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1. Introduction

In this report we summarize four years of experience with the Multi-Maren
multiprocessor laboratory.

The key component of this laboratory is a custom made multiprocessor with ten
processing units. There are many interesting hardware problems in designing
and building such a multiprocessor. We have, however, preferred to work with
problems concerning its software. In particular whether there are algorithms
that can utilize the potentially very large processing power of a multiprocessor.
We have found that this is certainly the case and in the following chapters we
present a few of these fast multiprocessor algorithms. On the other hand we have
also found a number of examples where the gain in using a multiprocessor is very
small. In all these examples the limiting factors are inherent in the algorithm,
they are not hardware bottlenecks. In chapter 2 we justify this somewhat surpris-
ing claim by showing that even in multiprocessors with an order of magnitude
more processors than ours it is unlikely that hardware bottlenecks will limit the
performance. Except for chapter 2 this report contains very little about the
hardware of multiprocessors.

During the design and implementation of the laboratory we have been confronted
with many decisions. In making these decisions we have tried to be faithful to our
overall goal: the study of multiprocessor algorithms. As little effort as possible has
been spent on all other aspects, even though many of these might be interesting
in their own right.

To avoid spending time on designing and building hardware we have used
standard equipment. In many respects such hardware is not ideal. It does, for
example, contain many superfluous components. However, it is unlikely that
more specialized hardware would have influenced our results significantly.

We wanted to be able to program the machine in a high level language. As it was
the case with the hardware, standard languages were not ideal, but on the overall
probably better than designing a new language. We found Concurrent Pascal to
be a useful starting point, and this language has therefore been implemented on
the multiprocessor.

There were two major design criteria leading us through this implementation:
— the implementation effort should be as small as possible,

— the implementation should be as transparent as possible.



The first design criteria is rather obvious; the less effort we spent on the
implementation the more we could spend studying multiprocessor algorithms.
The second criteria is more subtle. In order to experimentally verify models
for the dynamic behaviour of multiprocessor algorithms, it is very important
to be able to distinguish properties of the particular algorithm from properties
of the underlying software. This is only possible if this underlying software is
transparent, e.g. there are no such things as hidden scheduling policies, or system
facilities for collecting performance data. The price we pay for this high degree
of transparency is that the Concurrent Pascal program which is executed on
the multiprocessor, is a somewhat awkward merge of the following three rather
different program modules:

— amodule which implements the basic algorithm under investigation,

— a module which implements the decisions about what quantities to
measure during a single execution of the algorithm, and when to collect
them,

— a module which makes it possible to perform several independent execu-
tions of the basic algorithm (and related data collections) in a single
execution of the complete program. The values of the parameters for the
individual executions of the algorithm (e.g. the accuracy required for the
quadrature algorithm discussed in chapter 5) are also controlled by this
program module, and all input and output is done here. In short, this
module contains the overall control of the progression of the measurements
during a single program execution.

The only tool which is made available by the underlying software and hardware
is the Concurrent Pascal function ‘realtime’ which supplies the time with a resolu-
tion of 0.01 sec. In this connection we would like to point out that the analysis of
the dynamic behaviour of an algorithm is simplified a lot by all processors being
identical, e.g. executing Concurrent Pascal statements with the same speed.

In chapter 8 the Concurrent Pascal implementation is described in further detail
together with some of our modifications to the language.

The appearance of our multiprocessor is as a Concurrent Pascal machine which
1s able to execute up to ten processes simultaneously, one for each processor. It is
a single user machine, so only one Concurrent Pascal program can be executed
at a time. So the machine has no operating system to administer different users
sharing the machine. From the above it should be obvious that we have refrained



from building an operating system, because it is not absolutely necessary for
our work with construction and analysis of multiprocessor algorithms, and it
decreases the transparency of the software underlying the algorithms.

The only i/o facility of the multiprocessor is a serial line usually connected to a
small standard development system (see fig. 1.1).

serial | |
line Processor | | Processor

LN no. 1 no. 10

Intel "Intellec"
development system The Multiprocessor

Fig. 1.1

The lack of i/o devices has also been a limitation; it has, for example, been
cumbersome to run programs requiring large amounts of input data. But the
advantage has been avoiding spending a long time on the tedious task of writing
i/o drivers, spoolers etc.

In chapters 4, 5 and 6 we present some examples of multiprocessor algorithms
together with an analysis of their behaviours. Typically these results have been
obtained by a number of iterations of the following steps:

— invent or modify an algorithm to obtain a multiprocessor algorithm with
ten or less independent processes,

— make a model of the behaviour of the algorithm, typically an analytic
expression for the execution time of the algorithm;

— find which parameters, e.g. time spent in isolated parts of the algorithm,
that will allow validation of the model;

— write a Concurrent Pascal program that implements the multiprocessor
algorithm and which allows measuring the parameters of the model;



— run the Concurrent Pascal program on the multiprocessor to obtain
measurements of the parameters;

— confront the measurements with the predictions made by the model.

Deviations between model and measurements lead to changes in the algorithm or
model and all or some of the above steps are repeated until a reasonable model
of the behaviour of an algorithm is obtained. As in all modelling, the goal is a
model that provides insight which can be used in predicting properties of similar
algorithms.

Since our approach has many similarities with experimental physics, it is quite
natural that we have borrowed some terms from this field, terms like: laboratory,
experiment, model and measurement.

This introduction has listed a number of things that we have not done, in the
following chapters we present in further detail what we have done.
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2. Saturation in a Multiprocessor

In this chapter we discuss the problem of saturation in a multiprocessor with
a common bus architecture. It is demonstrated that it is logical constraints in
the algorithm being executed which limit the number of processors that can
be utilized. By taking a few simple precautions, saturation of the common bus
can be avoided. This is even true for a common bus multiprocessor with several
hundreds of processors.

Although this claim is based on experiments with our particular multiprocessor,
it holds for a large class of multiprocessors with a similar architecture. Even
if different hardware may reduce the saturation point significantly, it is still
beyond the limits imposed by other factors of the applied technology, e.g. power
supplies, wire lengths etc.

Multi-Maren has ten identical processors connected by a common bus to a global
store (see fig. 2.1). Each processor consists of a processing unit (Intel 8086), a
local store, timers and various i/o ports, all mounted on a single board. The
common bus is an Intel Multibus [Intel 1979] equipped with an arbiter which
resolves bus conflicts in a round robin manner. The arbiter is described in further
detail in section 7.3. By using a round robin policy the arbiter can guarantee a
fixed maximal waiting time.

global store common bus
II arbiter
processor processor processor
1 2 10
local local local
store store store
Overview of the Multi-Maren architecture

Fig. 2.1



When first building the machine it seemed obvious to us that this architecture
had an inherent bottleneck, namely the common bus/global store, but pilot
studies in other projects [Jones 1980] indicated that with approximately ten
processors the common bus would not become a bottleneck. Furthermore, there
was no other alternative which did not require us to design and build new
hardware. To reduce the danger of saturating the common bus, we separated
the various parts of a Concurrent Pascal program as follows:

— Shared variables: the synchronization variables that are necessary to
provide mutually exclusive access to the shared variables (i.e. a critical
region) must be placed in the global store. The shared variables themselves
are also placed in the global store.

— Local variables and program code: local variables used by one process
only are placed in the local store of the processor executing that process.
Similarly, the code (program) describing the process is placed in the local
store. Even when several processors execute the same code, that is identical
processes or the same monitor procedure, this code is duplicated in all
the local stores of those processors. This may seem an unnecessary waste
of storage space, but the benefit is that all references to the code are
strictly local and they do not affect the common bus. By making a static
allocation of processes to processors, the amount of code that must be
duplicated is reduced considerably.

Since 1981 we have experimented with implementing a number of different al-
gorithms. The common trend in these experiments is: the common bus is almost
never used. Typically, the bus is busy less that 1% of the time when ten processes
are running. At first this was a surprise; but the explanation is simple. When
instructions are placed in the local stores, all the machine cycles concerned with
instruction fetch, address calculation, decoding etc. do not affect the common
bus. Operand fetching is only a small part of the instruction and these operands
are only rarely shared variables placed in the global store. This explanation is
confirmed by the experiments described below.

Now we consider the distribution of storage references at the hardware level, i.e.
the storage references generated when executing machine instructions. Viewed
from a particular processor these storage references can be divided into two
categories: local and global. The time it takes to execute a global storage
reference is the sum of two components: G, which is the time it takes to transfer
data to or from the global store, and 4, which is the time it takes to gain



exclusive access to the global store, i.e. the arbitration time.

Fig. 2.2
G is fixed, but 4 may vary with the load on the common bus.

Usually there are many references to the local store between two references to
the global store. Let the total time for such a sequence of local references be L.
An execution on a particular processor may be depicted as in fig. 2.3.

Fig. 2.3

From [Brinch Hansen 1973 ] it is seen that when L is fixed and the same for all
processors, the number of processors that can be connected to the global store
before it becomes saturated, is limited by the value

A is the average arbitration time when only one processor is using the common
bus. In our machine 4,=10.5 psec. If L is fixed, i.e there is a fixed time interval
between accesses to the global store, all accesses to the global store will take
Ay + G as long as the number of processors is less than N*. When N grows
beyond N*, the arbitration time increases proportionnally to (N —N*). This is
indicated by the solid curve in fig. 2.4,



Fig. 2.4

When L is not constant, A is no longer a constant, and the average value of 4
will follow a pattern indicated by the dotted curve in fig. 2.4.

In order to estimate the value of N*, we have measured the values of L, 4 and
G under different circumstances. We obtained the following values:

min. average max.
i 400 3.10% -
A 6-10"2 0.5 7.5
G 1.5 1.5 1.5

(All numbers given in psec.)

The average value of L is taken over a sample of algorithms including a root
searching algorithm, a quadrature algorithm, a sorting algorithm and a pattern
matching algorithm. The min. value of L is obtained by an artificial Concurrent
Pascal program which references global monitor variables as frequently as pos-
sible. The average value of 4 is the average arbitration time observed for all the
Concurrent Pascal programs that were used to form the average value of L. Due
to the round robin nature of the arbiter, the max. value of 4 for a system with 10
processors and an arbiter like ours is = (10 — 1) x (1.5 + 0.1) = 14pusec. (This
number increases with the number of processors.) However, from the numbers
in the table it is seen that we have not been able to arrange a situation in which
this max. value occurs. The min. of 4 merely indicates, that the arbitration time
can be as small as 0. The fact that average 4 is equal to 4, indicates that ten



processors are well below the saturation point N*. G is fixed, as we expected.

From the values in the table we find that

averagel
Ay + G

N* =1+ > 10°

for the practical Concurrent Pascal programs we have studied.

Even for a Concurrent Pascal program that includes constructs for which we
have found no practical use, N* is rather big, namely:
minL

N* =1+ - =200
Ay + G

In order to estimate the impact of the most unfortunate case, i.e. when a
processor constantly experiences a maximum arbitration time of 14 usec., we
may notice that a normal Concurrent Pascal process is delayed only by

% 100 1073
300000 % 2 7%

and a pathological program by

14
— X 100% = 3.5
400 % %

which is just observable.

All these numbers are of course specific for Multi-Maren and our implementation
of Concurrent Pascal. Similar numbers for other multiprocessors may differ,
but even if they differ by several orders of magnitude (which we believe is very
unlikely), hundreds of processors may be connected to the bus without getting
hardware saturation. But the precondition is that all code and local variables are
placed in the local store of the processor using these.

We find that the above gives us good reason to concentrate on the programming
of the multiprocessor. In the next chapters we will summarize our work on such
multiprocessor algorithms.
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3. Problem-heap Algorithms

A primary goal of the Multi-Maren project has been to find simple and fast
multiprocessor algorithms. To achieve fast execution the task to be done must
be split into a number of subtasks which can be done simultaneously by different
processors. Some tasks can be split into a number of independent subtasks, one
for each processor, before the computation starts. When such a static splitting is
possible it is straightforward to get a simple and fast multiprocessor algorithm.
But when a static splitting cannot be made or does not give a satisfactory perfor-
mance a dynamic algorithm must be used. We have therefore studied a number
of algorithms which use a dynamic splitting of those subtasks that turn out to be
hard and require much work to be completed. This chapter describes a class of
such simple algorithms called problem-heap algorithms together with an analysis
of their performance. The main characteristics of these algorithms are:

— a number of identical and asynchronous processes cooperate on doing
a certain task. The processes share one or more data structures that
represent partial results and those parts of the task that remain to be
done, this is called:

— a problem-heap. To be in this class of algorithms the task of the algorithm
must be such that it can be split into a number of subtasks called problems.
A process takes a problem and tries to solve it. This may generate new
problems which are then put in the problem-heap or the problem may be
simple enough that it can be solved immediately. This class of algorithms
clearly contains the »divide and conquer algorithms« [Aho, Hopcroft and
Ullman 1974] , but as it will be clear below it also contains a number of
other algorithms.

The major asset of the problem-heap algorithms is their simplicity; all processes
are asynchronous, identical and an arbitrary number of them may be used. The
task will be completed (i.e. all problems solved) no matter how few or how many
processes that are used. What may vary is the performance of the algorithm
i.e. how fast the task is completed. This variation is almost exclusively caused
by properties of the problem-heap. It turns out that there is a small number of
different sources which may lead to reduced performance. The major part of this
chapter is an identification of these sources, together with an analysis of their
effect.
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3.1 Skeleton Algorithm

As mentioned above one characteristic of the problem-heap algorithms is that all
processors execute the same process. Furthermore, there is a common skeleton of
this process which may be found in all problem-heap algorithms:

problem-heap skeleton:

CYCLE
take a problem from the heap;
IF the problem is simple
THEN
solve the problem;
include the result in the solution;
ELSE
split the problem into other problems;
put the new problems back in the heap;
END

Algorithm 3.1

The primitives used in this skeleton will of course vary; as the most obvious »solve
the problemc is different for each task to be performed.

Example

A well known example of a »divide and conquer algorithm« is Quicksort, which
sorts a list of numbers represented in an array. In the problem-heap formulation,
a problem is a consecutive sublist of the array (see fig. 3.1):

problem: p

Fig. 3.1
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To solve p, all numbers in p must be sorted and put back in the same index
range ¢..j of the array. All processors execute the following process:

CYCLE
p:= a problem from the heap;
IF size(p) = 1
THEN
report p is sorted
ELSE
split p into p1 and p2 so that:

p[ g1 [ p2 ]

and all x in p1, and all y in p2 satisfy x < y;
put pl and p2 back in the heap;
END

Quicksort is chosen as an example because it is a well known algorithm; as it will
be demonstrated later it has a rather poor performance on a multiprocessor,

3.2 The Problem-heap

As described above the problem-heap is a shared data structure which all
processes may access (see fig. 3.2). It can be viewed as a source of data which
supply all processes. When the problem-heap is drained the processes starve and
their processing power is lost.

Initial problem Problem-heap

process process process
1 2 N

Fig. 3.2
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The structure of the problem-heap is not nearly as uniform as indicated by the
skeleton algorithm discussed above. Sometimes it is organized as a stack, some-
times the problems are sorted, sometimes solving one problem requires deleting
other problems in the heap etc. This is all dependent on the task to be done. The
heap is initialized with one problem, the ¢nitial problem, describing this task.

In principle the heap is global to all processes but in some algorithms it is
advantageous to divide it into a number of subheaps, this is discussed in further
detail in section 5.2 where the results from a number of experiments with a
subdivided heap are reported.

3.3 Speed-up

Most of our performance analysis has been concerned with finding the speed-
up of problem-heap algorithms. Let T(N) be the time it takes to perform a
certain problem-heap algorithm using N processes (each executing on a separate
processor) the speed-up is defined as:

S(N) = T(1)/T(N)

The major advantage of this measure is that it is almost processor and implemen-
tation independent. Consider, for example, two machines where one is twice as
fast as the other. The running times for a particular algorithm would be very
different on these two machines, but the speed-up would be the same.

This definition of the speed-up looks quite obvious, but there are several pitfalls
that should be avoided when using it. Therefore we clarify our use of this measure
before going into further detail.

Consider a task T and the following four algorithms for solving T
Ts: A sequential algorithm for solving T without splitting it into subproblems,

Ty asequential algorithm for solving T by splitting it into subproblems which
are solved one at a time,

T¢:  a concurrent algorithm for solving T by splitting it into subproblems some
of which are solved concurrently by interleaving the computations,

Ty a multiprocessor algorithm for solving T by splitting it into subproblems,
some of which are solved simultaneously by different processors.

Usually Ty, T and T, are not distinguished, since they are regarded as different
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ways of implementing the same abstract algorithm.

To illustrate the distinctions between T, Ty, T and Ty, consider an algorithm
for finding an occurrence of a pattern in a long string (see fig. 3.3).

= ll 1] | string

occurrence

Fig. 3.3

This task could be done by an algorithm T which searches the whole string from
the left. Alternatively the string could be divided into a number of substrings (=
subproblems). These substrings could be searched one at a time, The algorithm
Ty would finish searching one substring before searching the next.

As still another alternative consider an algorithm T which starts searching many
substrings concurrently, by switching back and forth between them. Finally, a
multiprocessor algorithm T, would search several substrings simultaneously by
giving different substrings to different processors as described by the skeleton
algorithm 3.1.

One way of developing a multiprocessor algorithm is by starting from a sequential
algorithm Tg and then transform this into a sequential problem-heap algorithm
Ty, which is then made into a concurrent algorithm T, from which the multi-
processor algorithm T, is obtained (see fig. 3.4). We would like to stress that
this is certainly not the only method of developing multiprocessor algorithms. It
is emphasized here mainly to clarify our use of the speed-up measure.

T A7 N THATC/_\\TM

Fig. 3.4

Note, that from a single algorithm T it is sometimes possible to derive a whole
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family of similar Ty-algorithms. Take the string searching algorithm as an ex-
ample. When the string is divided into substrings (T¢ = T, transformation) this
opens for the possibility of choosing substrings of different length or searching
the substring in another order than the left to right which is used in T. So for
each possible size of substrings and each possible order of searching the substrings
there is a distinct member of the T, family.

Similarly the transformation from T to T might lead to a whole family of T
algorithms for each T;-algorithm.

When comparing Ty and Ty, note that there are examples where either of
them are fastest. By picking first the substring which contains an occurence, T,
can sometimes finish very quickly. But on the average we would expect T}, to
be slightly slower than Tg due to the overhead caused by the splitting, this is
discussed in further detail in section 3.6 on steration loss.

When we compare T and T,; several phenomena can be observed. As men-
tioned above the problem-heap is shared by the processors and only one of them
may update it at a time. This can lead to saturation loss for T,; which is discussed
further in section 3.7.

It might also happen that the problem-heap becomes empty before the computa-
tion is finished. When this happens in T, the processors must wait for more
problems to be generated leading to starvation loss which is discussed in section
3.4.

The string searching sketched above is an example of a task where the amount
of work done (i.e. the running time) vary radically with the order in which the
subproblems are solved. If the algorithm starts by picking a substring containing
an occurrence very little work has to be done, but the opposite can also happen,
namely picking the substring with an occurrence as the last to be searched. When
the amount of work that has to be completed vary with the order in which it is
done, the algorithm is called unstable. Algorithms that do not have this variation
are called stable. An example of this is an algorithm for finding all occurrences
of a particular pattern in a string. In this case the work done by the algorithm
T and all the algorithms in the related families T;; and T, is almost the same.

Let us return to the definition of the speed-up:
T(1)

™= Ty
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The term T(NN) does not cause any problems, it is the execution time of the T,
algorithm using N processors to solve N subproblems simultaneously. For stable
(families of) algorithms there is no problem with 7(1), since the execution times
of T, Ty and T, are almost the same, it does not matter which is chosen as
T(1). But now consider an unstable family. In this case the execution times for
T, Ty and T may vary almost arbitrarily. Depending on the choice the speed-
up may be both much larger and much smaller than linear. Such anomalies have
been reported by [Wilkes 1977] and [Lai 1984]. When an unstable algorithm
exhibits such a speed-up larger than linear, it is because the multiprocessor
algorithm makes a very fortunate choice of the order in which subproblems are
solved. Another order of solving the problems might give a very small speed-up.
Therefore, we think that one should be extremely cautious in using the speed-up
measure with unstable families of algorithms.

The instability of a family of algorithm occurs because some members of the
family performm more work than others to complete the task. So some of the
algorithms do superfluous work, because it cannot be decided beforehand what
work is superfluous and what is not. This can only be decided after the task has
been done. The speed-up can only be used with unstable families of algorithms,
if the algorithms that are compared do the same amount of work. Comparing
an algorithm which does little or no superfluous work with one that does a lot is
meaningless.

Finally, different input data may give different execution times for an algorithm,
When this is the case, we have usually been looking for the average speed-up.
This has been found as the average of the speed-ups observed by a number of
different input data, let T, be the execution time on the i-th set of input-data:

AP lK T(1)
SA( ) - K 1 TZ(N)

Note, that this may not be the same as

% E Tz'(l)

i.e. the speed-up of the average running times.
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To depict the execution of a particular multiprocessor algorithm, diagrams as
the one shown in fig. 3.5 can be used.

P].: I

Fig. 3.5

The holes in the diagram represent loss i.e. periods where the processing power of
the correponding processor is not utilized. A diagram without holes is therefore
a necessary (but not sufficient) condition for achieving a linear speed-up.

In the four sections to follow we describe four different kinds of loss that we have
observed in our experiments with multiprocessor algorithms. Deviations from a
linear speed-up are explained as a combination of these four kinds of loss, usually
one or two of them is dominant. For those algorithms that we have studied, it
has always been possible to explain the observed deviations from a linear speed-
up using these four kinds of loss: starvation loss, braking loss, iteration loss and
saturation loss. There may of course be other kinds of loss that we have not yet
identified.

3.4 Starvation Loss

The problem-heap must constantly supply all processes with problems (data).
When there are too few problems in the heap, the workless processes starve and
their processing power is lost. This situation is illustrated in fig. 3.6,
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Pz l
p: } | :
2
PN: \l—| T F—y
starvation phases

Fig. 3.6

In most problem-heap algorithms there is some starvation in the initial phase
until all processes have gotten their first problem to work on. In most cases the
loss caused by this is negligible but in other cases, e.g. Quicksort, the loss caused
by starvation in the initial phase is the bottleneck of the algorithm. Note, that
there is a distinction between the loss caused by starvation and the saturation
loss caused by mutual exclusion (see section 3.7). When processes attempt to get
problems there may be some loss because they need mutually exclusive access
to the problem-heap. Whereas the loss caused by starvation occurs when there
are no problems in the heap. Consider, for example, what happens while the
initial problem is split in two or more subproblems. During such a splitting the
problem-heap is free for all processes to inspect, so there is no saturation loss.
But if the splitting takes a long time there is a considerable starvation loss. The
difference is illustrated in fig. 3.7.

initial splitting mutually
p,: F l ﬁ: exclusive
references to
By the heap
Byt —|
- L J L.._W___j .
starvation loss saturation loss

Fig. 3.7

Although starvation is often found in the initial and final phases, the phenom-
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enon may of course occur at any point of the execution. Let T, be the times
defined by the diagram shown in fig. 3.8.

P, — -—-

I
. I fe e
pk'2 ’ 1 i :
Pe-1° i : [
Byl L
k \-—.V_—l‘_.v_._._r' kﬁf_‘,l
T T
Tk— 1 k-2 1
Fig. 3.8

The total loss caused by this starvation phase is:

Sloss = L T;xi

Le. k — 1 processes each loose T, _, & — 2 processes each loose T),_, etc. As
mentioned above starvation may happen at any point of the computation because
there can be several starvation phases during one execution. If this is the case
each of the starvation phases cause a loss as the one described above.

The multiprocessor implementation of Quicksort exhibits a very clear example of
starvation loss. The first step of the computation consists of splitting the data into
two lists (problems) such that all elements in one list are less than all elements
in the other. This splitting requires an inspection of all data elements, so the
time to split is proportional to the number of elements, M. During this period,
one processor only is working. After this two processors may be put to work on
splitting the two problems into four, etc. This is illustrated by the diagram in
fig. 3.9,
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Fig. 3.9

The magnitude of the starvation loss is (assuming N is a power of two):

loglV

: M
Bpe= EN—2)x =
i=0
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For small values of M this is the dominant source of loss.

3.5 Braking Loss

When a process receives a problem to solve, it either solves it or splits it before
consulting the problem-heap again. In any case there is a period when it works in
isolation solving a subproblem; if during this period the entire task is completed,
the process cannot be stopped until it again consults the problem-heap. The

processing power wasted during this period is called braking loss.

To be more precise, consider the diagram in fig. 3.10 illustrating the final phase

of a computation.
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The three instances on the diagram are defined as follows:

T,: The first potential solution to the complete task has been found by processor
p;- Other processes already working on subproblems finishing later might
find other improved solutions. But no processes are given new problems to
solve after T,

The final solution is found. There might still be some processes working on
subproblems not contributing to this final solution.

Tf: All processes have been stopped so none are working on solving sub-
problems.

As it is clear from the examples given below, these three time instances are
not always distinct. The terms cycle time and access time are frequently found
in hardware specifications. The access time of a circuit is the time it takes to
perform its function and the cycle time is the minimum time required between
two invocations. In our terminology the access time of the algorithm is T, and
the cycle time of the algorithm is Ty.

Consider again the problem of finding the leftmost occurence of a pattern in
a string (see also_section 3.3). In this example T, is the time instance where
some process finds the first occurrence of the pattern. Other processes might
however find other occurrences further to the left. So T\ is the time instance
where an occurrence has been found and all parts of the string to the left of the
occurrence have been searched without success. At time T there might still be
processes working on (irrelevant) substrings to the right of the occurrence. T, is
the time instance when all these have stopped. If instead the task is to find not
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the leftmost but any occurrence of the pattern, T, is the same as T, but also in
this case T’ is distinct from Tf

Braking loss can now be defined as the processing lost between T, and Ty. This

is indicated as the ///// periods in the diagram shown in fig. 8.11,
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Fig. 8.11

Although braking loss is most frequently found at the end of the computation
there are also examples of algorithms where the solution of one problem suddenly
makes other problems in the heap superfluous. The latter happens in some
algorithms where the solution of one subproblem suddenly changes the course of
computation completely.

A braking point is a point of time where all processes should be braked either
to stop completely or to get a new problem to work at from the heap. T, is an
example of a braking point. The period of time between a braking point and the
next reference to the problem-heap by process 7 is called B,. The loss caused by
one braking point is therefore :

Blms = E_;Bz'

H

It is obvious that B, and the time it takes to solve or split a problem are propor-
tional, the exact relat1onsh1p depends on the particular algorithm., Braking loss
is discussed further in chapter 4.
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3.5.1 On Interrupts

The loss caused by braking is analogous to the reduced response time found when
an external device is not polled frequently enough. In both cases the occurrence
of an event is discovered by regularly inspecting some status information (see fig.
3.12).

inspection

Fig. 3.12

The loss may sometimes be reduced by making the cycle shorter, i.e. inspecting
the status more frequently. The most common way of making this reduction is
by moving the inspection cycle to an underlying level of software or hardware.
At the higher level the inspection can now be replaced by an interrupt.

Interrupts could also be a way of reducing the braking loss in problem-heap
algorithms. An interrupt should force a process to consult the problem-heap
immediately. But what should happen with the problem which the process works
at when it is interrupted? Should it be postponed, discarded, put back in the
heap or .. ? An effect similar to using an interrupt can usually be achieved by
reducing the problem size.

3.6 Iteration Loss

All problem-heap algorithms are iterative (see algorithm 3.1), in each iteration
a problem is either solved or split into simpler subproblems. But only in a very
few cases is there an obvious limit on the problem size above which problems
should be split and under which they can be solved without further splittings. By
making the limit to high one may risk starvation loss as described in section 3.4.
On the other hand there may be an overhead associated with splitting a problem.
Solving two subproblems may require more work than solving them together as
one problem. This overhead is called #teration loss.
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Consider again the string searching example. By splitting a string, s, in two, 5
and sy, a little extra work is introduced since the first characters of sy might be
inspected twice (see fig. 3.13).

s, l—=-m oo

s : | f |

s ¢ e —
Fig. .18

Once to check for an occurrence towards the end of 5; and the second time to
check for an occurrence in the beginning of s,. Obviously the iteration loss grows
with the number of of iterations of the algorithm. If we assume that the iteration
loss is the same amount, I, in each iteration, the total iteration loss is:

IJOSS: K X1I

where K is the number of iterations of the algorithm. Iteration loss is discussed
further in chapter 4.

3.7 Saturation Loss

The problem-heap is usually organized as a shared data structure which the
processes may reference one at a time i.e. the problem-heap is a monitor in the
sense of Concurrent Pascal. When two processes try to reference the problem-
heap at the same time one of them must wait which causes some loss called
saturation loss. Let G1 and G2 be the times it takes for the two processes to com-
plete their references to the problem-heap, the diagram in fig. 5.14 illustrates
the loss they can experience.
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It is obvious that this kind of loss may happen at each reference to the problem-
heap i.e. once in each iteration of all the processes (see algorithm 3. 1). In general
the saturation loss grows with the number of iterations and processes. To analyze
the saturation loss we have used traditional techniques from queueing theory.
This kind of loss has been studied rather extensively in the literature. Although
the emphasis there has been on hardware saturation (which has not had any
significant effect in our experiments) the techniques and results can be applied to
saturation loss (software) which can occur and has occurred in our experiments.
Saturation loss is also referred to as software saturation, it is studied in some
detail in chapter 5.

3.8 Summary

The problem-heap structure has emerged as a simple technique for programming
a multiprocessor. Our experience shows that a number of algorithms follow this
structure, some of them have a good performance, others have a rather poor
one.

The four kinds of loss identified through our experiments give a platform for
predicting and analyzing new problem-heap algorithms. There is, however, no
reason to believe that this is the ultimate classification. New experiments and
further work might uncover other kinds of loss or may lead to a refinement of
the four proposed by us. This would certainly we welcomed.

We do not want to claim that the class of problem-heap algorithms is universal.
There are other clearly distinct classes of multiprocessor algorithms e.g. pipeline
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algorithms where data flow through a string of processors. But there are some
very nice properties of the problem-heap algorithms. They can be performed by:

— an arbitrary number of processors. The algorithm does not have to be
rewritten when the number of processors is increased or decreased. This
means that extra processing power can be added without changing the
algorithm (i.e. the program text),

— asynchronous processors. The algorithm can be executed by processors
running with different and varying speeds,

— symmetric processors. All processors execute the same algorithm (i.e.
program text). This is much easier to handle than writing a number of
different algorithms.

Note, that the pipeline algorithm does not have any of these properties, since
each processor in the pipeline runs a different algorithm, and the work done by
the processors must be in balance.
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4. String-searching Algorithm

This chapter describes some experiments with a string-searching algorithm
similar to the ones discussed in chapter 3.

Consider a string, S, of L characters from some alphabet, and a pattern, P,
which is a string of K characters from the same alphabet (K < < L). Consider the
problem of finding the leftmost occurrence of Pin §, i.e. the least index ¢ such
that:

Stz.i+ K—1) = A1..K)

Boyer and Moore [1977] have described a very fast algorithm for doing such
a string-search, their algorithm is sublinear, so on the average it needs fewer
than ¢ character comparisons, to find an occurrence at index 7. Here we suggest
a problem-heap implementation of this algorithm which reduces the average
running time further by searching a number of substrings simultaneously.

4.1 Problem-heap Formulation of String-search

The overall task to be performed is searching the string, S, which may be split
into substrings (problems). Each process searches the substrings it receives using
the Boyer-Moore algorithm. The details about this algorithm may be found in
[Boyer and Moore 1977]. Each of the processes looks as follows:

CYCLE
receive (substring);
search (substring); »using the Boyer-Moore algorithm«
IF match
THEN report (position);
END

The substrings that remain to be searched are represented in a data structure
shared by all processes called the problem-heap.

4.1.1 The Problem-heap

The problem-heap for the string-searching problem can be organized in a num-
ber of different ways; the one described below is quite simple, but it turns out to
perform very well, therefore other more complex organizations of the problem-
heap have not been tried.
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The most obvious way to distribute a string of length L to N processes is by
dividing it into N substrings of equal length and then let each process search
through one of these as shown in fig. 4.1.

L 2L
1 N N i L
I

i i I ViM—4 i

i 7 — 4 \.—-_.__V.._._.._J

process process process
1 2 N
Fig. 4.1

But since the leftmost occurrence of the pattern is not known in advance, this
organization is very inefficient; the work done by all the processes working to the
right of 7 is lost. Furthermore long substrings give a large starvation and braking
loss. Instead relatively short substrings are given to processes. Fig. 4.2 illustrates
a typical snapshot of a search:

search
completed

1 L \\ L

LALLL LLLLLEN Y VALLLLLEEL LT Vi 74}
VIizZiririirii7Tay U//////////////{'//‘;)V /// I' Il "I
[ —
process process process
1 2 3

Fig. 4.2

The details of the string administration, that is keeping track of which strings
have been given to which processes, can be worked out in many different ways.
It turns out that the following simple administration performs very well. All
substrings are of the same fixed length, D, where D = K. Processes are always
allocated substrings from left to right, hence there is a point, F, up until which
the string has been searched or is being searched, see fig. 4.3.
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The obvious question is of course, which D should be chosen? The optimal D
depends on:

— the pattern to be found

— the position of the leftmost occurrence

— the number of processes

— the string to be searched,

Hence the optimal value of D) cannot be computed before the search. Fortunately
the running time is not sensitive to the exact choice of D. Fig. 4.4 shows the
relationship between the measured average running time T and the value of D
(for a particular choice of the above parameters):
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4.2 Performance of the String-searching Algorithm

Two series of experiments were conducted with the problem-heap implementa-
tion of the string-searching algorithm. One served to find the optimal D, a result
is shown above. The other served to analyze the speed-up of the algorithm,

The table shown in fig. 4.5 contains the measured speed-up for the above
described implementation of the string-search. As mentioned in section 3.3 the
speed-up can be defined in different ways. In the table shown above T(1) denotes
the execution time of the sequential algorithm where the string is not divided into
substrings. T(N) denotes the time to execute the multiprocessor heap algorithm
with N processors, using the optimal value of D corresponding to that N. The
string-searching is a little unstable, see section 3.3, so T(N) includes the time to
do some superfluous work.
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N Running time Speed-up

1 3597 1.0

2 1883 1.9

4 981 3.7

8 516 7.0
Fig. 4.5

Fig. 4.5 shows that the algorithm has a good speed-up even with the very simple
string administration described above. There is, however, a significant deviation
from a linear speed-up. In the following section the causes for this deviation are
identified. These causes are viewed as different kinds of lost processing power as
discussed in chapter 3.

4.2.1 Starvation Loss and Superfluous Work

Consider a process, M, which finds an occurrence of the pattern; other processes
may already be working on substrings to the right of M, see fig. 4.6.

occurrence of P

1 / L
VLLLLLL LS \LALL
rrererrrirerers v b —"aA—I
N e SR
process
M
Fig. 4.6

The work done to the right of the occurrence is superfluous. Consider now the
processes working to the left of M, these should finish the search of the substrings
they are currently working on, otherwise an occurrence before the one found by
M could be missed. The following three time instances are central to the analysis
of the superfluous work and the loss:

T,: the instance when the first substring to the right of the leftmost
occurrence is given to some process.

T,: the instance when a process finds the leftmost occurrence.

Tg: the instance when all processes have been stopped.
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Those processes that finish searching a substring during [T}, T, ] are immediately
put to work on a new substring to the right of the occurrence, hence each of
them loses a whole period, which is the time it takes to search a substring. On the
average this should be (N — 1)/2 of the processes. Now consider those processes
that finish a search during [T, T5]; they are not given a new substring to search,
yet their processing power is lost until T5. The diagram in fig. 4.6 illustrates this
situation:
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Those sections marked by -+ represent superfluous work and starvation loss
is shown as //////.

Above it was argued that on the average the (N — 1)/2 processes lose a whole
period, i.e. the periods marked by+##7#7# this amounts to (N — 1)/2Dc, where
¢ is a constant. This is an estimate of the superfluous work.

To estimate the starvation loss consider the time instance Ty. The N — 1 remain-
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ing processes are busy searching some substring. Let the instances when they
finish be X, X, X, (X, = Ty where 7 is the number of the process finding
the occurrence). The starvation loss is:

N
B = 'El max{k;} - X;
=

To estimate the average value of §;, . we must find the average of max{Xj} - X,
Let (7], 4y, ..., 7x) be a permutation of 1,2, ..., N such that:
X=X .. .2%
1 2 N
then the average we are seeking is the average:

XfN_X{f (0 <J < N)

If we assume that the X; are uniformly distributed on [0, Dc], then the average
can be found using order statistics [Feller 1970]:
1
E(XJ'N — XZ-J) = (N -J)EDC

Hence N
Sloss

|
g
E

|

I
]
S

NV -1
eN ¢
So the total loss is:

B

superfluous work + starvation loss

B = —(NQ_I)DC + (*—Nz_l)Dc

(N — 1)Dc
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Some experiments were conducted to measure the actual loss. Fig. 4.8 shows the
experimentally measured values against the predicted values for B.

Experiment

20 40 60 80 100

Fig. 4.8

4.2.2 Iteration Loss

For small values of D another kind of loss called zteration loss becomes significant.
When a process finishes searching a substring and gets a new substring from the
problem-heap some processing power is lost, partly because of the overhead as-
sociated with the string administration, but more significantly some momentum
is lost when the jumps made through the string are cut.

The iteration loss is directly proportional to the number of iterations made by
each process. Assume that the leftrnost occurrence of the pattern starts at index
Z, then the average number of iterations is:

z
D

If we assume that the loss associated with each request is a constant, O, the total
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iteration loss is:

;
55 = O B

The experiments show that averaging over a large number of searches, the above
is a reasonable approximation of the iteration loss, but if we consider a particular
string and pattern, O is by no means constant. As mentioned above the lost
momentum is the major cause for the iteration loss. Consider two consecutive
values of D, d and d + 1. The running time of the algorithm when executed
with these two values of D may be quite different. This is because the jumps
through the string made by the Boyer-Moore algorithm are not the same. To see
why this variation occurs, it is necessary to take a closer look at the Boyer-Moore
algorithm:

The key idea in Boyer and Moore’s algorithm is to compare the pattern and the
string from the end of the pattern towards the start, as shown in fig. 4.9.

pattern
R mmmmmee X string
i & .
J first comparison (J+K-1)
second comparison (J+K-2)

Fig. 4.9

To check for an occurrence of the pattern at index J/, one compares the charac-
ters in the pattern with the string starting at index J + K — 1, if this matches,
the characters at index | + K — 2 is compared with pattern (K — 1) etc. If all
K characters match, an occurrence of the pattern has been found, but if they
do not, the pattern is moved to the right to check for an occurrence there.
Because the comparison is done from the last character, the pattern can usually
be moved quite far to the right. If, for example, the character at index J + K — 1
does not occur in the pattern, it can immediately be moved K characters to
the right. In general, the algorithm makes use of all the information gained
by the comparisons to move the pattern 1 to K characters to the right. The
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obvious algorithm which compares the characters from the start can only move
the pattern one character to the right. Further details about the algorithm may
be found in the references [Boyer and Moore 1977], [Galil 1979], and [Horspool
1980] . So the time it takes to search a particular substring may vary. If the
pattern can be moved K characters after each comparison, the search goes very
fast; as the other extreme, the pattern is sometimes only moved one character to
the right, this occurs when the string is very regular with many repetitions, e.g.
when the alphabet is very small [Galil 1979] .

Since it would be quite complicated to cover this variation in the expression for
the iteration loss, we make the somewhat crude assumption that O is constant.

4.3 Running Time Estimation

It is claimed that B and [}, ; explain the deviation from linear speed-up (see the
table in section 4.2), i.e. that

T(N) = (T(1) + B + I,.,)/N

To verify that no kind of loss has been overlooked, one may compute a predicted
T(N) using the above expression and compare this with the experimentally found
T(N). This is shown in fig. 4.10.

N % % gf,%ﬁ Predicted T(N) Measured T(N)

4 899 54 25 978 981
8 450 81 25 506 516

For N =8,D = 100 and N = 4, D = 200 is used.

Fig. 4.10

The implementation and analysis of the string-searching algorithm were done
before we had clarified the distinction between the various kinds of loss made in
chapter 3. In earlier descriptions [Mgller-Nielsen and Staunstrup 1984] of the
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string-searching algorithm we used the term braking loss differently from our
current use.
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5. Adaptive Quadrature Algorithm

This chapter contains a summary of a series of experiments with an adaptive
quadrature algorithm by Rice [Rice 1976] . The first section describes the
quadrature algorithm as a problem-heap algorithm, and the performance of a
version of the algorithm is analyzed using the four types of losses. This analysis
shows that starvation loss is dominant, but we are very close to getting saturation
loss. The second section focuses on some techniques, that can alleviate the effect
of saturation loss. A version of the algorithm from the first section is used to
illustrate the techniques. These techniques rather than their particular effect on
the quadrature algorithm are the focal point of section 5.2.

5.1 Performance Analysis of an Adaptive Quadrature Algorithm

5.1.1 Adaptive Quadrature as a Problem-heap Algorithm

Adaptive quadrature algorithms are simple examples of problem-heap algorithms
for the following reason:

Suppose that Q(a, b) is an approximation to the integral of f on the interval from
a to b, and B(a, b) is a bound on the error of this approximation, so that:

|§2 = Q(a, b) |< B(a, b)

Then the solution (i.e. Q(a, b) and B(a, b)) to the problem SZ can be obtained from

the solutions to the two subproblems [¢ fand ff f by simply adding the solutions of
the subproblems, since:

b
[ fa f = (Qa, ¢) + Qle, b)) |= Bla, ¢) + B(c, b)
Suppose that the initial problem is to calculate j; f to the accuracy Eps(0, 1), i.e.

to find corresponding values Q(0, 1) and B(0, 1), so that B(0,1) < Eps(0, 1). The
skeleton program for a process could then be the following:
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CYCLE
Take a problem (specified by the triple:
[a, b, Eps(a, b)]) from the problem-heap;
Calculate Q(a, b) and B(a, b);
If B(a, b) < Eps(a, b) then
The problem is classified as »simple«, and Q(e, b) and B(a, b)
are put in the »result-accumulator«
ELSE
BEGIN
Values ¢, Eps(a, ¢) and Eps(c, b) are chosen so that
Eps(a, c) + Eps(c, b) = Eps(a, b);
Put the problems [a, ¢, Eps(a, ¢)] and [c, b, Eps(c, b)]
in the problem-heap
END
END:;
Algorithm 5.1

The initial problem is [0, 1, Eps(0,1)] . When the problem-heap is empty and
all the processes are idle, the accumulated values of Q and B form a solution to
the initial problem since:

|15 f — £Q(a, b) | < B(a, b) < LEps(a, b) = Eps(0, 1)

In this study, the class of functions f that can be handled, is restricted to
monotonic functions with monotonic first derivatives. This restriction simplifies
the calculation of B considerably. The reader is referred to [Rice 1976] for more
details on this and other aspects of the actual algorithm.

5.1.2 A Model for the Performance of the Algorithm

The measurements of the total execution time of the quadrature algorithm are
analyzed according to the formula:

(5.1) I = e——=
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This formula expresses that the running time is equal to the amount of work to
be done (k& #f)’ namely the time a single processor would use, divided by the

average number of active processes (N4). The usefulness of the formula depends
on whether simple models can be used for predicting the values of k, #f and N .

The quantities in the formula are defined as follows:

T

The total running time for a given initial problem, i.e. the elapsed time from
the initial problem is put into the problem-heap until the solution (to the
required precision) is available in the result-accumulator. This time periode will
be referred to as the solution period.

k:

The average running time for one cycle of a slave (in algorithm 5.1). It includes
the time spent manipulating the problem-heap and waiting for access to the
problem-heap.

#

The number of problems taken from the problem-heap and successfully com-
pleted during the solution period. #; may be interpreted as the total amount of
work done by all the processes.

Ny,

The average number of active processes. A process is inactive, when it is idle,
because the heap is (temporarily) empty. The average is taken over the solution
period.

In the next section we give models for predicting the quantities #f, N, and k.
Models for the quantities in the formula
k:

If the time to evaluate f is nearly the same for all points in the interval, then
for N = 1 (one process) the running time for a cycle is almost constant. This is
because a cycle includes just one evaluation of the function f and the running
time for a cycle is dominated by the evaluation of Q and B. When N > 1,k
is a function of N, k(N), which includes the saturation loss, i.e. the time which
is spent waiting for access to the problem-heap, because another process has
exclusive access to it. The following simple model can be used to describe the
saturation loss.

The execution of one process can be described on a time axis as shown in fig.
5.,
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one cycle of
the algorithm
( - —
A G L A G L
T —X—x—3% X—xX—X .-
Fig. 5.1

This is similar to the model for the bus usage in chapter 2.
A: is the time spent waiting for access to the problem-heap (i.e. the critical
region).

G: is the time spent manipulating the problem-heap (i.e. execution within the
critical region). G depends only on the complexity of storing and retrieving
subproblems and the complexity of accumulating the results Q and B.

L: is the time spent on local processing of a problem in the process. This part
of the processing does not involve the problem-heap. L depends only on the
complexity of f.

If G and L are both nearly constant for all subproblems and all processes, then
A will stay negligible as long as the number of processes, N, is less than N*:

(5.2) N*=1+L/G

This can be seen from fig. 5.2 (see also chapter 2).
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Saturation happens, when ¢ becomes zero, i.e. when

(N—-1)XG=1L

or

2
Il
=
+
QI

When N > N*, the system is saturated and 4 will increase with increasing N,
i.e.

A = (N — N%)G

This implies that the speed-up is linear in N when N < < N*, but constant when
N > > N*. So, adding more processes, in order to reduce the total running time
for a given initial problem, will have no effect when the number of processes is
increased beyond N*; the problem-heap has become saturated.

On the diagram in fig. 5.3, the curve (1) shows the expected dependence of k(N)
on N, when G and L are the same for all subproblems. (2) shows the expected
dependence when G and L are both drawn randomly and independently from
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negative-exponential distributions with mean-values equal to the values of G and
L in (1).

4 k(N)

(2)

L+G (N-N*+1)

L+G

N*

Fig. 5.3

(2) is calculated using the following queueing model shown in fig. 5.4.
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Fig. 5.4

This model is identical to the traditional closed queueing model for a system
with N terminals and a single, central processor (see [Brinch Hansen 1973 p.
217]).

In conclusion % is estimated by measuring the values of L and G using a single
process. L depends on the time to evaluate @, B and f, and G depends on the
time to execute the problem-heap manipulations. The relationship between L
and G determines how £ is estimated when N > 1. If the heap is not saturated
(N<<1+ G) k is simply L + G. On the other hand if the heap is saturated a
simple queueing model is used to calculate k.
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#e:
f
#f is independent of the number of processes. It depends on the behaviour (e.g.

variation) of the function f in the interval of integration and Eps, which is the
required accuracy. For fixed f and interval, #f and Eps are related as follows:

Eps X (#f)2 = constant [Rice 1976]

This means that the constant can be calculated by measuring #f for one particular

value of Eps (probably a large value of Eps). For other values of Eps the number
of function evaluations #f can now be estimated from the expression:

¥ ‘f constant
f Eps

N,

A L
N 4 reflects the starvation loss, which is the difference between N and N ,. A
model for WA can be constructed as follows:

Assume that the only loss of processing power is due to a lack of problems during
the first part of the solution period. When the initial problem is inserted into the
problem heap one process becomes active. After one cycle in the active process,
two processes become active, then four processes, and so on until all processes are
active. The model assumes that all processes remain active until the end of the
solution period. For N = 8, N 4(¢) is modelled as shown in fig. 5.5. The unit of
the abscissa is the running time % for one cycle of a process. The model assumes
that the variation of & from problem to problem is relatively small and that & is
independent of N.
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Using this model N4, may be calculated as follows:

The area under the graph for N is equal to #f 50!

where a(t)) is the area under the graph from 0 to ¢;.

By definition we have
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t; and a(t,) depend only on N, and they can be read from the graph for the
actual value of N,

N4 can then be calculated by the formula:

_ N #

@43) o #r+ Nt; — at))

The reason why the model for N, does not include any starvation towards the
end of the solution period (indicated by the vertical line in the graph at ¢,) is
the following. Normally, a heap-algorithm terminates when the heap is empty,
and all processes are idle (i.e. waiting for a problem). This adaptive quadrature
algorithm uses a technique which allows a final result, that is a Q(0,1) and a
corresponding B(0, 1) < Eps(0, 1), to be obtained long before the heap is empty.
The technique is that the difference between LB and the corresponding XEps
can be used to decrease the required precision for the remaining non-simple
problems. The application of this technique in connection with an adaptive
quadrature algorithm may be found in [Rice 1976] . When this technique is
applied, there is no starvation towards the end of the solution period. These two
termination strategies are called termination on empty heap and termination on
sufficient accuracy respectively.

Other sources of loss

When the algorithm terminates on empty heap, then there is no superfluous
work but a starvation loss towards the end of the solution period. When the
algorithm terminates on sufficient accuracy, then there is a small amount of
superfluous work, which may be estimated as follows: At ¢, (see fig. 5.5), when
a process detects that a sufficient accuracy has been reached, N — 1 processes
are on the average half-way through a cycle and the results from these N — 1
cycles are not used. The amount of superfluous work therefore corresponds to an
increase in #f by N — 1; (N — 1)/2 stems from superfluous work done before ¢,

and (N — 1)/2 stems from braking loss after ¢,. The distance from ¢, (which is
the running time T in formula (5.1) to the termination time of the last process
can be estimated as for the string-searching algorithm in chapter 4.

The notion of iteration loss is meaningless for this adaptive quadrature algorithm,
because the algorithm does not include a parameter which specifies - a priori -
the boundary between simple and non-simple problems (see chapter 3). An itera-
tion loss can be identified in the experimental results for an adaptive quadrature
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algorithm reported in [Grit 1983] .

5.1.3 Comparison between Measurements and the Model

Below we summarize the results from a series of experiments. A more detailed
report on these experiments can be found in [Moller-Nielsen and Staunstrup
1982].

For the two values Eps = 10~ % and Eps = 10~° and for the number of processes
varying from 1 to 8, we measured T, N 4 and #p.

#f H

#fwas constant 127 for Eps = 10 ™%, and varied from 452 to 468 for Eps = 10>,
N,:

N, is shown in fig. 5.6, and the measured values agree (within few percent) with
the predictions based on the model described above (formula 5.3).
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o
7 //. Eps=, -4, 4 g~127

Fig. 5.6

T:
the measured values of T are shown in fig. 5.7 as the speed-up (i.e. T(1)/ T(N))
for the values 1...8 of N.
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Inserting the measured values into the formula (5.1) we find a value for k&, which
is independent of Eps and N. This implies that we expect the saturation point,
N*, to be larger than 8. The actual values for L. and G were also measured.
These measurements predict a value for N* around 9. Measurements of L. and G
are not very accurate.

5.2 Some Techniques to Alleviate the Effect of Software Saturation

This section focuses on the problem of software saturation which can be a limit-
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ing factor, when trying to obtain linear speed-up. It presents some techniques
which can be used to alleviate the effect of software saturation. All we can hope
for is to postpone saturation, i.e. to increase the number of processes which can
be used before the saturation becomes perceptible.

The effect of the techniques are illustrated by means of examples. For each of
the presented techniques (or group of techniques), the technique is applied to
the same basic algorithm, and the performance of the modified algorithm is
measured and compared with the performance of the basic algorithm.

5.2.1 The Basic Algorithm

The basic algorithm is essentially the adaptive quadrature algorithm from section
5.1. Three changes have been made.

— The first change is to increase the value of G (see section 5.1) corresponding
to the use of pseudo-double-precision accumulation of Q and/or B. The only
reason for this change is to bring the saturation point down to around 4, so that
the effect of a technique can be demonstrated with only 8 processors.

— The second change is to alter the termination algorithm so that termination
happens on empty heap (see section 5.1.2). This change has been made in order
to make all the techniques, discussed in this section, applicable to the basic
algorithm.

— The third change is to use busy-wazting for medium-term scheduling. In
terms of Concurrent Pascal it means that the type queue and the operators delay
and continue are not used, neither in the basic algorithm, nor in any of the
modified algorithms. This change has been made because most of the techniques
presented in this section turned out to be much easier to formulate with busy-
waiting than with delay/continue.

This report contains only a summary of the techniques and the measured effect
on the performance of the modified algorithm. It is not obvious how the perfor-
mance is influenced by the use of busy-waiting. This should be studied in more
detail. Our conjecture is that for a large class of useful algorithms, performance
is not impaired by the use of busy-waiting. We have reported (in section 8.9
and in [Megller-Nielsen and Staunstrup 1983] ) about situations, in which the use
of busy-waiting improved the performance. We believe, that the effect of busy-
waiting on software saturation can be analyzed in the same way as the effect of
busy-waiting on hardware saturation was analyzed in chapter 2, and with the
same conclusions. But we still have too little experimental evidence.
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5.2.2 The Techniques
Before the techniques are listed, we want to stress the following.

The list is probably not exhaustive. Depending on the basic algorithm some
techniques are applicable and some are not, and the use of one technique
may exclude the use of others. The application of some technique in order to
decrease saturation loss may cause another type of loss to increase. For example:
the termination algorithm described in section 5.1.2 (termination on sufficient
accuracy) requires that a single problem-heap is used. If saturation is decreased
by means of a technique, which splits the problem-heap into several heaps, the
termination must be based on empty heaps and thereby increase the starvation
loss.

There are two main groups of techniques:

(a) Change the values of L and G, so that the ratio é is increased. This will
increase the saturation point N*.

(b) Split the problem-heap into several heaps and distribute the processes over
the heaps in such a way, that the number of processes per heap is lower
than the saturation point N*,

5.2.2.1 Changing the ratio %

G can be decreased by reducing the number of accesses per subproblem to the
heap. The cost is that L is increased — and often more than G is decreased. In
fig. 5.8 is shown the performance of a program where this kind of technique has
been applied. The basic algorithm is modified so that consecutive pairs of the
operations put-a-problem-into-heap and get-a-problem-from-heap are avoided.
This clearly decreases the average number of accesses per subproblem to the
heap, but increases the average value of L, because of the extra manipulations
of the subproblem retained in the processes.
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A similar technique is to accumulate @ and B in the process and not in the
problem-heap. This, however, will make it impossible to use termination on
sufficient accuracy in the algorithm, and thereby increase the starvation loss.

5.2.2.2 Splitting of the Problem-heap
A single problem-heap can be split into several heaps in a number of ways. It can
either be split into heaps so that the new heaps contain different subsets of the
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functions in the original heap, or it can be split into a number of duplicates of the
original problem-heap, all containing the same functions as the original heap.
Identical problem-heaps can be arranged in different structures, depending on
how they are accessed by the processes. In this section two such structures are
described: a hierarchy and a ring. Splitting the problem-heap into several heaps
introduces a termination problem which is not present in the basic algorithm. A
solution to this problem is discussed in section 5.2.5.

Different heaps

One way to split the problem-heap is to separate independent functions into
separate heaps. The execution of one cycle in a process will then generate a few
calls of functions in all the heaps rather than many calls to a single heap, as
shown in fig. 5.9.

—————————— process —————————
]

Fig. 5.9
If G, is the time spent In heap,, we expect that
G=LG;
and
NY =14
max{G,}
S

This technique can be applied to the basic algorithm by introducing two heaps,
one heap for storing the subproblems, and one heap for accumulating Q and B.
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This is shown in fig. 5.10.

put initial problem

wait for

result
result

accumulator

sub problem-
heap

process process process
1 2 N
Fig. 5.10

Note, that since Q and B are still accumulated in a single heap, the termination
on sufficient accuracy can be used. In fig. 5.11 is shown the performance of a
program, where this kind of splitting has been applied to the basic algorithm.
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Identical heaps

Another way to split the problem-heap is to introduce multiple copies of the
problem-heap and distribute the processes over the heaps in such a way that the
number of processes per heap stays below the saturation point. The performance
of the structure shown in fig. 5.12 has been measured.

solution to

initial initial
subproblems subproblems

problem- problem— problem-
heap 1 heap 2 J 777T7TTTTTT heap M
process process process preocess process process
1 m 1 m 1 m
Fig. 5.12

The initial problem is divided into M initial subproblems and an initial sub-
problem is transferred to each problem-heap. From then on, a subsystem (a
problem-heap and the m associated processes) computes the solution to its initial
subproblem independently of all other subsystems. The computation terminates
when the last heap becomes empty and the associated processes become idle. All
subsystems are identical, and all processors execute the same process. Note, that
although the termination on sufficient accuracy can be used for each subsystem,
it cannot be used to terminate the total system.

This technique has been applied to the basic algorithm, and each subsystem is
identical to the basic algorithm. The table in fig. 5.13 shows some measured
values for four different choices of m and M with a total of eight processes.
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speed-up
r Bl
expectation based
*) on random variaticn
M max T, min T, a of the size of the
o 1sism b [ 1sisw t | PEFSMEES | initial subproblems
8 1 185 13 1.8 3.0
4 2 117 16 2.8 3.7
2 4 89 23 3.9 4.1
1 8 95 95 3.6 3.6

*) T, is the computation time for the i'th subsystem.

Fig. 5.13

The arrangements differ only with respect to the number of independent
problem-heaps. The division of the initial quadrature problem into M initial sub-
problems is done by dividing the interval of the quadrature into M subintervals
of equal length.

The figures in the table illustrate the dilemma. For M = 8, processing power
is lost because the initial subproblems require very different execution times to
solve and therefore there is starvation towards the end of the solution period. The
largest initial subproblem produces 103 subproblems (corresponding to a total
execution time of 185 sec.), while the smallest initial subproblem produced only 7
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subproblems. Note, that in general it is not possible to divide the initial problem
into initial subproblems of equal difficulty. A comparison of the two numbers
under the heading speed-up shows that the actual quadrature problem produces
initial subproblems that are only a little more unbalanced than what would
be expected if the size of the initial subproblems were drawn randomly from
identical negative exponential distributions, so the actual quadrature problem is
not pathological (the negative exponential distribution was chosen for simplicity).
For M = 4 and 2 both the measured and the expected variation in the size of
the initial subproblems is smaller, and since m < N* the problem-heaps are
not saturated. Going from M = 2 to M = 1, saturation loss in increasing more
than starvation loss is decreasing, so the resulting speed-up is decreasing. The
dilemma can be summarized as follows:

— In order to avoid saturation of shared resources (e.g. a problem-heap)
decentralization should be aimed at; therefore M should be large.

— In order to avoid starvation due to variation of the size of the initial
subproblems, M should be as small as possible. That is, centralization
should be atmed at.

Note, that the choice of termination algorithm (use of empty heap or sufficient
accuracy) also depends on the degree of centralization/decentralization.

A compromise between centralization and decentralization of the problem-heap
can be attempted in several ways. Below two such techniques are discussed.
In both a connection is established between the subsystems. The load on these
connections is balanced in order to minimize the sum of the saturation loss and
the starvation loss.

A Hierarchy of Heaps
One compromise is a hierarchy of problem-heaps. This can be depicted as shown
in fig. 5.14.
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A global problem-heap is added on top of a number of independent subsystems.
Whenever the local problem-heap becomes empty, the request for a problem to
solve is carried on to the global problem-heap. If the problem-heap is empty,
the process waits for a problem to be inserted into the global problem-heap.
This happens when a local problem-heap overflows. In this way problems can
propagate from one local problem-heap to another, and no problem-heap (local
or global) issaturated. However, processor power can still be lost, because a local
problem-heap can contain problems while processors, associated with other local
problem-heaps, are idle.

In fig. 5.15 is shown the performance of a program, which is obtained from the
basic program by applying a hierarchy of problem-heaps. The local problem-
heaps are slightly different from the global problem-heap which is identical to
the problem-heap of the basic program, except for the termination algorithm,
which is discussed in section 5.2.3.
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A drawback of this technique is that the performance of the resulting program
depends on the proper choice of a number of parameters like: M, m, the size of
the local problem-heaps, the criteria used when selecting a problem from a heap
etc. This proper choice depends on the basic algorithm to which the technique
is applied, e.g. on the behaviour of the function f. Another compromise between
centralization and decentralization is the ring of heaps described in the next
section.
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A Ring of Heaps
Another compromise is a ring structure of subsystems. This can be depicted as
shown in fig. 5.16.

get
partial
results

walit termination

put initial problem

heap1 ——
toe heap — to heap
~N\ \/ / 3
process process
1 2 o
Fig. 5.16

All processes have access to all problem-heaps. Process no. ¢ accesses only
problem-heap no. ¢ when this heap overflows or becomes empty. Then a cir-
cular search is started visiting the other » — 1 problem-heaps until a non-
full (respectively non-empty) heap is found. The operation store (respectively
retrieve) is then executed on the heap which was found by the search. Operation
then continues on problem-heap no. 7 until another exceptional situation arises.
The algorithm starts by putting the initial problem into one of the heaps, and
it terminates when all heaps are empty and all processes are searching. The
termination algorithm is discussed in section 5.2.3. After termination, partial
results can be obtained from the heaps and summed to form the solution to the
initial problem.
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In fig. 5.17 is shown the performance of a program, which is obtained from
the basic program, by connecting identical subsystems into a ring structure as
described above.
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Fig. 5.17

This technique does not have the drawback of the preceeding one. There are no
parameters to adjust.
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5.2.3 A Termination Algorithm

In all the algorithms presented in section 5.2.2.2 there is a termination problem;
that is to decide when a satisfactory solution to the initial problem has been
found, and when this decision has been made to make it known to all processes.
Having a single central problem-heap greatly simplifies the termination problem.
In this section is described a general termination algorithm.

This algorithm is based on a termination detection algorithm for distributed com-
putations by Dijkstra et al. [Dijkstra 1983] . They consider N machines, each of
which is either active or passive. Only active machines send so-called messages to
other machines; message transmission is considered instantaneous. After having
received a message, a machine is active; the receipt of a message is the only
mechanism that triggers for a passive machine its transition to activity. For each
machine, the transition from active to passive state may occur spontaneously.
From the above it follows that the state in which all machines are passive is
stable: the distributed computation with which the messages are associated is
said to have terminated.

These terms can be interpreted as follows: A process in a heap algorithm is either
in the state active or in the state passive, it is passive when it is not processing any
subproblem, and the heaps to which it has access (i.e. in which it either stores
or retrieves subproblems) are all empty. The heap algorithm terminates when
all processes are passive. A message is identified with a subproblem. To send
a message means to store a subproblem in some problem-heap, and to receive
a message means to retrieve a subproblem from some problem-heap. To apply
the algorithm by Dijkstra et al., we must alleviate the requirement that message
transmission is instantaneous. For the sake of the proof of the algorithm, it is only
necessary to require that a process goes passive only when all the messages it has
sent have been received by some other process. This requirement is fulfilled by
the above interpretation of message transmission provided that the set of heaps
from which we try to retrieve subproblems include the set of heaps in which we
may store subproblems. Note, that it is not necessary to ensure that all the heaps,
to which a process has access, are simultaneously empty, before the process turns
passive. It is sufficient to visit the heaps one by one, and make sure that all
subproblems stored by the process have been retrieved by some other process.

This algorithm has been implemented as a general termination module in Con-
current Pascal. Since the termination algorithm assumes that the processors are
organized in a ring, such a communication structure is added if it is not already
present. The numbers in fig. 5.15 and 5.17 were obtained using this module.
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5.3 Summary

In this chapter we have described a number of experiments with an adaptive
quadrature algorithm. First a model for the behaviour of this algorithm was
described and verified. An important part of this model is an analysis of the
saturation loss. This saturation loss occurs because processes need mutually ex-
clusive access to one shared data structure (the problem-heap). Please note the
distinction between this saturation loss caused by the algorithm and the hardware
saturation discussed in chapter 2.

The last part of this chapter described a number of techniques for postponing
the saturation point. As illustrated by the reported experiments the saturation
point is postponed, but each technique has some other drawback for example
increasing the starvation loss. This is an indication of the problems in algorithms
with decentralized control, sometimes called distributed algorithms. In chapter
8 we describe a different way of postponing the saturation loss by alleviating the
requirement of mutually exclusive access to the shared data structures.
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6. Summary of Other Experiments

Chapters 4 and 5 contained a thorough description of two algorithms and the
experiments we have undertaken to analyze them. A number of other algorithms
have been implemented and analyzed in a similar way. In this chapter we
give a summary of the most important results obtained, the details about these
algorithms may be found in the referenced reports.

6.1 Quicksort/Mergesort

The Quicksort algorithm for internal sorting of an array is one of the best
known and nicest examples of a divide and conquer algorithm. As mentioned
in section 3.1, it is straightforward to implement this algorithm as a problem-
heap algorithm. The table in fig. 6.1 shows the speed-up achieved by one such
implementation:

N Speed-up

1

1.75
2.75
3.64

QO W DO

Fig. 6.1

The basic Quicksort algorithm can be varied in a number of ways [Sedgewick
1978] . Such variations can influence the speed-up shown above. But no major
improvement can be obtained, since the dominant source of loss is starvation loss
during the initial phase of the sorting.

The first step of the computation consists of splitting the data into two lists
(problems) such that all elements in one list are less than all elements in the
other. This splitting requires an inspection of all data elements, so the time
to split is proportional to the number of elements, K. During this period, one
processor only is working. After this two processors may be put to work on
splitting the two problems into four, etc. This is illustrated by the time diagram
in fig. 6.2.
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As usual the solid lines represent useful work contributing to the solution, and
the empty space represents loss. In this case clearly starvation loss.

The magnitude of the starvation loss is (assuming N is a power of two):

(log N)—1 . K
Sloss = E (N = 2’1) X —
=0 27

For very large values of K, this becomes small compared with the total execution
time: K log K. But these values of K are far beyond the size of our internal store
(16K data elements). So we have not performed any experiments to uncover the
effect of other kinds of loss for large K. Results similar to the ones reported above
have been obtained on Cm* [Jones 1980] .

Mergesort is another well known sorting algorithm, it works by repeated merging
of two sorted sublists into a new longer sorted sublist. Each iteration increases the
length of the sorted sublists. During the final phase of the algorithm, two sorted
sublists are merged into one sorted list containing all the original data elements.
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The mergesort algorithm can be viewed as doing the inverse of Quicksort. The
latter creates smaller and smaller problems, whereas the former works by merging
two smaller problems into one larger problem.

Consider first a problem-heap implementation of mergesort where the processes
merge lists independently, i.e. does not cooperate on a particular merge. In this
case the time diagram (fig. 6.3) is the inverse of the time diagram for Quicksort
(see fig. 6.2).

N: b——0

Start Stop

Fig. 6.3

We have not done any experiments with the mergesort algorithm but the above
shows that a behaviour similar to Quicksort can be expected.

A major problem with the above sketched implementation of mergesort is the
starvation loss in the final stages. One could hope to reduce this loss if several
processors could cooperate on a particular merge. There are reasons to believe
that this can be done efficiently. One such merging algorithm [Valiant 1975] has
been implemented, it showed an almost linear speed-up. We have, however, not
tried to implement and analyze mergesort utilizing such a merging algorithm.



72

6.2 Root Searching

Let H be a real continuous function defined on the closed interval [a, b] and
assume that H(a) X H(b) < 0, i.e. that H has at least one root in [a,b]. We have
analyzed algorithms for finding a root of H under the additional assumption that
evaluating H is very time consuming.

We consider the class of partitioning algorithms, which are iterative algorithms
where each iteration reduces the current interval containing the root. Let x €
[@, 5] ; based on the function value, H(x), it can be decided which of the
intervals [a,x] or [x, b] that contains the root, this interval becomes the new
current interval (see fig. 6.4).

?

Fig. 6.4

The well known bisection algorithm, where x is the middle of [a,8], is an ex-
ample of a partitioning algorithm. We have only analyzed partitioning algorithms
because they are simple and guarantee convergence without other assumptions

Let Ty, l:.'e th? time it takes to e.valu.a\te H. When Ty; dominates other quantities
the running time, By, for the bisection algorithm is

b—a
eps

By = Ty X log,

where eps is the absolute accuracy with which the root js obtained. This run-
ning time can be reduced by letting N processes evaluate H at different points
X1, %9, ..., Xy concurrently (see fig. 6.5).
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Fig. 6.5

When a process, p,, finishes its evaluation of H(x,), it can be decided which
of the intervals [a,x;] or [x, b] contains the root. This information must be
communicated to the other processes. Based on its own results and those received
from others, a process now selects a new point, x, in the interval and computes
H(x). The running time of the algorithm depends on how the points x,, x, ..., Xy
are placed in the interval. Intuitively, the NV points should be spread out as evenly
as possible, to reduce the worst case running time. Although this is very easy to

achieve initially by dividing the interval into N + 1 intervals of length ﬁ, it
is difficult to maintain such an even spreading after a few iterations. In [Eriksen
and Staunstrup 1983 ] there is a detailed description of how this can be achieved.

The root searching algorithm shows an application of a useful heuristic for
designing multiprocessor algorithms called worst case reduction. Consider a se-
quential algorithm with a fluctuating running time (different input data gives
very different running times) (see fig. 6.6).

Running time
)

input data
(e.g. location of the root)

Fig. 6.6
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Such a behaviour is for example exhibited by a partitioning algorithm where the
current interval is partitioned into intervals of different lengths. Low running
times are obtained when the root happens to lie in the short interval and con-
versely. This can be utilized in a multiprocessor algorithm where several different
partitionings are tried in parallel. Intuitively each of the peaks in the above
diagram is covered by a process effectively pulling them downwards. This will
improve the worst case running time of the algorithm, but it may not improve
the average case. The next section contains another application of the worst case
reduction heuristic.

Our analysis and implementation of the root searching algorithm shows that it
gives a very poor speed-up (see fig. 6.7).

Speed-up
1

1.4

1.9

2.4

OO!-BN:HZ

Fig. 6.7

The major kind of loss in this algorithm is an extreme amount of braking
loss, not only towards the end of the computation, but in almost every iteration
because work done on intervals which turn out not to contain the root is super-
fluous. A process working on such an interval should therefore be stopped and
directed towards the current interval.

6.3 Optimization by Branch and Bound

Branch and bound is a well known algorithm for solving discrete optimization
problems [Little 1963] . The algorithm is based on traversing a tree spanning
all possible solutions in such a way that some branches of the tree are eliminated
before a complete traversal has been made. This family of algorithms is very
unstable, for some data almost the whole tree needs to be traversed whereas for
other data only a small part needs to be traversed.

It is simple to formulate a problem-heap algorithm for the branch and bound
principle. The problem-heap consists of nodes of the tree indicating subtrees
that should be traversed. The details of this implementation may be found in
[Andersen 1983] . The major result of this implementation is that those data
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having a very long running time (i.e. where most of the tree should be traversed)
give a very good speed-up whereas other data having a short running time
exhibit no speed-up. The net effect is that the fluctuations in running times are

smoothened out (see fig. 6.8).

Running time
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input data

= running time of
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X running time of
multiprocessor
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Fig. 6.8

This is another example of the worst case reduction principle mentioned in
section 6.2. The extra processing power provided by a multiprocessor reduces the
worst case running time. This may be important even if the best or average case

running times are not improved.
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7. The Multi-Maren Machine Architecture

This chapter describes the Multi-Maren hardware. The machine is built out of
standard components, allowing a wide range of adjustments and combinations,
and the machine has been shaped to our needs by selecting from the available
options.

7.1 Overview

Multi-Maren consists of 10 almost identical processors connected to a global store
by a common bus as shown on fig. 7.1.

global
store

l

common bus

Processor Processor Processor
no. no. no.
1 2 10

Fig. 7.1

The processors are Intel iSBC 86/12A (one is an MBC 86/12)) boards each of
which contains a 16-bit processing unit (Intel 8086), a local store and some 1/0
interfaces. The common bus is an Intel Multibus equipped with a specially con-
structed arbiter (see section 7.3). The global store is an Intel iSBC 032 memory
board. Each of these is described in further detail below. The processor, global
store and arbiter boards are mounted in an Intel iCS80 chassis. The chassis is
mounted together with power supplies, connectors for I/O and a cooling system,
in a rack as shown on the front page photography.

7.2 The Processor

The processors are Intel iSBC 86/12A boards [Intel 1978a] . These boards can
be adapted to a specific application by a number of wire wraps and switches.
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This section describes how the boards have been adapted to our use.

The following parts of the board are currently used: The 8086 microprocessor,
the RAM store, the EPROM store, the timers and the serial 1/0 port.

The Intel 8086 is a 16-bit microprocessor, this means that operands typically are
16 bit quantities. It is, however, possible to address 8 bit quantities (bytes). The
total address space is 1 Mbyte. The Intel 8086 is described in further detail in
[Intel 19797 .

7.2.1 The RAM Store

The RAM store on a board can be accessed directly by the processing unit on that
board, and by any other processor in the system via the Multibus. All accesses
to the RAM store are made through a so-called »dual port« which is under the
control of either the processing unit on the same board or the Multibus, see fig.
7.2. Since the RAM store is placed on the same board as the processing unit,
it is called the local store. (Section 7.4 describes a store which is global to all
processors. )

common bus

1 iSBC
8086 /128
dual
port
RAM
Fig. 7.2

There are 32K bytes of RAM store on each processor board. These are accessed
locally by the (hexadecimal) addresses: 00000-07FFF., However, when accessed
from the Multibus the addresses of all the RAM stores are different. This makes
it possible to distinguish between the stores on all the boards. The (hexadecimal)
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addresses of the local stores, when accessed from the Multibus, are:

10000-1FFFF store on board 1
20000-27FFF store on board 2

A0000-A7FFF store on board 10

So all RAM store is accessible by all processors. Note, that the addresses of a
RAM store are different when accessed locally and from the Multibus.

7.2.2 The EPROM Store

Each board has 8K bytes of EPROM store. This store is only accessible by the
on-board processing unit. It is accessible through the addresses: FE000-FFFFF.
When the power is turned on or when the system is reset, each processor starts ex-
ecuting the instruction placed in address FFFF0 of the EPROM store. A program
(called the »inspector«) is placed at this address. This program initializes the
board and makes it possible to bootstrap other programs (see section 8.7).

7.2.3 The Timers

Each of the boards has two 16 bit counters which can be used as timers by the
processing unit on the same board. The two counters are called »TMRO0« and
»TRM1l«. TMRO is decremented with a frequency of 1.23 Mhz, i.e. every 0.8
microsecond. TMRI1 is decremented every time TMRO gets to 0. The values of
TMRO and TMR1 can be changed and read by I/O instructions. The timers are
used to implement the Concurrent Pascal function called »realtime« (see chapter

1).
7.2.4 Input/Output

Each board has a serial I/0 port and a number of parallel ports. These ports
can be used by the processing unit on the board through its I/0 instructions.
The serial I/O port is used to implement a character oriented I/0 device (called
a »typedevice« [Brinch Hansen 1977] ) for each Concurrent Pascal process. The
process executing on processor no. 1 (the initial process) is connected to a
terminal (see chapter 1). The remaining I/O ports are normally unconnected.
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average waiting time for the bus
when nobody else requests the bus: 500 nsec.

maximal waiting time for bus:
nobody else requests the bus: 900 nsec.
all ten processors request the bus: 14 psec.

7.4 The Global Store

The global store is an Intel iSBC 032 memory board. It contains 32K bytes and
the (hexadecimal) addresses of the global store are: B0000-B7FFF. Locations
in the global store can only be accessed through the Multibus. This property,
combined with the possibility of locking the Multibus for a number of consecutive
bus cycles (see section 7.3), provides the indivisible exchange operation on which
the synchronization is based (see section 8.3). Synchronization variables must be
placed in the global store. A memory location in a processor cannot be used,
since the on-board processing unit cannot be locked out for more than one bus
cycle.



82



83

8. The Concurrent Pascal Implementation

The purpose of the multiprocessor laboratory is to construct and analyze al-
gorithms. Therefore we needed a high level language as a programming tool. A
preliminary analysis of existing languages [See and Segaard 1981] showed that
none of them were ideal for our purposes. On the other hand we thought it would
be a mistake to try to design a new language. First of all this would postpone
the algorithmic experiments that was our primary interest; secondly there was no
reason to believe that we could make a perfect language design before having
a considerable experience with multiprocessor algorithms. Concurrent Pascal
[Brinch Hansen 1977 ] was found to be a reasonable compromise because we had
easy access to a good implementation. Since the language is not an issue in our
laboratory we have taken the liberty to make changes to the language whenever
our experiments showed a need to do so. These changes and their justification
are explained below.

It was very important for us to finish the implementation of Concurrent Pascal
as quickly as possible, so we could get on with the algorithmic experiments. The
absolute speed of the implementation was only of secondary importance, since
most of our analyses are independent of the absolute speed of the processors.

The central decision in the Concurrent Pascal implementation is to allocate one
processor to each process. This leads to a very simple implementation which has
several advantages: (listed in order of priority)

1. Analyzing a program running on a complex implementation can be
very hard, because it is difficult to distinguish the properties of the im-
plementation from those of the program. The experience from the Cm*
multiprocessor at Carnegie Mellon University clearly confirms this [Jones
1980].

2. It can be very hard to convince oneself of the correctness of a complex
implementation. Testing is extremely difficult when processors run simul-
taneously.

3. A simple implementation can be completed rather quickly.

Many of the details of the implementation reported below can be explained by
the decision to allocate one processor for each process.

As described in Chapter 7, all processors share a global store, which can only be
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accessed through a common bus, the Multibus. This bus can become a bottleneck
if all processors are using it frequently. Before and during the construction of the
multiprocessor we were very aware of this danger. An effort was therefore made
to reduce the use of the Multibus as much as possible.

8.1 Program Structure

A Concurrent Pascal program consists of a number of definitions (constants and
types) and an initial process where all processes and shared data structures are
declared and initialized.

The following is a typical structure of a Concurrent Pascal program:

CONST
c = .3
TYPE
ml = MONITOR
END;
cl = CLASS
END;
p2 = PROCESS
END;
p3 = PROCESS
END;
m2 = MONITOR
END;
pl0 = PROCESS

END;
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»initial process«

VAR
Wi oy
BEGIN
INIT v( );

END.

The store references of one processor executing a Concurrent Pascal process can
be divided into the following three categories:

a) references to code,
b) references to local data,
c) references to shared data.

The local data (process and routine variables) are used by one process only.
Whereas the shared data are used by more than one process.

Therefore it was decided to place only shared data (global variables and as-
sociated synchronization variables) in the global store. The distinction between
local and global monitor variables is explained by the following skeleton of a
monitor:
TYPE
m =
MONITOR(s: ...);

VAR
gl AT e global monitor variables

PROCEDURE ENTRY e(p: ...);

VAR
|| local routine variables
12: ..

BEGIN
Se; routine body

END;

BEGIN
Sg; monitor body

END.
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A consequence of this decision is that all code for the monitor body and the
routine bodies is duplicated in each of the processors. Each has its own copy to
avoid using the Multibus for fetching instructions. By making a static allocation
of processes to processors the amount of duplicated code is reduced considerably.
Fig. 8.1 shows how the compiler distributes the code of a typical Concurrent
Pascal program:
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program text

CONST
c

TYPE
ml

cl
p2

p3

m2

plo

»initial process«

PROCESS
VAR

N i
BEGIN

INIT v( );
END.

ey

MONITOR
END;
CLASS
END;
PROCESS
END;
PROCESS

END;

MONITOR
END;

PROCESS

END;

code code code code
for for for for
proc. 2 proc. 3 proc. 10 proc. 1

Fig. 8.1
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In addition to the code, the local store of each processor contains the global
variables of the process together with the parameters and local variables of the
routines (including monitor routines).

8.2 The Interpreter

Concurrent Pascal is implemented by means of an interpreter. The interpreter ex-
ecutes C-code instructions as generated by the compiler. The C-code is described
in more detail by Hartmann [1977] . It has been necessary to modify a few of
the C-code instructions to make it possible to utilize the full 20-bit address range
of the hardware.

The interpreter has been programmed in PL/M-86, and the data type »real«
is handled by the standard real emulator [Intel 1978b] . In a pilot study this
emulator has been replaced by the 8087 numerical co-processor. This improved
the speed of the Concurrent Pascal real operators by a factor of 20. As a side
effect it freed the 8K of store used by the emulator. Exchanging the real emulator
in software with the co-processor hardware has no influence on other parts of the
interpreter. So far we have not found it worthwhile to invest in the co-processor
hardware, again because the absolute speed of the machine has low priority.
Similarly, implementing Concurrent Pascal by an interpreter written in PL/M-
86, the absolute speed of the machine has been reduced significantly (at least by
an order of magnitude). The advantage on the other hand is the short time it
took to do the implementation (see chapter 9), and the ease with which we can
do modifications.

8.3 Synchronization

There are two levels of synchronization in Concurrent Pascal. The lowest level,
called the short-term synchronization, ensures that at most one process at a
time is executing one of the monitor routines of a particular monitor. This is
implemented by a so-called gate. The gate has two states: open and closed.
When it is closed some process is executing a monitor routine.

The second level of synchronization, called medium-term synchronization, is
used to express the logical synchronization constraints of the program, e.g. that
no more elements can be put into a buffer which is full. To express the medium-
term synchronization, Concurrent Pascal has a predefined type queue, with three
associated operations delay, continue and empty.

The implementation of gates and queues is based on the fact that the machine
provides an indivisible exchange operation, : =:, which exchanges the contents
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of a variable located in a local store with a variable contained in the global store.

glcbal store

[N

-t |

local store

Fig. 8.2

a: =:b exchanges the contents of a and b, nobody else can use the global store
during this exchange (see fig. 8.2).

8.4 Short-term synchronization
A correct solution must satisfy the following two requirements:

(1) at any time at most one process may execute monitor routines of a
particular monitor (mutual exclusion),

(2) if no process is using a monitor, a request to enter a monitor routine must
be granted (responsiveness).

Note, that requirement 2, responsiveness, is weaker than the fairness requirement
made in the Concurrent Pascal report [Brinch Hansen 1977] . This is discussed
in section 8.5.

Consider the following implementation, which satisfies (1) and (2). Entry to a
monitor routine is done by calling entermon, and exit from the monitor is done

by calling exitmon.
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TYPE
gate-state = (open, closed);

gate =
CLASS
VAR
g: gate-state; »allocated in the global storel«

PROCEDURE ENTRY entermon;

VAR
help: gate-state; »allocated in a local store«
BEGIN
help: = closed;
REPEAT
g: = help;
UNTIL help = open;
END;

PROCEDURE ENTRY exitmon;
BEGIN

g: = open;
END

BEGIN
g: =open;
END;

Synchronization algorithm 8.1.

This is a well known synchronization algorithm which fulfills the two require-
ments stated above. Let help; be the local variable in the #-th processor. Then
at most one of the variables g, help,, help,, ..., help;, can have the value open.
Therefore mutual exclusion is ensured. The responsiveness of the algorithm is
based on the fact that there is a maximal waiting time for the common bus and
hence also on the execution of the exchange operation. Therefore if the gate is
open, this value will be received by the processor that wants to enter a monitor
routine,

At first we rejected this synchronization algorithm because we feared that the
busy-waiting loop would put a very heavy load on the common bus. While a
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process is waiting, it constantly performs exchange operations locking the bus
temporarily to inspect the gate.

The load on the shared bus can be decreased by prolonging the cycle time of the
busy-waiting loop.

REPEAT

wait;

g: = :help;
UNTIL help = open,;

Ideally the wait should not burden the common bus and it should last exactly
until the gate becomes open, no longer and no shorter. However, the correctness
of the solution is not affected by making the wait shorter than this ideal. There
are many ways of implementing the wait. We used an implementation where the
waiting ceases when a gate changes from closed to open. The operation exitmon
becomes:

PROCEDURE ENTRY exitmon;
BEGIN
g: = open;
indicate-state-change;
END;

Synchronization algorithm 8.2.

For almost a year we used algorithm 8.2, the details are described in [Moller-
Nielsen and Staunstrup 1982] . But in the summer of 1982 we made an experi-
ment to compare the two algorithms. The tables in fig. 8.3 give a summary of
the results from these experiments. The tables show the influence of a number of
experiments with a varying number of processes trying to enter a closed monitor,
i.e. executing the busy-waiting loop. Horizontally the number of processes doing
this is shown. Two different situations were analyzed, in the first the influence
on a process trying to enter a monitor is shown. Table 1 gives the time to execute
an empty monitor routine (begin end;). Table 2 gives the time it takes to execute
a monitor routine with many references to the shared store.
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no. of processes
doing 'busy-wait':
0 2 4 7 0 2 4 7
algorithm 8.2 1.0{1.0 1.0 1.0 1.0 ] 4.6 1.0 1.0
algorithm 8.1 0.7110.71|0.71(0.73|{1.0|1.0[1.01]1.03
Table 1 Table 2
Fig. 8.3

From these tables it seems that algorithm 8.1 should be preferred. The large
differences in Table 1 are mainly caused by the time it takes to execute »indicate-
state-change« in algorithm 8.2, this is not needed in algorithm 8.1.

The explanation of the numbers in both Table 1 and Table 2 was given in
chapter 2: when all code and local variables are placed in the local stores, there
are very few storage references to the global store. Even though there are few
global references, there is of course a limit to how many processors that can
be doing the busy loop before the bus becomes saturated. But consider what
happens up to and at the saturation point. The processes doing the busy-waiting
loop are slowed down, but that does not matter since they are not doing anything
useful. The execution time of a monitor routine (= Table 2) would slowly
increase up to the saturation; but since the global store references are infrequent
(< 1% , see chapter 2), even a long delay of those is insignificant.

It is essential that the bus arbiter is constructed so that there is a maximal waiting
time before the bus is granted. If this is not the case, a reference to the global
store could be postponed indefinitely. This point is discussed further in section
8.5 on fairness.

The conclusion of the discussion above is that there are considerable benefits in
choosing algorithm 8.1 while the drawbacks are insignificant. Therefore we are
currently using algorithm 8.1 (with the busy-waiting loop).
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8.5 Fairness

Usually it is required that the short-term synchronization algorithm is faer, i.e.
that all processes that wish to enter a monitor are allowed to do so within a finite
period. Requirement (2), responsiveness, stated in section 8.4 is, however, much
weaker. There are several reasons why we gave up the stronger fairness require-
ment to the short-term synchronization. Firstly, there is not a common agreement
on how to define fairness precisely [Queille and Sifakis 1983] . Secondly, if
fairness is an important assumption for a multiprocessor algorithm, it must be
because there are processes waiting to enter a monitor most of the time, hence
it must be a rather inefficient algorithm. Finally, in almost all our programs
all the processes are identical (see chapter 3). In such symmetric programs it is
irrelevant which of the identical processes are served first.

It must be emphasized that these arguments are made for the short-term
synchronization only. Above and underneath this level are other levels of
synchronization where other arguments may apply. In particular underneath the
short-term synchronization level is the bus synchronization level or bus arbitration
as it was called in section 7.3. As it is pointed out several times in this report (e.g.
in chapter 2}, it is crucial that the bus arbiter can guarantee a maximal waiting
time for the bus. This is a much stronger requirement than responsiveness.

8.6 Medium-term Synchronization

A process may await a signal in a monitor by calling »delay« on a variable of
type »queue«. This releases the exclusive access to the monitor so that another
process may enter a monitor routine. When another process calls »continue« on
the same queue variable the delayed process can go on. But since at most one
process may be executing monitor routines of a particular monitor, it must be
decided in which order the two processes should finish their monitor routines. Of
the many suggestions to resolve this, consider the following alternatives:

(a) the delayed process finishes first,
(b) the delayed process finishes last,

(¢) avoid the issue by requiring continue to be the last statement of the
routine.

Alternative c) is the one chosen in Concurrent Pascal and therefore the alterna-
tive we chose initially. Using this alternative it is, however, not possible to have
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more than one continue (dynamically) in a monitor routine. It turned out that
almost all our programs had a monitor where one process should start a number
of other processes. This is very awkward to express using at most one continue
per routine. Therefore, our implementation has now been changed to alternative
b). Although b) is slightly more complicated to implement than a), we chose
it because it was more convenient to express our algorithms using alternative
b). This was done in the summer of 1982. Section 8.9 describes another of the
changes to Concurrent Pascal which we have experimented with.

8.7 Initialization

This section describes how a Concurrent Pascal program is loaded and started.
When the power is turned on or when the machine is reset, a program (placed in
the EPROM store) called the inspector is started. The inspector is similar to the
iSBC 957 debugger supplied by Intel [Intel 1978c]. Among other facilities, this
program can load and start the Concurrent Pascal loader. The inspector and the
Concurrent Pascal loader implements the two levels of virtual machines shown
on fig. 8.4.

Concurrent Pascal loader

lcad Concurrent Pascal system
Inspector

Fig. 8.4

When the Concurrent Pascal loader is running, all processors have received their
copy of the Concurrent Pascal interpreter and kernel, but they have not yet
received the c-code (the program to be executed). This is loaded and distributed
by the Concurrent Pascal loader. This adds a new virtual machine level shown
on fig. 8.5.
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load c-code
Concurrent Pascal loader

DI SR el _——— e — — e e e e — o o — — — —

Fig. 8.5

The Concurrent Pascal loader is a PL/M-86 program running on processor
number 1. It receives the c-code from the Intellec development system and
distributes it to the relevant processors. When the processors have received their
part of the c-code, they start executing it, but only until they reach the c-
code instructions corresponding to the first begin in the process body (the c-
code instruction beginproc). At this instruction they are stopped until explicitly
started by an #nit-statement in the initial process (see fig. 8.6).

initial process process 2 ... process 10
var . "
B2 ¥ ssw . .
p10: ... -
begin .
init p10; - > begin
;.nlt p2; ——————== > bec;in i
end. {
Fig. 8.6

The states of all the processors are described in a table which has an entry for
each process. An entry has one of the following values:
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not started: The interpreter has not yet been started.

wait initproc: Waiting for init-statement.

running: Executing c-code instructions.

terminated: =~ The processor has executed the last »end« of its process
body.

delayed: Delayed in a queue.

error xxxxx: An exception has occurred, xxxxx indicates which.

The contents of this table is displayed by processor 1 either when the INTR
button on the front panel is depressed or when the initial process terminates.
Depressing INTR brings the system back on the loader level where a new program
may be loaded and started.

Immediately after starting a Concurrent Pascal program, the contents of all the
processors’ local stores are as shown in fig. 8.7.

[znspector code ]

Concurrent Pascal
runtime stack

c-code

Interpreter and kernel
code and variables

Inspector variables

Fig. 8.7

The contents of the global store is shown in fig. 8.8.
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monitor variables

synchronization variables

Fig. 8.8

8.8 Input/Output

There is only one I/O device available for each processor, a terminal. Each
processor has its own I/0 port which is a standard RS 232 connection. Therefore,
up to ten terminals may be connected and used independently. Usually only one
terminal is connected (to processor 1, i.e. the initial process), this terminal is
actually an Intel »Intellec« development system mentioned in section 8.7 (see fig.
8.9).

Global
store

Common bus

I/0 Processor Processor Processor
ne. 1 no. 2 no. 9

Development
system

Fig. 8.9 The normal I/0 connection.

This very limited I/0 facility has been tolerable for our algorithmic experiments
described in chapters 4, 5 and 6. It is of course completely inadequate for a
multiprocessor running some service function: an operating system, a compiler
or a database. In the spring of 1983 we conducted a number of experiments and
investigations on how to provide adequate I/0 facilities.
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This was centered around the device monitor concept [Ravn 1980] . Thé ex-
periments pointed out some practical problems e.g. uniform addressing of 1/0
ports. But more importantly they demonstrated the shortcomings of the decision
to allocate one processor to each process, since this requires dedication of a
complete processor to each input device. If this becomes too costly, it is necessary
to multiplex a processor between several processes.

8.9 Common Class

This section contains a summary of the experiments we have made with a
modified version of Concurrent Pascal which allows simultaneous access of
processes to shared data. An example is the »Readers-Writers« kind of access con-
trol to a shared table. »Readers-Writers« cannot be programmed in Concurrent
Pascal. The shared data must be encapsulated in a monitor, and this implies
that all accesses to the shared data are treated as »Writerse.

In order to make it possible to measure how the performance of a multiprocessor
algorithm changes when the access control to shared data is refined, we decided
to add a suitable construct to the current Concurrent Pascal implementation on
our multiprocessor system. The actual implementation of such a construct was
based on the following considerations. The added construct should be seen as
a tool by means of which we could experimentally study the effect of different
refinements of access control to shared data. It should not be seen as a proposal
for the syntax and semantics of a new construct to be included in the language
Concurrent Pascal. It is our firm belief that such proposals should be postponed
until the subject has matured through the study of the effect of different forms
of access control refinement in programming complexity and performance. Such
a study is best conducted by programming and executing a wide variety of
algorithms with different refinement of access control. For this reason, we wanted
to add a construct which implied as little change as possible to the Concurrent
Pascal compiler and the c-code interpreter.

8.9.1 The Concept of a Shared Class

It would be possible to express »Readers-Writers« (and other strategies for con-
trolling access to shared data) if the monitor concept in Concurrent Pascal was
substituted by the shared class. A shared class has the following form:
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sh =
SHARED CLASS ( < parameters > );
VAR
STATE v ey »access to a procedure entry is granted
based on the variables V.«
DATA Vy »the shared data.«

PROCEDURE ENTRY P{ < parameters > );
ENTRY IF B(V,) THEN entry_statement{V);

»B( V) is a boolean expression of the variables ¥, and entry_state-
ment; is a statement, which manipulates the variables V,. The
subscript ¢ indicates that this boolean expression and statement is
particular for the procedure entry P;.«

BEGIN »The body of the procedure entry P,.«
S{V ) »The manipulation of the shared data.«
END
EXIT exit_statement{V);

BEGIN
»Initialization of ¥, and V.«
END;

The meaning of the constructs in a shared class is the following. When a process
calls a procedure entry in a shared class, access to the body of the entry is
not granted based on a mutual exclusion principle, as it is for the monitor,
but access is granted only if the boolean expression B; (¥,) evaluates to true.
Then the statement entry_statement; is executed, and after that the execution
of the statement S§{¥ ;) is initiated. The evaluation of B, and the execution of
the statement entry_statement, are done indivisibly, and excluding execution of
other entry- and exit-statements of the same shared class. When the execution
of the statement §; is completed, the statement exst_statement; is executed in an
indivisible manner, and excluding execution of other entry- and exit-statements
of the same shared class. Entry- and exit-statements may only refer to the state-
variables (i.e. V) and the bodies may only refer to the data-variables (i.e. V).

Using this concept of a shared class, »Readers-Writers« can be programmed as
follows:
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r—w =
SHARED CLASS;
VAR
STATE n_readers, »The number of processes executing Sr
in the Read entry.«
n_writers : integer; »The number of processes executing Sw
in the Write entry.«
DATA t:table; »The shared table on which the Readers
and the Writers are operating. «
PROCEDURE ENTRY Read(...);
ENTRY IF n_writers = 0
THEN n_readers : = n_readers + 1;
BEGIN
Sr(t)
END
EXIT n_readers : = n_readers-1;

PROCEDURE ENTRY Write(...);
ENTRY IF (n_readers + n_writers) = 0

THEN n_writers : = n_writers + 1;
BEGIN
Sw(t)
END
EXIT n_writers : = n_writers-1;
BEGIN
n_readers : = 0; n_writers : = 0;
»Initialization of ‘t’.«
END;

A monitor can be programmed in a similar way using a single boolean (a »gate«)
as V. The other extreme, which allows unrestricted access to a set of shared data,
can be obtained by leaving the statements entry_statement and exit_statement
empty and by using the constant true for the expression B.

8.9.2 The Concept of a Common Class

To implement the shared class proposed above a rather extensive change in
compiler and interpreter is necessary. Instead we chose to keep the monitor
construct unchanged and add a construct called a common class. A common
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class is a shared class with unrestricted access. From an implementation point of
view, a common class is a monitor to which the gate i1s always left open. For this
reason a common class is translated as a monitor except at one point; the c-codes
ENTER CLASS, EXIT CLASS, BEGIN CLASS, END CLASS and INIT CLASS
are generated instead of the c-codes ENTER MON, EXIT MON, BEGIN MON,
END MON and INIT MON (these c-codes are explained in [Brinch Hansen
1977] ). This means that no new c-code has to be added to the c-code machine,
and the c-code interpreter (and kernel) can be left unchanged. The changes to
the compiler are few and straightforward.

Programs written by means of the shared class construct can be systematically
transcribed into a program which uses only monitors and common class. A shared
class is represented by a pair consisting of a common class and a monitor, to
which the common class has access. The common class contains the shared data
(i.e. ¥V;) and the operations S§{¥ ;). The monitor encapsulates a transcription of
the entry and the exit statements of the shared class. The shared class named sh
is transcribed into the following pair.

sh_mon =
MONITOR;
VAR V. :..;

w: waiting_room; »a pool of queue-variables«.
w_adm: waiting_room_adm; »administration of the pool«.

PROCEDURE ENTRY entry_to_P;;
BEGIN
WHILE not(B{ V',)) DO
delay(w(.w_adm.vacant.));
entry_statement (¥ );
WHILE not(w_adm.empty) DO
continue(w(.w_adm.occupied.))
END;

PROCEDURE ENTRY exit_from P
BEGIN
exit statement(V);
WHILE not(w_adm.empty) DO

continue(w(.w_adm.occupied.))
END;

»
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BEGIN
INIT(V,)
END;

The pair w and w_adm implements a pool of queue-variables. The operations
on the pool are:

empty: = true, if the pool is empty, i.e. if all queue-variables in the pool
are empty.

vacant: the identity (e.g. an index in an array of queue-variables) of a
queue-variable in the pool which is empty.

occupied: the identity in the pool of a queue-variable which is not empty.

Note, that our implementation of the continue-statement deviates from normal
Concurrent Pascal [Brinch Hansen 1977] . An execution of a continue-statement
does not enforce an exit from the procedure entry (see section 8.6). Note also,
that sh_mon contains two procedure entries (entry_to_P; and exit_from_P)) for
cach procedure entry (P,) in the shared class. The common class associated with
sh_mon looks as follows:

sh =
COMMON CLASS(...;s:sh_mon);
VAR Vg ...

PROCEDURE ENTRY P{.....);
BEGIN
s.entry_to_P;
S{Vay;
s.exit_from P;
END;

BEGIN
init(V)
END;

It should be noted that local variables in the procedure entry of a common class
are allocated anew (and locally to the calling process) for each new invocation.
Only the global variables (i.e. V) are allocated globally to the processes, and in
just one copy.
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8.9.3 An Example

This section summarizes experiments with three programs performing the same
task. The experiments are reported in detail in [Meller-Nielsen and Staunstrup
1983] . The programs are identical with the exception that the control of access
to a shared table is programmed in three different stages of refinement. The first
program uses a monitor to encapsulate the table. The second program uses a
single shared class, which is transcribed into a pair consisting of a monitor and a
common class as described above. The third program uses a further refinement
of the access control. This refinement cannot be programmed by means of a
single shared class.

All programs solve the following problem. The entries of a table are updated
according to a set of tramsactions. The table has a fixed number of entries.
Each entry has a key which identifies the entry and a field which contains some
information, which is associated with the key. The set of transactions contains
only two different kinds of transactions, a WRITE and a READ. A WRITE looks
up a key in the table and updates the information field of the entry. Once the
entry has been found, the updating must be done indivisibly, i.e. it cannot be
mixed with other READs or WRITEs. A READ looks up a key in the table and
reads the information field. The reading of the information can be done simul-
taneously with other READs (but not other WRITES) of the same information
field. Operations on different entries can be done simultaneously. The sequence
in which the transactions are carried out is immaterial. The transactions are
divided evenly and randomly between a number of identical processes. The
problem is solved when all processes have executed all the transactions that were
allocated to them. The structure of the program can be depicted as shown in fig.
8.10.
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The three programs
differ only with respect
to the programming of

6 these accesses.

process
1

process

process
N

trans-—-
actions for
process: 1

trans-
actions for
process: N
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Fig. 8.10
The shared table and the control of access to it differs in the three programs:

Program 1
The shared table is encapsulated in a single monitor.

Program 2
The shared table is encapsulated in a single shared class, which is transcribed
into a monitor and a common class.

Program 3

This program resembles program 2, except that the entries of the common class
is programmed in such a way that the search for the proper entry is allowed
to take place simultaneously with other searches and readings and writings of
information fields. Details of the three programs may be found in [Moller-
Nielsen and Staunstrup 1983].

The three programs have been executed on our multiprocessor system in order to
measure the changes in performance as access control was refined from program
1 to program 3. The measurements are displayed in terms of the speed-up S(N)
in fig. 8.11. S(N) depends on parameters such as the quotient between the time
spent retrieving a transaction and the time spent searching the table for a single
key, the fraction of WRITEs among the transactions etc. The graphs below show
— for a particular choice of these parameters — the speed-up for the three
programs and for different numbers of processes. The measured values illustrate
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how the saturation point of the shared object (i.e. the table) is moved to higher
values by refining the access control. Refinement of access control can thus be
added to the set of tools which can be used to postpone software saturation (see
section 5.2).

S(processes)

3 linear speedup

//////p Program: 3

@

~1

w

=

Program: 2

[~

9 processes
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8.9.4 Busy- Waiting Reuvisited

In section 8.4 we discussed busy-waiting as a way of implementing the short-term
synchronization. Our conclusion was that the simplest implementation was also
the most efficient. This same discussion could be made for the medium-term
synchronization: Why not use busy-waiting?

Below is sketched a transcription of a shared class which is quite different
from the transcription in section 8.9.2. The delay and continue-statements are
substituted by a busy-waiting loop as follows.
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sh_mon =
MONITOR
VARV ..;
FUNCTION ENTRY entry_to_FP; boolean;
BEGIN
IF B(V)
THEN
BEGIN
entry_statement(V);
entry_to_FP; : = true
END
ELSE
entry_to_P; : = false
END:

PROCEDURE ENTRY exit_from P
BEGIN
exit_statement{ V)
END;
BEGIN
INIT(V,)
END;

sh =
COMMON CLASS(...;s:sh_mon);
VAR V..

PROCEDURE ENTRY P{...);
BEGIN
WHILE not (s.entry_to_P,) DO;
SLV s
s.exit_from _P;
END
BEGIN
INIT(V )
END;
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There is no doubt that this is simpler than the transcription in section 8.9.2.
The question is whether it is too inefficient? The sh_mon will be accessed very
frequently. But as it was the case on the short-term level, the fraction of the
total running time spent using the shared resource (here the sh_mon) is very
small. Therefore even a considerable extension of the calls to this monitor is not
noticeable. The graph in fig. 8.12 shows the speed-up of program 2 (transcribed
as in section 8.9.2) and program 2 transcribed using busy-waiting.

S {processes)

linear speed up

Program: 2
(transcribed
using busy-
waiting)

Program: 2
(transcribed
as in

section 8,9.2)

T T T T T T 3 T processes
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The transcription which uses busy-waiting has the best speed-up. This may be
explained as follows. The transcription which uses busy-waiting is inherently
faster than transcriptions using delay and continue-statements. An adverse effect
is caused by the heavy traffic on the entries of the monitor called sh_mon.
This traffic will saturate the sh_mon for a relatively small number of processes.
However, if the time spent executing an entry in the sA_mon is small compared
to the total time spent in an entry of the common class called sk, the relative
loss is small for the processes that are doing useful work. Whether a process
loses its power executing a busy-waiting loop or is delayed in a queue-variable is
immaterial when a static allocation of processors to processes is used. Please note
the similarities between the discussions in sections 2.1, 8.4 and this section.



110



111

9. History

In January 1980 a pilot study was initiated. A small number of MiCroprocessors
were investigated with regard to

— price,

— capacity (primarily cycle time and storage),

— connection possibilities (e.g. common store, bus etc.),
— connection of peripherals,

— suitability for supporting a Pascal like language (Concurrent Pascal,
Modula, or Platon)

under the limitation that all hardware had to be commercially available (see
chapter 1). This pilot study and its results are described in [Spe and Segaard
1981] . The study provided us with a knowledge of the available hardware and
its capabilities.

During the spring of 1980 the purpose of the laboratory was formulated more
precisely: experiments with implementation and analysis of algorithms utilizing
concurrency. Having this purpose in mind the major design goals were laid
down. This led us to choose a hardware system with a common bus structure
and to choose Concurrent Pascal as the programming language (see chapter 1).
These decisions were made during the summer of 1980. At that point we asked
all relevant manufacturers to demonstrate to us a system with:

— a 16-bit processor board connected to

— a 16-bit wide bus (which should not be affected by local computations on
the processor boards) and

— some kind of connection to either a main frame host or a cheap develop-
ment system.

It turned out that the only manufacturer which was able to fulfil these require-
ments was Intel. Since there were no important deficiencies with the Intel system,
we chose the Intel 8086 as the cornerstone of the multiprocessor. On September
18, 1980 the following equipment was delivered:
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— two Intel iISBC 86/12A processor boards,
— an Intel iCS 80 chassis with power supply,
— an Intellec 230 development system,

During the fall, work was started on the Concurrent Pascal implementation and
a communication channel between the Computer Science Department’s PDP-
10 and the Intellec system was established. The communication channel was
established by writing a program which made the Intellec appear as a terminal
to the PDP-10. Using this, files could be transmitted between the development
system and the PDP-10 file system (the speed was 2400 baud).

In December 1980 the basic control structures and arithmetic operations of
Concurrent Pascal were implemented, so that an initial process without classes,
monitors or other processes could be executed. Two months later, all the
modifications in the compiler and interpreter due to the distribution of object
code were completed. Then followed the implementation of the synchronization
primitives and the initialization of a program with several processes and monitors.
Independently of this the type real was implemented.

The entire implementation was finished around May 1, 1981. At that point
all language constructs (with the very few exceptions mentioned in [Staunstrup
1982 ] were implemented, but still the system had only two processors.

The initial configuration of the system with only two processors was sufficient to
test the Concurrent Pascal implementation, but it was clearly not sufficient for
the real purpose of the project: »experiments with multiprocessor algorithmsx.
When we became confident that the Concurrent Pascal implementation would
work, we ordered seven more processors (iSBC Intel 86/12A boards) and a 32K
byte memory board. These were delivered in May and June. This expansion
required two hardware changes:

(1) the bus arbitration was changed (see section 7.3);

(2) the power supply was changed together with some mechanical rearrange-
ments.

These hardware changes were completed in June 1981. During the late spring
and summer, processor boards were gradually added to the system. This revealed
a few hardware problems (malfunctioning CPU’s and EPROM sockets) and some
shortcomings in the user interface. After correcting these, the entire system
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became available to students and faculty in August 1981.

During the implementation period parts of the system were used for preliminary
experiments. In the spring of 1981 the first graduate course using the system
was offered. This was an introduction to the system and to PL/M-86. Each
participant wrote a multiprocessor algorithm in PL/M-86 and made some speed
measurements on this program.

Since 1981 we have given a number of graduate courses, in which the students
have used the Multi-Maren multiprocessor. The exact contents of these courses
have varied but they always include small projects where the student run various
experiments on the Multi-Maren machine. Below is a list of these courses with
the subjects of the student projects. All the written reports from these projects
are in Danish.

Spring 1981: Multiprocessor Algorithms
P. Moller-Nielsen and J. Staunstrup

Projects:

A problem-heap algorithm for numerical quadrature

E. Knudsen and J.O. Graulund

A parallel line-clipping algorithm

K. Nielsen and E. Sandvad

Comparison of message-passing and monitor communication
T. Hansen and L. Dahl

Fall 1981: Multiprocessor Algorithms
P. Moller-Nielsen and ]. Staunstrup

Projects:

Quicksort

E. Frederiksen, M. Hagner, K. Hansen and L. Karlsen
Fixpoint calculation

E. Bobach and C. Johansen

Knaghts’ tour

A. Andersen and G. Kjzer-Nielsen

Rootsearching using interval-arithmetic

S. Top

A four-processor root-searching algorithm

O. Eriksen



Spring 1982:

Spring 1983:
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Software for a Multiprocessor
P. Moller-Nielsen and J. Staunstrup

Projects:

Alternative primitives for medium-term synchronization
K.G. Hansen, P.]. Jensen and B. Munk
Distribution of storage references

B. Poulsen and L. Geisler

Fair synchronzzation

K.B. Nielsen and K.I. Gren

Tuning the c-code interpreter

P.B. Hansen

Adding interval arithmetic

B.G. Thams and F. Terpling

Tools for measuring running and waiting times
K. Gregersen and P.T. Jensen

I/0 on a Multiprocessor
P. Mgller-Nielsen and O. Caprani

Projects:

A communication system between a graphical workstation and
Multi-Maren

C. Norgaard

Implementing device monitors in the Multi-Maren c-code

V. Tattrup Jensen, H.M. Kristensen, P.H. Larsen and P.F.
Thestesen

Implementing device monitors in the Concurrent Pascal compiler
I. Bohlbro, P.H. Kristiansen and M. Schwartzbach

Connecting a disc to Multi-Maren

J- Katborg, J.V. Ludvigsen and C.R. Pedersen

Extending Concurrent Pascal on Multi-Maren to include several
processes on a single processor

K.B. Munkholm, F. Barrett, J. Stausgaard and G. Andersen
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Fall 1983: Multiprocessor Algorithms, in particular the problem-heap
paradigm

No written projects.

Spring 1984: Improving the I/0 on Multi-Maren
Peter Meller-Nielsen and O. Caprani

Projects:

Tuning the c-code interpreter which includes device monitors
B. Rristensen, L. Bendix, L. Christensen and S. Hvidbjerg
Storage allocation problems in Multi-Maren

K.E. Johansen, U.L. Jergensen, H. Lauritsen and S.E. Nielsen

Master’s Theses

Design and Implementation of the Muliz-Maren Multiprocessor. May 1982.
Kurt See and Jens S. Andersen

(Advisors: P. Meller-Nielsen and J. Staunstrup).

Comparison of Communication Primitives on a Multiprocessor. October 1982.
Torben Hansen
(Advisor: J. Staunstrup).

Concurrent Evaluation of the Eigenvalues of a Real, Symmetric and Tridiagonal
Matrix. November 1982. (In English.)

Kell Hiuser

(Advisors: J. Staunstrup and O. Caprani).

Multiprograms for Branch and Bound Algorithms. January 1983.
Axel Andersen
(Advisor: P. Mgller-Nielsen).

A Multiprocessor Database-machine. June 1983,
Ole V. Johansen and Jens O. Jespersen
(Advisor: J. Staunstrup.)

A Parallel Implementation of a Functional Language. January 1983,
C. Paulsen
(Advisor: Neil Jones.)

Connecting a Multiprocessor to a Local Network (ETHERNET). April 1984.

K. Glassau Hansen
(Advisors: O. Caprani and P. Moller-Nielsen.)
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