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We present an approach to reasoning about the functional be-
havior of circuits. The approach begins with a technique, Syn-
chronized Transitions, for specifying circuits and culminates with
a technique for constructing machine checked proofs that invari-
ants are preserved. We also report on some successful experiments

using the approach to verify properties of simple, but nontrivial,
VLSI circuits.

1 Introduction

For many years engineers have used simulation to convince themselves
that the circuits they design behave as intended. As circuits get more
complex, it becomes tempting to augment simulation with formal proofs.
Typically, these proofs involve a large number of simple steps. Doing
them by hand is cumbersome, boring, and prone to mistakes. Unless
these proofs are machine-generated or machine-checked, there is little
reason to believe them.

This paper describes a successful experiment to use a theorem prover,
LP, to verify properties of VLSI circuits. We started with several circuits
that had previously been verified by hand. We then tried to construct
machine-checked proofs with the same structure as the original proofs.
In the process of using LP to verify the circuits, we uncovered several
minor errors in, and simplifications to, the original circuits and manual
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proofs.

Any formalized verification of a circuit must be based on an abstract
description of the circuit. The choice of descriptive mechanism depends
upon the intended use. Differential equations, for example, are useful in
verifying physical properties such as power consumption, timing, or heat
dissipation. The approach presented here is aimed at verifying functional
properties of a design, and is based on describing the circuit as a parallel
program, using Synchronized Transitions.

While the circuits described in this paper are not particularly com-

plex, the experiments reported on yielded several interesting insights.
These include the following:

e Even for simple circuits, one cannot rely on proofs that have not
been machine-checked.

e Combined with Synchronized Transitions, the technique of invariant
assertions [7] developed to verify safety properties of concurrent
programs is useful for machine-aided reasoning about circuits.

e The verification process is quite sensitive to the exact way in which
the problem is formulated. For example, proofs seem to work better
when induction is done over the structure of the circuit rather than
over time.

e Circuit verification seems more amenable to machine checking than
traditional program verification.

e The style of mechanical theorem proving supported by LP seems
well-suited to reasoning about circuits.

Sections 2—4 present an overview of Synchronized Transitions, LP, and
proofs based on invariants. Section 5 contains two extended examples of
using LP to verify properties of circuits. Section 6 summarizes our results
and draws some conclusions based upon them.

2 Synchronized Transitions

A VLSI chip consists of registers and combinational functions. To struc-
ture the design, the registers are grouped into state components changed
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by the combinational functions. In the Synchronized Transitions nota-
tion, state components are denoted by variables and combinational func-
tions by transitions. In an electrical circuit all parts run continuously;
this is reflected by letting all transitions run in parallel. Synchronization
of these transitions is controlled by predicates on state components.

The computational model underlying the Synchronized Transitions
notation is to view a circuit as a collection of asynchronously computing
automata. HFach step of a computation is performed by a transition,
which may involve any number of automata. Viewed from any one of
them, a transition takes the automaton from one state to another. From
a more global perspective, the participating automata appear to make the
transition simultaneously; therefore, it is called a synchronized transition.
While one group of automata participates in one synchronized transition,
other automata (or groups) may independently make other transitions.
No clock (i.e., global time reference) is assumed.

Transitions specify state changes using an imperative notation similar
to that found in many high-level programming languages. For example,

TRANSITION doneleft (—regl — grl := false)

says that doneleft is performed only when —reql holds, and that it leads
to a state in which grl = false.

To describe any nontrivial circuit, a large number of transitions is
needed. Each transition corresponds to a piece of circuitry. Transitions
are atomic, as indicated by the notation (...); thus each transition ap-
pears to be executed indivisibly. In [3,9] it is explained how atomicity
of transitions is preserved in circuit implementations where many transi-
tions are performed simultaneously. All transitions are independent; thus,
there is no global thread of control determining the order of execution.
This is an abstraction of a circuit, which is capable of simultaneously
executing all its parts.

The general form for defining a transition is

TRANSITION name (C(mi,my,...) = A(ng, ny,...))

This definition specifies three types of information.
® My, My, ..., N1, N, ...are the state variables used by the transition.

o C(my,mg,...) is the precondition of the transition; it is a boolean
expression on Mmj, M2, .... A transition can only be performed
when its precondition is satisfied.
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o A(ny,ng,...) is the action of the transition; it is an assignment that
specifies the state transformation made by the transition. It may
only change n, ng, ....

A transition need not be performed immediately after its precondition be-
comes satisfied, and there is no upper bound on when it takes place. This
is an abstraction for delays within a circuit. For example, (true —y:= aVb)
describes an or gate. The precondition true specifies that the transition
is always allowed to set the output to the or of the inputs; however, an
arbitrary delay may elapse between a change in the inputs and a change
in the output. In fact, other transitions could change the values of the
inputs while a transition is enabled. Thus, for example, the precondi-

tion of a transition may become false without the transition having been
performed.

2.1 An example

An arbiter is a frequently used circuit for providing indivisible access to
some shared resource, e.g., a bus or a peripheral. The arbiter described
here is implemented as a tree in which all nodes (including the root and
the leaves) are identical. The arbitration algorithm is based on passing a
unique token around the tree. An external process, connected to a leaf,
may use the resource only when that leaf has the token.

Each node has three pairs of connections, one for its parent and one
for each of its children. A connection pair consists of two signals, req and
gr, standing for “request” and “grant.” Such a pair is used according to
the following four-phase protocol.

1. A node raises the request (regsignal to the parent) to indicate that
it wants to get the token.

2. When the grant is raised (gr signal from the parent) the node has
the token, and it may pass it down the tree.

3. The token is handed back by lowering the request.

4. Lowering the grant implies the end of one cycle; i.e., now a new
request can be made.

Figure 1 shows a few nodes and their interconnections. An external pro-
cess requests the resource by setting reqi (where i is [ or r, depending
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Figure 1: Two levels of arbiter tree

on the leaf to which the process has been assigned). When the corre-
sponding gri is set (by the arbiter), the process may go ahead and use
the resource. The signals regp and grp are connected to regi and gri at
the next (higher) level of the tree. When both children of a particular
node request the resource, it is given first to the left child; when that
child releases the resource, it is given to the right child. The regp and
grp of the root node are connected. This means that the root is able to
grant a request immediately.

The following invariant states that an arbiter node grants access to
at most one child, and that access is only granted to a child when the
parent has requested and been granted access.

Va € nodes: I(z)=I'(z) A I*(z) A I*(z)

I'(z) : =(z.grl A z.grr)
I*(z) : z.grlV z.grr = z.grp
P(z): z.grlVz.grr = z.regp

Note that z.grp = z.reqgp is not an invariant. The transitions needed for
one node of the arbiter tree can be described as follows.

o TRANSITION requestparent (mgrp A (reql V regqr) — regp := true)
o TRANSITION grantleft (grp Areqp Aregl A —grr — grl := true)

o TRANSITION grantright (grp A reqp A regr A —grl A —reql — grr :=
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¢ TRANSITION doneleft (—reql — grl := false)

TRANSITION doneright (-regr — grr := false)

TRANSITION done (grp A—grl A =grr — regp = false)

TRANSITION init (reset — grp, reql, reqr := false, false, false)

The Synchronized Transitions notation has been used on a variety of VLSI
designs, both synchronous [9] and asynchronous [3]. There are strong
similarities between Synchronized Transitions and UNITY, as developed
by Chandy and Misra [1]. Both describe a computation as a collection
of atomic conditional assignments without any explicit flow of control.
UNITY proposes this as a general programming paradigm. The goal
of Synchronized Transitions is more restricted, namely, development of
special purpose VLSI circuits.

3 Overview of LP

LP is a theorem prover designed for use in the analysis of formal specifi-
cations written in Larch [4] and in reasoning about algorithms involving
concurrency. In these applications, LP is most often used to debug a
specification or a set of invariants. Hence, it is more important to report
when and why a proof breaks down than to try all avenues for pushing
a proof through to a successful conclusion. For this reason, LP does not
employ heuristics to derive subgoals automatically from conjectures to
be proved. Instead, it relies largely on forward rather than backward
inference, with the user rather than the program being responsible for
inventing useful lemmas.

The basis for proofs in LP is a logical system containing the following
types of user-supplied information.

o Rewrite rules of the form ¢1 — ¢2, which LP uses to reduce terms
to normal form and which LP keeps normalized with respect to one
another.

e FEquations of the form t1 == ¢2, which LP converts into rewrite
rules by various ordering procedures that attempt to guarantee the
termination of the resulting set of rules.
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e Assertions about operators, e.g., that + is associative and commu-
tative. Logically, these assertions are merely abbreviations for equa-
tions. Operationally, LP uses them in equational term-rewriting to
avoid nonterminating rules such as z +4y — y + 2. These assertions
are combined using the algorithm described in [10].

o Deduction rules, which LP uses to infer new equations from existing
equations and rules. For example, the proofs in this paper apply
the simple rule

when z & y == true yield z == true y == true

to deduce the truth of two boolean expressions from the truth of
their conjunction. More generally, deduction rules such as

when forallz: z€z==2¢€y yield z ==

are equivalent to universal-existential axioms such as set extension-

ality:
VaVy[Vz[(z € z) = (z €y)] = (z=y)] .

o Induction schemas, which LP uses to generate subgoals to be proved
for the basis and induction steps in proofs by induction [2].

LP provides both forward and backward rules of inference. Some
forward rules are applied automatically each time new information is
added to the system; others are invoked explicitly by the user. Backward
rules are invoked explicitly by the user. Among the inference rules in LP
are the following.

e Reduction to normal form: a forward rule, invoked by users to
prove theorems and applied automatically by LP to reduce rewrite
rules, equations, and deduction rules in the system whenever a new
rewrite rule, assertion, or deduction rule is added.

e Induction: a backward rule, for which LP generates subgoals (i.e.,
lemmas to be proved, usually with the aid of additional axioms)
from the induction schemas.

e Proofs by cases and contradiction: backward rules, for which LP
generates subgoals.



e Instantiation: a forward rule invoked by users, applicable to rewrite
rules, equations, and deduction rules.

e Deduction: a forward rule, applied automatically.

o Critical pairs: a forward rule, invoked by users. Critical pairs be-
tween two rewrite rules are computed to derive equational conse-
quences that do not follow by rewriting. Consider, for example, the
rewrite rules

1. true=z— 2
2. P(z) = Q(z) — true
3. P(0) — true

The equation Q(0) == true cannot be derived by rewriting, but it
can be derived by computing the critical pair true = Q(0) == true
(i.e., by equating two different reductions of P(0) = Q(0) obtained
with rules 2 and 3) and normalizing it using rule 1. The Knuth-
Bendix completion procedure [6,8] is the closure of the critical pair
computation.

LP also provides a wide variety of user amenities. There is extensive
on-line help as well as facilities for naming objects and sets of objects,
executing scripts, logging and replaying input, generating transcripts of
sessions, taking checkpoints, getting statistics, and for displaying, adding,

and deleting information. Section 5 contains several examples of the use
of LP.

4 Invariance proofs

The goal of an invariance proof is to show that a predicate, I, on the
variables denoting state components is always true. Since we assume that
all transitions are atomic, this is equivalent to showing that I holds after
every transition. Thus an invariance proof involves an implicit induction
over the computation. If we partition the transitions into two classes,
the basis and nonbasis transitions, then we must show two facts for all
transitions A.

e If A is a basis transition, {true} A{I}. This means that no matter
what values the variables have at the start of 4, if A terminates, it
will do so in a state satisfying I.
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e If A is a nonbasis transition, {I}A{I}. This means that if 4 ter-
minates when started in a state satisfying I, it will do so in a state
satisfying I.

One has considerable latitude in setting up proofs within this framework.
When using LP, we begin with a library of common types, e.g., booleans,
natural numbers, and trees. Associated with each type is a set of oper-
ators, together with axioms and rules of inference, that can be used for
reasoning about predicates built using those operators. This gives us the
basic theory in which proofs are done.

We axiomatize each transition A by equations that describe the rela-
tion between the state S before the transition (the old state) and the
state S after it has been performed. For example, if A is the transition
(true — a,b := b,a), we axiomatize A by two equations

Al: a==108°

AZ: b==aP
to describe the change of state and by additional equations such as

A3: c==c°
to specify that the values of other state variables are unchanged. Next,
we define two instances of each invariant, one over the variables of S©
and one over the variables of S. For example, if the invariant I is a V b
we make the following definitions:

L == P ¥ 5°

Ipost ==agND
To show that the nonbasis transition A preserves I, we show that Toont
follows from the basic theory enhanced by the axiomatization of 4 and
by I,;e == true. For the above example, this is easy. By A.1 and 4.2,
Ty == b° V a°. By Iye and the commutativity of V, I, reduces to
true.

5 Extended examples

In this section, we present several examples that illustrate how LP can be
used to verify properties of circuits. We show how to translate ordinary
mathematical notation into that used by LP, how to use that notation to
formulate properties of circuits, and how to use the proof tactics available
in LP. Our aim is to present enough information so that readers can
themselves attempt proofs using LP. Furthermore, we hope that readers
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find the formulation of a proof in LP almost as easy to understand as in
ordinary mathematical notation, while at the same time finding it much
more credible.

5.1 Proving the invariant for the arbiter tree

We first illustrate the use of LP by proving the invariant for the arbiter
tree (Section 2.1), following the outline given in Section 4. To formulate
the basic theory of the arbiter tree within the equational setting of LP,
we introduce functions 1 and r such that 1(x) and r(x) are the left and
right children of the node x. To formulate the invariant, we introduce
functions gr and req, and we rewrite the state variable z.grp at node z as
gr(x), z.regp as req(x), x.grl as gr(1(x)), etc. With these conventions,
the invariant, Ipost, which must be shown to hold at each node x in the
tree after each transition, is defined by the following equation:

Ipost(x) ==
not(gr(1(x)) & gr(r(x))) & % Ilpost(x)
((gr(1(x)) | gr(x(x))) => gr(x)) & % I2post(x)
((gr(1(x)) | gr(zx(x))) => req(x)) % I3post(x)

Here not, &, and | are boolean operators for negation, conjunction and
disjunction, and % is a comment delimiter. To formulate the invariant,
Ipre, which is assumed to hold at each node x before the transition,
we introduce functions gr0 and req0 to denote the values of the state
variables before the transition occurs:

Ipre(x) ==
not(gr0(1(x)) & gr0o(r(x))) & % Ilpre(x)
((gr0(1(x)) | gro(z(x))) => gro(x)) & % I2pre(x)
((gr0(1(x)) | gro(r(x))) => req0(x)) % I3pre(x)

Finally, we describe transitions such as requestparent by conjoining
equations describing their preconditions and their actions, being careful
to describe what each transition leaves unchanged as well as what it
changes. This “extra” work required for mechanical verification is usually
overlooked, and is often a source of errors, in hand proofs.
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» TRANSITION requestparent (exists n)(all y)
requestparent(n, y) ==
not(gro(n)) & (req0(1(n)) | req0(r(n))) & % precondition
req(n) & % action
(gr(y) = gro(y)) & % unchanged
( (n=1y) | (req(y) = req0d(y)) )

In the definition of requestparent, y and n play very different roles. By
an LP convention, y is a variable and n is a constant. Therefore, the
equation

requestparent(n, y) == true
asserts that the requestparent transition has occurred at some node n
and that the values of gr0 and req0 have not changed at any node y dif-
ferent from n. The technique of using constants to stand for existentially
quantified variables is known as Skolemization and is frequently employed
when using LP.

To show that the requestparent transition preserves the invariant,
we first issue the LP commands:

thaw arbiter
set name invariant; add Ipre(x)
set name transition; add requestparent(n, y)

The thaw initializes LP with a previously frozen theory that contains
axioms for booleans, numbers, and trees together with the definitions of
Ipre, Ipost, and requestparent. The next two lines add named axioms
to the theory. LP treats these axioms as abbreviations of the equations:

Ipre(x) == true
requestparent(n, y) == true

The first asserts that the invariant holds at every node x in the tree.
As noted above, the second asserts that a requestparent transition has
occurred at node n.

The proof that requestparent preserves the invariant requires a mod-
est amount of user guidance. Given the axioms just described, we prove
Ipost(x) by issuing the following commands:

prove Ipost(x)
set name caseHyp; resume by cases x = n
critical-pairs caseHyp with transition % for not(x=n)
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The second line splits the proof into two cases, according to whether or
not x is the node at which the transition occurs. This standard tactic
is useful when axioms for transitions contain Skolem constants. For the
first case, LP tries to prove Ipost(c1) using the axiom c1 = n, where c1
is a fresh (i.e., not already in use) constant. For the second case, LP tries
to prove Ipost(cl) using the axiom not(c1 = n). This axiom makes it
clear why LP must introduce the fresh constant. It allows LP to assume
that c1is a particular node distinct from n, not that all nodes are distinct
from n.

The proof for case x = n goes through immediately. The third line
completes the proof by causing LP to discover that req(c1) == req0d(c1)
is a consequence of the axiom requestparent(n, y) and the case hy-
pothesis not(c1 = n). Computing critical pairs with case hypotheses is
a frequently used tactic. The proofs that the other transitions preserve
the invariant are similar in spirit (though sometimes a bit longer).

The invariants and transitions given here evolved during the formal
verification using LP. Previously, the consistency of earlier versions of the
invariant and transitions had been checked manually. To our surprise we
discovered some problems with these when we tried to check them using
LP. For example, the transition done was specified first as

TRANSITION done (grp A —reql A —reqr — regp := false)

This seemed plausible, since lowering the request of both children means
they are both done. However, lowering the request must not be prop-
agated to the parent node until the grants of the children have been
removed, and this version of done does not preserve the invariant. This
became apparent when we attempted the machine-checked proof. A con-
tributing factor in making this mistake was that the invariant and tran-
sitions used in the manual proofs were somewhat more complicated than
necessary. A study of the LP proof led us to remove a superfluous fourth
conjunct

reqp = (reql V grl) V (regr V grr)

from the invariant, and to weaken the preconditions of several transitions.

5.2 Mutual exclusion in the arbiter tree

We also used LP to show that the entire arbiter tree ensures mutual
exclusion, i.e., that there will never be two leaf nodes that have their
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grant signals true simultaneously. The proof proceeds by induction over
the structure of the arbiter tree, i.e., by induction over the level of nodes
in the tree. For this proof, we start with a theory that contains axioms for
booleans, natural numbers, and trees together with the invariant for the
arbiter tree (proved in the last section). Included in this theory are the

following equations that describe a tree with root node R and infinitely
many levels.

not(R = 1(x))
not(R = r(x))
level(R) ==

level(1(x)) == level(x) + 1
level(r(x)) == level(x) + 1

We also assert that all nodes in the tree (equivalently, all subtrees of the
tree) are generated by the operators R (the root node), 1, and r.

generators R : -> node
1l : node -> node
r : node -> node

This assertion provides LP with an inductive rule of inference. Now we
issue the commands

prove ( (level(x) = level(y)) & gr(x) & gr(y) ) => (x = y)
set name indHyp; resume by induction x node

to begin an inductive proof of the mutual exclusion property. The proof
requires some user assistance. LP first attempts to prove the basis case

((level(R) = level(y)) & gr(R) & gr(y)) => (R = y)

for the induction. This is proven by a subsidiary induction on y, which
is initiated by typing

resume by induction y node

From this, the basis case is proven without further help. LP then gener-
ates the induction hypothesis

((level(cl) = level(y)) & gr(cl) & gr(y)) => (cl1 = y)
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(which asserts that mutual exclusion occurs at the level of the node cl)
and tries to prove

y)
y)

(which assert that mutual exclusion occurs at the next level). Again it
is necessary to instruct LP to induct over y. The basis case for this
induction goes through by reduction to normal form. The two induction
steps for y then combine with the two for x to yield four lemmas that
must proved:

((Tevel(1(c1)) = level(y)) & gr(l(c1)) & gr(y)) => (1(c1)
((level(r(ci)) = level(y)) & gr(r(ci)) & gr(y)) => (r(ci)

((level(1l(c1l)) = level(1(c2))) & gr(l(cl)) & gr(l(c2)))
=> (1(c1) = 1(c2))

((Level(r(cl)) = level(1l(c2))) & gr(r(cl)) & gr(1(c2)))
=> (r(c1) = 1(c2))

((Level(1(c1l)) = level(r(c2))) & gr(l(ci)) & gr(r(c2)))
=> (1(cl) = r(c2))

((Level(r(c1)) = level(r(c2))) & gr(r(c1)) & gr(r(c2)))
=> (r(c1l) = r(c2))

To prove the first lemma, we first partition the proof into cases with the
commands

set name caseHyp
resume by case cl = c2
resume by case gr(l(c1)) & gr(l(c2))

which serve to reduce the proof to one nontrivial case. Finally, we com-
plete the proof by entering the command

critical-pairs caseHyp with invariant indHyp

to compute critical pairs between rewrite rules that describe the nontrivial
case and rewrite rules that describe the invariant in the state before
the transition and the induction hypothesis. LP orders these critical
pairs automatically into rewrite rules, and these rewrite rules help reduce
the lemma to an identity. The proof of the remaining three lemmas is
identical in form.

5.3 A ring oscillator

A ring oscillator can be understood as a wave traveling around in a loop.
The crest of the wave is represented by a true value in the elements of the
loop and the trough is represented by a false value. For proper operation,
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—1in in in — —in
out out —= out —9 out —=
—* SUcC succ succ succ

CELL ringosc(n : 3..) {theloop has n elements}
VAR st: ARRAY[0..n — 1] OF BOOLEAN
TRANSITION C(in, out, succ : BOOLEAN)
{C element with one input inverted}

(in # succ — out := in)

BEGIN
23 O (stll, stls(i)], stls(s(i))])

END ringosc.

Figure 2: Ring Oscillator

the rising edge of the wave must never overtake the falling edge, and the
falling edge must never overtake the rising edge; i.e., the elements whose
outputs are true must form a nonempty set of adjacent elements, as must
the elements whose outputs are false. We formalize this invariant as

Fi3jVa ( st(i) A —st(s(i)) A -st(f) A st(s(5))A
[t =iVz=jVst(z) = st(s(z))] )

where st(z) is the input state of element z and s(z) is the element fol-
lowing z in the ring (see Figure 2).

We now describe a ring oscillator using Synchronized Transitions and
prove that it preserves the invariant. The circuit itself is a simple example
of a self-timed circuit [3]. If the circuit were simply a ring of buffers, the
oscillation would eventually die out. The problem is that propagation
delays are different for rising and falling values and for different elements
in the circuit. Thus, in a ring of buffers, either the trough will eventually
overtake the crest, or the crest will overtake the trough. The ring of C
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elements shown in Figure 2 avoids this problem. The lower (succ) input
to a C element ensures that the output of that element can become true
only when the output of the successor element is false. This guarantees
that the crest cannot overtake the trough. Likewise, the trough cannot
overtake the crest.

The basic theory for the proof is that of a ring of size n + 1, where
n > 1. We formalize this theory in LP by using a constant n and a
function s that maps each element in the ring to its successor; element 0
is the successor of element n.

"

gs(x) =0 ==x=n
s(x) = s(y)
not(x = s(x))

not(x = s(s(x)))

]

=x =y

To reason about rings of a particular size an equation such as n ==
could be added. To reason about rings of arbitrary size, n is left uncon-
strained, which is what we do in our proofs.

We formalize the effect of a C' transition at an element a as in Sec-
tion 5.1: st0(s(x)) is the output state of element x before the transition
occurs, and st(s(x)) is its state after the transition.

% TRANSITION c (exists a) (all y) c(y)

c(a, y) ==
(not(st0(a) = st0(s(s(a))))) & % precondition
(st(s(a)) = st0(a)) & % action
((y = s(a)) | (st(y) = st0(y))) % unchanged

Since the invariant contains existential quantifiers, it requires some
care to formalize. For the invariant, Ipre, we assume that there exist
two elements, i0 and jO, that begin the crest and trough of the wave.
These are Skolem constants of the kind used in Section 5.1.

%» invariant (assumed before transition)
% (exists i0) (exists jO) (all x) Ipre(i0, jO, x)
Ipre(i0, jO, x) ==
st0(i0) & not(st0(s(i0))) & not(st0(j0)) & st0(s(j0)) &
( (x=10) | (x = 3j0) ) | (st0(x) = st0(s(x)) )

To establish the invariant after the transition, we must show that there
are two elements i and j that begin the new crest and trough.
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% invariant (must hold after transition)
% (exists i) (exists j) (all x) Ipost(i, j, x)
Ipost(i, j, x) ==
st (i) & not(st(s(i))) & not(st(j)) & st(s(j)) &
(Gx=1) | (x=3)) 1 (st(x) = st(s(x)) )

Figures 3 and 4 display the LP commands used to prove that the
invariant is preserved. The proof begins in Figure 3 by assuming the
basic theory, the invariant Ipre, and the description of the transition.
It continues by proving some useful lemmas. The commands used to
accomplish each proof are indented under the prove command that ini-
tiates the proof. When the arguments to these commands do not fit on
a single line, they are terminated by a line containing a single period.

The third lemma provides information for the principal cases in the
subsequent proof of the main theorem. It reveals both that a transition
can occur even when it produces no change in the circuit and that, when
a transition does produce a change, it must occur at the head of the crest
or trough. Its proof illustrates two typical proof tactics in LP. First, when
proving a conditional (i.e., a boolean term involving if) or an implication
(i.e., a boolean term involving =>), we often consider separately the case
in which the hypothesis is true and the case in which it is false. Second,
if we can identify a term that has special properties (e.g., s(a), because
the state changes only at s(a)), we often consider separately the cases in
which that term is equal to other terms in the equation (e.g., to x when
the transition does not change the state, or to i0 or jO when it does).

The proof that the invariant is preserved (Figure 4) is divided into
cases. Since we are trying to prove that Ipost (i, j, %) is true for some
values of i and j, we help the proof along in each case by supplying
appropriate values for i and j. When the transition does not change the
state of any node (Case 1.1), the location of the wave does not change,
and i and j are identical to i0 and jO. When the trough advances (Case
2.1), i is the successor of 10, and j0 is unchanged. Likewise, when the
crest advances (Case 2.2), j is the successor of j0, and i0 is unchanged.
In each of these cases, we compute critical pairs to derive consequences
from equations that have been simplified by the definitions supplied for
i and j.

We are not entirely happy with the explicit instantiation of Skolem
constants in this proof. In some sense it compromises the integrity of the
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thaw ring
set name invariant; add Ipre(i0, jO, x)
set name transition; add c(a, y)

set name lemmas

prove (a = x) | (st(s(x)) = st0(s(x))) % lemma 1
critical-pairs ring with transition

prove not(i0 = jO) by contradiction % lemma 2

prove % lemma 3
if(st0(a) = st0(s(a)), st(x) = st0(x),

not(jo = s(a)) & not(i0 = s(a)) )

set name caseHlyp; resume by cases st0(a) = st0(s(a))

resume by cases x = s(a) % for case st0(a) = st0(s(a))
critical-pairs caseHyp with transition

resume by cases h for case not(st0(a) = st0(s(a))
i0 = s(a)
jo = s(a)

not(i0 = s(a)) & not(jO = s(a))

Figure 3: Proof of invariant for ring oscillator, part 1
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proof, since LP has no way of knowing that i and j are Skolem constants
and thus play a different role from n. Future versions of LP will provide
better facilities for direct proofs of existential statements.

We have constructed an alternate version of this proof in which ex-
plicit instantiation is not used. Instead the proof proceeds by contra-

diction. That proof, however, was harder to construct and harder to
follow.

6 Summary and conclusions

We have presented a notation, Synchronized Transitions, for describing
clockless VLSI circuits. This notation is designed to capture the paral-
lelism inherent in these circuits. We have also presented a proof technique
for reasoning about the functional behavior of circuits described using
Synchronized Transitions. This proof technique is based on the preserva-
tion of invariants, and it exploits the atomicity of the transitions.

After giving a brief overview of a theorem proving system, LP, we
showed how invariance proofs about circuits described with Synchronized
Transitions can be formulated in a way that permits machine checking.
This approach was illustrated by some simple, but nontrivial, examples.
The examples were chosen to illustrate both the general structure of such
proofs and the details involved in pushing them through LP. We believe
that the similarity of the proof tactics used in these examples is not
coincidental; i.e., these tactics seem applicable across a wide range of
proofs of this kind. Hence, these tactics should provide models useful to
others wishing to attempt mechanical verification of VLSI circuits.

On the whole we are quite encouraged by the experiences reported
in this paper. It took us some time to push the first few proofs through
LP. As we gained experience, however, it became easier. Our three main
problems were the following:

o learning how to translate proof tactics used in the manual proofs
into tactics that could be checked by LP, e.g., instantiation of exis-
tentially quantified variables and setting up the appropriate induc-
tions;

e remembering to include details that were “obvious” in the manual
proof, e.g., remembering to say that something is not changed; and
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set name theorem; prove Ipost(i, j, x)
set name caseHyp
resume by cases st0(a) = st0(s(a))
% Start Case 1.1: st0(a) = st0(s(a))
add i ==1i0 j == jO % Choose values for i, j
% Start Case 1.2: not(st0(a) = st0(s(a))
prove (i = i0) | (a = j0O)
critical-pairs caseHyp with invariant
resume by cases a = i0 a = j0
% Start Case 2.1: a = i0
add i == s(i0) j == jO % Choose values for i, j
critical-pairs lemmas with transition invariant
resume by cases x = jO0 x = s(a) not((x=j0) | (x=s(a)))
% Cases 3.1-2: x = jO, x = s(a) proved without help
% Start Case 3.3: not((x=j0) | (x=s(a)))
critical-pairs caseHyp with invariant transition
resume by cases a = ci
critical-pairs caseHyp with transition
% Cases 2.2: a = jO

add i ==i0 j == s(j0) % Choose values for i, j
critical-pairs lemmas with transition invariant
resume by cases x = i0 x = s(a) not((x=i0) | (x=s(a)))

% Cases 4.1-2: x = i0, x = s(a) proved without help
% Start Case 4.3: not((x=i0) | (x=s(a)))
critical-pairs caseHyp with invariant transition
resume by cases a = cl

critical-pairs caseHyp with transition

Figure 4: Proof of invariant for ring oscillator, part 2
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e dealing precisely with relatively informal proof tactics such as “with-
out loss of generality assume.”

Some of the problems encountered in describing proofs might be alle-
viated if the logic of LP and the heuristics used by LP were more powerful.
On the other hand, making LP more powerful in these ways might make
it more difficult to find proofs. The point of a proof is often not to certify
the correctness of a design but rather to shed light on why the design is not
correct or on how it might be improved. It is important, therefore, that
proofs fail in informative ways. As provers become more sophisticated,
the causes of failure become more obscure. Furthermore, as circuits to be
verified become more complex, the computational complexity of proofs
becomes an important issue. When debugging the proofs presented here,
it took less than four minutes of CPU time on a VAX 8600 to rerun an
entire proof and discover why it failed. It is particularly important that
the prover not take a long time to fail when it cannot prove the conjec-
ture. As provers become more sophisticated, the amount of time they
spend in unsuccessful proof attempts can be a serious problem.

Our experience has been that the additional effort of machine proofs is
outweighed by their benefits. The principal advantage of machine proofs
is that they are more reliable. They are harder than manual proofs pri-
marily where manual proofs are vague, and therefore suspect. An addi-
tional benefit of constructing a machine proof is that it becomes easier
to see exactly what is necessary to ensure the desired properties. This
can, and did, lead to simplifications in one circuit and in the invariants
used to reason about both. A final benefit of machine proofs is that they
are easily repeatable. This allowed us to do regression testing when we
changed the circuits or the invariants used to reason about them.
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