern declaration (like AddDecl), also returns, to its caller, a reference to the pat-

tern; this reference may be used to execute (instantiate/invoke) the pattern. The other

functions in the API are support functions used to compute context and object arguments

for AddDecl and MakeDeclExecutable.

Returning to our spreadsheet example, one may de�ne VideoCell and AudioCell by �rst

de�ning an abstract super-pattern calledMultiMediaCell as a specialization of Cell (assume

that Cell is declared by the spreadsheet application), and then de�ning VideoCell and

AudioCell as specializations of MultiMediaCell. In this case, AddDecl should be used to

process MultiMediaCell while MakeDeclExecutable should be used to process VideoCell

and AudioCell. The reason: the spreadsheet application never needs to execute MultiMe-

diaCell directly, while it does need to execute VideoCell and AudioCell. We will assume

that the spreadsheet application has a command called De�ne Abstract Pattern which may

be used to de�ne an abstract super-pattern likeMultiMediaCell. This is in addition to the

De�ne New Cell command discussed earlier.

2The signatures presented here are informal and are only intended to convey the functionality of the

pattern. They are not in Beta syntax.



3.3.1 AddDecl

This function is used by an application to add one or more new pattern declarations to a

given context. The declText argument is the text of the new pattern declaration. The

function getCurrentContext should be used to obtain a context. The following example

and the accompanying explanation illustrate the idea. Here Spreadsheet is the pattern

(class) describing the spreadsheet application.

Spreadsheet :

(# Cell : (# ... #); (* Cell is an abstract superclass *)

TextCell : Cell (# ... #); (* TextCell is a subclass of Cell *)

(* loads an abstract pattern declaration *)

DefineAbstractPattern :

(# c : @context;

decl : @text;

DO getCurrentContext -> getEnclContext -> c;

loadPatternDecl -> decl;

(c, decl) -> AddDecl; (* declare decl in context c *)

#) (* DefineAbstractPattern *)

#) (* Spreadsheet *)

The functionality of the De�ne Abstract Pattern command is captured by the pattern

DefineAbstractPattern shown above. As an example, the following declaration could

be loaded using De�ne Abstract Pattern.

MultiMediaCell : Cell (# ... #)

The e�ect of calling DefineAbstractPattern in this scenario is shown in Figure 3.2; here

the extended version of the spreadsheet application's source code is shown. Another way

to think about this is as follows: the spreadsheet application, after dynamically adding

MultiMediaCell, is equivalent to an application obtained by compiling the contents of

Figure 3.2.

AddDecl details

The execution of DefineAbstractPattern proceeds as follows:

1. getCurrentContext yields the current context. In a statically-scoped, block-

structured language like Beta, the context in which a declaration is processed inu-

ences the outcome. A context is static information about the program itself. Intu-

itively, it denotes a block in the source program. In our case, as all Beta programs
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Figure 3.2: Illustrating the e�ect of AddDecl

are stored and manipulated as ASTs, a context refers to a node (descriptor-node)

within an AST.

2. getEnclContext, given a context (block), returns the enclosing context (block) i.e.

in our example, the block corresponding to the body of Spreadsheet.

3. loadPatternDecl inputs, as text, a Beta pattern declaration such as the

MultiMediaCell. It could get this text from the user, a �le, another process, etc.

4. AddDecl then installs the declaration into the body of Spreadsheet and then pre-

processes it. Once installed, this pattern declaration is available to subsequent

pattern declarations that are installed within the scope of this declaration.

In order to do this, it (see Figure 3.3):

(a) parses the new declaration, into a bare (without symbol-table info) AST (new-

AST).

(b) uses the context information to load the AST of the spreadsheet application

(host-AST) and locate the Spreadsheet-body block node within it.

(c) installs new-AST into host-AST within that block.

(d) type checks new-AST as if it appears in that block. If the new AST is type

correct, it is updated with symbol-table information.

(e) generates the runtime object corresponding to the new pattern declaration.3

Such an interpreter-generated prototype is indistinguishable in structure and

interface from compiler-generated ones.

3this is called a prototype in Beta terminology; other common terms are template (Simula) or class

descriptor (Ei�el).
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Contexts

To better understand contexts, observe that the information necessary in order to process

a new pattern declaration at a given point in the source program is:

1. The set of source-level symbols visible at that point along with information about

their types, block levels, etc.

2. The block level of that point.

Instead of passing all of this to AddDecl, we pass it a context which comprises of:

1. name of �le containing relevant part of source program AST; this AST is decorated

with symbol-table information.

2. an ID which denotes a node within this AST.

Given this, AddDecl can derive the necessary information. In our example,

getCurrentContext yields a context denoting the block corresponding to the body of

DefineAbstractPattern. In the current Beta runtime system, given an object instance,

it is possible to access the runtime representation of its pattern (class), and from there

determine the AST node corresponding to the declaration of the pattern. This is the basis

for our implementation of getCurrentContext.



Extensions not Modi�cations

It is important to note that AddDecl doesn't replace an existing compiled declaration of

the same name. In other words, loading a new declaration for TextCell in the above

example would not have the e�ect of replacing the old compiled TextCell declaration.

We have devised a method to support such a replacement operation, especially in the case

when the signatures of the replacement and the original match. This could be supported

by adding another pattern replaceDecl to the API. We are still investigating various

issues in supporting such an operation and hence don't report its details here. We do not,

however, intend AddDecl to have such semantics. If we were to load a new declaration

for TextCell using AddDecl, it would override the old declaration only for subsequent

declarations made within its scope. Old users of TextCell will continue to use the old

version. This semantics is in conformance with static binding semantics.

AddDecl can add new pattern declarations, but due to the rules of static binding, these

are not visible to the compiled code. This is the reason why we have the second function

| MakeDeclExecutable| in the API.

3.3.2 MakeDeclExecutable

This function allows the host-application to execute (instantiate/invoke) patterns in ad-

dition to declaring them. Presented below is the spreadsheet application with the imple-

mentation of the command De�ne New Cell; it illustrates the use of MakeDeclExecutable.

Also shown is CreateDynamicCell which illustrates how one uses the return value of

MakeDeclExecutable. The Create command would do something similar to allow users

to create video cells. We assume that the application has been extended with the decla-

ration of MultiMediaCell.

Spreadsheet :

(# Cell : (# ... #);

TextCell : Cell (# ... #);

DefineAbstractPattern : (# ... #);

DynamicCell : ##Cell; (* pattern variable *)

DefineNewCell :

(# spreadSheetBody : @context;

spreadSheetObj : ^Object;

decl : @text;

DO getCurrentContext -> getEnclContext -> spreadSheetBody;

getCurrentObject -> getOrigin -> spreadSheetObj[];

loadNewCellTypeDecl -> decl;



(spreadSheetBody, spreadSheetObj[], decl) (* assign to *)

-> MakeDeclExecutale -> DynamicCell##; (* pattern variable *)

#); (* DefineNewCell *)

CreateDynamicCell :

(#

DO ... DynamicCell ... (* execute a pattern variable *)

#) (* CreateDynamicCell *)

#) (* Spreadsheet *)

An example of a declaration that can be processed in this way is:

VideoCell : MultiMediaCell (# ... #)

The pattern DefineNewCell encapsulates the functionality of the De�ne New Cell com-

mand. It di�ers from DefineAbstractPattern in that it calls MakeDeclExecutable

which takes an object as an argument; this is in addition to the context and declaration

arguments, both of which have the same purpose and interpretation as in the case of

AddDecl. The object argument is an instance of the block denoted by the context. Its

need becomes evident once we examine the return value of MakeDeclExecutable.

The value returned by MakeDeclExecutable can be thought of as a pattern-closure i.e. a

value which denotes a pattern, may be passed as a parameter, returned as a result, stored

in a variable, or used to execute the pattern. In a procedural language, its counterpart

would be a procedure pointer, while in a functional language its counterpart would be a

function-closure.

For a pattern P, its closure must have an environment link; this is true of closures in func-

tional languages. This environment link is used, at run-time, to resolve names not local

to P. In the Beta implementation, such an environment link is simply a reference to an in-

stance of the block with lexically encloses P. The object argument to MakeDeclExecutable

is used as an environment link while building the pattern-closure. The context argument

speci�es the block in which P should be processed; thus, this block lexically encloses P.

Hence, the object argument should be an instance of this block.

In Beta terminology such a pattern-closure is called a structure value. It may be instanti-

ated and executed like a pattern and used almost any place a pattern may be used. In the

Beta implementation, a pattern's structure value comprises of a reference to the pattern's

prototype and the environment link. Structure values are stored in variables known as

pattern variables. These concepts are illustrated in Section A.1 in a setting independent

of the interpreter. The reader unfamiliar with these concepts in Beta is advised to take a

cursory glance at that brief section.



Returning to the example, observe the pattern variable called DynamicCell. The return

value of MakeDeclExecutable is stored in this pattern variable. DynamicCell may then

be used to execute the pattern denoted by the structure value within it. In the example,

CreateDynamicCell uses DynamicCell to create an instance of the dynamically de�ned

pattern VideoCell.

To summarize, using MakeDeclExecutable to process a pattern requires (in addition to

AddDecl) that one pass it an object reference corresponding to the block denoted by the

context argument. The return value is a structure value which must be stored in a pattern

variable (which must be declared appropriately). The pattern variable can then be used

to execute the pattern (from possibly other parts of one's application).

As Beta patterns are the unifying construct for classes, procedures, types, etc., a struc-

ture value is capable of denoting all of these. By allowing MakeDeclExecutable to return

structure values, we get a simple but general mechanism for embedding new declarations

into compiled programs; simple because the MakeDeclExecutable always returns a struc-

ture value denoting a pattern, general because everything in Beta can be encapsulated in

a pattern.

To summarize, AddDecl adds a new declaration to the speci�ed context. This declara-

tion becomes available, within its scope, to other declarations made using AddDecl or

MakeDeclExecutable. MakeDeclExecutable adds the declaration to the speci�ed con-

text, like AddDecl, but also returns a structure value which may be executed. This pair

of functions is su�cient for creating a wide variety of dynamic extensions and for building

a variety of interesting applications.

3.3.3 Implementation Issues

Plugging the type-checking loophole

Type checking occurrences of AddDecl is simple; no special treatment is required. But

MakeDeclExecutable is a little more interesting. We have declared it to return a structure

value of the most general type:

MakeDeclExecutable : (context * originObject * declText) -> ##Object

Given this type, the Beta type-checker will allow the return value of MakeDeclExecutable

to be assigned to pattern variables of type at least Object. Object is the root of the class

hierarchy in Beta. Hence, all pattern variables, regardless of declared type, are of type at

least Object. Therefore, the value returned by MakeDeclExecutablemay be assigned to



a pattern variable of any type. This is certainly not acceptable as one could, for example,

assign a VideoCell structure value to a pattern variable of type Text.

This problem necessitates the use of a runtime type-check. The compiler has to be cus-

tomized to generate such a check during code generation. The runtime check should ensure

that the pattern of the structure value returned by MakeDeclExecutable is a subclass of

the pattern variable to which it is assigned.

Access to compiled machine code

If the interpreter comes across a pattern application where the corresponding declaration

is compiled, it resolves the application by locating the compiled machine code rather

than interpreting the declaration. In a Beta executable, every compiled pattern has a

prototype. In addition, each of these prototypes has an assembly-level name. It is possible

to determine this assembly-level name from the AST node which declares the pattern.

So, to locate the prototype of a compiled pattern declaration, the interpreter accesses the

declaration node in the AST, gets the corresponding assembly level symbol-name, and

reads the corresponding memory address from the linker-generated symbol-table stored

within the executable.

The prototype of a pattern is all that's needed to create an instance of a pattern or to

execute it. Hence, by getting access to the prototype, the interpreter is able to support

creation and execution of compiled patterns. To transfer parameters into a pattern in-

stance before executing it, and to get results out it, the interpreter also needs the signature

of the pattern. For this it uses the pattern declaration node in the AST.

Our method for determining the addresses of compiled prototypes works because pro-

totypes are non-relocatable. Should they be relocatable, one would have to do some

additional bookkeeping to keep the executable's symbol-table consistent.

Interpreter-generated prototypes

We stated earlier that interpreter-generated prototypes are identical in structure and

interface to compiler generated ones. This property enables us to return interpreter-

generated prototypes to compiled code without any problems. These prototypes are

illustrated by the following abstract example:



COMPILED:

P : (# V :< (# DO ... INNER; ... #);

DO ... V; ...

INNER;

#);

INTERPRETED:

Q : P (# V ::< (# DO ... #);

DO ...

#);

The pattern P is declared with a virtual pattern V. In P's body, V is executed; then INNER

is called to transfer control to the specialization of P. The virtual V also calls INNER to

transfer control to its specialization.

Q is declared as a specialization (subclass) of P. It binds the virtual V further.4 For the

sake of this discussion, we will refer to V declared in P and Q as Vp and Vq respectively.

Now, suppose the compiled code also does the following:

(* load defn of Q *)

(Definition of Q, Q's context) -> MakeDeclExecutable -> X##;

X; (* execute Q *)

Figure 3.4 illustrates the scenario after an instance of Q has been created via X.

This instance is created by compiled code using the structure value returned by

MakeDeclExecutable. The Q instance has a reference to its prototype. This prototype is

interpreter generated. It has a table with references to Q's body and P's body; the bod-

ies are machine code. Q's body is interpreter generated and is really some \glue" which

transfers control to the interpreter core (arrow 7). There is also a virtual-table with an

entry for each virtual in Q. This points to the prototype for Vq. This prototype is also

interpreter generated. It is similar in structure to Q's prototype except that it doesn't

have any virtuals.

1. Q is executed (via X) by transferring control to the body of P (arrow 1).5

(a) When P executes V, V's prototype is accessed from the current object's (Q)

prototype's (Q) virtual-table (arrow 2). This is used to create an instance of

Vq and control is transferred to the body of Vp(arrow 3).

(b) When the INNER is encountered, control ows to the body of Vq (arrow 4). This

is interpreter-generated machine code; it transfers control to the interpreter

(arrow 5). The interpreter is provided with the current object (Vq instance;

not shown in �gure) and a reference to the AST to be interpreted (i.e. Vq's

AST).

4The further binding is a subclass of V declared in P.
5In Beta, execution begins in the top of the superclass chain and travels down to specializations via

INNER statements.



Vq prototype

Vp Body

1

2

5

6
7

4

3

Q instance Q prototype Interpreter Entry Point

Q Body

P Body

V Prototype Vq Body

LEGEND:

compiled-code
generated

compiler/

interpreter

JSR

machine code

prototype

generated

Figure 3.4: Interpreter-generated prototypes

2. Control �rst returns to the body of Vp and then to the body of P (from where V was

executed).

3. When the INNER is encountered, control ows to Q's body (arrow 6) which again

transfers control to the interpreter (arrow 7), this time with the Q instance and a

reference to Q's AST.

For more information about the Beta run-time system and compilation techniques

see [Mad93].

3.4 Other Applications of the Embeddable Inter-

preter

As has been illustrated by the spreadsheet example, the embeddable interpreter may be

used to build dynamically extensible systems. The generality of the interpreter API in

combination with the object-oriented features of Beta (such as virtual patterns) provides

for a powerful framework for writing dynamically extensible systems. The related re-

port [Mal94] discusses extensibility in Beta and other languages. Sandvad [NS90] also

discusses the various tailorability aspects of Beta programs, although in a static context.

With the embeddable interpreter, one could extend all of those ideas to work dynamically.

In addition to dynamically extensible systems, there are other applications of such an em-

beddable interpreter. One obvious application is an interactive development environment



for Beta programs; another is in a source-level debugger for Beta programs. We outline

these two applications in this section.

We have also explored the role of the embeddable interpreter, in making incremental a

rapid prototyping tool called the Application Builder (ApplBuilder) [GHT91]. The Appl-

Builder, among other things, allows users to create user-interfaces by direct manipulation

techniques. It generates Beta code which must be compiled before the interface can be

tested. Should the interface need editing, the generated code may be reloaded into Appl-

Builder and edited. We have devised a scheme which allows the edited version to be

executed without regenerating or recompiling a new executable. This is accomplished by

interpreting the changes in the context of the original compiled application. The details

of this are too lengthy to report here.

3.4.1 Interactive Development Environment

The interpreter can be used to build an ordinary interactive development environment

where one can interactively interpret \fragments" of Beta code. The following is a sim-

pli�ed \listener" loop for Beta:

ListenerLoop :

(# X : ##Object;

<<PERVASIVE ENVIRONMENT DEFINITIONS>>;

DO loop :

(if (Command)

"Define" then

(getCurrentContext, getDecl) -> AddDecl;

"Execute" then

(getCurrentContext, getCurrentObject, getDecl)

-> MakeDeclExecutable -> X##;

X;

"Quit" then

leave loop;

restart loop;

if)

#)

When it gets a \De�ne" command, it obtains a pattern declaration from the user and

calls AddDecl. The interpretation-context is the body of ListenerLoop. This contains

declarations of all the pervasive patterns (the patterns available upon startup of the

listener) and the declarations added via AddDecl and MakeDeclExecutable since startup.



The pattern declaration is interpreted in this context and also added to the context. When

an \Execute" command is received, the declaration is processed via MakeDeclExecutable

which returns the structure value of the pattern. This is stored in X and executed.

In this example, all declarations are processed in, and added to, the body of

ListenerLoop. One cannot, for example, add a new pattern-declaration (method) within

a pattern declared in the pervasive environment. The pervasive environment has, for

example, the declaration of a pattern called Text. With the given listener loop, it is

impossible to add a declaration into the body of Text. Enabling this would allow a user

to extend Text with a new method, such that subsequent declarations could use this

extended Text.

The API function AddDecl is su�cient to support this feature, for it takes a context as

an argument. If called with context equal to the body of Text, it will add the declaration

there. The problem lies in getting this context information from the user and providing it

to AddDecl in the desired form. With a more sophisticated user-interface, such as an AST

browser, which could translate a user mouse-click on a node into a context value denoting

that node, we could support this feature. The Beta system has a syntax-directed editor

called sif [MI93] which allows one to edit Beta program ASTs. Embedding the interpreter

into sif would allow us to support the addition of declarations in arbitrary contexts.

3.4.2 Debugger

Source level debuggers which allow one to execute arbitrary code at a break point, using

the break point context, are useful and powerful tools. The embeddable interpreter can be

used to support such facilities in a debugger. Let the interpreter be part of the debugged

application. To execute a pattern declaration at a breakpoint, the debugger can invoke

MakeDeclExecutable and then execute the returned structure value. In order to invoke

MakeDeclExecutable, it needs:

1. the context corresponding to the breakpoint. This is really block in the source

program where we are stopped. The Beta debugger (valhalla [MI92a]) is AST

based and is capable of providing this context information in the form required

by MakeDeclExecutable.

2. the object corresponding to the breakpoint i.e. the object within which we are

stopped. Most debuggers are capable of displaying the current object (frame) and

hence this should not be a problem.

3. the pattern declaration to be executed.



As all of this information is available for any breakpoint, MakeDeclExecutable is invoca-

ble at any breakpoint.

Should we have a function, in the API, that allows the replacement of compiled pattern-

declarations by interpreted ones (replaceDecl) (see Section 3.3.1), we could even support

the patching of a program during debugging. With this capability, the debugger would

be much like an incremental execution environment.

3.5 Applicability to Other Languages

The interpreter API and its supporting interpreter core, dictate a set of requirements on

the language and implementation. The previous sections have indirectly touched upon

these requirements in the context of Beta. In order to make these ideas more widely

applicable, we list these requirements in a language independent manner. We also ex-

plore the possibilities of having such an embeddable interpreter for Simula [BDMN73],

Ei�el [Mey88], and C++ [ES90]. These languages belong to the family of compiled,

statically- and strongly-typed languages, and hence stand to bene�t from having such an

embeddable interpreter.

The requirements include the following:

� Classes as Values. For the API to include a function like MakeDeclExecutable,

the language must support the notion of class-values (structure values in Beta).

It is not necessary to have classes be full-edged objects whose behavior can be

speci�ed in the metaclass as is the case in Smalltalk [GR83]. Class-values should be

just \black-box" values (like closures, their internals should be of no interest at the

language level); it should be possible to pass them as parameters and store them in

variables, in addition to using them just as we would use a statically declared class

i.e. for creating instances. In Beta, structure values are surprisingly simple objects.

As an alternative to returning class-values, the function MakeDeclExecutable could

simply execute the class and return the result of the execution as its result. Al-

though this approach accomplishes our goal, it isn't as elegant as the one using

class-values. With the class-value approach, we get an almost seamless boundary

between compiled and interpreted code. Once an interpreted pattern declaration has

been processed into a structure value, the compiled code doesn't need to be aware of

the creator of the structure value; it may use it just as it would a compiler-generated

structure value.

� Classes at Runtime. Our implementation relies on the fact that there exists at

run-time, for each class, a data structure providing information about the class.



These data structures are called prototypes in Beta, templates in Simula, and class

descriptors in Ei�el. Note that these are not the same as class-values; this is a

run-time data structure, while a class-value is a language level notion.

� Context Speci�cation. We rely on being able to uniquely address any block in the

source program (even if it's in multiple �les). In addition, it must be possible

to get such address information about a program from within that program. The

functions getCurrentContext and getEnclContextprovide such information in our

implementation. This is not much of an issue in languages without block structure.

� Object Speci�cation. If we can compute the address of a block, then we should

also be able to get a handle on its corresponding instance. getCurrentObject

and getOrigin are the counterparts of the context speci�cation functions in our

implementation. In a language without block structure, the origin, if maintained,

would be a �xed (root) object.

� Symbol Table. It is imperative that the interpreter be able to map source level names

of compiled classes into run-time memory addresses of the corresponding prototypes

(templates/class descriptors).

� Type Checking. It must be possible to determine the type of a structure value at

run-time. This is the basis for the dynamic type-check.

Beta resembles Simula in many ways; those relevant to this discussion include block-

structure, and typing. The primary di�erence (for this discussion) is that Simula doesn't

have the notion of class-values. This can be overcome by either introducing such a concept

or by using the alternative approach which doesn't require class-values. Simula also

doesn't have patterns as the unifying concept for classes, types, functions, procedures,

etc. As a result, if we want dynamic interpretation of syntactic constructs of granularity

�ner than class, we will have to support it explicitly. In other words, if we want to be able

to dynamically interpret procedures (to add it to a class, for example), we have to have

an API function for procedures as well as one for classes. In the Lund Software system for

standard Simula [Lun92], it is possible to map a source-level class name into the address

of its corresponding prototype [LM84, Hed93].

It should be possible to build an embeddable interpreter for Ei�el, without sacri�cing the

safety of programs that use it. Class-values are not present in Ei�el; hence, the alternative

approach as described for Simula can be used. According to the implementation descrip-

tion in [Mey88], class descriptors, the data structures representing classes, are present

at run-time. It is not clear if one can map a class name into the address of its class

descriptor, but one would expect this to be possible. Context and object speci�cation is



much simpler as there are no nested classes. Like Simula, class, procedure, and function

declarations are not uni�ed into a single abstraction. With respect to our concerns here,

C++ [ES90] falls into the same category as Ei�el.

3.6 Related Work

To the best of our knowledge, statically-compiled object-oriented languages like Eif-

fel [Mey88] and C++ [ES90] don't have such embeddable interpreters. To obtain dy-

namic extensibility in an application written in these languages, developers have to resort

to designing an interpreted extensibility language with a prede�ned set of functions which

access the underlying application's functionality. Another approach used in [ZC92] is to

embed an interpreter for an interpreted language like Scheme [Bet89] into the application.

The authors of [ZC92] state \The Scheme interpreter is used mainly to invoke C++ func-

tions and this might seem to be an overkill." Using Scheme, or another such language,

to extend an object-oriented application cannot possibly allow very general extensions to

be written. Extending Beta applications, using Beta, one can utilize the application's

object-oriented model to the maximum in writing the extensions.

Embeddable interpreters are most common in the Lisp world. GNU Emacs has a lisp

interpreter embedded within it [Sta85]. The interpreter is available to emacs lisp programs

as the function eval, which is documented as follows:

eval : Evaluate FORM and return its value.

where both FORM and value are simply S-expressions. Our interpreter has all the

exibility of such an eval, but in the context of a block-structured, statically-scoped,

statically-bound, statically-typed, object-oriented language. Block-structure and static-

scoping force us to introduce interpretation-contexts. To overcome static-binding we

introduce pattern variables and the related structure values. These concepts also help

solving the problem of what should be returned by the interpreter. In Beta, programs

are not data; this problem is solved by using ASTs. Strong typing is enforced by a

run-time type check. For an interesting discussion on strong typing in object-oriented

languages, see [MMMP90]. The idea of pattern variables in Beta was originally intro-

duced in [AFO89]. In [AF89], Agesen and Fr�lund present a mechanism for building

extensible systems using dynamic linking and loading.

CLOS [Kee89] also provides access to its interpreter (eval) its compiler (compile) and

binding environment (boundp and makunbound). From our point of view, this is similar

to the Emacs lisp capabilities, except that, here we are in an object-oriented setting.



Due to the dynamic nature of Smalltalk [GR83], dynamically extensible applications can

easily be implemented in it. Smalltalk makes this possible by providing its compiler

as just another object to which \eval" messages may be sent. The source code to be

evaluated is provided as a string, while the context is provided in the form of dictionaries.

The returned value, an instance of CompiledMethod can then be manipulated by the user

program; it can, for example, be stored in some dictionary where it would inuence the

behavior of the rest of the program. This exibility in Smalltalk comes, however, at

the expense of safety, e�ciency, and readability. One only discovers a problem with the

extension when the extension gets executed. Also, Beta's table-driven method lookup

provides constant time access for methods (even for interpreted ones). This is in contrast

with Smalltalk's dynamic method lookup technique which depends on the length of the

superclass chain (caching techniques help a little here).

It is also possible to have an embeddable incremental compiler. There is no conceptual

problem in replacing the interpreter core with an incremental compiler. The API should

remain the same. In fact, the interpreter is already generating machine code \glue"

which branches to the interpreter core. Instead of this, it could just as well generate all

the machine code. The Mj�lner Orm system [Mag93] has an incremental compiler for

Simula. Fine discussions of incremental compilation problems are presented in [Hed92,

HM87, HM86].

A number of commercial systems use dynamic linking and loading as a basis for exten-

sibility. They are generally able to load an extension and thus enhance/modify their

functionality; they generally don't support the de�nition of the extension. In such sys-

tems, extensions are generally not meant to be user de�ned, and in cases where they are,

they are rarely meant to be de�ned interactively. Our approach, in addition to supporting

the loading and linking of extensions, also supports their dynamic and interactive de�ni-

tion. Our approach allows for the development of applications in which the distinction

between extending and using is blurred.

Another approach to supporting extensibility is to have a meta-level architecture as in the

metaobject protocol for CLOS [KdRB91]. Given such a metaobject protocol for Beta, we

would be able to create new classes and methods dynamically by creating the appropriate

metaobjects. But, in order to construct the \raw materials" (e.g. the machine code of a

method body) needed to create the metaobjects, from the source code provided by the

user, we would need a processor (interpreter) like the one we have described here. So,

adding a metaobject layer doesn't preclude the need for an embeddable interpreter like

the one we have described. A metaobject layer would complement the ideas we have

presented here; the interpreter could, for example, be used to modify metaobjects of

existing classes. Furthermore, introspection and analysis could prove useful in a user-

tailorable system. In our approach, structure values returned by the interpreter, can



be thought of as metavalues; API functions like AddDecl, getCurrentContext, etc. are

reective in that they allow us to operate on the program itself.

Extensibility in C++ with a meta-level architecture is presented in [CM93]. They present

a language called OpenC++ in which classes and methods may be declared reective.

Reective classes have metaobjects; these can be used to extend or change the semantics

of method calls. These facilities, while potentially providing the necessary infrastructure

in C++, for building an embeddable interpreter like the one we have described, don't

preclude the need for an embeddable interpreter.

3.7 Current Status, Performance Issues, Future

Work

The interpreter has been developed on an HP-UX series 400 machine. There are plans to

make it available on other HP architectures, SUN, and Macintosh; an intermediate version

during development was able to run on a Macintosh. As the majority of the system is

written in Beta, we don't anticipate many porting problems.

We have successfully embedded the interpreter into a simple listener loop (Section 3.4.1)

to create an interactive development environment. On a standard Beta demonstration

program which creates a simple database, populates it with entries, and displays the

entries under various categories, the interpreter performed as follows (all times in seconds):

Interpreted Compiled

De�nition Execution Total Execution

0.62 5.22 5.84 0.20

The demonstration program comprises of 284 lines of Beta code. Of the 5.84 secs taken by

the interpreter, 0.10 secs (1.7% of total) are spent on loading ASTs (of the development

environment and the demonstration program). These measurements are for the �rst

unoptimized version of the interpreter.

A potential area of concern, from a performance standpoint, is the loading of the assembly-

level symbols from the executable. This happens only once for every instance of the

interpreter, when the interpreter is initialized; it takes 8.34 secs for the listener loop

application which has 9295 symbols. Note that the number of symbols depends on the

application into which the interpreter is embedded; an application with more classes linked

in will have more symbols.



, ,

We are also experimenting with embedding the interpreter into Beta applications with

graphical user-interfaces, our goal being the development of a framework for extensible

user-interfaces. At present we have embedded the interpreter into an X-windows based

text editor. To get an idea of the size overhead of the interpreter, we measured the size

of the editor without the interpreter (2.07MB) and with the interpreter (3.42MB), an

increase of 1.35MB or 65%. In the case of the editor, the number of symbols is 18088.

We plan next to embed the interpreter into an X-windows based drawing tool written

in Beta. The interpreter will be used to make extensible various components of the

application e.g. we will allow users to de�ne new types of graphical objects.

On another course, we plan to embed the interpreter into sif (the syntax-directed ed-

itor) [MI93]. We envision users being able to interpret parts of the program they are

editing by specifying (interactively) the context in which to execute it. Integration of the

interpreter with valhalla [MI92a], the Beta source-level debugger is also forthcoming.
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Abstract.

This paper describes the implementation of an interpreter for the object-oriented pro-

gramming language Beta. This interpreter has been designed speci�cally for constructing

extensible applications, an extensible application being a ready-to-run application that

has the potential of being extended in its use environment. The paper shows how any

aspect of an application can be made extensible by a call to the interpreter. It then traces

the call to the interpreter, giving an overview of what happens behind the scenes. In

particular, it shows how the interpreter handles extensions in any scope of the original

program, how it ensures the soundness of the extended program, and how partly-compiled

and partly-interpreted object instances get created. It is not meant to be an exhaustive

guide to implementing an interpreter for Beta. It highlights only those aspects of the

implementation that concern extensibility.
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4.1 Introduction

By an extensible application is meant a ready-to-run application which has the potential

of being extended in its use environment. Extending the application should not require

(1) any modi�cation of the original application's source code, (2) any recompilation of

the original application's source code, (3) relinking of the entire application from scratch.

Furthermore, the extensions must be able to add signi�cantly new functionality to the

application, functionality not conceived of at application development time.

An example of such an application is the text editor GNU Emacs [Sta84]. It is a ready-to-

run application which is capable of being extended in signi�cant ways using the embedded

lisp compiled/interpreter. Making extensions doesn't require the source code of Emacs,

leave alone any modi�cations, recompilations, or relinking. A user simply writes an exten-

sion as a lisp function and installs it as a callback. The built in lisp processor interprets

this function and incorporates it into its current execution environment. Motivation for

the need for extensible applications can be found in [Mal94, Mal93a, Kic92, TMH87].

A goal of our work has been to develop support for building such applications, but in the

object-oriented programming language Beta [MMPN93]. Object-oriented languages are

inherently suited for writing systems that are extensible | this was one of the reasons

for our choice of Beta. Its object-oriented facilities (patterns as a unifying abstraction

mechanism, virtual patterns, pattern variables) are well suited for constructing extensible

software. Another useful feature of Beta is its block structure and lexical scoping |

this, among other things, serves to localize the context that an extension has to deal

with. There are several other motivating factors for building extensible applications in a

language like Beta. They are not the focus of this paper. They are discussed in detail

in [Mal94].

Our approach to building such extensible applications in Beta requires that an interpreter

for Beta be embedded into the application. The application is developed in an extensible

manner with open points which are capable of accepting extensions. The application

invokes the interpreter in order to process extensions in the context of the original ap-

plication. The extensions are also written in Beta; they may access parts of the original

application just as if they had been textually inserted into the source of the original ap-

plication and compiled. Other alternative approaches to building extensible applications

are described in [Mal94].

This paper describes the implementation of the Beta interpreter designed to ful�ll these

requirements. This is interesting because:

1. The interpreter is able to handle extensions of patterns de�ned in any lexical scope

| even nested ones.



2. The interpreter ensures continued type-safety of the application even after exten-

sions are made.

3. There is a seamless interface between the extensible application and the extensions,

even though the extensible application is compiled and the extensions are inter-

preted.

4. There is an interesting and unusual blend of compiled and interpreted code.

This paper is not an exhaustive guide to implementing an interpreter for Beta. Although

it touches upon many implementation issues for Beta, it focuses primarily on how the

interpreter processes extensions in the context of the extensible application. It shows how

this can be accomplished without extending the runtime-system data-structures used by

the compiler. It is not necessary to be familiar with the Beta runtime system in order to

understand the ideas presented here | they are introduced when needed.

This document could be used in conjunction with [Mad93] to gain a thorough understand-

ing of the implementation of the interpreter. This would be useful for someone intending

to maintain or further develop the interpreter.

Prior knowledge of the Beta programming language, although bene�cial, should not be

necessary to read this paper. A brief primer is presented in Appendix A. It is recom-

mended reading for those not familiar with Beta.

It is worthwhile to compare and contrast this report with two others written by the same

author. The report [Mal94] addresses issues in the construction of extensible systems.

It doesn't deal with any implementation issues of the interpreter. The report [Mal93a]

documents the application programmer's interface to the Beta interpreter and shows how

it can be used to build extensible systems as well as for other purposes. It touches upon

implementation issues, but only in a super�cial manner. This report, on the other hand

describes, in detail, the interesting aspects of the implementation of the interpreter. In

order to illustrate the use of the interpreter, and to setup an example, it begins with

some material that may overlap with the other two papers. However, even here, there is

something new | the interpreter is invoked with a closure instead of a context and an

origin object.

The paper begins with an example which illustrates, intuitively, the types of extensibility

the interpreter is designed to deal with (Section 4.2). The example is then used to illustrate

the most interesting aspects of the implementation (Section 4.3). It concludes with some

remarks (Section 4.4) and a discussion of related work (Section 4.5).



4.2 The Central Idea

4.2.1 Types of Extensions Desired

Say we have an application structured as follows:

GraphicalEditor:

(# Display :

(# screen : @screenDesc; (* instance variables *)

Window : (* nested patterns *)

(# contents : @bitmap; (* instance variables *)

refresh :< (# do ... contents ...

screen ...; INNER #) (* methods *)

GraphicalObject : (# ... #) (* nested patterns *)

Circle : GraphicalObject (# ... #)

do ... contents ... screen ...; INNER

#)

cw : ^Window;

do ... new(Window) -> cw[]; cw; ...

#)

d : ^Display;

do ... new(Display) -> d[]; d; ...

#)

Here the pattern GraphicalEditor is meant to be an editor for editing �gures. The pattern

Display is nested within it. It has instance variables: screen which describes the screen

it should display on, and cw which stores a reference to the current window. The pattern

Window which describes a typical window is nested within Display. It has an instance

variable: contents. It also has a virtual pattern: refresh. The pattern GraphicalObject

is an abstract description of all graphical objects to be handled by this application; Circle

is a concrete sub-pattern of it. Both their declarations are nested within Window.

The GraphicalEditor pattern has a do-part; this implies that it may be executed. Exe-

cuting it will create an instance of it and run the do-part. The do-part will typically setup

the overall user interface. During this process it will create an instance of the Display

pattern and execute it; this is shown in the listing. The Display will create one or more

Window objects and manage them; it will provide the main interaction with the user. The

listing shows it creating and executing an instance of Window. The Window pattern has

been designed so that executing it will initialize it. Its do-part is shown to have references

to variables: contents and screen. At times, the Display may also call refresh on the



Window (not shown in the listing). The INNER imperative appearing in the do-parts of

Window and refresh is explained later.

The above code is block structured and lexically scoped. It is impossible to create, for

example, a Window from outside a Display. This adds to the clarity of the code by

expressing existential dependencies: a window cannot exist without a display. The many

other bene�ts of block structure and lexical scoping, which are not the focus of this paper,

are also enjoyed by this application.

There are a number of ways to extend this application; for example, one may want

to introduce colored windows, or change the way circles are highlighted when they are

dragged. One way to introduce colored windows, is to de�ne a new pattern describing

colored windows, say ColorWindow, as a sub-pattern of Window. Place this de�nition in

the same block as Window. Replace all applied occurrences of Window by ColorWindow, and

then recompile the resulting source.1 The following listing shows this extended program:

GraphicalEditor:

(# Display :

(# screen : @screenDesc; (* instance variables *)

Window : (* nested patterns *)

(# contents : @bitmap; (* instance variables *)

refresh :< (# do ... contents ...

screen ...; INNER #) (* methods *)

GraphicalObject : (# ... #) (* nested patterns *)

Circle : GraphicalObject (# ... #)

do ... contents ... screen ...; INNER

#)

ColorWindow : Window

(# color : @colorDesc;

refresh ::< (# do ...contents... screen ... color; INNER #)

do ... contents ... screen ... color ...; INNER

#)

cw : ^Window;

do ... new(ColorWindow) -> cw[]; cw; ...

#)

do ... new(Display) -> d[]; d; ...

#)

1One could also have declared Window and Display as virtuals in the original implementation, thus

allowing the window extension to be installed without modifying the original de�nition. I have deliberately

not chosen this approach so that I can demonstrate the use of the interpreter.



In this case, the Display pattern is shown creating and executing an instance of a

ColorWindow. When an instance of ColorWindow is executed, the do-part of Window is

executed until the INNER imperative is encountered. Then, control is transferred to the

do-part of ColorWindow. The INNER here is like a no-operation, as there are no further

specializations. Similar comments apply to the do-part of the refresh pattern.

The goal of this section has been to demonstrate the types of extensions (e.g. ColorWindow)

the interpreter has been designed to support.

4.2.2 Using the Interpreter

The interpreter has been designed as a tool to support the above types of extensions. It

is meant to be used to write an application, such as the editor above, with a well-de�ned

set of open points | points that are open for extension. Such an open or tailorable

application has built into it, the ability to load the source code for extensions such as

ColorWindow and extend itself accordingly. Furthermore, these extensions may happen

dynamically and without any recompilation or relinking of the original application.

In order to enable the editor to accept extensions such as ColorWindow, it must be rewritten

as follows:

GraphicalEditor:

(# Display :

(# screen : @screenDesc; (* instance variables *)

Window : (* nested patterns *)

(# contents : @bitmap; (* instance variables *)

refresh :< (# do ... contents ...

screen ...; INNER #) (* methods *)

GraphicalObject : (# ... #) (* nested patterns *)

Circle : GraphicalObject (# ... #)

do ... contents ... screen ...; INNER

#)

cw : ^Window;

windowExtension: ^text;

WindowX : ##Window;

extendWindow :

(#

do inputFromUser -> windowExtension; (* textual input *)

(Window##, windowExtension) -> interpret -> WindowX##;

#)

do ... new(WindowX) -> cw[]; cw; ...



#)

d : ^Display;

... new(Display) -> d[]; ... d.extendWindow ...

#)

This listing di�ers from the original in that it declares a pattern variable2 WindowX (a

variable which holds pattern closures3, as opposed to instances of patterns). The pattern

variable WindowX is declared of type Window. This means that it can hold the Window pattern

or any sub-pattern of it. Also, references to the pattern Window have been replaced by

references to the pattern variable WindowX | thus allowing the pattern denotable by these

references to be dynamically changed.

A pattern called extendWindow has been declared within Display; calling it on a dis-

play object extends the de�nition of Window. windowExtension denotes the source code

for the new de�nition; its value can be speci�ed dynamically, as is exempli�ed by the

inputFromUser imperative. Any source code which de�nes a sub pattern of Window can be

used here; as an example, consider ColorWindow from the previous listing:

ColorWindow : Window

(# color : @colorDesc;

refresh ::< (# do ...contents... screen ... color; INNER #)

do ... contents ... screen ... color ...; INNER

#)

Within extendWindow, the interpreter is invoked with this source code and a closure for

the Window pattern (i.e. Window##). By passing the pattern closure for Window, the user

indicates that she/he would like the extension to be processed in the same lexical scope

as Window. Thus, the interpreter processes the extension as if it appeared within Display.

This scope information is used by the interpreter to determine which name references

(e.g. Window, contents, screen) in the interpreted code are legal, as well as how to resolve

them (i.e. map a reference to a memory address).

An intuitive way to explain the arguments with which the interpreter should be invoked

is: call the interpreter with the source code of the extension pattern and the pattern

closure of the pattern to be extended. The interpreter returns the pattern closure of the

extension pattern.4

2Pattern variables are a standard feature of Beta
3These are called structure values in Beta; pattern closures have a more intuitive connotation for this

discussion and hence are used here
4This is a natural extension of the standard way in which pattern closures are created and assigned in

Beta: the statement Window## -> WindowX##, constructs a pattern closure for a pre-de�ned Window



Returning to the editor example, when this application creates a new display object and

calls extendWindow on it, the display gets extended with a new user-de�ned de�nition of

window, such as ColorWindow. In other words, the de�nition of an extension to Window

gets loaded into the application without any need for recompilation, relinking, or a restart

of the original application.

4.2.3 The contribution

This paper discusses the implementation of an interpreter designed to accomplish the

above-described tasks. What makes this interesting are a number of things:

1. The ability to handle extensions of patterns de�ned in any lexical scope | even

nested ones. Lexical scoping rules are not violated by this; the extension gets access

to an environment as per the lexical scoping rules. Lexical scope is provided as an

argument to the interpreter. The interpreter can be used to handle extensions of

any pattern in any scope e.g. Circle in Window.

2. Type checking of the extensions and preservation of the type soundness of the orig-

inal program.

3. The packaging and return of the interpreted pattern as a pattern closure. This

results in a seamless interface between the interpreter and the compiled application

invoking the interpreter.

4. An interesting and unusual blend of compiled and interpreted code.

4.3 Implementation Details

The signature of the interpreter can be described as follows:5

interp: (closure of to-be-extended pattern *

source of extension pattern) -> closure of extension pattern

pattern and stores it in the pattern variable WindowX, while the statement (Window##, extension)

-> interp -> WindowX## creates a pattern closure for an extended version of Window and stores it

in the pattern variable Window; here extension is the extension in source code form.
5This corresponds to MakeDeclExecutable ([Mal93a]) with the context and origin objects replaced

by the pattern closure of the to-be-extended pattern. The two approaches are semantically equivalent;

the pattern closure approach is conceptually cleaner.



The term to-be-extended pattern denotes the pattern being extended while extension pat-

tern denotes the pattern de�ned as an extension of the to-be-extended pattern.

The implementation of the interpreter is illustrated using the example of the previous

section. There, within extendWindow, the interpreter is invoked as follows:

(Window##, windowExtension) -> interpret -> WindowX##;

It is assumed that windowExtension contains the source code for ColorWindow (reproduced

here for easy reference):

ColorWindow : Window

(# color : @colorDesc;

refresh ::< (# do ...contents... screen ... color; INNER #)

do ... contents ... screen ... color ...; INNER

#)

The implementation is described in two stages:

� construction of the closure of the extension pattern i.e. the value returned by the

interpreter.

� use of this closure via the pattern variable WindowX.

Figure 4.1 depicts, partially, the state of the computation before the construction of the

extension closure is begun. It shows the closure of the to-be-extended pattern Window.

A word about the type safety of the call to the interpreter. For every call to the interpreter:

(Q##, extension) -> interp -> X## where X : ##P

it must be ensured that Q is a sub-pattern of P; this can be done statically. During

interpretation of the extension source code, it will be veri�ed that the pattern declared

in the extension is a sub-pattern of Q, thus ensuring that the extension pattern is a sub-

pattern of P, and therefore making it safe to assign the extension pattern closure to X.

4.3.1 Building the closure of the extension pattern

A pattern closure comprises of two parts: a runtime descriptor of the pattern and an

environment pointer. This runtime descriptor of the pattern, called a prototype in Beta
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Figure 4.1: The to-be-extended pattern closure

runtime system terminology, is an encoding of the pattern suitable for executing or in-

stantiating it. It comprises of many parts, some of which are discussed in the sequel.

The environment pointer is a pointer to an object which is an instance of the pattern

enclosing this pattern. This is used to resolve non-local name references. As an example,

the closure for the Window pattern, built using the Window## construct, would have an

instance of Display as its environment object (Figure 4.1). This would be used to handle

non-local references such as screen from within Window.

In order to construct the closure for the extension pattern, it is necessary to (1) build

a prototype for the extension pattern, and (2) package this prototype with the correct

environment object.

Building the prototype

The Symbol Table. Before building the prototype for ColorWindow, the interpreter

needs to type-check its source code. During this process, the symbols used in the de�nition

of ColorWindow are resolved | their corresponding symbol-table entries are located. The

user of the interpreter has indicated, by passing the pattern closure of the to-be-extended

pattern, the lexical scope in which she/he wants this source code to be processed. The

check must be performed as if the source code appeared in this lexical scope.

In order to do this, the interpreter must have access to the symbol table of the program

being extended. In order to get the e�ect of processing the extension in this scope, the



interpreter must be able to get access to all symbol-table entries visible in this scope.

Furthermore, it must be able to restrict the access, of the extension, to these and only

these entries.

These requirements mean that the symbol table, generated when the original application

was compiled, be available in some form. In addition, it should support the mapping from

any scope to the set of symbols visible in that scope. Furthermore, if extensions are to

be visible to future extensions, the table must be updatable with new entries.

In the Beta system, programs are stored as Abstract Syntax Trees (ASTs). Symbol-table

information is stored as annotations to the nodes of these trees. So, the symbol table

is available to the interpreter in the form of annotated ASTs of the original application.

Given this representation, it is possible to denote a scope by a node in this tree. Given a

node in the tree, it is possible to determine the set of symbols visible from that node. It

is worthwhile to note that although the entire source code of the original program is part

of the tree and hence, is available to the interpreter, only the symbol-table information

is actually used. One could imagine trimming these ASTs so that only symbol-table

information remained. These trimmed trees would be adequate for installing extensions.

In fact, a prototype implementation of these trimmed trees is available. Thus, the original

requirement that the source code of the application being extended need not be necessary

in order to install extensions, has not been violated.

The extension must be processed in the same scope as that in which the to-be-extended

pattern was processed. So, in order to �nd the extension-processing scope, one must �nd

the to-be-extended pattern's scope. This can be found by examining its pattern closure.

This contains the prototype, which contains information identifying a �le containing an

AST, and a node within this AST. This node is the declaration of the to-be-extended

pattern. Its enclosing block is the desired extension-processing scope.

The interpreter loads this AST, locates the node corresponding to the extension-processing

scope, parses the extension source into an AST, attaches the extension AST at this node,

and then type-checks the extension AST, annotating it with symbol-table information.

Attaching the extension AST has the e�ect of installing the new extension into the symbol

table.

In the example, the pattern closure for Window is passed as an input argument. It is used to

locate the node for Display in the AST of the original program. The AST for ColorWindow

is then attached to the original program's AST as if it appeared within Display.

Type Checking. Once the extension has been setup in the correct scope, the type

checking process performs some standard type-consistency checks. The details of these



checks are beyond the scope of this paper; see [MMMP90] for details. Only some of the

results of this process are summarized here:

1. The reference to Window as the super pattern of ColorWindow gets resolved to the

Window de�ned within Display.

2. Within the de�nition of ColorWindow, there is a further-binding of refresh. This

gets resolved to the virtual pattern refresh declared within Window.

3. Within the further binding of refresh, there is a reference to the variable contents.

This gets resolved to the contents variable declared within Window. It is also

recorded that in order to resolve this reference at runtime, one must follow one envi-

ronment link to go from the refresh instance to the ColorWindow instance (contents

is inherited by ColorWindow and hence is part of a ColorWindow instance), and access

the �eld at X bytes o�set. Here, X is determined from the symbol-table entry for

contents.

This shows how accesses from an interpreted extension to the state de�ned by its

super pattern are handled.

4. The reference to screen, also appearing within the refresh further binding, gets

resolved to the screen declared within Display. Its runtime resolution involves

following two environment links (from a refresh instance to a ColorWindow instance

to a Display instance), and then accessing the �eld at X bytes o�set. Here X is

obtained from the symbol-table entry for screen.

This shows how accesses from an interpreted extension to the state de�ned by its

enclosing patterns are handled.

Building the prototype for ColorWindow. As ColorWindow is a specialization of

Window, its prototype is built using Window's prototype as a starting point. The pro-

totype for Window is located by getting its memory address from the symbol-table entry

for Window. In Beta, this is actually a two-step process: (1) from the symbol-table entry

for Window, obtain an assembly-level symbol name which identi�es the prototype in the

executable, (2) using the linker-generated symbol table, which is in the executable, map

this name into an address.

At this point, before proceeding with the construction of a prototype for ColorWindow, it

is possible to complete the type checking of the call to the interpreter (�rst referred to

in the beginning of this section). It remains to be ensured that the extension pattern is

indeed a sub-pattern of the to-be-extended pattern. The prototype of the super-pattern of



the extension pattern has been obtained from the symbol table. The prototype of the to-

be-extended pattern can be obtained from its pattern closure. Using these prototypes, it

is possible to check if the extension's super-pattern is a sub-pattern of the to-be-extended

pattern. This implies that the extension pattern is a sub-pattern of the to-be-extended

pattern.

The prototype for ColorWindow is built incrementally by taking a copy of Window's pro-

totype and extending it. It is not the purpose of this paper to document prototypes;

see [Mad93] for that. Only the interesting aspects of the prototype, especially those that

di�er between Window and ColorWindow, are elaborated.

Window has a do-part and a virtual declaration. Hence, its prototype will have an Inner

Dispatch Table (IDT) and a Virtual Dispatch Table (VDT). This discussion will focus on

these tables.

The IDT. This is the basis for the implementation of Beta's INNER imperative.

For a pattern P with do-parts, the number of entries in its IDT is one greater than the

number of patterns in its super-pattern chain. In general, it has the following structure:

RETURN

P do-part

immediate-super-pattern do-part

...

base-pattern do-part

Here, base-pattern do-part is the do-part of the root pattern of P's super-pattern hi-

erarchy chain, immediate-super-pattern do-part is the do-part of P's immediate super

pattern, and P do-part is P's own do-part. RETURN results in a return from subroutine.

In the case of Window, there is no super-pattern; hence only one do-part, and an IDT

with two entries. In the case of ColorWindow, Window is a super-pattern; hence it has

an IDT with three entries. Figure 4.2 shows the IDTs for both patterns. Observe how

ColorWindow's IDT is constructed out of parts of Window's IDT. Window's do-part is com-

piled into object-code and Entry 1 of both IDTs point to the entry-point for this object-

code. Entry 2 of Window, and Entry 3 of ColorWindow point to code that executes a

return-from-subroutine instruction. Entry 2 of ColorWindow points to \object-code" for

the do-part of ColorWindow.

The object-code for the do-part of ColorWindow is interesting in that it is an interpreter-

generated stub which serves the purpose of disguising interpreted code as compiled code.

It is structured as follows:
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Figure 4.2: The Inner Dispatch Tables

1. Save registers

2. Get address of current object from a machine register

3. Locate AST for ColorWindow

4. Invoke interpreter with the current object and a reference to the AST

5. Restore registers

6. Return from subroutine

Notice that it has encoded within it a reference to the AST of ColorWindow.

When an instance of Window is executed, control will ow into Entry 1 of Window's IDT.

When the INNER imperative is encountered, the next entry (Entry 2) in the table will be

invoked as a subroutine. As this is a return-from-subroutine instruction, the INNER will

have the e�ect of a no-operation.

When an instance of ColorWindow is executed, control will ow into Entry 1 of

ColorWindow's IDT, which is object-code shared with Window's IDT. At the INNER it will

ow into Entry 2. This is the interpreter-generated stub; it will invoke the interpreter with

the current object and the ColorWindow-AST as arguments. When during interpretation,

the INNER imperative is encountered, the interpreter will treat it like a no-operation as

there are no further specializations to branch to. When the interpreter �nishes with the

do-part of ColorWindow, it will return to the stub. Here the registers will be restored and

execution will continue where it left o� in Entry 1.



The VDT. A pattern, with one or more virtual patterns declared within it, will have a

VDT. The VDT is the basis for the implementation of virtual patterns in Beta. The size

of the VDT will be equal to the number of virtual patterns. The purpose of the VDT is

to allow dynamic binding of virtual patterns | for a virtual pattern, the corresponding

VDT entry will contain the current binding. A VDT entry is essentially a reference to

the prototype of the pattern which is the current binding.

For example, the Window prototype will have a VDT with one entry, i.e. for the refresh

virtual. This will contain a reference to the prototype for the refresh pattern declared

within Window. All clients of refresh will be dispatched through its VDT-entry in order

to get its current binding in the form of a prototype. This prototype will then be used to

execute or instantiate an instance of refresh. If refresh is invoked on a Window instance,

its current binding will be the refresh pattern declared within Window.

ColorWindow introduces a further binding of refresh i.e. it specializes refresh by de�ning a

sub-pattern of it. In the prototype for ColorWindow, the VDT-entry for refresh is updated

by the interpreter to refer to the prototype for the further binding of refresh. This

prototype is also built by the interpreter in the same way as the prototype for ColorWindow

is built. Invoking refresh on a ColorWindow instance will result in the execution of the

further binding.

Other prototype parts. Other parts of Window's prototype that get copied into

ColorWindow's prototype, possibly with modi�cation, are the Static Objects Table, the

Dynamic Reference Table, and some other information describing the size of the object

etc. In this manner a prototype for ColorWindow is built from the prototype for Window.

Getting the environment object

Once the prototype for ColorWindow has been built, it must be packaged with a reference

to its environment object to form a pattern closure. Its environment object must be an

instance of the pattern enclosing it | in the case of ColorWindow, this must be an instance

of Display. But this object is also the environment object for Window | as Window and

ColorWindow are processed in the same lexical scope. A reference to this object is thus

obtained from the pattern closure for Window, which is available as an input parameter.

The resulting pattern closure for ColorWindow may now be returned to the caller, where

it may be used to instantiate or execute the extension pattern.

Figure 4.3 depicts the state after the extension pattern closure has been constructed.

Notice the ColorWindow-closure which is returned by the interpreter.
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Figure 4.3: Illustrating the extension pattern closure

4.3.2 Invoking the returned pattern closure

Once the extension pattern is returned to the caller of the interpreter and stored in a

pattern variable, it can be executed or instantiated. In Display the invocations of WindowX

will result in instances of ColorWindow being created. The instance will be built using the

prototype which is part of the pattern closure. The environment link for this new instance

will be setup to point to the environment object which is stored in the pattern closure.

Figure 4.4 shows an instance of ColorWindow.

Executing this instance of ColorWindowwill result in the invocation of the do-part of Window

(compiled). Upon execution of the INNER imperative, control will be transferred to the do-

part of ColorWindow (compiled stub) from where control will ow into the interpreter. The

interpreter will handle references to variables such as screen by traversing one environment

link (to the Display) object and accessing the �eld at a pre-computed o�set.

Calling refresh on this instance will result in a lookup of its VDT where a prototype for

the further binding of refresh will be found. This will be used to create an instance of the

extended refresh and execute it. Its execution will behave in a manner similar to that

of Window: the do-part of the original refresh will be invoked, followed by the do-part of

the further binding, when the INNER is executed.
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Figure 4.4: An instance of ColorWindow

4.4 Concluding Remarks

This paper has described the interesting aspects of the implementation of an interpreter

for Beta. As shown, the interpreter may be easily embedded within any Beta application,

thus making the application dynamically extensible. It has been shown how the imple-

mentation deals with issues such as dynamic extensions in a static language, allowing

extensions access to the application's internals, interpretation contexts, intermixing of

compiled and interpreted code, ensuring the type-safety of the application, packaging the

extension in order to return it to the application.

An approach for building extensible applications that are able to extend themselves at

well-de�ned points has also been suggested. These points get de�ned at application-

development time and are designed to be able to accepts a range of extensions | any

extension that is compatible with the speci�cation of the extension point (i.e. is a sub-

pattern of the type of the pattern variable). The extensions themselves are written in

the original development language | in this case Beta | and are processed by the

application by invoking an interpreter embedded within the application. The extensions

may be placed, lexically, in any scope of the original application. This determines the

parts of the original application that become visible to the extension.

This paper also documents, in a concrete manner, an attempt to integrate compiled and

interpreted code in a manner traditionally present in Lisp systems, the di�erence being

that here, it is done in the context of a statically-typed block-structured language with

the possibility of integration at nested block levels.



The interpreter is a central element of this approach. Its ability to operate under these

constraints makes its implementation interesting. The paper has concentrated on describ-

ing the interesting aspects of the implementation| it has not described every detail. The

aspects that deal directly with its ability to process extensions have been presented. The

ability to handle extensions in arbitrary scopes has been explained in detail. The con-

struction of a prototype for the extension pattern, using the prototype for the pattern

being extended, has been described. The basic idea behind this has been demonstrated by

illustrating the construction of the IDT and VDT. The construction of pattern closures

has also been demonstrated. All the necessary type-checks, and techniques to handle

them, have been identi�ed. All of this has been glued together by an illustration of the

execution of an extension pattern.

There has been an emphasis on presenting the overall approach rather than describing a

particular implementation | although at times details from a particular implementation

have been used to make ideas more concrete. As a result, the techniques may be used for

building interpreters for other languages, and more generally for handling extensions with

or without interpretation. In fact, in the construction of the IDT entry for ColorWindow's

do-part (Section 4.3.1), the object-code which serves to interface with the interpreter

could just as well have been replaced with object-code which implements the do-part

directly. In this case, the core of the interpreter, not documented in this report, could be

eliminated. All other ideas presented here would still be applicable.

The core of the interpreter is the part that does the actual interpretation | it traverses the

AST, executing do-parts, processing imperatives, evaluating expressions, and accessing

and modifying state. It is what gets invoked from the compiled do-part of ColorWindow.

Its implementation has not been described in this paper as it is quite straightforward

to implement. Our implementation interprets ASTs directly. It is written in an object-

oriented style | e.g. an expression has a virtual eval method which is specialized in a

multiplication expression, and so on. So, every syntactic category in the grammar of Beta

is described by a Beta pattern; nodes of the AST are then instances of these patterns.

The material in this paper should be su�cient, when used in conjunction with the paper

describing the Beta compiler and runtime [Mad93], and the source code of the interpreter,

to gain a complete understanding of the interpreter's implementation. A missing element

is the technique used to transfer control from the interpreter-generated object-code stubs

to the interpreter with the current object and the correct AST. Hence, this paper can be

used by someone maintaining or extending the interpreter.



4.5 Other Work

An alternative approach to building extensible systems in Beta was proposed in [AF89].

The primary di�erences between the two approaches can be summarized as follows: (1)

they compile the extensions, and then dynamically load and link them; hence they don't

require an interpreter (2) the invocation interface of their loader di�ers in minor ways from

the interpreter. The use of a compiler and dynamic linker/loader implies more e�cient

extensions, but at the expense of slower turnaround time.

In their system, an extension is loaded in the following way:

(# dCar : ^CarDynStruct;

(environment[], 'lada.ext') -> loader (# resultSP ::< Car #) -> dCar[];

&dCar.p; (* Execute a Lada *)

#)

Here environment is an object instance; the extension pattern is checked as if it was tex-

tually inserted at the place in the program where the attributes of the environment object

are declared. This is similar to what happens in the interpreter approach; instead of an en-

vironment object, we provide the to-be-extended pattern closure. The two approaches are

semantically equivalent, although the interpreter approach, in which a closure is passed

as input, and an extended closure is returned as the result, is conceptually clearer.

The �le 'lada.ext' contains the extension pattern in source code form. The loader uses

the Beta compiler to process the extension and then loads it into the calling program. The

extension is compiled in a way so that external references can be handled at need-time. In

other words, the dynamic linker doesn't resolve references immediately after the extension

object-code is loaded; they get resolved if and when they are needed. This again is similar

to what happens in the interpreter; references get resolved if and when they are used.

The return value of the loader, although similar in spirit to a pattern closure,6 is an

instance of a specialized DynStruct pattern. The details of this are beyond the scope of

this paper. Pattern closures are a cleaner, and well understood, abstraction for all of

these details.

Their report concentrates mainly on describing the implementation of the dynamic linker;

the construction of prototypes for extensions is not described, as that is done by the

compiler. This report, on the other hand, shows how prototypes for extensions can be

incrementally constructed, in addition to showing how issues, similar in spirit to dynamic

linking, are dealt with.

6Pattern closures were not a part of Beta when this system was built; the idea of pattern variables

was proposed by them as a result of this work.



[Mal93a] describes the application programmer's interface of the interpreter described

here. It also shows how the interpreter can be used for more than just extensible sys-

tems. [Mal94] presents general techniques for constructing extensible systems. It identi�es

language features which allow for the easy construction of extensible systems.

[Mad93] illustrates the implementation of the Beta compiler and runtime system. Pro-

totypes are described in exhaustive detail in that paper. Building the interpreter didn't

require any changes to the runtime system. The implementation techniques presented

here could be used to implement the ideas contained in [KMMPN86]. [Lie87] describes

an interpreter written in an object-oriented style.

Other environments which allow mixing of compiled and interpreted code include the

Standard ML of New Jersey system [AM87], and various lisp and scheme implementations.

GNU Emacs [Sta84] also has an embedded lisp interpreter which allows for free intermixing

of compiled and interpreted code.

The techniques presented here allow an application to be treated as a black-box (abstrac-

tion), but with well de�ned open points that expose its implementation and allow it to be

changed. A more general, and highly motivating, discussion on building abstractions that

are open is presented in [Kic92]. Suggested here, is the idea that the traditional notion

of abstraction is not very useful for many application-building e�orts, and that a slightly

modi�ed notion of abstraction, in which one has the traditional interface (for using the

abstraction) and a meta-level adjustment interface, is necessary. [KdRB91] is an example

of a system with such a dual interface. This work accomplishes some of the goals outlined

in [Kic92].
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Abstract.

This paper describes an approach to making a direct-manipulation-based user-interface

generator incremental in its ability to generate and execute new applications. The ap-

proach is best applicable for user-interface generators which generate code in high-level

languages without incremental compilers. By adopting this approach, a user-interface gen-

erator can reduce, signi�cantly, the length of time between an edit of some user-interface

component and the generation of a new executable incorporating the edited component.

The approach relies heavily on the notion of extensibility, as found in object-oriented

languages, and uses a technique called incremental code-generation. The approach is

demonstrated by means of an example of a dialog taken from the Macintosh Finder. It

is shown how various edit operations can be handled incrementally. The presentation

is in the context of a user-interface generator called the ApplBuilder which generates

code in the object-oriented language Beta. A section is devoted to illustrating how the

ApplBuilder can be adapted to adopt this approach.
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5.1 Introduction

Direct-manipulation based user-interface generators are used to build complex

user-interfaces in a fraction of the time it would take to accomplish the same task man-

ually. These tools allow their users to edit a user-interface using direct-manipulation

techniques; they then generate code describing the user-interface component in some tar-

get language | usually a high-level language like C, C++, CLOS, Beta. The remainder

of the user's application can utilize this user-interface component by simply linking with

this code | and of course invoking it. If a user-interface component needs to be changed,

the user edits it using the tool and regenerates its code.1 This code must then be recom-

piled and relinked with the remainder of the application to produce an application with

the edited UI component. This process may also trigger recompilation of other parts of

the user's application. If the target language has an incremental compiler, this process

of regeneration of the new executable is relatively quick. If, on the other hand, all the

language has is a batch compiler, this process can be unacceptably lengthy. This reduces

the e�ectiveness of the tool in general, and renders the tool useless for purposes such as

rapid prototyping.

This paper proposes an approach which helps reduce the length of this regeneration pro-

cess. The approach uses the notion of extensibility [Mal93a, Mal94] along with a technique

called incremental code-generation to produce results that are comparable with incremen-

tal compilation. Incremental code-generation is explained in the sequel.

The bene�ts of reducing the length of the regeneration process are manifold. First and

foremost the user-interface generator feels more interactive; as a result, user productivity

is greatly enhanced. In addition, users are encouraged to experiment, as the results of

their experiments are quickly observable and easily correctable if necessary. Furthermore,

the generator can be used as a rapid-prototyping tool.

Another possible approach to reducing this regeneration time is based on incremental

compilation [Hed92, HM86]. With an incremental compiler available for the target lan-

guage, the regeneration process can be made entirely interactive: each edit command

issued by the user is translated by the user-interface generator into a transformation of

the underlying source-code, which is processed by the incremental compiler, which re-

compiles the necessary parts and patches the existing executable to include the changes.

On the other hand, if only a traditional batch compiler is available, the user-interface

generator is forced to regenerate code for the a�ected module(s); it is also necessary to

1The user could also edit the source-code directly; it is assumed that the user doesn't do this. This

assumption is entirely justi�able in systems where interfacing with the automatically-generated code

doesn't require any in-place modi�cation of it. Hence, regenerating code will not invalidate any of the

user's work.



recompile these module(s) (and all others that depend on it), and to relink the entire

application.

The approach proposed here lies somewhere in the middle of the continuum between batch

compilation and incremental compilation. It is designed speci�cally to give the e�ect of

incremental compilation without being as general, and hence as complicated, as incremen-

tal compilation. With this approach, user-interface generators with non-incrementally-

compiled target languages can be made interactive.

Figure 5.1 illustrates the approach. There are two possible ways to go after an edit

operation: the traditional batch route, or the new incremental route. Along the batch

route, new code is generated for the edited user-interface (UI) component. Its old code is

replaced by its new, and the a�ected modules recompiled. The application is then relinked.

Along the incremental route too, new code is generated for the edited UI component.

This code, however, is generated as an extension of the old code. No parts of the original

application's code are modi�ed. This form of code generation, where extensions are

generated, can be thought of as incremental code-generation.

Link

Edit by Direct Manipulation

Generate
Replacement

Code generate

Compile affected modules Compile/Interpret Extension

Replace parts

Test

Batch Incremental

Generate
Extension

Figure 5.1: The Incremental Extension approach

Intuitively, these extensions are \replacement parts" for the original application. These



extensions are such that they must be compiled or interpreted in the context of the

original system, for they may refer to parts of the system. There is no need, however,

to recompile any parts of the original system; even parts that refer to the replacements

don't need recompilation. A new executable is obtained by replacing parts of the original

executable with their replacements. The new executable is equivalent in functionality to

the executable one would have obtained, had one followed the batch route.

The advantage over the batch approach is that it is necessary to compile or interpret

only the extensions, not all parts that depend on it. In the batch approach, it becomes

necessary to recompile modules containing the modi�cations as well as all other modules

that depend on them. Hence, the proposed approach requires less work. With a compiler

or interpreter of �ne granularity (e.g. function/procedure/class level) this work can be

further minimized. Furthermore, instead of linking the recompiled modules (as in the

batch approach), the proposed approach calls for a replacement of the original part by

the replacement part | a procedure simpler and quicker than general-purpose linking.

This approach is also simpler than general-purpose incremental compilation. The main

complexity of incremental compilation is the dependency analysis. This approach doesn't

need any dependency analysis due to the fact that extensions don't require recompilation

of their dependents. What is shared in common with incremental compilation is the need

to replace parts of the original executable by their newly-compiled replacements.

The approach has been tested in the context of an application generator called the

ApplBuilder [GHT91]2. The ApplBuilder generates code in the object-oriented language

Beta [MMPN93]. The code generated by the ApplBuilder is organized so that user-written

code can interface to it without any in-place modi�cations of it. Thus, regenerating code

doesn't invalidate any user-written code. The ApplBuilder is also unique in supporting

the reloading, and subsequent editing, of a user-interface component whose code has been

edited textually.

Beta is a statically-compiled object-oriented language in the tradition of Simula [DMN68].

Among other things, it has the notion of a pattern as the one and only abstraction

mechanism. The Beta pattern uni�es classes, procedures, functions, types, and various

other abstraction mechanisms found in other languages. Beta patterns may be nested to

arbitrary levels. Beta doesn't have an incremental compiler and hence the ApplBuilder

exhibits the symptoms described earlier. The ApplBuilder is able to minimize the amount

of code generated in response to an edit operation. In fact, for many types of edit

operations, the ApplBuilder is able to restrict modi�cations and recompilations to just

a single module. For other types of edit operations, it restricts modi�cations to a single

2An application generator is a generalization of a user-interface generator in that it supports the

construction of the entire application and not just the user-interface.



module, but as a result of that modi�cation, dependent modules are also recompiled. In

any case, the application must be relinked with the recompiled modules before it can be

tested. The ApplBuilder has therefore, been the motivation, and a good example, for the

approach presented here.

The approach is presented in the context of the ApplBuilder and Beta. It relies, however,

on the notion of extensibility found in most object-oriented languages. Hence, it is ap-

plicable to most object-oriented languages. The semantics of Beta di�er from most other

object-oriented languages, especially in the area of re�nement versus overriding. Beta

methods re�ne their super-methods, with the INNER construct being used to transfer con-

trol to the re�nement. In most other languages, methods override their super-methods,

requiring an explicit call to super to invoke the super method. The approach illustrated

here is based on Beta's semantics, but could be easily generalized to other languages.

The approach also relies on the availability of an interpreter or dynamic linker. Only

recently has Beta become an interpreted language [Mal93a, Mal94].

The paper demonstrates the incremental code-generation approach by means of a real

example: the Find File dialog from the Macintosh Finder (Section 5.2.1). It is shown

how edits of this dialog are handled by this approach (Sections 5.2.2 and 5.2.3). It then

shows how these edits can be composed (Section 5.2.4). Section 5.2.5 shows how the

incrementally-generated extensions can replace their original counterparts without any

recompilation of the original application. The ApplBuilder must be adapted to use this

approach; this is the subject of Section 5.3. The paper concludes with more comparisons

between incremental compilation and this approach, along with a mention of other bene�ts

of this approach.

Minimal knowledge of Beta is assumed. Readers wishing to acquaint themselves with Beta

can �nd a short primer in [Mal93a]; the book [MMPN93] provides a more systematic and

comprehensive introduction to the language.

5.2 The Approach

Suppose one has a program (base program), with some user-interface component (base

UI component), generated by the ApplBuilder. Now, suppose one edits the base UI

component via the ApplBuilder. One gets the new program with the edited UI component

using the following approach, termed the incremental approach:

1. Express the edited UI component as an extension of the base UI component. More

speci�cally, the interface of the edited UI component should be an extension of the



interface of the base UI component. It should be possible to safely replace the base

UI component by the edited UI component without recompiling any of the clients

of the base UI component.

In practice this implies that the type of the edited UI component should be a sub-

type of the type of the base UI component. The class describing the edited UI

component must be a sub-class of the class describing the base UI component. This

is accomplished by generating the source-code for the edited UI component such

that its super-class is the base UI component. This technique is employed even

when the edited UI component is, functionally, not an extension (e.g. has one less

button) of the base UI component.

2. Replace the base UI component by the edited UI component in the compiled, or

even executing, base program. Due to (1), this can be done without any need to

recompile the clients of the base UI component. In fact, this is accomplished without

any recompilation of the base program.

The new program, thus obtained, is functionally equivalent to the program one would

have obtained using the traditional approach: i.e. generate code for edited UI component

without ensuring that it is an extension of base UI component, replace | in the base

program | the source-code for base UI component by source-code for the edited UI

component, and recompile the base program.

The incremental approach for building the new program is clearly more e�cient than the

traditional approach, the primary reason being that, in the incremental approach, the

only compilation required is that of the edited UI component. The traditional approach,

however, requires the recompilation of, at least, the edited UI component along with all its

clients. In addition, if the separate compilation system of the language is not �ne-grained

enough, it may force the recompilation of many additional parts: the entire modules

containing the clients will get recompiled.

For the incremental approach to work, it must be shown that if C1 is a UI component

obtained from C0 by a sequence of well-de�ned edit operations, then C1 can be expressed

as an extension of C0. The interesting edit operations are (1) addition of a new sub-

component, e.g. a button, (2) removal of a sub-component, e.g. removal of a button,

(3) modi�cation of a sub-component e.g. modi�cation of the action script of a button.

These should cover all the operations allowable by the ApplBuilder. In fact, (3) can

be accomplished by doing (2) to remove the component, and (1) to add the modi�ed

component. So, this report will concentrate on (1) and (2).

This is proved by means of a real example in which a dialog is edited, �rst to add a

new button to it, then to remove a button from it. In each case, the source-code for the



edited dialog, generated as a sub-class of the base dialog, is shown, and illustrated to be

functionally correct. Although all the code for this example is presented here in abstract

form, it is real code that has been tested and has proved to work.

The section proceeds by �rst illustrating the example dialog and the source-code generated

by the ApplBuilder for it. The next two sub-sections show how edits (addition/deletion)

of the dialog are handled. That this approach works even when edits are composed, is

illustrated in the following section. Finally, it is shown that these extensions, representing

the edited UI components, can be made to replace their corresponding base UI components

without any need to recompile the base program.

5.2.1 The original Find File dialog

Consider the dialog presented in Figure 5.2.3 This dialog has been built using the Appl-

Builder. The code generated for this dialog is shown in Listing 1.4

Figure 5.2: The Find File dialog

A pattern describing the dialog, called FindDialog, is shown nested within mainProgram.

It is declared as a sub-pattern of Window. Within it are the declarations of the various

components of the Find File dialog: PromptLabel, ContainsMenuButton, NameMenuButton,

SearchTextFld, CancelBtn, FindButton, etc. Each of these components has an (inher-

ited) Open method which is used to activate5 the component. Some components, like

ContainsMenuBtn and NameMenuBtn, further bind the Open method. For example, the fur-

ther binding of Open in ContainsMenuBtn, in addition to activating the menu button, also

activates the appropriate menu and associates it with the menu button.

3This dialog is similar in design to the Find File dialog in the Macintosh Finder
4Not exactly; the code shown here is slightly simpli�ed for ease of presentation: in particular, it is not

fragmented. For the purpose of this discussion, it is functionally equivalent to the code generated by the

ApplBuilder.
5display on screen.



Listing 1. The generated code for the Find File dialog.

mainProgram: macenv

(# findDialog: Window

(# PromptLabel: @StaticText;

ContainsMenuBtn: @MenuButton

(# Open::< (# ... #);

#);

NameMenuBtn: @MenuButton

(# Open::< (# ... #);

#);

SearchTextFld: @EditText;

Line1: @Rectangle; (* horizontal separator *)

CancelBtn: @PushButton

(# mouseDown::<

(# do this(Window).close #)

#);

FindBtn: @PushButton

(# Open::< (# ... #);

mouseDown::<

(# do 'Finding ' -> putText;

searchTextFld.getText -> putLine;

#);

#);

Open::<

(# do 1 -> PromptLabel.Open;

2 -> ContainsMenuBtn.Open;

3 -> NameMenuBtn.Open;

4 -> SearchTextFld.Open;

5 -> Line1.Open;

6 -> CancelBtn.Open;

7 -> FindBtn.Open;

INNER;

#);

#); (* findDialog *)

theFindDialog: ^findDialog;

... (* other patterns of mainProgram *)

do

... &findDialog[] -> theFindDialog[];

1000 -> theFindDialog.Open; ...

#)



In addition to generating the Beta code describing the behavior of the component, the

ApplBuilder also generates a resource which describes the visual attributes (size, geometry,

etc.) of the component. This resource is stored as a Macintosh resource, and has a unique

ID. This resource ID, supplied to the Open method as an argument, allows it to determine

the visual attributes of the component it must display.

CancelBtn and FindBtn further bind a method called mouseDown. It is here that the action

of the button is described.

In the do-part of mainProgram, the variable theFindDialog stores an instance of the pat-

tern findDialog. This instance's Open is then called with the resource ID of the window

for the dialog. When this happens, an instance of the window is displayed on the screen.

Subsequently, the further binding of findDialog's Open (shown in the listing) is invoked;

this calls Open for each of the components of the dialog, causing them to activate them-

selves.

The reader should be convinced that the code in Listing 1, although not presented in

complete detail, correctly describes the dialog in Figure 5.2.

5.2.2 Adding new components

Suppose the user of the ApplBuilder edits the dialog in Figure 5.2 to produce the dialog

in Figure 5.3. The user has essentially added a new menu-button, called Search, to the

original dialog. This section will show how the edited dialog can be represented by a Beta

pattern that is a sub-pattern of the original dialog (Listing 1).

Figure 5.3: The extended Find File dialog

The code for the edited dialog is shown in Listing 2, ignoring mainProgram for now.



Listing 2. Adding the Search menu-button.

findDialogExt: findDialog

(# SearchMenuBtn: @MenuButton

(# Open::< (# #); #);

Line2: @Rectangle;

Open ::<

(# do 8 -> SearchMenuBtn.Open;

9 -> Line2.Open;

INNER;

#);

#)

The pattern describing the edited dialog is called findDialogExt; it is declared as a sub-

pattern of findDialog. Hence, it is clearly an extension of findDialog and can safely

replace findDialog in the base program.

Functionally findDialogExt behaves exactly as expected (Figure 5.3). To see this, observe

what will happen when its Open method is invoked. It will �rst invoke the Open method

of findDialog; when the INNER imperative is reached, control will be transferred to the

Open declared in findDialogExt. Here, an instance of SearchMenuBtn will be activated,

resulting in the display of the Search button.

5.2.3 Removing components

Consider what would happen if the Contains menu-button, illustrated in Figure 5.2, must

be removed. In this case, the edited dialog doesn't feel, at least functionally, like an

extension of the original dialog: it has one less button. It is still possible, however, to

generate a Beta pattern for the edited dialog so that it is a sub-pattern of the findDialog.

This requires that findDialog be structured a little di�erently to begin with. The desired

structure for findDialog is shown next, and it is assumed that the original dialog is

generated in this manner. This code is functionally equivalent to the findDialog in

Listing 1. Generating such code should require a simple modi�cation to the ApplBuilder.

Note also that generating code in this way doesn't, in any way, invalidate the approach

of the previous section: it is still possible to add new components; this requires extending

the enabling vector (yet to be explained), an operation that is possible in Beta.

The code is shown in Listing 3.



Listing 3. An extensible version of the code for the original Find File dialog.

findDialog: Window

(# PromptLabel: @StaticText;

... <<<identical to corresponding parts in LISTING 1>>> ...

enabVector: [7]##Object;

setupEnabVector:<

(# (* define patterns to enable each of the components *)

openPromptLabel : (# do 1 -> PromptLabel.Open #);

openContainsMenuBtn : (# do 2 -> ContainsMenuBtn.Open #);

openNameMenuBtn : (# do 3 -> NameMenuBtn.Open #);

openSearchTextFld : (# do 4 -> SearchTextFld.Open #);

openLine1 : (# do 5 -> Line1.Open #);

openCancelBtn : (# do 6 -> CancelBtn.Open #);

openFindBtn : (# do 7 -> FindBtn.Open #);

do

(* store these patterns in the enabling vector *)

openPromptLabel## -> enabVector[1]##;

openContainsMenuBtn## -> enabVector[2]##;

openNameMenuBtn## -> enabVector[3]##;

openSearchTextFld## -> enabVector[4]##;

openLine1## -> enabVector[5]##;

openCancelBtn## -> enabVector[6]##;

openFindBtn## -> enabVector[7]##;

INNER;

#);

Open::<

(# do setupEnabVector;

(for i: enabVector.range repeat

(* open each component *)

enabVector[i];

for);

INNER;

#);

#); (* findDialog *)

With the exception of the de�nition of enabVector (enabling vector), setupEnabVector,

and a di�erent de�nition of Open, it is identical to the one in the original listing. Open

uses the enabVector to activate the various sub-components (call their Open methods),

rather than executing their Open methods directly. The size of the enabVector is equal to



the number of sub-components in the dialog, in this case 7. setupEnabVector is invoked

before the enabVector is used; as it is virtual, it can be further bound in sub-patterns and

used to disable one or more of the sub-components. Hence the name enabling vector.

Given that the original dialog is as in Listing 3, it becomes possible to generate code for

the edited dialog as a sub-pattern of findDialog. This is illustrated in Listing 4.

Listing 4. Removing the Contains menu-button.

findDialogExt: findDialog

(# setupEnabVector::<

(# do Object## -> enabVector[2]##;

INNER;

#);

#)

Here the setupEnabVector method is further bound and used to assign the generic no-op

Object into slot 2 of the enabling vector. As a result, when the Open method of this

pattern executes the object in slot 2 of the enabling vector it will end up exeucting a

no-op, instead of executing an object (openContainsMenuBtn) which would have called the

Open method of ContainsMenuBtn. The net e�ect of this will be that the resulting dialog

will not have a Contains button.

5.2.4 Composing edits

The previous sections have established that it is possible to generate the edited dialog as

a sub-pattern of the original dialog. This section will establish that if an edited dialog,

whose code has been generated as an extension, is edited further, the resulting dialog can

still be generated as an extension.

Consider the example of the previous sections: the �rst edit adds a Search button, while

the second removes the Contains button. The �rst edit results in code for findDialogExt

de�ned as a sub-pattern of findDialog. The second edit can be handled by generating its

code as a sub-pattern of findDialogExt. Assuming that the original code was generated

with the enabling vector, this code may look as follows:

Listing 5. Composing edits.

findDialogExt2: findDialogExt

(# setupEnabVector::<



(# do Object## -> enabVector[2]##;

INNER;

#);

#)

Clearly, findDialogExt2 incorporates both the edits and is an extension of findDialogExt

and hence of findDialog.

An alternative is to discard the code generated after the �rst edit. In this case, the pattern

generated is a direct sub-pattern of the base UI component findDialog and incorporates

all the edits, �rst and second in this case, to the original dialog.

Either approach will work equally well. Incorporating all the edits into a single extension

will prevent the proliferation of many extensions. On the other hand, having many small

extensions will restrict compilation to smaller units. In any case, it should be clear that

the approach works even when edits are composed.

5.2.5 On-the-y incorporation of extensions

The previous sections have shown how edits, possibly composed, of a UI component can

be handled by generating code which is an extension of the original code. This section

will show how these extensions can be incorporated into the base program without any

need to recompile the base program. This will complete the explanation of how one can

obtain a new program with the edited UI component(s).

Consider the extension findDialogExt presented in Listing 2. This section will show how

findDialog declared in the base program (Listing 1) can be replaced by this extension

without any recompilation of the base program. The technique is based on preparing

the base program to handle such replacements of components by their extensions. The

technique calls for a di�erent code-generation style for the base program.

Listing 6 shows the base program generated in a di�erent style. This code is functionally

equivalent to the code in Listing 1; the di�erences lie in the coding style. This version is

more open for extensions; hence it will be called the extension-ready version. Generating

such code, instead of the original code, should require a simple modi�cation to the Appl-

Builder. Note, once again, that generating code in this way doesn't, in any way, invalidate

the approach of the previous sections: the findDialog pattern is unchanged and hence its

extensions can be generated as explained earlier.



Listing 6. The extension-ready code for the Find File dialog.

mainProgram: macenv

(# findDialog: Window

(# ...

<<<identical to corresponding descriptor in LISTING 4>>>

...

#); (* findDialog *)

extend:<

(# do findDialog## -> extensionServer.getPattern -> findDialogP##;

1000 -> extensionServer.getResourceId -> findDialogRsrc;

#);

findDialogP: ##findDialog;

findDialogRsrc: @integer;

theFindDialog: ^findDialog;

do

extend;

&findDialogP[] -> theFindDialog[];

findDialogRsrc -> theFindDialog.open;

#)

The primary di�erence lies in the way in which the findDialog pattern is used: it is

accessed via a pattern-variable called findDialogP. The extend method is capable of

assigning a new pattern to findDialogP and is executed before findDialogP is used. It

queries an extension server (using getPattern) for an extension of the findDialog pattern,

storing the resulting pattern in findDialogP. Similarly, it also gets the resource ID of the

extended pattern. Assuming that the extension server is the identity function (i.e. both

getPattern and getResourceId return their arguments), this code will behave identical to

the code in Listing 1 and will create the original dialog shown in Figure 5.2.

The getPatternmethod of the extension server is a map from pattern to pattern: given a

pattern, if an extension for the pattern has been registered with the extension server, it will

return the extension pattern, else it will simply return its input. Similarly, getResourceId

will return the resource ID corresponding to the extension pattern, if any; it will return

its input if an extension has not been registered.

A program which uses the extension server, as does mainProgram, can be made to use

extended patterns by simply registering the extended patterns with the extension server.

The extension server can be implemented as a database external to the program, thus

making the extension-registering process independent of the program execution. It also

serves to make the extensions persistent.



In the Beta system, every pattern has a unique ID. The extension server's getPattern

method can be implemented as a map from such a pattern ID to the object-code of the

extension. In order to install an extension for a pattern, e.g. findDialog, one can de�ne

an entry mapping the ID of the findDialog pattern to the object-code of its extension

pattern. This object-code is obtained by compiling the extension pattern in the right

context. Once the extension is registered, when the program executes the statement:

findDialog## -> extensionServer.getPattern -> findDialogP##;

getPattern is invoked with the ID of the findDialog pattern. It can use this ID to search

the extension-map for a matching entry. If found, it can take the associated object-code

and dynamically link it into the calling program; the code can then be packaged into a

structure value denoting the extension and returned by getPattern. The report [AF89]

shows that such an approach, where extensions are compiled and dynamically linked, is

entirely feasible.

Alternatively, the extension server could map pattern IDs to the source-code of the ex-

tension. In that case, getPattern could interpret the source-code of the extension, pack-

aging it into a structure value to be returned. This approach is described in detail in

[Mal93a, Mal93c].

The getResourceIdmethod of the extension server is trivial to implement: it simply maps

integers to integers. When an extension is registered for a pattern, an entry mapping the

pattern's resource ID to the extension's resource ID must also be created.

So, to replace findDialog by findDialogExt in mainProgram, one would compile find-

DialogExt, and register it with the extension server, using the ID of findDialog as the key.

When mainProgram executes getPattern it will �nd this entry and assign findDialogExt

into findDialogP. Subsequently, all uses of findDialogP will denote findDialogExt.

5.2.6 Summary

This section has shown the following:

1. If the base program has been generated as in Listing 6

2. and the user-interface components have been generated as in Listing 3

3. then edits of the user-interface components can be handled by

4. generating the source-code of the new user-interface component as an extension of

the original component's source-code



5. and replacing the original by the extension without any recompilation of the base

program.

5.3 Adapting the ApplBuilder

The previous section has illustrated an approach that can be employed in order to achieve

incremental application generation and execution. This section will show how the Appl-

Builder should be adapted to use this approach.

Currently, the ApplBuilder is able to generate code in the following ways: (1) when a

new application is created, it generates code for the entire application, and (2) when

an existing application is edited, it regenerates code for only the a�ected modules. The

code produced in (1) is not extension-ready; it is not prepared to accept extensions as in

Listing 6, and its user-interface components are not extensible as in Listing 3. The code

produced in (2) is produced as a replacement of the old code, and not as an extension.

The ApplBuilder must therefore be extended to have two other modes of code generation:

1. Extension-ready code-generation. In this mode, code for the entire application is

generated, but in an extension-ready manner. An application generated as in List-

ing 6, with its user-interface components generated as in Listing 3, is an example of

extension-ready code-generation.

2. Extension code-generation. In this mode, the code for the edited UI component

is generated incrementally as an extension of the original UI component's code.

Listing 2 and 4 illustrate this style of code generation. Clearly, this style of code

generation can work only if the base program has been generated in an extension-

ready style.

The ApplBuilder could provide these code-generation styles as options to its users. During

the prototyping and system-development phase, the user could generate the base program

using the extension-ready style. This would allow subsequent edits to be generated as

extensions, and hence tested without lengthy compilation and linking phases. For the

�nal version, the traditional approach could be employed, producing code that is more

e�cient. At the same time, it should be noted that since the execution overheads of

user-interfaces are high | mostly due to the intensive IO requirements | ine�ciencies

introduced by these new code-generation techniques may be insigni�cant. In that case, it

may be better to use these code-generation techniques in all phases.



In order to generate code that is extension-ready, one must introduce pattern-variables

and calls to the extend pattern (Listing 6). Which patterns should be accessed via pattern-

variables, or where should the extend patterns be placed? In other words, which patterns

must be replaceable?

An approach that could work is to make all composite user-interface components replace-

able, and to make all others non-replaceable. By composite is meant a component that is

de�ned as a composition of other components. So, for example, findDialog is a composite

as it is composed of many buttons and other components, whereas ContainsMenuBtn is

not a composite, as it a primitive component.

In order to generate code incrementally, the following algorithm can be employed:

1. If the edited UI component is replaceable (e.g. findDialog), generate code for the

edited UI component.

2. If the edited UI component is not replaceable (e.g. if ContainsMenuBtn is edited) then

generate code for the smallest enclosing replaceable UI component. This implies that

even a small change in the script of the ContainsMenuBtn will require generating an

extension to findDialog as ContainsMenuBtn is not replaceable in findDialog. But,

this overhead is not expected to be very high, and more than compensated by the

reduction in the number of pattern-variables and extend patterns attained as a

result of making only composite components replaceable.

In addition to having these new code-generation techniques, the ApplBuilder should also

be able to register extensions with the extension server (see Listing 6). This should pose

no major problems. Figure 5.4 highlights the primary architectural di�erence between

the original ApplBuilder and the proposed ApplBuilder.

5.4 Conclusions

An approach which allows a direct-manipulation based interface builder, such as Appl-

Builder, to generate code incrementally, in response to edit operations, has been described.

The approach is contingent on generating the application in an extension-ready manner.

Edited versions of components of the original application are generated as extensions of

their original counterparts. The originals are then replaced by their corresponding exten-

sions without any need to recompile the original program. One possible way to adapt the

ApplBuilder to use this approach has been demonstrated.

Such an incremental code-generation approach is clearly more e�cient than the traditional

non-incremental approach. It is clear that it avoids much unnecessary recompilation.
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In the examples, the traditional approach would have required a recompilation of the

newly generated findDialog along with all its clients. This is because there would be no

guarantee that the new findDialog satis�es the interface of the old one. The incremental

approach also avoids the lengthy link process which is a severe bottleneck in the current

system. The code-generation constraints imposed on the base program in order to make

it extension-ready clearly add some overhead. This, however, is not a problem in this

context as the I/O overhead involved in creating user-interface components more than

shadows this overhead.

Incremental compilation, on the other hand, is a more general approach. With it, the

ApplBuilder would be freed of most concerns of incrementality. There would be no need

to impose arti�cial code-generation constraints. In response to an edit of some part of

the application, the ApplBuilder could generate the new code for just that part. There

would be no need for this new code to be an extension of the code it was replacing. The

incremental compiler could be given this code along with an indication of what, in the

original program, it was replacing. The incremental compiler would produce the new

executable, ensuring that all clients that need recompilation are recompiled, and, at the

same time, minimizing the amount of compilation necessary.

The approach presented here has the potential of being more e�cient than the incremental

compilation approach. This is primarily because the incremental compilation approach

will do more work: it will do some analysis to �gure out the clients of the code being

replaced/edited and, it will recompile these clients. Both of these are avoided by the

approach presented here. The reason why this is possible is that the approach presented

here imposes some structure on the base program and then exploits this structure to

minimize the amount of work necessary to build the new application.



For a language which doesn't have an incremental compiler, the approach presented here

is easier to adopt. Building an incremental compiler is a di�cult task although there are

attempts to automate it [Hed92]. Adopting this approach requires only that one be able

to impose structural constraints on the generated code, and that one use some ingenious

code-generation techniques.

A not-so-obvious bene�t of the approach presented here is that, in order to generate the

extension, and incorporate it into the base program, there is really no need for the source-

code of the base program [Mal93a, Mal93c]. This implies that an extension-ready base

program can be tailored by its end-user using a tool such as the ApplBuilder, without

any need for its source-code. Hence, even end-users can use the ApplBuilder to prototype

their applications, or to make changes to prototypes delivered to them.

There is potential for the presented approach to be applicable in other situations. A

possible use situation could be an application that generates code from a speci�cation.

One could imagine generating an extension-ready base program given a speci�cation.

Then every edit operation on the speci�cation could be handled by generating extensions

of patterns in the base program. In order to be able to handle all edits of the speci�cation

in this way it would be necessary to impose some code-generation constraints on the base

program.

The presented approach has been tested by executing the code for the examples presented

here. The ApplBuilder hasn't yet been adapted to use this approach, the only reason for

this being the lack of resources. All the technology underlying this approach is available

to us. It is anticipated this work will be undertaken in the near future. Once that is done,

it should be possible to compare the time, between edit and test phases, taken by this

approach versus the time taken by the traditional approach.

5.5 Related Work

[Mal93a] shows how Beta programs can be made dynamically extensible. [Mal94] presents

an approach for the construction of extensible systems in object-oriented languages. These

two papers establish the foundations of the approach presented here. The report [Mal93c]

describes the implementation of an interpreter that can be used to make this approach

work.

[AF89] also show how Beta programs can be made dynamically extensible, but using

dynamic linking instead of interpretation. They illustrate the construction of a callable

loader; this can be invoked by a Beta program to load and link compiled Beta patterns



into the executing application. This could form the basis of the implementation of the

extension server.

There are other direct-manipulation based code generators. Prototyper6 generates code

in a high-level language like C or Pascal. The tool allows, to a limited extent, the linking

of user-interface components to each other. This allows one to prototype the behavior of

the interface. However, in order to associate any non-trivial behavior with the interface,

the generated code must be compiled and linked with the rest of the application. This

process is non-incremental.

Prograph7 is a full-edged visual programming environment which also o�ers the possi-

bility of graphical editing of user-interface components. Prograph supports programming

in its own special object-oriented language; methods are described as data-ow graphs.

The language is dynamic: it is possible to stop execution at a breakpoint, edit methods,

and continue execution with the edited methods. As a result, code generated by the user-

interface generator can instantaneously be made part of the remainder of the application.

This can even happen during the execution of the application.

The Interface Builder8 generates code in Objective-C. It does not support the incremental

generation of new applications when user-interface components have been edited.

In general user-interface generators for dynamic languages such as Smalltalk, CLOS, Self,

will not bene�t from the approach presented here. This is because it is easy to make

changes to a compiled, or even executing, program. Generators based on static languages

such as C++, Objective-C, Ei�el, will bene�t from this approach.
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Abstract.

This paper discusses an approach for developing highly tailorable hypermedia systems

in an object-oriented development environment. The approach is based on the use

of: 1) a hypermedia-development framework with generic classes and objects (De-

Vise hypermedia-development framework), and 2) an embeddable interpreter for the

framework-development language. The approach is based on instantiating the framework

into a speci�c Hypermedia system with the interpreter embedded within the system and

uses some reective techniques. This speci�c Hypermedia system has a number of \open

points" which can be �lled via the interpreter at run-time. These \open points" and the

interpreter provide su�cient support to allow extensions to the underlying framework at

run-time. It is in this way that the speci�c system becomes tailorable. The approach also

supports compile-time tailoring of the hypermedia system. Among the types of tailoring

supported are: 1) extension of the hypermedia system with new media-types, 2) alter-

nating editors for supported media-types, and 3) removing a supported media-type from

the system. The paper describes the framework and illustrates how the interpreter can

be embedded within a Hypermedia system. It describes the steps involved in tailoring
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a speci�c hypermedia system with a new drawing media-type. Drawings contain objects

with various graphical shapes; these objects can be anchored as endpoints for links. Since

the hypermedia-development framework uses a persistent object-store to store hyperme-

dia documents, issues in handling persistent interpreted objects are discussed; a solution

for handling such objects is presented. The paper also discusses how the approach applies

to other types of systems, and compares the embedded-interpreter approach with other

environments that support tailoring.

6.1 Introduction

Recently, terms like `adaptability', `customizability', `extensibility', and `tailorability'

have been used to describe systems that o�er their users some potential to change the

system. The use of `tailorability' in this paper covers all of these terms. The term `tai-

lorability' was coined by Trigg et al. [TMH87] as a by-product of research in the area of

hypermedia. They call a system tailorable if it allows users to change the system, e.g. by

building accelerators, specializing its behavior, or by adding functionality. The examples

given in their work illustrate changes to the behavior of the NoteCards system by using

its Application Programmer's Interface (API), and the addition of new media-types by

means of the NoteCards card-type mechanism. In this sense, tailoring implies adding and

modifying a delivered system at the source-code level; this was possible because Note-

Cards was built within the residential Interlisp environment [MT81] where any function

in the system is accessible, and modi�able, at any time.

In contrast, another extensible hypermedia system Intermedia [Mey86, GS86] was built as

a hypermedia-development framework specialized from the general MacApp Application

Framework [Sch86]. The Intermedia framework provides support for users (hypermedia

designers) to construct their own variants of Intermedia by adding new media-types as

specializations of classes from the framework. MacApp was, at that time, written in

Object Pascal1, and such an extension required access to the Intermedia source code, and

a compiler, in order to perform the necessary recompilation.

Both NoteCards and Intermedia support tailoring of hypermedia systems, but they both

assume that the tailor has the same access to the entire development environment as the

original developer had. This assumption is both undesirable and unrealistic in most use

settings: the full development environment is incomprehensible, delivering source code

raises legal as well as maintenance problems, a full development-environment license is

expensive, etc. Thus we face some serious problems: How do we support source-code-level

1Now a C++ version is also available.



tailoring of systems without delivering entire development environments? How can such

tailorability be provided for compiled-language environments aimed at programming-in-

the-large?

This paper discusses an approach to overcome these problems and provide source-code

level tailorability, at selected \open points" [N�r92], in systems built with the Mj�lner

Beta environment. This approach allows users to extend such tailorable hypermedia

systems in a fashion similar to that of NoteCards and Intermedia, with the power to

do similar things, but without the need for users to have access to the full development

environment. Although this paper elaborates the approach in the hypermedia domain,

the authors believe that the approach can be applied to other application domains as well.

The DeVise Hypermedia (DHM) system and development framework [GHMS94, GT94,

Gr�93] formed the basis of these tailorability experiments. The DHM development frame-

work consists of a set of generic classes providing an object-oriented implementation of

the Dexter model concepts [HS94]. The Dexter model is a general model that describes

the data and functional model of hypermedia systems. The generic classes in the DHM

framework provide a conceptual schema for the object structures to be stored persis-

tently, as well as classes to handle the runtime behavior of the link-following and brows-

ing operations. The DHM framework is built using the Mj�lner Beta environment which

is based on the strongly-typed, block-structured, object-oriented programming language

Beta [MMPN93].

The original DHM framework supports development and tailoring of hypermedia systems

by writing specializations of the generic classes; this development and tailoring requires

access to the Beta compiler and the source code of the system being tailored. Hence the

original DHM framework leaves one in a situation similar to NoteCards and Intermedia|

there is a need for the development environment and source code of the original system.

The situation is recti�ed by instantiating the DHM framework into a speci�c system

which includes the Beta-interpreter library [Mal93a]. In this system, it is still possible

to specialize the generic classes; this is handled by the embedded interpreter. There is

no longer any need for the development environment or the complete source code of the

system; only the interfaces of the classes being specialized during the tailoring process are

needed. As a result, tailorability is transferred from the domain of the framework users

(i.e. the developers) into the domain of the system users (most likely super-users with

programming knowledge).

The paper explores a scenario in which a user of the DHM system would like to include

his/her drawings, made with an independent drawing editor, into his/her hypermedia

documents with support for links to the individual elements of a drawing. In other words,

the user would, for example, like to be able to link the name of a room in the textual



description of a tour of a house to the corresponding graphical object in a plan of the

house. The entire process for accomplishing this is illustrated | this includes the code

that the user has to write as well as the user's interaction with the hypermedia system to

install this new code.

The paper also resolves the apparent conict between persistence and extensibility; it

shows that an object, which is an instance of an interpreted extension class, can safely

be saved into a persistent store or an object-oriented database (OODB) [ABH+92]. It

presents a scheme whereby a system which accesses such an \extended object" from the

store gets extended automatically, if necessary, with the corresponding extension class.

This work also make concrete the results presented in related papers [Mal93a, Mal94] by

implementing a large tailorable system according to the principles in those papers. The

tailorable DHM system, built as part of this work, uses the techniques described in both

of those papers.

Although the development of the framework and the tailorable system have been done

in Beta, every attempt has been made to present the results in a language-independent

manner. Hence, where possible, class diagrams are used instead of Beta code. The little

Beta code that appears should be self-explanatory if it isn't already annotated with a

footnote.

The paper begins by illustrating a tailoring scenario (Section 6.2) in which the user's in-

teraction with the hypermedia system is illustrated. The architecture of the hypermedia-

development framework is shown next (Section 6.3). This establishes the background

necessary for illustrating how this framework can be instantiated into a tailorable hyper-

media system (Section 6.3.4). The code that the user needs to write in order to add the

drawing media-type is illustrated in Section 6.4. The scheme for making extended objects

persistent is illustrated in Section 6.5. Section 6.6 explores whether an extension made

for one version of a system can still work with a newer version of the system. Section 6.7

concludes the paper.

6.2 A hypermedia tailoring scenario

This section gives an intuitive feel for the types of extensions supported by the tailorable

DHM system. The tailorable DHM system is extensible in that it allows for the intro-

duction of arbitrary new media-types. As an example, it is shown how the supported

media-types can be extended dynamically to allow a new media-type comprising of draw-

ings containing objects with various geometric shapes. The new drawing media-type

allows the creation of links to/from the individual objects in a drawing.



A hypermedia system is usually built to work with certain types of media; it may, for

example, support text, still pictures, audio, and video. This means that a hypermedia

built using the system will have components each of whose contents can be either text, still

pictures, audio, or video. For each supported component-type, the hypermedia system

usually has built-in support for handling (creating, displaying, storing) the component,

as well as for linking to the component.

The DHM system is one such system. Figure 6.1 shows the original non-tailorable2 DHM

system with a hypermedia comprising of two components: a text component and a �le

component. A text component can contain arbitrary text; links can originate/terminate

Figure 6.1: The original DHM system with a text component and a �le component

within the text component, i.e. substrings can serve as link end-points. A �le component

contains the names of a data-�le and an application-�le; activation of the �le component

(e.g. following a link to it) results in an invocation of the application-�le, as a separate

process, on the data-�le. Links can originate/terminate at the �le component, not within

it. The �gure shows the main window entitled Devise Hypermedia v1.4.5. Within this, is

shown a hypermedia document called tour. The word building in the text component

is a link end-point. This link terminates at the �le component; following it will result in

the activation of the �le component which will result in the picture-viewing application

xv being started as a separate process on the �le parla.gif. A picture will appear on

the screen.

2non-tailorable means dynamically non-tailorable



The �le component is both general and limited. Its generality stems from the fact

that instances of it can represent arbitrary media-types; the media-type depends on the

application-�le: if the application supports video, then the component is a video compo-

nent. This generality comes at the expense of being forced to link to the component as a

whole; it is not, for example, possible to specify a link to a speci�c segment of the video

sequence.

Thus, the DHM system has, built into it, complete support for the text media-type and

limited support, via the �le component, for a variety of arbitrary media-types. Arbitrary

new media-types cannot be completely supported without modifying the original system

and rebuilding it. Hence, if you are a user of the hypermedia system and you have a new

media-type you would like to link-in with your hypermedia documents, you will have to

get the development version of the hypermedia system, change it, and rebuild it | a task

which proves quite expensive and di�cult for most users.

In order to support the introduction of arbitrary new media-types, a special tailorable3

version of the DHM system has been built. This tailorable version has, embedded within

it, a Beta interpreter capable of interpreting code for new media-types within the context

of the executing hypermedia system. In this tailorable version, new media-types can be

de�ned without any need for modifying or rebuilding the hypermedia system. Given an

ordinary editor for drawings, one can introduce a drawing media-type into the hypermedia

system by simply writing some code and using the Extend command of the hypermedia

system.

The following section illustrates, intuitively, such a tailoring scenario. It illustrates the

user's interaction with the hypermedia system during the tailoring process.

6.2.1 The drawing media-type extension

It is easy to imagine hypermedia documents with drawings as part of them. It would be

nice, for example, to make a plan of a house, and link each room in the plan to a picture

of it (as in Figure 6.2). Each room could also be linked to a textual description of it and

vice versa.

Assume one has a drawing editor one uses to make drawings; assume also that this editor

is available, either as source-code, or as an object-code library. Illustrated here is the

procedure by which the tailorable DHM system is extended with this drawing editor, thus

allowing one to create hypermedia documents containing drawings, with links pointing to

elements within them.

3dynamically tailorable



Intuitively, assuming that the user has already written some additional code that `wraps'

the drawing editor, this would work as follows:

1. The hypermedia system has an Extend menu-item in its Components menu. The

user invokes this item.

2. The hypermedia system prompts the user for the name of a �le containing the

code to support the new media-type; in this case the user speci�es the code for the

drawing media-type i.e. the drawing editor and the code that wraps it.

3. The hypermedia system loads the code and adds a new menu-item, called Draw, to

the Components menu.

4. The user is free to create instances of the drawing component-class.

A drawing component is illustrated in Figure 6.2: the snapshot shows the Components

menu after the drawing component has been added to the system. A drawing component

can have an arbitrary number of graphical objects, each of which has some geometric

shape. Each of these graphical objects may be an end-point of a link. The �gure shows

the scenario described earlier: a plan4 of a house is shown. There are links from the

text to the individual rooms in the plan. For example, following a link from the word

kitchen results in the appropriate room in the plan being highlighted. It is also possible

to follow the link backward from the room in the plan to the corresponding word in

the text component. In short, the drawing media-type is completely integrated with the

hypermedia system.

A hypermedia document containing drawing components can also be saved in, and

reloaded from, the object-oriented database, just as a normal hypermedia document

without any extended drawing components is. Opening a hypermedia document with

the extended drawing components in a hypermedia system without the extension results

in the automatic incorporation of the extension; i.e. the above user-initiated extension

process shown earlier takes place automatically and transparently (see Section 6.5).

As a result of this process, the hypermedia system has been extended with a new media-

type, a media-type for which there was no direct built-in support; all of the support was

dynamically loaded. The extended hypermedia system will provide complete support for

the new media-type with links to and from the internals of the media-type. Installation of

the extension requires no change to the hypermedia system; in fact, the extension happens

dynamically.

4albeit crude!



Figure 6.2: The DHM system integrated with a drawing editor

In this manner, the DHM system can be tailored to support arbitrary media types. In

order to introduce a new media-type, the user has to:

1. write the code to support the media-type, and

2. perform the above extension-process which essentially loads the support-code into

the hypermedia system.

The following sections examine the details of the implementation that contribute to mak-

ing such an extensibility mechanism work.

6.3 DeVise Hypermedia Tailoring architecture

This section presents a brief overview of the DHM tailoring architecture.



6.3.1 Framework architecture

The DHM system is built from a Dexter-based hypermedia development framework

[GHMS94, GT94]. The architecture of DHM is depicted in Figure 6.3. The architec-

ture is divided into four high-level layers: Storage Layer, Runtime Layer, Presentation

Layer, and Application Layer.

OODB Server/
Persistent Store

Application
Layer

Presentation 
Layer

Storage 
Layer

(Physical)

User Interface

Application
BA1

Application
BA2

Composite
Browser

Runtime
Layer

(Conceptual)

(Within
Component
Layer)

Runtime Process
RP B

Application
Interfaces

Storage Classes

APPL/PRES
Protocol

OODB Client/Server
Protocol

Figure 6.3: The architecture of DHM systems

The Storage layer corresponds to the Storage layer of the Dexter Hypertext Reference

Model [HS94] and handles \permanent" data, that is, structural and content information

saved in the shared database. The Runtime layer also corresponds to the Runtime layer of

the Dexter model and handles information of a transient nature (used only at runtime) as

well as supporting hypermedia procedures involving component-creation, link-following,

etc. The Presentation layer is a layer introduced to provide an encapsulation of platform-

speci�c code. The Application layer covers the \Within-component" layer of Dexter. The

Presentation layer supports access/communication to and from (external) applications



and editors belonging to the Application layer.

The Storage and Runtime layers are written completely in Beta, but are otherwise fully

platform independent. The Presentation layer is also written in Beta; its interface is

platform independent, while its implementation is platform and application dependent.

The Storage layer may be separated into a client/server con�guration (using the OODB;

see Figure 6.3) or built into the runtime process (using the persistent-store library).

The Presentation layer de�nes a protocol for communication with the Application-layer

process. The protocol is implemented via direct invocation for applications built into the

runtime process; for external applications written in Beta, it is implemented with the

BETA distribution facilities; it may use sockets on Unix, AppleEvents on the Macintosh,

and DDE on MS-Windows to support communication with non-Beta external applica-

tions. Thus the Application layer may be written in any language that can support the

implementation of a communication protocol with the Beta code in the Presentation layer.

So, one possible con�guration for the system as a whole is with the Application-layer appli-

cations built into the runtime process and the Storage layer separated into a client/server

con�guration (OODB). In this case the APPL/PRES protocol boils down to direct

method-invocation. This is the con�guration used for this work.

6.3.2 Framework Classes

The underlying development framework consists of sets of classes to implement the three

within-hypermedia layers: Storage, Runtime, and Presentation (see Table 6.1).5

It is beyond the scope of this paper to explain all the details of the framework as outlined

in Table 6.1; however, in order to give an idea of how one can develop speci�c systems,

or extend existing systems, a brief description of the overall framework is needed.

Storage layer classes

The Storage-layer generic classes, plus specialized classes, constitute the conceptual

schema for the objects that are stored in the Persistent Store/OODB. In the Storage

layer, the StorageMgr class manages the storage of Hypertext objects. A Hypertext object

holds a set of components. A Component is an abstraction that implements both \nodes"

5Notation: Indentation indicates block-structural nesting of classes. Class names in plain text de-

scribe generic classes, whereas names in italics describe examples of specialized or application-speci�c

code that can be added to develop a speci�c hypermedia system. Names in angular brackets (e.g.

<list-of-Component>) denote the attributes of the classes they appear within.



Storage Classes Runtime Classes Presentation
Classes

Application
Layer

Presentation
<Appl-ref>
<Protocol>

StorageMgr SessionMgr
<StorageMgr-ref>
<sessionMgrPres-ref>
<list-of-Session>

SessionMgrPres
<SessionMgr-ref> (DHM mainwindow)

Hypertext
<list-of-Component>

Session
<Hypertext-ref>
<sessionPres-ref>
<list-of-Instantiation>

SessionPres
<Session-ref>

(Hypertext icon
in DHM
mainwindow)

Component
<BaseComponent-ref>
<list-of-Anchor>
<PresSpec-ref>

Instantiation
<Component-ref>
<instPres-ref>
<list-of-LinkMarkers>

InstPres
<Instantiation-ref>

(Editors for
component
contents)

Anchor LinkMarker
<Anchor-ref>
<LinkMarkerPres-ref>

LinkMarkerPres
<LinkMarker-ref>

(e.g. brakcets
around text in a
TextEditor)

BaseComponent
LinkComponent

<list-of-specifier>
LinkInstantiation

<linkComponent-ref>
Specifier

<Component-ref>
<Anchor-ref>
<PresSpec-ref>

CompositeComponent
<list-of-Component>

CompositeInstantiation
<compositeComp-ref>

(XIconBrowser)

SubInst
<Component-ref>
<SubInstPres-ref>

SubInstPres ( I c o n  i n
XIconBrowser

AtomComponent
(TextComponent
FileComponent
etc.)

(TextInst
 FileInst
 etc.)

(TextPres
FilePres
etc.)

(TextEditor
FileWindow
etc.)

Table 6.1: An outline of the relationship between framework classes

and links of traditional hypertext systems. A component holds some contents and one or

more anchors, each of which identify a location within the component's contents (e.g. a

sub-string in a text component). In a component object, the contents are represented by

a pointer to a BaseComponent object, and the anchors by a list of Anchor objects.

The LinkComponent sub-class implements links, the AtomComponent sub-class implements

\nodes" with simple data contents like text, the CompositeComponent sub-class imple-

ments \nodes" comprising sets of other components, or having some internal (hierarchical)

structure. TextComponent and FileComponent are examples of speci�c AtomComponents

added to a speci�c hypermedia system. CompositeComponents are, for example, used to

contain sets of AtomComponents resulting from a query search.



Runtime layer classes

In the Runtime layer the SessionMgr class manages sessions with multiple hypertexts.

The Session class possesses the runtime behavior for a hypertext; hence it has point-

ers <hypertext-ref> to a hypertext object, and <sessionPres-ref> to a session-

presentation object. See the following section for an explanation of presentation objects.

The Instantiation class which is nested within the Session class implements the runtime

behavior of components. It has a pointer to a component object from the Storage layer,

and to an instPres object from the Presentation layer. The instPres object is a wrapper

that provides a uniform interface to editors for various component contents (media-types).

The linkMarker class implements the runtime behavior of anchors; a linkMarker object has

a pointer to an anchor object and to a linkMarkerPres object. Presentation objects are

explained in the following section.

Presentation layer classes

In the Presentation layer there is a generic Presentation class which acts as a superclass for

all presentations; it possesses a reference to an editor or some other user-interface object

of the Application layer. The Presentation-class attributes represent the general protocol

for communication between the user-interface and the within-hypermedia objects. The

sessionMgrPres class wraps the user-interface (i.e. the main DHM window) used to access

the OODB and to start and close sessions on speci�c hypertexts.

Similarly, the sessionPres class wraps the user-interface to a speci�c hypertext (e.g. the

icon representing the hypertext which appears in the DHM main window, and a collection

of menu-items to operate on it). The instPres class wraps an editor for a component's

contents. Finally, the LinkMarkerPres class which is nested in InstPres wraps the user-

interface code responsible for presenting an anchor in the component's contents, e.g.

brackets in the text belonging to a text component.

Class organization

The classes of the di�erent layers are organized in inheritance hierarchies; a speci�c hyper-

media system has its own extended specialization hierarchies mirroring the media-types

and composite-types that are provided in that particular system. Figure 6.4 shows an

example of the Component class-hierarchy for a given system supporting only text and

external �les as atomic media-types, along with a rich variety of composites to handle

browsers, and queries [GT94]. Similar specialization hierarchies exist for the Runtime and

Presentation layers.



Component

AtomComponent

LinkComponent

CompositeComponent

VirtualLinkCompositeTableTopComposite VirtualAtomComposite

nonLinkComponent

TextComponent FileComponent

Figure 6.4: Example of original DHM Component inheritance-hierarchy

6.3.3 Framework support for a new media-type

The purpose of the hypermedia development framework is to support the rapid con-

struction of hypermedia systems aimed at di�erent application domains. The generic

framework-classes provide extensive, and general, hypermedia functionality which can be

reused in many di�erent domains by developing specialized classes suiting the needs of

the domain.

The framework has been organized in such a way that a hypermedia designer can bring in

a new media-type by providing an editor for the new media-type and by building his/her

own specialized classes for each of the Storage, Runtime and Presentation layers. Hav-

ing built his/her classes he needs to register them in the sessionMgr's type-table. This

registration is done by means of so-called typeInfo objects; a typeInfo object is a kind

of meta-object containing information about a particular class. Each of the specialized

classes is encapsulated within a corresponding typeInfo object along with additional in-

formation about the class. This typeInfo object is then registered in the sessionMgr's

type-table.

The typeInfo objects exist in parallel inheritance hierarchies, such that e.g. a textCompo-

nent's typeInfo is a specialization of an AtomComponent's typeInfo. The generic typeInfo

class is outlined in Table 6.2.6

6The code is presented in pseudo-Beta syntax. Patterns are a general abstraction mechanism in Beta:



typeInfo: Class

(# attributes: attributeValueTable

hasAttr: (# attr: Text; found: bool; enter attr do ... exit found #);

getAttr: (# attr: Text; val: Object; enter attr do ... exit val #);

setAttr: (# attr: Text; val: Object; enter (attr,val) do ... #);

removeAttr: (# attr: <text-ref>; enter attr do ... #);

init: virtual (# do ...#);

#)

Table 6.2: Pseudo-beta description of the typeInfo class

The typeInfo class contains an attribute-table consisting of (name,value) pairs; there is a

general procedural interface for manipulating this table. This makes all typeInfo objects

look similar to the sessionMgr; only the actual registration of attributes varies throughout

the inheritance hierarchy. The attributes of a typeInfo object are typically set during

initialization, but they may also be set dynamically at any time. An example of initializing

the typeInfo object for the DrawComponent extension discussed in this paper is shown

in Table 6.3.7 In the DrawCompTypeInfo object, a name and a reference to the class

DrawComponent##, among other things, are registered.

The Mj�lner BETA environment supports classes as �rst-class objects in a program;

hence the typeInfo objects can point to the classes they describe. This makes it possible

to maintain a database of registered types, and query it for di�erent kinds of information

related to the class. This table is used, for example, to compute the contents of the

Components menu (see Figure 6.1): the typeInfo table is queried to return names and

pointers to classes for all the components that are setup to be visible via the Components

menu; for each such component, a menu-item is created. The menu-item is setup to use

the corresponding class-pointer to create an instance of the component.

Another example is when a given component has to be presented, e.g. as the result of

a followLink operation; the typeInfo object of the component holds information about

the preferred instantiation and presentation types and this information is used to create

Instantiation and Presentation objects of the right types.

they unify classes, types, procedures, and functions. typeInfo is a class pattern, attributes is a static

attribute of the class, hasAttr, getAttr, setAttr, removeAttr are procedure patterns (methods) of

typeInfo, init is a virtual procedure-pattern (virtual method) and hence may be further bound in

specializations of typeInfo. In procedure patterns, the enter-part declares the formal parameters, the

do-part declares the body, while the exit-part declares the return value.
7Here DrawCompTypeInfo specializes AtomCompTypeInfo and further binds its init virtual procedure-

pattern (virtual method). Assignment is expressed by ->: the value on the left is assigned to the entity

on the right. Patterns with the ## su�x denote pattern values, i.e. patterns as �rst-class values.



DrawCompTypeInfo: Class AtomCompTypeInfo

(# ...

init: binding

(#

do ('Name','DrawComponent') -> setAttr;

('Class',DrawComponent##) -> setAttr;

('PrefInstTypeName','DrawInstantiation') -> setAttr;

...

#);

#)

Table 6.3: Pseudo-beta description of the DrawCompTypeInfo class

To add the drawing media-type to the hypermedia system with the component hierarchy

as depicted in Figure 6.4, a hypermedia designer needs to provide the specialized classes

shaded gray in Figure 6.5. Having developed these classes, the corresponding typeInfo

objects only need to be registered with the sessionMgr's typeInfoTable. The drawing editor

automatically gets included into the hypermedia system, and the drawing component

becomes available to the user via the Components menu.

AtomComponent Instantiation InstPres

DrawInstantiation DrawInstPresDrawComponent

Storage
Layer

Runtime
Layer

Presentation
Layer

Application
Layer

DrawEditor

Figure 6.5: Classes involved in adding a Drawing media-type to the hypermedia system



6.3.4 Instantiating the framework into a tailorable DHM sys-

tem

This hypermedia-development framework allows for the addition of new media-types by

simply registering the required classes and rebuilding the system. This process requires

the addition of code to register the new classes, compilation of this additional code and

of the new classes, and a relink of the system.

The tailorable DHM system is built from this framework by including the Beta inter-

preter [Mal93a]. The embedded interpreter is capable of dynamically incorporating new

classes into an executing hypermedia system. The tailorable DeVise hypermedia system

uses the interpreter to load the classes for a new media-type and then registers them with

the sessionMgr's typeInfoTable. Thus, the extensibility which was originally available at

the framework level, is now available within the tailorable DHM system without any need

for recompilation and relinking.

The tailorable DHM system contains the code presented in Table 6.4;8 this code invokes

the interpreter and registers the returned classes in the typeInfoTable.

Assuming the user has provided a name for the new component (compName) along with

the names of the �les containing the Beta code for the presentation layer (presFile), the

instantiation layer (instFile), and the storage layer (compFile), the above code invokes

the interpreter on each of these �les. The interpreter returns a class-pointer to the cor-

responding typeInfo class. These are instantiated and the resulting typeInfo objects are

stored in the sessionMgr's tables. These objects are then initialized, a process that sets

up the information in these objects. Finally, the components menu is recomputed.

In the tailorable DHM system, when the user invokes Extend, this code gets executed.

Recall the tailoring scenario described in Section 6.2: the above code gets executed for

the drawing media-type. The Draw menu-item then appears in the Components menu

(Figure 6.2). When this menu-item is selected, the sessionMgr looks in its typeInfo

table, �nds the DrawCompTypeInfo object and gets all the information, like the pattern

value for the DrawComponent pattern, necessary to create a drawing component.

Note that it is possible to de�ne variations of this. One could, for example, write a variant

which only changes the presentation of a given component. It is also possible to support

the removal of media-types: a simple way is to remove the corresponding menu-item from

the components menu, but one could also imagine an open point via which the user could

8The code is presented as a Beta procedure-pattern. Variables with the ## su�x are pattern variables

and can hold patterns values. The & means create a new instance and the [] su�x means take a reference

to the instance.



extend:

(#

enter (compName, presFile, instFile, compFile)

do (* interpret the source code; get the typeInfo classes *)

presFile -> interp -> presTypeInfo##;

instFile -> interp -> instTypeInfo##;

compFile -> interp -> compTypeInfo##;

(* instantiate the typeInfo classes; *

* store typeInfo objects into tables *)

&presTypeInfo[] -> presTI[]

-> theSessionMgr.sessionMgrTypes.append;

&instTypeInfo[] -> instTI[]

-> theSessionMgr.currentSession.sessionTypes.append;

&compTypeInfo[] -> compTI[]

-> theSessionMgr.sessionMgrTypes.append;

(* instantiate the typeInfo objects *)

presTI.init;

instTI.init;

compTI.init;

(* recompute the components menu from *

* the sessionMgr's typeInfo tables *)

theComponentsMenu.recompute;

#)

Table 6.4: Extending the hypermedia system with an interpreted media-type

remove the corresponding typeInfo objects from the sessionMgr's tables. See [Mal93b]

for details on how extensions can remove functionality.

6.4 The code for the drawing media-type

The previous section showed that in order to add a new media-type to the tailorable DHM

system, one has to write various classes for the new media-type and call Extend. This

section illustrates the code that needs to be written; it uses the drawing media-type as an

example. In Figure 6.5 it was shown that in order to add the drawing media-type to the

hypermedia system, it is necessary to de�ne the classes DrawComponent, DrawInstantiation,

DrawPres, and DrawEditor. This section focuses on the DrawPres and DrawEditor classes



as these comprise the interface between the drawing editor and the hypermedia system,

and are su�cient to illustrate the idea.

The construction begins with a drawing editor. For this experiment, an existing drawing

editor was used. This editor supports the creation of graphical objects with various shapes.

These graphical objects have identities. There is the notion of a current graphical object;

the editor can indicate the current object visually by drawing it in a di�erent color from

the other objects. The entire drawing editor is written in an object-oriented style in Beta.

The relevant details of the code are examined in the following sections.

Figure 6.6 summarizes the construction process. The existing drawing editor (DrawEditor)

is specialized into a presentation-compatible drawing editor (DrawEditorForPres). Draw-

InstPres, the presentation class for the drawing media-type, is de�ned as a specialization

of InstPres.

When a drawing component is created by the user, an instance of the drawing-presentation

is created. This, in turn, creates an instance of the presentation-compatible drawing

editor. The DHM object invokes operations on the drawing-presentation object and vice

versa; the drawing-presentation object invokes operations on the presentation-compatible

drawing-editor object and vice versa. For each drawing component in the hypermedia

drawing-component
corresponds to one

DrawEditor

DrawEditorForPres

the support code - dynamically loaded

(DrawEditorForPres)

access

DHM
(DHM)

DrawInstPres
(DrawInstPres)

Presentation layer Application layer

The classes The objects

InstPres

Figure 6.6: The drawing editor and its presentation; see �gure 6.7 for class details

system, there will be one DrawPres instance and one DrawEditorForPres instance.9

9also one instance each of DrawInstantiation and DrawComponent, but these are not discussed here.



6.4.1 The details

As shown in Figure 6.6, the construction has two parallel threads: the existing editor is

specialized to make it compatible with the hypermedia system and the presentation class

in the hypermedia system is specialized to make it compatible with the extended editor.

Figure 6.7 shows the Beta class DrawEditor; this is the original drawing editor. Nested

within it are two virtual-classes: drawingSurface and menuBar. The drawingSurface im-

plements the window in which the drawings are made. Nested within it, and not shown

in the diagram, are various classes and methods which describe the di�erent graphical

shapes and their behaviors. menuBar describes the implementation of the menu bar: all

the menus and the items that comprise them are described within menuBar.

theAppl: ref

init: binding

open: binding

presentObject: binding

getSelectedObject: binding

hasSelectedObject: binding

doUpdate: binding

to create the drawing

init: virtual

doUpdate: virtual

hasSelectedObject: virtual

getSelectedObject: virtual

presentObject: virtual

open: virtual

XTopLevelShell

DrawEditor

menuBar: virtual

drawingSurface: virtual

DrawEditorForPres

menuBar: binding

addLinkEndPoint: proc
newLink: proc

highlightObjectGivenId: proc

getIdFromCurrentSelection: proc

selectionEmpty: proc

followLink: proc
tellPresToClose: proc

add

link menu

holds the

DrawEditorForPres

instance

InstPres

DrawInstPres

Application layerPresentation layer

requests to the 

DrawEditor

propagate hypermedia

linking 
requests

to hypermedia

propagate

creates 
instance of 
DrawEditorForPres

satisfy

hypermedia

requests

callbacks:

calls operations

in DrawingSurface 

of the DrawEditor

Figure 6.7: The support code for the drawing media-type

DrawEditor is specialized into DrawEditorForPres. In the specialization of the editor, a new



menu called Link is added. This is to enable linking to and from the various graphical

objects in the drawing editor (see Figure 6.2). It has items such as New Link Source, Add

Link End-point, and Follow Link. The Quit menu-item in the File menu is replaced by a

slightly di�erent Quit Window. This is because the editor is no longer a stand-alone appli-

cation; it cannot just quit as it did before; instead it must inform the hypermedia system

that it is about to close and must save its contents within the hypermedia document.

These changes to the menus of the original drawing editor are accomplished by extending

the menuBar virtual-class.10 The new menu commands are implemented in terms of

calls to the methods newLink, addLinkEndPoint, and followLink11 which are de�ned in

DrawEditorForPres.

These methods implement their behaviors by calling operations declared within the hy-

permedia system. For example, newLink calls thisSession.newLink where thisSession is an

attribute declared within the class InstPres (actually a super-class of it). The name thisSes-

sion is visible within DrawEditorForPres because DrawEditorForPres is placed lexically

within DrawInstPres,12 thus making it in the lexical scope of declarations made within

DrawInstPres and all its super-classes. This is an example of the power of the approach:

the extension can reach into the original system and access any state-information and

operations visible in its scope.

The Quit Window menu-item of the extended editor uses the tellPresToClose method, de-

clared within the extended editor, which is implemented by a call tomyInst.tellPresToClose.

Here, myInst is once again a variable declared in a lexically-enclosing block. The tell-

PresToClose method in myInst calls doUpdate in DrawInstPres. This scans all the graphical

objects in the current drawingSurface and writes them into the OODB as the contents of

this drawing component.

The methods selectionEmpty, getIdFromCurrentSelection, highlightObjectGivenId are also

de�ned within DrawEditorForPres. These are implemented in terms of simple operations

available within the drawingSurface; they get called by the presentation object.

Figure 6.7 also shows the DrawInstPres class as a specialization of InstPres, which is built

into the hypermedia system. This is an example of an extension which specializes a built-

in class. In fact, in the tailorable DHM system the presentation object is partly compiled

and partly interpreted: the behavior inherited from InstPres is compiled while that de�ned

in DrawInstPres is interpreted.

10In Beta, virtual sub-classes re�ne, not replace, their super-classes; they are referred to as further

bindings; hence the quali�cation binding in the diagram.
11These are Beta patterns used as procedures (methods); hence, the quali�cation proc in the diagram.
12the lexical placement is not shown in the diagram.



DrawInstPres doesn't add new operations to the interface of InstPres; it merely de�nes

the implementation of the operations already de�ned in InstPres. The init method is

de�ned to create an instance of the DrawEditorForPres and to store that instance in the

reference-variable theAppl.

The open operation gets invoked by the hypermedia system when an existing drawing

component in the hypermedia is to be displayed. Its purpose is to make the editor

display the stored drawing. This drawing is stored in the OODB (by doUpdate). The

open operation accesses the drawing elements from the OODB and calls operations in the

drawingSurface of the current drawing editor to display them.

The doUpdate, hasSelectedObject, getSelectedObject, and presentObject operations form

the general protocol for the hypermedia system to get information from the drawing

editor.13 They are implemented in terms of operations selectionEmpty, getIdFromCur-

rentSelection, and HighlightObjectGivenId de�ned within the editor.

These de�nitions are su�cient to interface the editor to the hypermedia system.

6.4.2 Typical execution sequences

Say the user creates an object in the drawing editor. The creation events are routed to

the drawing editor's event handler via the window-system toolkit. Hence, the drawing

editor behaves just as it did outside the hypermedia system.

Now, say the user selects NewLink14 from the Links menu of the drawing editor. This is

handled �rst by the drawing editor; it calls the newLink method de�ned within it, which

calls the newLink operation in the current-session object in the hypermedia system. This

queries the drawing editor, via the corresponding presentation object, for the currently-

selected object in the editor. Given this object (or its ID), it creates a link originating

within this drawing component at the selected object.

Say the user follows a link to an inactive drawing component (say, from a text compo-

nent). The link contains a reference to the contents of the drawing component and to a

single object within it. The hypermedia system �rst creates an instance of the drawing

presentation (DrawInstPres) and initializes it; this results in a drawing editor. It then

accesses the contents of the drawing component from the OODB, calling open on the

presentation object. This results in the display of the drawing component contents in the

drawing editor. It then asks the presentation object, via the presentObject method, to

display the particular object at the link end-point.

13and, in general from any editor.
14Assume the user is creating the source of a new link.



This section has illustrated the type of coding e�ort required in order to extend the

hypermedia system with a new media-type. Although shown for the drawing media-

type, the techniques apply equally well for other media-types. For example, to extend

the system with a video media-type, the video editor/viewer would have to be extended

to add the link menu, and a VideoInstPres presentation class would have to be de�ned.

VideoInstPres would have the same interface as DrawInstPres; it would just be implemented

di�erently. The presentObject operation, for example, could call an operation in the video

editor to show the desired video sub-sequence or frame.

6.5 Extensions and Persistence

The DHM system uses the persistent store (or the OODB) to store hypermedia documents.

When the system is extended with a new media-type, like the drawing media-type, inter-

preted drawing components will be part of the saved hypermedia documents. Hence, it

must be possible to save these interpreted objects into the store as well as reload them

from the store.

When an object is saved into the persistent store (which could be the OODB), a reference

to its prototype (behavior) is saved along with its state. A prototype, in Beta terminology,

is a runtime descriptor of the class. When the object is loaded into an executing program

| which could be another program | this reference is used to locate the prototype of

the object in that execution. Normally, a program saving the object has its prototype

compiled into it, and a program loading the object is expected to have the prototype

compiled into it.

What happens, then, in the case of an object whose prototype is interpreted, or in general,

dynamically loaded? When saving the object, the prototype will generally be present in

the execution. But, when loading it, its prototype may or may not be available. If the

extension has already been installed, then its prototype will be there, else it won't. So,

the question is: what happens when an object is loaded and its prototype is not present

in the execution?

A satisfactory answer is: load the prototype dynamically, automatically and transpar-

ently. Shown here is an approach for making this work. The approach assumes that the

extensions are interpreted, but it should work, with slight modi�cations, even if they are

dynamically linked.

In order to explain the special approach, it is necessary to introduce some of the basic

functionality of the persistent store. When an object is saved, a reference to its prototype

is saved by saving the name of the object �le (module) in which it was de�ned, along



with an index which uniquely identi�es the prototype within that �le. When the object is

accessed, possibly in another program, the name of the object �le and the index are used

to locate the prototype in the accessing program's current execution's address-space. The

name is used to locate the object �le in the accessing program, and the index to locate

the prototype within that �le.

This simple scheme is implemented by ensuring that every program using the store has

a table describing all its object �les. This table is built when the store is initialized.

Intuitively, this table has one entry for each object �le in the program it resides within.

Each entry describes the corresponding object �le; it allows a prototype to be mapped

into a unique index and vice versa.

Figure 6.8(A) shows this table, its entries, and the relevant classes; only relevant details

are shown. The table is an instance of the class ExecGroupTable (EGT). The entries are

instances of CompExecGroupTableElement (CompEGTElement). The table has a method

�ndByName, used to locate an entry by the name of the object �le. The �rst step in saving

or accessing an object is to determine which �le it belongs to, and then call �ndByName

on the table to access the corresponding entry. Once the entry has been obtained, its

methods protoToIndex and indexToProto can be used to get the unique index for the

object's prototype (saving), or to get the prototype corresponding to the unique index

(restoring).

6.5.1 Handling persistence for interpreted classes

A program which wishes to save interpreted objects into the persistent store must use a

specialized version of the table. This is illustrated in Figure 6.8(B). The specialized table

is an instance of InterpEGT, which is a sub-class of EGT. In this specialized version, the

�ndByName method is extended to handle unsuccessful searches, i.e. searches for �les that

its super-class cannot handle. Its super-class will be able to handle all searches for �les

that are compiled, leaving only the interpreted ones to it.

This specialized �ndByName is designed to invoke the interpreter on the �le being searched

for. This process creates prototypes, in the current address-space, for all the classes

declared in that �le. �ndByName then creates a specialized entry representing that �le

and returns it. The specialized entry is an instance of InterpEGTElement, which is a sub-

class of EGTElement. In order to record the fact that this �le has been interpreted, and

to be able to service future requests for the same �le, �ndByName also saves this entry in

the table, separated from the compiled entries. This is illustrated in Figure 6.8(B), where

the table has two sets of entries.

The protoToIndex method of this specialized entry behaves just as it does in normal entries
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Figure 6.8: The tables for the persistent store

(i.e. instances of CompEGTElement). It maps the given prototype into an index unique

within that �le. This is done for interpreted �les just as it is done for compiled �les. The

indexToProto method determines where the prototypes for this interpreted �le reside in

the current address-space. They are guaranteed to be there as �ndByName has invoked

the interpreter on the �le. It then uses the index to get the address of the speci�ed

prototype.

When an interpreted object is saved, the table is searched, as normally, for the �le-name

of the object. This is not found by the original �ndByName; so its extension is invoked.

It creates a special entry for the �le, if it doesn't already exist, and returns it. Calling

protoToIndex on this entry returns an index as before, and the object is saved with its



�le-name and its index.

When this object is accessed from the store, the stored �le-name is used to search the table

in the current process. Again, the original �ndByName is unsuccessful; hence its extension

is invoked. Assuming this �le has not already been interpreted, the extended �ndByName

interprets the �le, creates an entry for it, and returns the entry. When indexToProto is

called on this element, the address of the indexed interpreted prototype will be returned.

Now, assume that this object is accessed from an executable in which its �le has been

compiled. In this case, an entry for the �le-name will be found by the original �ndByName,

and the object will get loaded as a compiled object. Hence, it is possible to save an

interpreted object in the store and load it later as compiled object.

Observe that in order to make this approach work, the only parts of the original persistent

store that have been specialized are the EGT and EGTElement.

6.5.2 Loading persistent interpreted components in the tai-

lorable DHM system

Returning to the DHM system, when a hypermedia document containing a drawing com-

ponent is saved, only the component object (instance of DrawComponent) is saved in the

store. The presentation and instantiation objects are not saved.

When this hypermedia document is later accessed, loading the drawing component object

triggers a process by which, as described above, the drawing-component class (DrawCom-

ponent) | and its typeInfo class, which is de�ned along with it | will get interpreted and

transparently installed into the system. The instantiation and presentation classes, Draw-

Instantiation and DrawInstPres, will, however, not get de�ned via this mechanism. These

are necessary in order to handle the drawing-component object at run-time. The loading

of the code for these classes should also be transparent to the user of the hypermedia

system.

To do this, the runtime layer, i.e. the sessionMgr class, is extended to load these classes

dynamically. This is handled by requiring that the user write an extended version of

the component's typeInfo. Table 6.5 illustrates such an extended typeInfo for the drawing

component. Note that this is an extended version of the DrawCompTypeInfo shown in

Table 6.3. Here, the user has also speci�ed 'InstPath' and 'PresPath' attributes; these

specify the locations of the �les containing the source-code for the instantiation and

presentation classes respectively.

When the sessionMgr loads a drawing component from the store, the automatic mecha-

nism described above loads the source-code for the drawing component and de�nes the



DrawCompTypeInfo: Class AtomCompTypeInfo

(# ...

init: binding

(# do ('Name','DrawComponent') -> setAttr;

('Class',DrawComponent##) -> setAttr;

('PrefInstTypeName','DrawInstantiation') -> setAttr;

('InstPath', '/users/kgronbak/DHM/v1.4.5/UserRUN/DrawInst.bet')

-> setAttr;

('PresPath','/users/kgronbak/DHM/v1.4.5/UserPRES/DrawPres.bet')

-> setAttr;

...

#);

#)

Table 6.5: The DrawCompTypeInfo class with information about the source-code location

of the presentation and instantiation classes

classes DrawComponent and DrawCompTypeInfo. The sessionMgr then creates an instance

of DrawCompTypeInfo and initializes it. It can now access the 'InstPath' and 'PresPath'

attributes of this object and interpret the respective �les. This process will de�ne the

necessary presentation and instantiation classes. The loaded drawing component object

is now ready to be used.

With this scheme in place, the extend pattern described in Table 6.4 can be modi�ed in

order to obtain presFile and instFile from the compTypeInfo object, instead of getting

them directly from the user.

6.6 Can extensions survive new versions of the sys-

tem?

One of the problems with using extensible systems is that extensions made on one version

of the system are often incompatible with a newer version of the system [Mac91]. Exten-

sions written for tailorable systems built using this approach are more likely to survive

upgrades to new versions of the system. This is primarily because the extensions do not

have unrestricted access to the system. Hence, the new version of the system has only to

ensure that it still has the correct open points. Furthermore, should a new version of the

system have changes to the original open points | say, changes to the interface of an open

point, or deletion of an original open point | the type system will ag the incompatible



extensions when they are loaded into the new version. It will also most likely help the

user identify what changes should be made.

The following example illustrates another reason why extensions in this approach are more

likely to survive new versions of the tailorable system. Assume that a system has a class

P which has a virtual method A within it. Now assume that the user de�nes a sub-class Q

of P. In Beta, the user may only further-bind the method A, i.e. extend its functionality;

the user cannot replace the original A. When the user does this, the user need not make

any assumptions about all the places where A may be used. The only assumption the

user makes is about the extension-interface15 of A in order to determine how it can be

extended. On the other hand, if the user were able to replace A, the user would have to

make assumptions about all the places where the original A may be used.

Suppose, a new version of the system is released, and in this new version, the A is used in

a new way. This new use couldn't possibly have been in the set of assumptions made by

the replacement user as it didn't exist when the user wrote his/her extension. As a result,

installing the old extension into the new version will most likely have unexpected results.

Not only this, it will probably be di�cult to �nd the exact cause of the problem. On the

other hand, the further-binding user will be better o�; as long as the extension-interface

of A remains the same in the new version, the old extension will work in the new version.

6.7 Concluding remarks

An approach for building tailorable systems has been shown. This approach is based on

having a generic framework for building systems in the relevant domain, and instantiating

it into a speci�c system that includes an interpreter for the original development language.

In addition, the speci�c system has \open points" through which new classes can be

installed. The resulting system is then tailorable in a manner similar to systems which

run in residential environments like Lisp and Smalltalk. It supports extensions to the

underlying framework at runtime.

The approach has been demonstrated for hypermedia systems. The construction of a

highly tailorable hypermedia system has been shown. The tailoring process in order to

install a new drawing media-type has also been shown. Problems encountered in saving

interpreted objects into a persistent store or OODB have been resolved.

It is important to note that in this approach, the designer of the system has control

over where the open points should be, and as a result, has control over what should be

15By extension-interface of a class is meant only those aspects of its signature and behavior that a�ect

extensions of it.



tailorable. Thus, the resulting tailorable systems do not allow users to make arbitrary

changes to the system, as can be done in Lisp and Smalltalk environments.

An advantage, which is also a limitation, of open-points in Beta is that extensions written

by the user cannot easily break functionality already present in the system. This is mainly

due to the semantics of Beta, and is discussed in great detail in [Mal94]. In Beta, sub-

classes are true extensions of their super-classes; a sub-class re�nes its super-class, it does

not replace parts of its super-class. This limits what can be done by the extension, thus

limiting the damage-potential of the extension.

A tailorable system built using this approach will probably not be tailorable by a non-

programmer user. As has been demonstrated in the paper, the tailoring process requires a

small coding e�ort and a reasonable command of programming. Most use-sites, however,

have super-users who could easily be able to do this kind of tailoring [Mac90]. An exten-

sion to this approach would be to build a specialized application-oriented language and

environment atop these open points; this would make the coding e�ort much easier. So,

the tailorable system, instead of asking the user for Beta source-code �les could instead

provide an environment for the user to construct this code. This environment could be

specialized to, say, the hypermedia domain, and provide constructs to directly support

hypermedia-system extensions, e.g. the de�nition of new media-types.

In this work, the Beta interpreter has been utilized to process and load dynamic exten-

sions. As described in [Mal94], there are other alternatives to this: one could also use the

Beta compiler to compile the source and a dynamic linker to link and load the compiled

object-code. This alternative approach would, however, not result in a stand-alone system

unless the compiler and the linker are embedded within the tailorable system.

To tailor the example hypermedia system with the new drawing media-type, the user

must have available, in addition to the system, the interfaces of the framework classes

used. In addition, in order for the interpreter to be able to locate the object-code for

these framework classes, some symbol-table information, generated during the compilation

process of the original system, must also be available. This is all the information about

the original system that is necessary. In our experiments, we had available, annotated

abstract syntax-trees of the original system. These had more information in them than

was really necessary. It should be easy to construct trimmed versions of these trees with

only the necessary information. In fact, a prototype implementation of this is available as

part of the Mj�lner Beta system. So a tailorable system, built using the approach, must

be shipped with this additional interface and symbol information in order to be tailorable.

To measure the overhead of using the interpreter approach, the following must be included:

1. the size increase of the hypermedia executable caused by embedding the interpreter.



Initial measurements indicated an increase of 1.3 MB.

2. the size of the linker-generated symbol-table which is part of the hypermedia ex-

ecutable. Ordinarily, this information is not necessary for the hypermedia system

to run. However, the embedded interpreter uses this information in order to ac-

cess object-code in the hypermedia executable; hence it cannot be discarded. This

amounts to 2.3 MB.

3. the interface �les needed in order to interpret de�nitions of new media-types. This

amounts to 0.2 MB.

The total overhead adds up to 3.8 MB. The size increase caused by embedding the in-

terpreter (1.3 MB) can de�nitely be further reduced. The value presented is for the �rst

unoptimized version of the interpreter. In addition, forthcoming improvements in the

Beta compiler show promise of producing smaller object-code �les.

The size increase caused by retaining the linker-generated symbol-table in the hypermedia

executable (2.3 MB) can also de�nitely be further reduced. The Beta compiler produces

three symbols for each pattern it compiles, while the interpreter uses only one of these.

Hence, it seems like the number of symbols can be reduced by a third; thus, the table

should occupy only 0.8 MB. This improvement in the compiler is also forthcoming. Thus,

the revised overhead is only 2.3 MB.

In fact, if it were possible to trim this symbol-table to include only those symbols for

which there were corresponding de�nitions in the supplied interface �les, the symbol-

table overhead could be further reduced. This should be possible by writing a variant

of the standard Unix strip command, which could consult the interface �les to determine

which symbols should be retained, and remove all others.

This overhead of less than 2.3 MB appears small in comparison with that of other source-

code-level-tailorable systems. For instance, the hypermedia systems Intermedia and Note-

Cards discussed in this paper seem to require a much larger overhead to provide similar

tailorability. Intermedia was built using MacApp and MPW; major parts of these basic

environments are needed, along with the Intermedia code, in order to tailor Interme-

dia. These core parts of MacApp and MPW in themselves, by rough measurements, add

15 MB in overhead in terms of libraries and executables necessary for tailoring a system

like Intermedia. NoteCards was built in the residential Interlisp environment; thus the

entire environment is necessary both to run and to tailor NoteCards. An Interlisp image

typically adds 12 MB in overhead for a system like NoteCards to be executed and tailored.

This overhead of 2.3 MB can also be compared with that of tailoring the DHM system

using the Beta development environment. In this scenario, the user would create the



extensions as shown here, compile them, and relink the application. In order to do the

kinds of tailoring we have described, the following would be necessary:

1. the Beta compiler. This amounts to 3 MB.

2. the assembler used by the compiler. This amounts to 0.15 MB.

3. the linker used by the compiler. This amounts to 0.1 MB.

4. the object-code �les for the DHM development framework. This amounts to 3 MB.

5. the object-code �les for the other basic libraries, e.g. the Xt library. This amounts

to at least 1.22 MB.

6. the interface �les needed in order to compile the de�nitions of the new media-types.

This is the same as what the interpreter needs and amounts to 0.2 MB.

Thus, the total overhead is 7.67 MB, or 333% of the interpreter-approach overhead.

Yet another scenario can be considered. Here, the compiler would be used to compile

the extension, and an incremental | dynamic or static | linker used to link the exten-

sion into the DHM executable. In this case, the object-code �les would not be necessary

(4.22 MB). There would, however, be need for the symbol-table (0.8 MB) as in the inter-

preter approach. In such a scenario, the overhead would be 7.67 - 4.22 + 0.8 = 4.25 MB,

or 184% of the interpreter approach overhead.

Even though the drawing editor, and its presentation class, are interpreted, their perfor-

mance is acceptable. It, however, remains to be seen how the interpreter would perform

in the case of a cpu-intensive media-type like video. The time taken to extend the hy-

permedia system | with the built-in interpreter | with a new media-type is, however,

a small fraction of the time it would take to compile the necessary sources and relink the

system.

It has thus been shown that we can provide close to the level of tailorability of systems

like NoteCards and Intermedia, but at a fraction of the overhead, and with potentially

greater safety.
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Appendix A

A brief Beta primer

This brief primer provides a super�cial introduction to Beta. Concepts used in the main

text, but not presented here, are generally presented where they are used. For more

detailed treatment, please consult the Beta book [MMPN93].

A Beta program execution is a collection of objects.1 An object is statically or dynamically

created as an instance of a so-called pattern. The pattern is an abstraction mechanism

that uni�es type, function, procedure, and class.

Due to the pattern concept, the size of the language is relatively small. At the same time,

however, it implies that type, function, procedure, and class de�nitions have the same

syntax; a feature that might confuse inexperienced users.

A pattern PP is written as:

PP: P

(# Decl1; Decl2; ...; Decln (* attribute-part *)

enter Inputs (* enter-part *)

do Imperatives (* do-part *)

exit Outputs (* exit-part *)

#)

where P is the super-pattern. The declarations Decli can be of the form:

1. A: @Q where Q is a pattern. This means that an instance of Q is part of every instance

of PP.

2. A: ^Q. This means that a reference to an instance of Q, or NONE, is part of every

instance of PP.

1Some ideas for this brief introduction borrowed from [NS90].
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3. QQ: Q (# ... #). This is a declaration of a new pattern QQ nested within pattern

PP. It has the same structure as the declaration of PP.

The enter-part, Inputs, describes the input parameters (formal parameters), the do-part,

Imperatives describes the actions to be performed (body), and the exit-part, Outputs

describes the output parameters (return value). The Beta syntax uni�es assignments and

procedure calls; the symbol -> denotes both of these operations. For this paper, one

should understand E1 -> E2 as E2 := E1 if E2 is an l-value; otherwise, it means E2(E1).

PP inherits all the attributes of its super-pattern P. The enter-part, do-part, and exit-part

of PP are derived by combining P's parts with the corresponding parts speci�ed in PP.

A pattern may be used as a type or a procedure. As an example of its use as a type

consider:

Cell: (# Position : (# x : @integer;

y : @integer;

#)

loc : @Position;

#)

Here Position is used as a type. As an example of a pattern's use as a procedure consider:2

SpreadSheet :

(# Cell: (# ... #)

CreateCell:

(# x : @integer; (* local variables *)

y : @integer;

newCell : ^Cell;

enter (x,y)

do new(Cell) -> newCell[];

x -> newCell.x; y -> newCell.y;

exit (newCell[])

#)

aCell : ^Cell;

do ... (10,10) -> CreateCell -> aCell[]; ...

#)

Here CreateCell is de�ned and used as a procedure. In the de�nition, the construct

new(Cell) means \create a new instance of pattern Cell and return a reference to it."

2new(cell) is verbose syntax; the actual syntax is &Cell[]; the & creates an instance, and the []

gets a reference to the created instance.



,

Executing a pattern (e.g. (10,10) -> CreateCell) implies creating an instance of it, trans-

ferring the input parameters into this instance, executing its do-part imperatives, and

returning the output parameters from the instance. We interchangeably use the terms

procedure or pattern for a pattern de�ned as a procedure; the same applies for patterns

de�ned as functions.

A special variant of a pattern is called a virtual pattern. A virtual pattern allows one to

defer the speci�cation of some of its details until later. It is declared and specialized as

follows:

P : (# V :< (# ... #) ... V ... #)

Q : P (# V ::< (# ... #) ... #)

In P, V is declared as a virtual; there is also a reference to V within the body of P. In Q,

the inherited virtual V is further bound. Hence, in an instance of P, the V-reference refers

to the V declared in P, while in an instance of Q, the same V-reference (inherited from P)

refers to the further binding of V in Q.

A.1 Structure Values, and Pattern Variables

In the following program, the pattern variable X is declared and initialized �rst with the

structure value denoting the pattern P2, and then with the structure value denoting P3.3

The �rst call to new(X) will create a P2 instance and the second a P3 instance.

P : (# P1 : (# ... #);

P2 : P1 (# ... #);

P3 : P1 (# ... #);

X : ##P1; (* pattern variable declaration *)

DO

P2## -> X##; (* structure value for P2 stored in X *)

new(X); (* use X like a pattern *)

P3## -> X##; (* structure value for P3 stored in X *)

new(X);

#)

3The syntax ##P1 implies reference to pattern as opposed to reference to instance of pattern. In the

declaration, X is restricted to refer to P1 or its sub-patterns.

The syntax P2## -> implies get the structure value of the pattern as opposed to execute the pattern.

The syntax -> X## implies store a structure value in the variable as opposed to execute the pattern

denoted by the variable.



The structure value for P2 created by P2## encapsulates the prototype for P2 along with the

instance of P. Explaining the need for static contexts is beyond the scope of this primer.

Refer to [Mad93] for more information on this. Every time an instance is created using

the structure value, the saved static context is made the static parent of the instance.
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