MUL TI-INTERPRETER SYSTEMS

by

Nigel Derrett

and

Michael J. Manthey

DAIMI] PB-55
January 1976

Institute of Mathematics University of Aarhus

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

T
i=

ABSTRACT.

This paper is concerned with systems to support high~level-ianguage~-
oriented interpreted machines. Certain requirements for such a system

are presented and some of the problems which arise are discussed,

Keywords and Phrases.

Interpretation, emulators, microprogramming, high-level language im-

plementation, procedure call, machine architecture,.

CR Categories.'

1.3, 4.13, 4.29, 4,30, 4.35, 6.20.

CONTENTS

1.

SOME PROBLEMS AND SOME SUGGESTED SOLUTIONS ..

3.1 Common Data Items 7

3.2 Integers, Characters and Strings; wordliength 7
3.3 Addresses 7

3.4 Procedures 8

3.5 Parameter Conversion 9

3.6 Running a Program on an Emulator 10

3.7 The Representation of a Procedure 11

3.8 The Procedure-call Primitive 12

3.9 The Action taken on Procedure Call 13

3. 10 The Representation of an Interpreter 14
3. 11 The Return Primitive 14
3. 12 Multiprogramming 15

SUSPENSION .ttt tteeeeeesnsaasscscscsssssscssocsosns

REFERENCES ...t itttieitieearsosscsossasnsansns cecreane

1. INTRODUCTION.

The authors! aim in this paper is to present some thoughts as an introduction
to what we believe to be an interesting and largely unexplored topic in
computing.’ If we can stimulate others to venture forth into it we shall have

achieved our goal. The interested reader is also referred to LI]

If one wishes to implement a high level language, then doing so on a machine
designed with that language in mind can have considerable advantages over
using a more general purpose machine [e. g. 2]. Such a high~level-language-
based machine can be implemented directly in hardware [Burroughs B6700, 3]

or by a software interpreter [é.g. Burroughs 81700, 4] .

In this paper we shall consider what sort of system should be provided to
support programs written in various high~level-languages runnning on
their respective interpreters. Existing - systems (such as the B 1700)

usually have three well-defined levels:

FPrograms, written in high level languages;
Interpreters, written in machine code;

Hardware.

(Whether or not the hardware is called "microprogrammable! is not very
important here, It should be suitable for writing interpreters, which tend
to be small and repetitive.) We believe this three-level hierarchy to be
somewhat restrictive and shall consider a more general arrangement where

interpreters need not be written in (hardware) machine code,

It may be helpful here to clarify a few terms. We shall use the words
"interpreter! and "emulator!" more or less interchangeably, although we
shall tend to use "emulator!" when referring to an interpreter for a spe-~
cific (often hard-wired) machine (e.g. a PDP10, [5]). The rest of this
paper will be written in the assumption that we are trying to design a
system which can support programs running on interpreters in a general
way. This system would be based on some hardware, which we shall call

the ""host machinel',

2. REQUIREMENTS FOR A '"GENERAL!" SYSTEM

The introduction of several machine codes, with corresponding emulators,
into a system adds an extra level of complexity to the whole; and, further,
assumptions which can be made about a single-machine-code system are not
always true for a multi—céde one. Thus the authors found it helpful to have

some sample requirements in mind when thinking about the system.

In this section we shall state some problems which a "general-purpose
multi-interpreter system! should be able to cope with. We shall give some
motivation for them in order to persuade the reader that they are reason-
able. In the next section we shall consider some of the difficulties which

arise when we try to fulfil these requirements.

Requirement 1

A program running on one emulator should be able to call a procedure which

runs on another.

This allows, for example, an I/O package written in one language to be

used by the others. This is Important, not only because it saves writing an
operating system for each interpreter, but also because It allows the system
to be much more secure. (For example it is possible to have only one in-

terpreter which can deal directly with the disc file-system.)

Requirement 2

It should be possible to write a procedure in host machine code (microcode)

and call it from a program running on an interpreter.

This allows fast execution of time-critical operations.

Requirements 1 and 2 together state that it should be possible to write and

call procedures which run on any machine, interpreted or host.

Requirement 3

It should be possible to write an interpreter in a high level language.

In other words the system should be able to deal with interpreters which
are themselves interpreted. This is quite a difficult requirement to fulfill,
for once we lift the restriction that an interpreter must be written in host
machine code then we must consider the possibility of "interpreter nests"
of any depth. Suppose procedure Fred runs on an X machine, which is
emulated on a Y machine, which is emulated on a Z machine, which is
emulated on the host machine (see Fig. 1). Then when Fred is called,

the system must find, or produce, an X machine for it to run on, and hence

Y and Z machines; and all these machines must be set running properly.

Fred

Requirement 4

It should be possible for an interpreter to call a procedure which runs at

any level of interpretation.

Thus, for example, if an interpreter contains a complicated operation
(sych as a garbage collector) this could initially be written in a high level
language for testing and later written in (for example) host machine code

in order to speed it up.

ITf requirements 1-4 are satisfied then it should be possible to have both
programs and interpreters written in a mixture of machine codes. Thus
the first version of either can be written in the most convenient language
and then transferred as required, one part at a time, to a more efficient

implementation.

Requirement 5

The calling sequence for a procedure should be independent of the inter-

preter nest on which it runs.

Suppose procedure Fred exists in X~-code, and the X-code interpreter

is written in Y-code and the Y-code interpreter runs on the host ma-
chine. Then, as stated above, in order to call Fred we have to set the

X and Y interpreters in motion. Suppose now that the X-code interpreter
is rewritten to run on some other machine (e.g. the host machine); then
it should not be necessary to change the way in which Fred is called., We

should be able to call Fred simply by saying

Call Fred

and It should not be necessary io say

Call Fred on X machine on Y machine

Reqguirement 6

The representation of a procedure should be, as far as possible, inde-

pendent of the interpreter nest on which it runs.

Clearly if Fred is written in X-code then it is unreasonable to expect it to
run on a Y machine. However the data structure for Fred should be in-
dependent of how the X-code interpreter is implemented. Thus, if we con-
sider the example given in requirement 5, the rewriting of the X~code in-
terpreter should not necessitate any changes to Fred. Such a requirement
expedites the testing of programs on ''private machines!! before integrating

them into public systems.

Requirements 5 and 6 allow us to make use of the generality provided by

requirements 1-4,

We contend that all these requirements are reasonable ones for a multi-
emulator system. However, reasonable or not, their fulfillment is rather

difficult; we shall consider some of the problems in the next section.

3. SOME PROBLEMS AND SOME SUGGESTED SOLUTIONS

3. 1 Common Data Items

The central problem in a multi-interpreter system is the specification of
the structures for common data items. Internally, an emulator may use
whatever strange formats it likes, but when it communicates with the rest
of the system they must use a common notation. When considering what
data types interpreters have in common the problem is really which ones
to leave out, rather than which ones to include. A possible list is:

Positive integers (indices, sizes);

(
Characters (for 1/0);
Strings (for addressing the file system),
Addresses (e.g. of buffers);
Procedures;
Interpreters.

3. 2 Integers, Characters and Strings; wordlength

We do not have much to say about the representations of integers, charac-
ters and strings. Some (hopefully not too arbitrary) decision has to be
made and everyone must stick to it. It may seem that a common format for
integers should be easy to find, for example N bits binary 2's complement,
but a Cobol-oriented machine is quite likely to use a decimal represen-
tation of integers, and another interpreter might be designed for ex-
periments with non-standard representations. Thus we see that even for
integers some interpreters will need to do conversion to and from their

internal formats whenever they communicate with the rest of the system.

The question of wordlength arises here, and once again no '"nice!' solution
can be found for a system which may be required to support emulators for
a 60 bit CDC 6400, a 16 bit PDP 11 and a byte addressed Cobol machine.
The common wordlength is quite likely to be determined by characteris-

tics of the host machines (e.g. the sizes of its internal registers).

3.3 Addresses

As regards addresses it is desirable that each interpreter in the system

should have its own private data area, which forms its "virtual store'l;

and in the interests of security we would like to protect this area against
interference from other emulators. Thus we could imagine each emulator
resolving addresses using its own base and |imit registers. On the other
hand we may sometimes want to give one emulator access to another's
store (e.g. when handing buffers to the I/O interpreter). This is one
aspect of the general problem of protection, and in this case a segmented
store seems a likely solution -~ common addresses should contain a seg-
ment number and an offset within that segment. We note that the wordliength
problem crops up again here - is the offset in bits, bytes or what? and
how large is the object prointed to? One might consider putting a '"word
size! into each segment descriptor. We also note that the items within

the segment must be in a format which is common at least to the interpreters

which have access to it.

3.4 Procedures

We now come to the matter of the representation of procedures and inter-

preters,; it is this problem which has occupied the authors most.

Whether or not we want to treat procedures as general 'data items (and
pass them as parameters, assign them to variables etc.) it is obvious

that we want to create and call them, so there must be some common re-
presentation for them. If we think of high level language programs being
compiled into special machine codes (and ignore for the moment procedure
variables) then trans-interpreter procedure calls can only occur in the
case of procedures used as externals in the calling program, and it seems
reasonable to insist that they be declared as external (i.e. made known

to the system) in the !"called" program. If this is so then we can divide

procedures (and procedure calls) into two groups:

internal (can only be called from programs running on
the same interpreter),
external (can be called from programs running on other

interpreters).

Internal procedures can be represented and called in the best way for the
given language, but external procedures must have a common represen-

tation and calling mechanism. This allows efficient internal procedure

calls, and also frees internal procedures from any restrictions which

we may choose to place on external ones.

Some languages (e..g. Algol 60) allow procedures to be passed as para-
meters to other procedures, and others (such as Algol 68) allow them to
be assigned to variables. For such languages an identifier in a program
could refer either to an internal or to an external procedure. If these
languages are to be introduced Into the system and their power used
then we must require that their interpreters can differentiate between
internal and external procedures. This does not seem an undue restric-
tion on a specially designed machine; it amounts to the interpreter
being able to determine whether a procedure lies within its own code

area or not.
Thus the use of a common format for procedures seems possible, and we
shall suggest one later on, but first we shall consider the mechanics of

an external procedure call.

3.5 Parameter Conversion

The passing of parameters from a program to a procedure running on another
interpreter causes considerable problems. Suppose program Jim, running

on interpreter A, calls a procedure Fred, which runs on interpreter B,

and passes it an integer parameter. Then the integer must be converted

from A's format to common format and then to B's format. The best

place to do this conversion seems to be within the two interpreters. Thus

an interpreter must

|. convert all parameters to common format when an

external procedure is called (interpreter Als job);

2. convert parameters to internal format on entry to a rout-

ine called externally (interpreter B's job).

This means that interpreters must know that they are dealing with external

procedure calls and must know the types of the parameters being passed.

10

It is reasonable to assume that A knows it is handling an external procedure
call {(we apologise for the anthropomorphic language, but it seems the most
appropriate) but interpreter B may not be able to determine whether Fred is
being called by a foreigner (in which case the parameter is in common
notation) or by a B-code program (in which case the parameter is in B's
notation). One way around this problem is to insist that procedures khown
to the system (declared to be external) always receive their parameters

in common format.

There is another, more difficult, problem with the conversion however:
how do the A and interpreters know that the parameter being passed

is of type integer? (which they must do in order to perform the right kind
of conversion). If A has tag bits for type checking, and if either is a
machine for a language with compile-time determinable parameter types
(such as PASCAL, but not ALGOL 60) then a solution can be found, but
in the case of an untagged machine for a type-free language (such as an
OCode emulator for BCPL (6, 7), or an emulator for almost any existing
hardware machine) it is difficult to see what can be done unless the pro-
grammer somehow !"telis!" the system what the type is. In any case the
addition of tag bits to the common formats so that the types of common data

items can be determined at run—-time is probably a good idea.
The conversion problem also occurs if the called procedure is a function

which returns results to the caller. The problems which arise in this

case are much the same as those for parameter passing.

3. 6 Running a Program on an Emulator

Executing code on a '"hard!" machine such as a PDPIO requires loading the
code into core storage and initializing the program counter register. If
the machine has an operating system running on it then this process may
be a very complicated one which includes making entries in various tables,

thus

11

I. an emulator for such a machine is akin to a process,
in that it is in operation the whole time the machine

is available;

2. it is not possible to run a program on the machine
without first making it known to the machine's

private operating system.

While point 1 presents no great problems, point 2 makes it very
difficult to produce a simple underlying system which allows programs

to call procedures running on such a machine -~ the common procedure-call
mechanism would seem to need an unreasonable amount of knowledge

about the private operating system running on the emulator in question.

However, our original motivation for this system was the support of

special purpose interpreters {(rather than, for example, the study of operating
systems) and we can afford to treat these interpreters differently from
emulators for existing machines. In particular we propose that emulator invoca-
tions should be created and die in the same way as invocations for the

procedures they run.

Note that we are not banning PDP 10-like emulators from our system, we
are simply saying that they cannot communicate as easily with the system
as purpose-built emulators can and we are primarily interested in the

latter.

3.7 The Representation of a Procedure

Let us now give a possible data structure for a procedure (Fig. 2).

Type of code

Address of code

Environment

Fig. 2

12

This data structure corresponds to a "closure! (Landin, 8). We note
that it contains the minimum of information for our purposes and a particular
implementor might |like to add to it, for example, the number and types of

the parameters and results .

The "Type of Codel! element tells the system what interpreter the
procedure runs on. Its exact form is not important: it might be a string -
'xcode!", or an index to a system table of interpreters — 8", or a
pointer to the data structure for some specific interpreter. We note

in passing that "AL GOL 60 (text)"" might be an acceptable code type in
our system, where the execution of a procedure of this type could involve

compilation as well as interpretation.

The "Address of Code!" is the common format address of a vector contain-
ing the code. (How the code got there in the first place is a difficult

question which we shall pass over).

The "Environment! is the means of getting at nhon-local storage which
is referenced within the procedure body. Its form may vary from inter-
preter to interpreter but it is likely to be the (common format) address

of some data structure (such as a display in the case of ALGOL 60).

3.8 The Procedure~call Primitive

The common procedure call operation is likely to be quite a complicated
one. We note that it cannot be implemented as a procedure itself (or cal-
ling a procedure would necessitate calling the call procedure ad
infinitum) and so it must be a primitive operation of our system. We have
christened such operations 'god-given'!!; in practice they will be written
in host machine code, but will lie outside our multi-emulator system.
Thus our "system host machine! is comprised of the physical host ma-~

chine and some basic routines

13

User programs and
interpreters

Primitive Routines System host machine

Hardware (God-given operations)

An interpreter running on the system host machine can call an external
procedure by executing the relevant host machine instruction, but what
about interpreters running at a higher level? In order to provide the
generality we seek we insist that all emulators which support external
procedures must have a CALL EXTERNAL instruction in the instruction
set they emulate., The execution of the CALL EXTERNAL instruction
causes execution of the CALL EXTERNAL instruction of the next inter-

preter down in the nesi and so on down to. the host machine.

3.9 The action taken on Procedure Call

The procedure call primitive must

1) build a system record containing control information;
2) claim local storage for the procedure, if necessary,
3) make the parameters available to the procedure;
4) make the environment available to the procedure;

5) start up the procedure's interpreter at the right code
address.

The order of operations | - 4 may be altered somewhat, but operation 5

is the last one which the system can perform. Starting up the interpreter
includes starting up any interpreters lying under it, down to the host ma-
chine where the operation will involve a jump to the starting address of
the bottommost interpreter. Once this jump is made, the whole interpreter

nest isrunningand we are no longer inside a system routine. Thus the

14

necessary data structures must be set up before taking this irrevocable
step. This point is crucial, and we advise the reader to re-read this paragraph

if he is not completely sure about it.

Starting up an interpreter could be regarded as a procedure-call of the inter-
preter with pointers to the parameters, environment and code of the
interpreted procedure as parameters. If we implement it in this way,

then our procedure call primitive is a bounded (unless the interpreter

nest contains a loop) recursive operation. {We note that since the recursion
is necessarily the last action in each recursive step, we can implement

it iteratively.) The last recursive step is to start up the bottommost
interpreter which runs on the host machine. This is a normal host machine
procedure call, requiring the setting of some host machine registers,

including the instruction counter.

3. 10 The Representation of an Interpreter

We thus see that an Interpreter in our system is simply a three parameter
procedure and the data structure representing it can be the same as that
for any other procedure, although it may be entered in a different system
table from that for normal procedures. If a procedure Fred runs on the
X-code machine, then each time Fred is called a new instance of the
X-code interpreter is created in just the same way as a new invocation

of Fred is created.

3.11 The Return Primitive

The procedure-return mechanism is another god-given operation, and
ohce again each interpreter must include a RETURN EXTERNAL
instruction. It is necessary to transmit the results to the caller, return
the structures claimed during procedure call and to restart execution
after the point of call. We note that if the invocations of each virtual
machine are completely distinct, then the only information we need save
on procedure entry is that pertaining to the host machine, since restoring
this automatically restores the state of all the other machines as well.
However, if the invocations share a common virtual store, then an
emulator's CALL EXTERNAL and RETURN EXTERNAL instructions
must save and restore the virtual machine state in the same way as for

an internal procedure call.

15

3. 12 Multiprogramming

Up till now we have been thinking about a single -program system. However,
the ideas are sufficiently general to apply to a multiprogrammed one as

well. In this case the operating system structures will be more complicated,
but the representation of procedures and interpreters, and the mechanics

of a procedure call should remain much the same.

We note, however, that in the system as described above only the host
machine would be multiprogrammed: each process would have its own
interpreter nest. Thus, if A - E are procedures running as processes,

and W - Z are interpreters the system structure at a particular time

might look iike Fig. 3.

A 7 C T E
X Z X w
| |
Y Y Y

| I
HOST
Fig. 3.

It might be desirable to allow multiprogramming of the emulators themselves,

as in Fig. 4.
A D B C E
X Z W
L,.T,wm_}
Y
HOST

16

We would certainly want to do this if we were, for example, studying

scheduling algorithms for various machines. However, in this case we

must

1) let the system know that X can be multiprogrammed; and

2) let X know that it must run process D as well as process

A

and the extra complication which arises is frighteningly large and may
not be justified in view of our original aim, which was to support high-

level-language-based machines.

We also note that if the system contains god-given create-process, destroy-
process, signal and wait in.structions, then we can implement an external

procedure call of Fred () as

Create process Fred (My Semaphore)
Wait (My Semaphore)

Destroy process Fred
While the procedure return from Fred (cai!er‘s-Semaphore) is

Signal (caller's Semaphore)

Wait (For some event which never happens).

This may not be as efficient as using special procedure call and return
mechanisms, but the saving of two primitive operations may Jjustify the

extra cost.

4. SUSPENSION

It should by now be clear to the reader that we do not offer any neat,
finished solutions to the problems which arise when one tries to build
a multi-interpreter system. Indeed we cannot even claim to have stated
all of the problems themselves. However, we hope that we have given
the major ones, and that we have indicated lines of attack for their so-

lution. Of course there is a great deal more to be done.

17

18

REFERENCES

1. M. J. Manthey: Nested Interpreters and System Structure,
DAIMI PB-51, September 1975, Computer Science Dept. ,

Aarhus University, Denmark.

2. D.B. Wortman: Language Directed Computer Design,
International Workshop on Computer Architecture,

Grenoble, 1973,

3. (Burroughs B86700)
E.I. Organick: Computer System Organization,
Academic Press 1973.

4, W.T. Wilner: Design of the Burroughs B1700,
AFIPS Fall Joint Computer Conference 1972,

5. Dec System 10, System Reference Manual,

Digital Equipment Corp., Maynard, Mass.

6. Ole Sgrensen: The emulated Ocode machine for the support of BCPL,
DAIMI PB-45, Computer Science Dept., Aarhus University,

Denmark.

7. M. Richards: The BCPL Reference Manual,
Technical Memorandum No. 69/1-2, The Computer Laboratory,
Corn Exchange Street, Cambridge, England.

8. P.J. LLandin: The Mechanical Evaluation of Expressions,
Computer Journal vol. 6, pp. 308-320, 1964,

