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COMPUTATION SEQUENCES:

a way to characterize classes of attribute grammars

Hanne Riis Nielson

Abstract

A computation sequence for a derivation tree specifies a way of
walking through the tree evaluating all the attributes of all

nodes. By requiring that each derivation tree has a computation
sequence with a certain property, it is possible to give simple
characterizations of well-known subclasses of attribute grammars.
Especially the absolutely non-circular attribute grammars are

considered.



1. INTRODUC TION

Attribute grammars are introduced by Knuth to associate meanings with
strings of context free languages [8] . The meaning of a string is
obtained by first constructing a derivation tree for the string and then
evaluating the attributes associated with the tree. An evaluator for

an attribute grammar is a program that as input takes a string and
computes its meaning according to the atiribute grammar. It is usually
regarded as desirable that the evaluator gives exactly one meaning to
each string of the context free language. This can be achieved by putting
restrictions on the attribute grammars. An example is to require that
the underlying context free grammar is unambiguous as well as that the
attribute grammar itself is well-defined ([8], [9]). The well-definedness
condition can be replaced by other conditions e.g. that the attribute

grammar must be ordered ([3], [6]) or it must be absolutely “nen-circular

([7]).

We believe that when writing an attribute grammar one naturally thinks

in terms of derivation trees and orders of evaluating the attributes at its
nodes. Therefore the restrictions i mposed by e.g. an evaluator generator
system ought to be explained in these terms. For instance the well—
definedness condition can be explained by: for each derijvation tree it must
be possible to find an order of evaluating all the attributes of the tree
without violating their dependencies (see e.g. [11]). The property of
being ordered (as defined in [6]) has been investigated in [3] and can be
explained by: for each symbol of the context free grammar there must be

a fixed ordering of its attributes such that they can be evaluated in that

order at any node labelled by the symbol in any derivation tree.

Computation sequences (introduced in [11]) are used in [ 3] to formalize
the intuition of walking through a derivation tree evaluating all the
attributes of all nodes without violating their dependencies. Engelfriet
and Filé ([3]) leave it as an open problem whether there is a natural
characterization of the absolutely non-circular attribute grammars ([7])
in terms of computation sequences. In this paper we address this problem

as well as we present a general framework for defining subclasses of



attribute grammars. The results of [ 10] show how a characterization
of subclasses of attribute grammars in terms of computation sequences

can be used in the definition of evaluators.

In the next section we briefly introduce our notation concerning attribute
grammars. In section 3 we define a computation sequence. Although our
definition is different from that of [11] (and [3]) it turns out that the
concepts are equivalent. Section 3 is closed by giving a general framework
for characterizing subclasses of attribute grammars. In section 4 we give
a characterization of the absolutely non-circular attribute grammars and
prove its correctness. Finally, in section 5 we briefly consider the pass,

sweep and visit properties of [4].



2. PRELIMINARIES

This section contains a review of Knuth's original definition of an
attribute grammar ([8]).

An attribute grammar (abbreviated AG) is an extension of a context free

grammar G (V ,VT,P,S) consisting of nonterminals, terminals, productions, and

initial nonterminal, respectively. To each symbol F of VN there is asso-
ciated a finite set J(F) of inherited attributes and a finite set 8(F) of

synthesized attributes. We shall assume that 8(F) and &(F) are disjoint

sets for all symbols F and furthermore that S has no inherited attributes.
Each (inherited or synthesized) attribute ¢ takes values in a set D . To

- *
each production p: Fo * VoF Ve« Vi 1 (F € Vi v € Vo for‘

0 < j < k) of P there is associated a set of semantlc functions For each

o in S(F ) (resp. in J(FJ 1 < j<k)there is a (semantic) function an

(resp. f 3 of functlonallty D Kon o X D -+ D (m and o; depend on @
1

and j). Each o; is an attribute of either &(F ) or of g(F ) for some g,

&1 ER.

The semantic functions are used to assign meanings to derivation trees
and thereby strings of the underlying context free language. Consider a
derivation tree t and a node n int. Let p: FO =+ V0F1V1 sV Fkvk be

the production applied at n. For each ¢ in S(FO} the function foa:

Dm1 XoooX Dazm = Da associated with p can be used to determine the value
of @ at n when the values of all the attributes Opyeees O have been
determined. Similarly, for g in J(F’j) (1 < j =K) the function fja associated
with p is used to determine the value of ¢ at the j'th son of n. If it is
possible to determine the values of all attributes of any node int as

described above then the meaning of t will be t decorated with these values.

We shall assume that the context free grammar G has no useless symbols

([ 1 ]). Consider a derivation tree t of G. Each interior node of t is
labelled with a symbol from VN and has (also) associated with it a se-
quence of positive integers called the location of the node. The location

of the root of t is the empty string A and the location of the j'th interior
son of a node with location n is n§j (we abbreviate A83 by j). We will not
distinguish between an interior node and its location. The subtree of t whose
root is n is denoted t(n). The part of t with t(n) removed except n itself

S denpted g o,



Finally, we present an AG that will be used as an example throughout this

paper. The underlying grammar has two nonterminals A and S with attributed

{Q:B}
{y, 81

@ I (A)
fel 3(A)

J(3)
5(s)

Each attribute takes values in the set of integers. The productions of the
underlying grammar are listed below with the associated semantic functiocn,

We use the following notation. If O is an attribute of Fj (0£92k) in the

production p: Fy * v F, v, ... v, F v _ then we shall call it [j.0]. The
semantic function fj ) DO X...X DG o DG defining 0 will be written as an
equation 1 n
[3.0] = £ (L300 00ee e300 D)
where Oi is an attribute of F. (1£ism).
i
Pyi S+ AA [0.¢] = [1.y] +[2.%]
[1.a] = [28]  [1.8] =1
[2.e] = [1.8] [2.8] = 2
Pyt Ao aA [0.y] = [1.y] [0.8] = [1.6]
[1.a] = [0.a]  [1.6] = [o.g]
Py Aab [0.y] = [0.¢] [0.8] = 0
Pyl Ac [0.y] = 2 [0.8] = [0.8]



3. COMPUTATION SEQUENCE

In this section we define the concept of a computation sequence, which
is intended to formalize the intuition of an order of evaluating all the
attributes of a derivation tree without violating their dependencies. The
attributes will be evaluated during a walk through the tree. When
arriving at a node we may evaluate some of the (inherited or synthe-
sized) attributes of the node and continue to either the father, a brother
or a son of the node or stay at the node itself. In order for a walk to be

a computation sequence we will require that

i) each attribute of each node is evaluated exactly once

ii) the order of evaluating the attributes does not violate

their dependencies.
We now give formal definitions of the concepts.

Consider a derivation tree t of the underlying grammar of an AG and
let n be a node in t where the production p: FO -+ VOF1V1 ce Vi Fkvk

is applied. A walk through t( ) is a string of symbols (m,A) where m is a
n

node of t(n} and A is a set of attributes of that node, defined recursively
by
* the empty string A is a walk
* if s. is a walk thr h i j
: ‘0) A oug t(n§j!i:)for~1£|Sr, ISJiSk,
r = < =
: » Ap € 3(F ) and Ag € 8(Fj) then s = (n,Al)s] 3 s sp(n,AS)
is a walk through t(n)

+ if s and s' are walks through t(n) then so is ss!

Consider a walk s through the derivation tree t. Then s(t( )) is the

- - - n
wlalk through t(n) obtained by r*em(c.'r:vmg all pairs (n',A') from s where
n'! does not occcur in t(n), and s(t'' ') is the walk through t obtained by

removing all pairs (n', A!') from s where n' Z nand n'is a node int

(n)

It can easily be verified that s(t(n)} and s(t(n)) are indeed walks through

(= and t, respectively.

(n)
Let p: FO = V0F1V1. o Vk-l':kvk be the production applied at n. We
define a modified restriction s(n,p) to n and its direct sons nd§1,...,n§k by

by g .
* removing all pairs (n',A') from s where n' £ n§j (1< j< k), and

n! # N
* replacing each of the remaining pairs (n,A) by (0, A) and each
of the pairs (n§j,A) by (j,A), 1<j<k.



Thus s(n,p) is a sequence of the form (hI’AI)' .. (hr’Ar) where 0 < h. < k
and Ai c rSl(Fh ) U S(Fh ) for 1< i< r. For any sequence Trp of that form
1

1
and for 0= j < k define

i) = A, ... AL
() i L
where T, <...<i_and {4 | hig= J, 1 <g=<r}= figaeesyi

We write s(n) for s(n, p)(0).

Example 1

To illustrate the concepts defined so far consider the following derivation
tree t of the example AG. We have also shown a graph indicating the
dependencies between the attributes of t; [n.¢] is the node for the attri-

bute ¢ of the symbol labelling n.

Aoe]
i\ PN S .
([i-B] [1.y]g [1.8]

/\
A A [1.e]

fy 1
|

[2.6] [2.8] [2.7] [2.8]
[1§1.e] [1§1.8] [1§1.y] [1§1.6]
sy = 0,9 (1, {ad )81, o, 81181, fy, 80 )1, v, 81 )
(2, {o, Bl (2, {8} )(2, {a} N2, {¥} )\, @)
is a walk through t. We have
sqltiqy) = (1, {eh )18, {a, 81181, fy, 8} )(1, {v,6})
s () = 0, @001, (e )1, {81002, fa, 81 )02, £6) )2, (ad )2, 19100, @)

51“’92) = (0:{05} )(1:{0“]3} )(1:{736} )(O:h’:é})

s,() = {a] r,8]



In order for a walk to satisfy requirement i) above we define (ordered) partitions

of attributes of symbols and productions. A partition of the attributes

of a symbol F ([3]) is a non-empty finite sequence

n = A1 AZm

satisfying
* Aoy

_1 & I(F) and AZi c8(F)for1 <i<m

cAjU... UA, = J(F) u g(F)

- A ﬂAj=¢for575j, 1<1,j<2m

Let HF be the set of partitions for the symbol F. A partition of the

attributes of a production p: Fo VOI:I Vie-- Vk—IFka is a sequence

‘n‘p = (hl’Al) (hp,Ar\)
where 0 <h. <k for 1 <i<randfor0<j=<k ﬂrp(j) is a partition of the
attributes of Fj. Let Hp n be the set of partitions ﬂp of attributes of p
?

ith 0)=q.
wit ﬂ'p() m

Examgle 2

For the walk sllthrough t of example 1 we have that neither Sy (1) nor
51(2) are partitions of the attributes of A but S (1§ 1)is. Si(k’DI) is not
a partition of the attributes of Py - The following walk S, through t is such

that sz(l )i 52(1§ 1) as well as s,(2) are partitions of the attributes of A:

So T O\’ ¢)(1s gﬂl: B} ) §1, {a:.ﬂ} )1 §1, {7’ 6} )(1, {73 6} )
(2, { g} N2, {8} )2, {af )2, {y} )0, {e})

Note that S, mentions all the attributes of all nodes of t exactly once

(requirement i)).

However, an order of evaluating the attributes of t must evaluate the
attribute 0 of node 2 before evaluating the attribute ¢ of node 1 in order

not to violate the dependencies between the attributes.



The dependencies between the attributes of a production
274 FO
for p. A dependency graph for p will have one node denoted [j.o_g] for

-+ VOFI Viees Vk—leVk can be expressed in a dependency graph

each attribute ¢ of c9(I:J.) U S(FJ.), 0 < j =k, and maybe some arcs. The
semantic functions associated with p define the dependency graph

D(p) for p as follows. If fja: D ...x D - Da is a semantic function

X
associated with p and a; is an gg’tr‘ibute of F.i (1 <i <m)then there
will be an arc from [ji'ai] to[j.e] in D(p). These are the only arcs
of D(p).

Let D be a dependency graph for p.
The partition Ty = (h1 » Ay ... (hr" Ar*) of the attributes of p satisfies

the dependency graph D if forall 4, 1 <4 <r:

Vo€ A,G: if there is an arc from [i.g] to [hﬂ.g@] in D
then for some 2!, 2' <4, B € Az' and i =h,,.

Example 3
For the walk Sy of example 2 we have that sz(l, pl) does not satisfy

D(pl) but 52(1 §1, p4) does satisfy D(pa). Let s be the walk

s = O\: ¢)(2, 53} )(2’ {‘5})
(1, {e, B})1§1, {e, B1)1§1, {y, 8})(1,1y,6})
(2: {Ot} )(2': {7} )(A’ {6} ).

A comparison with the graph of example 1 shows that the dependencies

between the attributes are respected (requirement ii)).

From the definition below it will follow that s is a computation sequence
of the tree of example 1.
]

Let t be a derivation tree and let p: F—‘O b VOF'I Vieos Vk—TFka be the
production applied at a hode n in t. A walk s through t(n) is a compu-

tation sequence for t(n) it

. s(n, p) is a partition of the attributes of p satisfying D(p)

- i H - . S - 5 -
S(t(n§,|)) is a computation sequence for t(n§J) for 1 i k



The above conditions formalize requirements i) and ii) mentioned in
the beginning of this section. The definition of a computation sequence
presented in [ 11] (and [ 3]) can be proven equivalent to that given

above.

An AG is well-defined if it satisfies the circularity test of [ 9],

We have the following characterization of the well-defined AGs:

An AG is well-defined if and only if each derivation

tree has a computation sequence.

The correctness of this characterization follows easily by modifying

the proof for the correctness of the circularity test of [9] i

We will use a common framework when characterizing subclasses of AGs.
We will first define a certain property P of computation sequences. Next
we define the AG to have property P if each derivation tree has a com-
putation sequence with property P. Finally, we have to prove that the
class of AGs with property P is equal to the subclass of AGs we want to

characterize.

The ordered AGs of [6] are characterized by computation sequences
in [.3]. Intuitively, an AG is ordered if for each symbol of the under-
lying context free grammar there is a fixed ordering of its attributes
such that they can be evaluated in that order at any node labelled by the

symbol in any derivation tree. Define an assignment of partitions to the

symbols of VN as any family A = {AF}FEV of partitions satisfying
N
AF € ﬂF for FEVN.

Consider now a derivation tree t with the production p: l"—‘o -+ VOFl Vi e
Vi-1 Fkvk applied at a node n in t. A computation sequence s for t(n)

is ordered with respect to G if




10

«s{n)= G
Fa
. s(t(n §j)) is a computation sequence for t(n§j) that is

ordered with respect to (.

We can now give the following characierization of the ordered AGs
([3]):
An AG is ordered if and only if there exists an assignment
G of partitions to the symbols of‘vN such that any derivation
tree has a computation sequence that is ordered with respect

to G

In the next section we consider the absolutely non-circular AGs and

in the final section we consider subclasses of AGs with pass, sweep

and visit properties.
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4, ABSOLUTELY NON-CIRCULAR AGs

The characterizations of the well-defined and the ordered AGs given in
the previous section have been more or less straightforward. The
reason for this is that the subclasses have been defined with some in-
tuitive idea of a computation sequence in mind. A formal definition of
the subclass has then been given in terms of a circularity test of a
rather complicated dependency graph. The absolutely non-circular. AGs

are different in that respect.

In order to define the subclass of absolutely non-circular AGs, we need

some concepts concerning dependency graphs. A dependency graph for a

symbol F will have one node denoted [ ¢] for each attribute g of

J(F) U 8(F) and maybe some arcs. Given the dependency graph D(p)
for the production p: FO - VOF—'1 \ZRRE Vk—TFka and given dependency
graphs Itl for the symbols Fj for 1 < j <k, the composition

D[ Ty...5 1

of D(p) with Ty;..., I} is constructed as follows: D(p)[ Iy .- I‘k]] is a
dependency graph for p and there will be an arc from [ j.e] to [i. B8] if ana
only if either there is an arc from [ j.a] to [1. 8] in D(p) or i = j and there

is an arc from [a] to [B] in I"j. From a dependency graph I‘p for p we can
derive a dependency graph PO for FO. There will be an arc from [gg] to
[B] in T, if and only if there is a non-empty path from [0.e] to [0.8] in
I"p-

The dependency graph D(F) for a symbol F is the least graph such

that for any production p: F = VoF 1V s Vieed Fkvk the graph derived from
D(p)[ D(F,). .. D(F, )] is a subgraph of D(F). It is not difficult to verify
that the graphs D(F) exist. We can now define

An AG is absolutely non-circulax if for each production
p: I'-‘0 = VOF1 V.- 'Vk—l':kvk there are no cycles in
D)L D(F,)... D(Fk)]].
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This definition is equivalent to that given in L7 4

0 Vo1V - Vies 1 Fievie

applied at the node n in t. Does t have a computation sequence with some

Consider a derivation tree t with the production p: F

special properties when the AG is absolutely non-circular ? Intuitively,
the graph D{FJ) puts together all possible dependencies between the
attributes of the root of a derivation tree with root labeled ':j' Thus our
guess will be that t has a computation sequence s where s(n§j)

is independent of the shape of the subtree t( §3) (1 <j=<k).
Therefore at n, given the partition s{n) of the attributes of FO it should be
possible to determine s(n, p) without knowing anything about the subtrees

t(n§ TP #e t(n §k)* This motivates the following definitions:

A top-down assignment of partitions to the symbols of VN is a

family A = {Ap} pEP of mappings such that for p: FO+VOF1VI'.-quleVk
A =1 1, B, . 20

P Fy E g2

For a partition T of the attributes of FO we define a computation

sequence s for the subtree t to be T-uniform with respect to A if

(n)

s(n) =m

A (m) = (s(n§1),...,s(n8k))

is a computation sequence for t ., that is
tn §5) ) e = © (n§3) et
s(n§ )-uniform with respect to A (1=£§<k).

Following our general framework we now define: An AG is T_-uniform

for a partition WO of the attributes of § if there exists a top-down
assignment of partitions to the symbols of VN such that any derivation
tree with root labelled S has a computation sequence that is

Wo—uniform with respect to A.

Finally, an AG is uniform if it is ﬂo-uniform for some WO.
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Example 4

Our example AG is uniform: choose for instance ﬂO = ¢{e} and A:

Ap : plel + ({a BHy 8}, {BHéHaHy]H
1
A I {arB}{YrS} - ({urB}{Yrd})
Py
{pHeHaly} » ({BHsHaHYh
A {a,BHy, 8 > ()

P P
374 MMy » ()

The computation sequence s of example 3 is ?To—uniform with respect to A.
O

We will now prove that the property of uniformity of computation sequences

correctly characterizes the absolutely inon-circular AGs:

Theorem 1

An AG is absolutely nen-circular if and only if it is uniform.

The theorem follows from a series of lemmas. The first lemma shows

that for any absolutely non-circular AG we can construct @ top-down assignment
of partitions te the symbols satisfying certain requirements. Next we show
how to construct a computation sequence for a tree from computation se—
quences for its subtrees as well as a partition of the atiributes of the
production applied at the root. By putting these results together we get

that any absolutely non-circular AG is uniform.

A partition m= A, ,...,A of the attributes of a symbol F satisfies a depen-

1’ 2m
dency graph I' for F if for 151<2m:

VaEAQ : if there is an arc from [R] to [a] in T
then for some ', £'<%, BEAR,
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Lemma 1

For an absolutely non-circular AG there exists a top-down assignment A of
partitions to the symbols of VN such that if p: F > VOFlvl"'Vk—levk and
T (# A) is a partition of the symbols of F satisfying D(F) then there exists

a partition Wp of the attributes of p satisfying

1) m (0) =T and m (§)#A for 15jsk

ii) m satisfies D(p) [[D(Fl)...D(Fk)]]
A (m = 1),...,T (k
T3] p( ) (Trp( ) p( ))

Proof

We will give an algorithm that for a production p: F - VOFIVI... k—leVk
and a partition T (# A) of the attributes of F satisfying D(F) constructs

a partition ﬂp of the attributes of p satisfying i) and iii). We then define
A (m) = (T _(1),...,T_(k))
P p

Clearly the lemma will hold.
Let I' = p(p) [D(F)...D(F)] and 7 =a,...a, . For B c{[ j.&]|0t€I(Fj)US(Fj),
05352k} and 15£jsk define

NEW-inh (j, B, T) =
”:j-ct] | o € J(Fj) - B and if there is an_arc .from
[£.8] to [j.a] in Tthen [4.8] € B}
NEW-syn (j, B, T) =
{[j.a] | [ S(FJ) - B and if there is an arc from
[2.8] to[j.a] inTthen [£.B8] € B}
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The algorithm is as follows:

B := @, ﬂ'p:=)t;
FORi=1TOmDO

BEGINB:=BuU {[0.a] |a€ A, ,}; m, = m.(0,A

END

2i-1);

IFi=1THEN

BEGIN FOR each j with §(F;) = @ or NEW-syn(j, ®,T) # @, 1< j<k DO
BEGIN Bg := {a | [i.&] € NEW-syn (j, @, D)} ;

B :=BUNEW-syn (j, &, Thm_ =1 (i, B) (j, BS);

END;
END;

WHILE there is a j with NEW-inh ([, B, # @, 1 <j<k DO

BEGIN determine the least j with NEW=-inh (j,B,DD# @, 1 < j<k;

{a | [i.a] € NEW-inh (j, B, T)}; B := B U NEW-inh (j, B, T');
- {e | [i.a] € NEW-syn(j,B,T)}; B := By NEW-syn(j, B, T');
=, U, B)) (§, Bg);

W
I

o
I
[

3
|

END ;
B:=BuU {[0.q] | aEAZi}; T, =1, (0,A,.)

Observe that after each assignment to 'rrp it holds that

B={[ja] | there is a tuple (j, C) in f;p withg € C, 0 <j=<kj.

By a rather technical proof(e.g. induction in the length of a path in T"') one

can prove that "p is a partition of the attributes of p satisfying i) and ii).

We omit the detailed proof and give instead some of the

important observations. The mappings NEW-inh and NEW-syn areusedto ensure

that all the attributes on which a given attribute g depends have been

added to 'np before @ is added. Because T'has no cycles the IF-clause

in the algorithm ensures that all attributes of p are in the final np

and thereby that 'n'p is a partition of the attributes of p. Since 7 satisfies

any subgraph of D(F) and so the graph derived from T, we get that L

satisfies T.

It is easy to see that ﬂp(O) = M. The test on I(Fj)=® in the IF-clause

ensures that even if S(Fj)=® we will get TTp(j) # Al a
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Lemma 2

i i i 1 : > e
Consider a derivation tree t of an AG and let p F0 vOFlv1 Vk—lvk
be the production applied at the node n. Let WP be a partition for p

satisfying D(p) and with Wp(j) # A for 0£jsk. Furthermore let Sj be a computation

sequence for t(n§j) with sj(n§j) = Wp(j) for 1=2j2k. Then there exists a com-
putation sequence s for t(n) with
+ s(n,p) =",

,. S(t(n§j)) = sj for 1< j<k

Proof Letm (j) AJ1...AJm for 0< j< k. Since s (n§]j) = n’p{j) we
can split s, into mJ walks Siseee ,s:nd such that s (n§J) = AJ 1AJ2i for

1< Smj, 1< )< k. Now IetuI,...,um bedeter‘mmedby
o]

_ 0 0 0 0
7= (0,ADu(0,A7) ool (0,4 u (0,47 )

The sequence u, consists of pairs of the form (j, Aj . )(j,Aj ) where
1=i<s mJ., 1=ji<k. Fr‘om 1 we construct a walk s through t( ) by re-

placing each pair (j,A7. )(J, } in ul,...,um by the walk s} and
o

by replacing each (O,Ao) in ﬂ'p by (n, A

4 L)'

It is how easy to see that S(t(n§j)) = Sj for 1< j<k and s(n,p) =7 _. This

proves that s is a computation sequence with the ' required properties.

.

Proof of the first part of theorem 1: Any absolutely non-circular AG is

uniform. Let A be the top-down assignment of partitions to the symbols given

by lemma 1. We can now show

(*) for any derivation tree t with root labelled F and for any
partition m (# A) of the attributes of F satisfying D(F) there
exists a computation sequence s for t that is m-uniform with

respect to A.
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This result follows easily by induction on the height of t using the
properties of A given by lemma 1 and that lemma 2 holds. Note that it is
essential that T#ZA because the empty string need not be a computation

sequence for t even if I(F) = S(F) = 9.

From (*) it follows that the AG is T-uniform for any T in HS'

In order to prove the second part of the theorem we first prove that the

property of uniformity with respect to an assignment is preserved under

substitution. A property P of computation sequences is preserved under
substitution if for any derivation trees t and t! with root labelled S and
any computation sequence s for t with property § the following holds:

if for some node n,t(n) = t'(n) then t!' has a computation sequence s! with

property P and with s!' (n) = s(n).

Lemma 3
Consider a Wo—uniform AG with top-down assignment A of partitions to the

symbols of V_. Then the property of T -uniformity with respect to A is pre-

N
served under substitution.

0

Proof Let t and t' be derivation trees with root labelled S and with

t{n) = t'(n) for some node n. Both t and t' have computation sequences s and

s' respectively that are T .-uniform with respect to A. By induction on the

0
length of the path from the root of the trees to n we can easily show that

[w]
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The proof of the second part of theorem 1 uses the following iterative

definition of the dependency graphs D(F) for the symbols:

¢ DO(F) is the graph for F with no arcs

* D., ,(F) is the least graph such that for all productions

i+1
p:F - VOF.IVT P Vk—leVk the graph derived from
D(p) [DE(FI) - Di(l:k)]] is a subgraph of Di+1(F)’ I & 0.

+ if for all F-',Di(l'—') = Di+1(:=) then D(F) =Di(F).
Clearly the two definitions agree.

Lemma 4

Consider an AG and assume that there exists a property  of computation
sequences such that i) each derivation tree with root labelled S has a
computation sequence with property P, and ii) property P is preserved

under substitution. Then the AG is absolutely non-circular.

Proof By induction on !'i! we show
(* *) for any derivation tree t with a computation sequence s

that has property P we have that s(n) satisfies DI(F) for

any node n in t labelled F.

For i =0 it clearly holds, For the induction step consider a node n int

where the production p: F = VOFIVI o wi Vk—1Fka is applied. From the
induction hypothesis we have that s(n§j) satisfies Di(':j) for 1< j< k.

Since s(n,p) satisfies D(p) we get that s(n, p) satisfies D(p)[[Di(':l) i Di(':k)]'
This gives that s(n) satisfies the graph derived from D(p)[Di(FT) .. 'Di(Fk)Il'
Now we replace the subtree t(n) with another tree where the production

pI: F 4 v!F vyt vl Flivl, is applied. Let t' be the resulting tree
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and let s' be the computation sequence that has property P, Since
t(ﬂ) = t'(n) we get s(n) = s'(n). Arguments )

as above give that s'(n) satisfies the graph derived from
D(p")[D,(FY) ... D.(F| )] and thereby s(n) satisfies D.,(F).

(**) it follows that at any node n of t,s(n) satisfies D(F) where F is
el of n. Let againp: F =+ VOFIVI e Vk—IFka be the production
it n. Since s(n,p) satisfies D(p) and s(n§j) satisfies D(F.) for
‘e get that s(n, p) satisfies D(p)[]iD(F") - D(Fk)]]. But then
‘annot contain any cycles and the AG is absolutely non-circular.

*s the proof of the lemma.

J

Proof of second part of theorem 1: Any uniform AG is absolutely non-

circulax. This follows immediately from lemmas 3 and 4.

O

From the lemmas above we also get the following characterization of the

absolutely non-circular AGs:

Theorem 2

An AG is absolutely nen-circular if and only if there is a property P of
computation sequences such that i) every derivation tree with root labelled

S has a computation sequence with property ®, and ii) property P is preserved

under substitution,

O

To summarize the results of this section, [3] and [ 11] we have the

following characterizations: An AG is

non-circular ¢ each derivation tree has a computation

sequence

absolutely non-circular there exists a top-down assignment A of partitions

to the symbols, and a partition # . of the

0
attributes of S such that
each derivation tree has a computation

sequence s that is Ty-uniform with respect to A
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ordered * there exists an assignment b of partitions
t¢ symbols, such that
each derivation tree has a computation

sequence that is ordered with respect to (.

Note that with these characterizations it follows trivially that any ordered
AG is absolutely non-circular and any absolutely non-circular AG is well-

defined.
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5. PASSES, SWEEPS AND VISITS

We have used computation sequences to model the intuition of walking
through a derivation tree evaluating all its attributes without violating
their dependencies. As the usual definition of the absolutely non-circular
AGs is not obviously connected to a definition in terms of computation

sequences we have especially paid attention to that class.

In [4] the properties of m-visit, m-sweep, m-alternating pass and m-pass
are defined both in the pure (well-defined) case and in the simple (ordered)
case. These properties can easily be defined in terms of computation se-
quences and by combining them with the uniformity we can define new

subclasses of AGs.

The simplest of the four properties is the multipass (m-pass) property
originally introduced by [2]. The multipass property requires that the
attributes are evaluated during a sequence of left-to-right traversals over
the tree. Consider a derivation tree t and let n be a node in t where the

production p: F _ - VOFTV.I i WV F, v, is applied. A left-to-right

0 k=1 k'k
traversal of t is a walk s through t where
S (n) (n)

v 5 = (I"I,AI)S1. s % Sk(n’AS) for some A, and Ag
. sj is a left-to-right traversal of t(n§j) for 1= j< k.

And we can define an m-pass computation sequence for t(n) as a computation

sequence s composed of m left-to-right traversals, i.e, s = s1. s S0

where s' is a left-to=right traversal of t(n) for 1<i<m.

Similar definitions can easily be obtained for the m-alternating pass
(originally introduced by [5]) and the m-sweep .properties. We define for

instance a. sweep over ‘t as a walk s through t where

(n) (n)
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*s=(n,A)s. ...s. (n,A.) for some A, and A__ and some
1'% i s | s
permutation (i1,..., ik) of {1;.4:5k)

* S. is a sweep over t o for 1< j<k.
i ¢ (n§j) .
In contrary to the m-pass, m-alternating pass and m-sweep properties
the m-visit property does not put restrictions on the way the derivation
tree is traversed. It only requires that each node is visited at most

m times (as the other three properties also do). So an m=visit computation

P X :
sequence for t(n) IS a computation sequence s for t(n) where
* |s(n) | < 2m
+ s(t .y} is an m-visit computation sequence for t o for 1= < k.
(ng)] P a (n§ ) i
These definitions are straightforward formalizations of those given in [4] :

As mentioned above, Engelfriet and Filé ([4]) combine these four properties
with the well-defined and ordered properties of AGs. For instance the subclass
of pure m-sweep AGs is defined by requiring that each derivation tree has an
m-sweep computation sequence, and the subclass of simple m-pass AGs is

defined by requiring that there exists an assignment A of partitions to the
symbols such that each derivation tree has an m-pass computaticn sequence that

is ordered with respect to A.

In the same style we can define subclasses of absolutely non-circular AGs

called uniform m-visit AGs, uniform m-sweep AGs, uniform m-alternating pass AGs

and uniform m-pass AGs. For instance, an AG is uniform m-sweep if

there exists a top-down assignment A of partitions to the symbols
of VN and a partition NO of the attributes of S such that each
derivation tree with root labelled S has an m-sweep computation

sequence that is T_-uniform with respect to A.

0

We believe that the new subclasses fit nicely into the results of [4].
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