ISSN 0105-8517

Programming Environments and
System Development Environments

Pal Sgrgaard

DAIMI PB - 252
May 1988

AARHUS UNIVERSITY — h—ﬁ ‘ i

COMPUTER SCIENCE DEPARTMENT 1] %
Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK T i
Telephone: + 456 12 71 88 Telex: 64767 aausci dk ﬁ |

| —

Mjglner Report DK-SYS-31

]

Abstract

This report discusses the nature of programming environments and
system development environments under the common term development
environments. Five dimensions for the characterisation of development
environments are identified. These are:

e the system development functions supported,

e the kind(s) of work supported,

the suitability for prototyping,

the application area, and

the technical properties of the environments.

These dimensions are not independent. Some schools or traditions within
this field are identified using these dimensions.

It is argued that computer support can be provided for all system
development functions. Care must be taken, however, to allow for the
necessary interplay between the different system development functions.
Technical properties of the environments like integration, incremental-
ity, and tailorability may support this interplay. Such properties may
also lead to a change in the role of programming in system development.
Programming will become more integrated in all parts of system devel-
opment. This will make the classical division of work between analysts
and programmers less obvious.

Cooperative work is important in system development. This should
be reflected, or at least not ignored, in the development environments.
Cooperative work in system development can be supported in many ways,
also in many ways different from electronic mail and other applications
typically associated with computer supported cooperative work.

111

Contents

Preface vii
1 Introduction 1
2 The Context of System Development 5
2.1 Levels of description 5
2.2 System development functions 7
2.3 Support for system development functions 11
3 Kinds of Work in System Development 14
3.1 Individuvalwork 15
3.2 Cooperativework o 15
3.3 Bureaucraticwork 17
3.4 Market-organised work 17
4 The Role of Programming in System Development 19
4.1 Someearlierwork. 20
4.2 Programming as an activity 22
4.3 Prototyping 23
4,4 Suitability for prototyping « « + » » « + s « 5 5 55 = 0 5 5 s 28
4o Thechanpingrole: ;: s s s e v s 55 s ¢ sa g E ww s s & 3 28
5 The Application Area 31
6 Technical Characteristics of Development Environments 35
6.1 Uniform metaphor 35
6.2 Persistence and sharing 000 36
B8 Metapfogramming . « o « v 5 » 5 s s 5% 4 5 0 & 5 5 5 & 3 37
b4 Infegrafion : i vaowsaws oo 53 insmwaons s § 38
6.5 Interactivity and incrementality 38

CONTENTS

6.6 Adaptability and tailorability 40
6.7 The programming languages supported 41
6.8 Conceptsnotused 42
Relations between the dimensions 45
7.1 Schools in development environments 45
7.2 The Mjglner project v v v v i v v e 48
Final remarks 50
Bl Related work . i « ¢ 5 6 66 w5 ¢ ¢« b o e momowoo s e 50

8.2 ConcluBSION : & & 5t i v sow on s 2 n 2o m s v s %

Preface

This report is about programming environments and system develop-
ment environments. The starting point of the work with the report was
a study group on programming environments and system development
environments which was arranged during the autumn 1987 at the Com-
puter Science Department, Aarhus University. The study group was ar-
ranged by the author in cooperation with Elmer Sandvad. In this study-
group a number of classical papers on programming environments were
read. There were papers on UNIX [43], the Cornell Program Synthesizer
(60, 72], Interlisp [73, 74], and Smalltalk [75, 83]. In addition practical
and theoretical issues from system development were treated by reading
theory on system development [2], case studies of system development
[41], Floyd’s overview paper on prototyping [27], and a report on the use
of 4th generation languages [14]. A visit was made to a company using
the 4th generation language Ideal. As was to be expected this reading
resulted in a conceptual chaos. There were difficulties in comparing the
environments presented and in relating the virtues of these environments
to the problems of practical system development. The work with this
report started as an attempt to sort out some issues in this chaos.

One of the issues we believed to be central was the question on
whether programming environments and development environments were
the same or two different kinds of environments. We soon realised that
this was not the central question. Conceptually there is no reason to dis-
tinguish between system development environments and programming
environments. This does not mean, however, that all programming en-
vironments are suited for use in practical system development. Many
programming environments focus on programming as an isolated activ-
ity. For these reasons the work with the report shifted to the development
of a conceptual framework for development environments.

This report is based on work in the MARS project [2, 42], in the
Mjglner project [21], and on work on computer supported cooperative

vii

Viii PREFACE

work [65]. Elmer Sandvad and the author are both participants in the
Mjglner project. The Mjglner project aims at developing an industrial
prototype of an environment for object oriented programming.

The framework presented here has been developed in cooperation with
Elmer Sandvad, and chapter 6 should be credited as much to him as to
the author. The wording of the report, however, is the sole responsibility
of the author. Elmer Sandvad should not be blamed for any errors or
lacks of clarity in this report. All deficiencies are the responsibility of the
author.

Besides the cooperation with Elmer Sandvad this report has also ben-
efited from many helpful comments from Kaj Grgnbeak, Riitta Hellman,
Jgrgen Lindskov Knudsen, Peder Christian Ngrgaard, Claus H. Pedersen,
Lars Bak Petersen, and from the students who followed the study group
on programming environments and system development environments.

Chapter 1

Introduction

Computer support for system development has traditionally been facili-
ties like editors, compilers, and debuggers. These facilities have provided
essential support for programming, but their impact on system develop-
ment as a whole has been considered to be of a limited extent. System
development and compiler construction have therefore been considered
as well separated subjects.

New developments in programming environments and the upshot of
various facilities supporting different activities in system development
have, however, widened the scope of computer support for system de-
velopment drastically. This development calls for a discussion of the
relationship between support for programming and support for system
development. Understanding of system development is necessary in the
development of programming environments in order to make the envi-
ronments applicable in the work situations they address. Other kinds of
computer support for system development should be seen in relation to
and integrated with the support for programming.

New programming environments may lead to changed working prac-
tices in system development. Interactive programming environments in-
crease the feasibility of prototyping. Tailorable environments can be used
to provide support for many different activities in system development.
Together these changes may lead to a changed role of programming in sys-
tem development. Programming will to a larger extent be an integrated
activity in all parts of system development.

Cooperative work is an important kind of work in system develop-
ment. Cooperative work can be supported by the use of computers, but
a computer system can also have negative effects on the possibilities for
cooperation. Results from research on computer supported cooperative

2 CHAPTER 1. INTRODUCTION

work are therefore relevant for the support for system development. Ex-
periences and results from the support for system development can some-
times be of general interest to computer supported cooperative work.
This report is mainly theoretical. It presents five dimensions for the
characterisation of development environments. These are:

e the system development functions supported,

e the kind(s) of work supported (e.g. cooperative work or not),
e the suitability for prototyping,

e the application area, and

e the technical properties of the environments.

In this report the term development environment will be used to re-
fer to all kinds of programming environments and system development
environments. This is in order to emphasise that conceptually there is
no difference between the two although many current programming en-
vironments are of little use in practical system development. The term
programming environment is not used to denote this concept because
that might convey the assumption that programming support is the only
kind of computer support in system development.

It is assumed that the reader of this report knows some of the dis-
cussed environments, for example from reading some of the cited papers.
Throughout the report environments like Smalltalk [75, 83], Interlisp
[73, 74] and UNIX [43] will be mentioned without further citations.

The emphasis in this report is on placing development environments in
the broader contexts of system development, computer supported coop-
erative work, and prototyping. The discussion of concrete environments
is therefore not as detailed as some readers could desire.

The report proceeds as follows: In chapter 2 a conceptual framework
for the characterisation of system development is presented. This frame-
work has been developed in the MARS project where the author partic-
ipated. The framework has been presented at some length here since it
is currently not available in English. Chapter 3 presents a brief discus-
sion of different kinds of work, especially of cooperative work. Chapter
4 discusses the role of programming in system development and, related
to this, different kinds of prototyping. In chapter 5 another dimension of
development environments is presented, this is the application area of the

3

environment, i.e. the kind of products the environment is suited to sup-
port the development of. In chapter 6 a move towards the technology is
made. Here a number of central technical characteristics of development
environments are discussed. Together, the chapters 2-6 present the five
dimensions of the framework on development environments. In chapter
7 the dimensions are used to characterise some schools or traditions in
this research area. Chapter 7 also contains a description of the Mjglner
project. Finally, some conclusions are drawn in chapter 8. Chapter 8 also
contains a discussion of some related work.

Chapter 2

The Context of System
Development

In this chapter we will present a conceptual framework for discussing
system development. This framework has its roots in Lars Mathiassen’s
thesis Systemudvikling og systemudviklingsmetode (System development
and system development method) from 1981 [54]. The framework has
later been revised and refined in the MARS-project, and it is presented
in the textbook on system development written by the MARS project
group [2].

This framework is used because an abstract framework for the discus-
sion of system development is needed. A high level of abstraction enables
a characterisation of system development processes independently of the
methods and development environments being used. This is required in
order to discuss the impact induced by development environments on
system development practice.

2.1 Levels of description

The framework allows for a description of system development at different
levels of abstraction. A distinction is made between the intention with
and the actual performance of the work. This is illustrated in figure 2.1.
The framework also contains a characterisation of the main components
of system development.

The process level is the most concrete level of description. A process
takes place in time and space, but it is otherwise not restricted. When
describing a work process any aspect can be included, also the physical
layout of the work-place, characteristics of the persons doing the work,

2.1. LEVELS OF DESCRIPTION 5

Abstract
point of view FUNCTION
TASK ACTIVITY
Concrete PROCESS
point of view ¥
— =
Intention Actual performance
with]Ob of jOb

Figure 2.1: Some basic concepts for the description of system develop-
ment

etc. Thus it is impossible to make a complete description of a process.
For this reason it is not very convenient to describe a kind of work at the
process level. Processes may be split up in subprocesses if these can be
identified as taking place in a restricted part of the time and space of the
superior process. On the level of concreteness where we find processes we
cannot talk about the intention of the work, but only about the actual
performance of the work. In the MARS framework the basic phenomenon
is the system development process.

On a more abstract level we can describe the actual performance of
the work as activities. An activity is a selected part of a process which is
identified by its content. Examples of activities in a system development
process are interviewing the users, programming a module, and revising
the project plan. As we will return to in chapter 4 we see programming
as an activity which takes place in the system development process.

If we remain on the same level of abstraction as where we find ac-
tivities, but move to the intention with the work, we can identify tasks.
When work is planned and assigned it is normally done in units of tasks.
There is often a one to one relationship between tasks and activities. The
programming of a module is a typical unit of work assigned to a person
for a given period.

6 CHAPTER 2. THE CONTEXT OF SYSTEM DEVELOPMENT

On the most abstract level we can describe the intention with the
work as functions. A function expresses the intended result of some work
with no regard to the actual performance of the work. The functions
used to describe a given process are not given. A functional description
expresses a theory about a class of processes.

2.2 System development functions

Mathiassen presents a functional description of system development in
[54]. He identifies the functions investigation, construction, change, deci-
sion, and communication. This was the starting point for the description
developed in the MARS-project. Compared to Mathiassen’s description
there are some differences, however. The MARS description is less ab-
stract and more detailed. It can in fact be interpreted as a description
on a functional level and as a description on an activity level. It also
represents a shift of perspective from system development as seen from
the outside to system development as seen from the point of view of the
system developers.!

The functional description is based on the systematic application of
three fundamental distinctions, see figure 2.2, and the identification of a
more loosely defined set of general functions, see figure 2.3. The three
fundamental distinctions are:

e product-orientation versus process-orientation,
e reflection versus action, and
e present realities versus visions.

In the framework of the MARS-project the product of the system devel-
opment process is not only a computer system, it is a computer-based
system. A computer-based system includes the computer system as well
as those parts of the user organisation which contribute to or depend
on the same functions as the computer system. This report is primarily
concerned with computer systems.

1This is particularly visible when looking at Mathiassen’s functions construction and change.
The change function is in the new description reduced to one of several minor points under
the realisation function. Construction, on the other hand, receives a more detailed treatment,
and elements of construction can be found in the design and realisation functions in the new
description.

2.2. SYSTEM DEVELOPMENT FUNCTIONS i

I visions l Q&}t Q(ﬂ Q%m/t[

System development
Performance Management
reflectior> design === analysis | planning f=e—={ evaluation
action > realisation regulation
product-oriented process-oriented

Figure 2.2: The main components of system development

The distinction between process- and product-orientation results in
symmetrical descriptions of performance and management.? This illus-
trates that system development does not only deal with the creation of
a product, it also deals with the creation of the process which leads to
this product. A major finding in the MARS-project was that there often
are severe deficiencies in the management of the process. Due to the na-
ture of the work it is impossible to manage the process from the outside
(although attempts are made), and the system developers themselves of-
ten lack the competence and the will to do it. Reasonable management
is, however, a prerequisite for many other changes and improvements
in system development. When addressing computer support for system
development it must be stressed that the computer support also should
address the process oriented functions.

The distinction between reflection and action serves to stress that
although the main purpose is to construct something, there is a great
need for reflection. The application of this distinction to the product
oriented part of system development results in the identification of well-
known functions such as analysis and design as the reflective functions

>The word management is here used to classify some abstract functions, and it does not
denote a special group of people in the organisation. Everybody participating in a process can
contribute to its management.

8 CHAPTER 2. THE CONTEXT OF SYSTEM DEVELOPMENT

and realisation as the action. On the process-oriented side we can identify
a function parallel to the realisation function. This is the function of
regulation. Regulation is directed towards the process itself. It may be
directed at the participants and their expectations, it may also be directed
at the conditions and surroundings of the system development process.
Regulation is sometimes invisible, for example in joint planning. Here the
planning is performed in a way which commits everybody to the plan,
making explicit regulation unnecessary.

Finally a distinction is made between reflection directed at present
realities and reflection directed at visions of the future. This is the dis-
tinction between analysis and design. On the product-oriented side we
get a parallel distinction between evaluation (“process analysis”) and
planning (“process design”).

The arrows in figure 2.2 indicate a set of relations between the func-
tions. In [2] a number of normative theses are stated about system devel-
opment, some of these directly address the relation between the different
functions. We will quote those theses here:

P 1 Analysis and design are mutually dependent, and should therefore
be performed concurrently in order to support each other.

P 2 Product oriented reflection (analysis and design) and realisation
affect each other, and should therefore be performed concurrently
in order to support each other.

M 1 Evaluation and planning are mutually dependent, and should
therefore be performed concurrently in order to support each
other.

M 2 Process oriented reflection (planning and evaluation) and regula-
tion affect each other, and should therefore be performed concur-
rently in order to support each other.

PM 1 A system development project should be organised in a way which
ensures direct and close interaction between performance and
management activities.

All these theses have implications for how development environments
should be constructed. A development environment should not, for ex-
ample, be constructed in a way which prevents the interplay between

2.2. SYSTEM DEVELOPMENT FUNCTIONS 9

System development

Performance Management
analysis evaluation
design planning
realisation regulation
General

decision-making
communication
socialisation

Figure 2.3: The functions of system development

different system development functions. The theses also have implica-
tions for how system development work should be organised, see chapter
3

Finally there is a number of more general functions which have not
been covered by the systematic application of the three fundamental dis-
tinctions. These functions are decision-making, communication, and so-
cialisation. They are performed all the time during a system development
process. This does not mean that they do not require time and resources,
or that they should not be planned. On the contrary some decisions may
take a long time, and they need to be prepared and planned. This may
severely affect a realistic project plan. Communication requires resources,
especially in larger groups. There are examples of projects which did not
work well until the deadlines were changed and the project group was
reduced to a reasonable size [26]. Socialisation is also critical to system
development. People need to know and trust each other in order to work
well as a team. It is one of the central recommendations in [2] that care
should be taken to give the projects a good start. Planned project es-
tablishment is proposed as an activity which can contribute to this end.
The nine system development functions are summarised in figure 2.3.

10 CHAPTER 2. THE CONTEXT OF SYSTEM DEVELOPMENT

2.3 Support for system development func-
tions

In this section the presented description of system development will be
applied to define the first dimension in the characterisation of develop-
ment environments. This dimension is the system development functions
supported by the environment. In the following it will be discussed how
the different functions can be supported.

When looking at the product-oriented functions, analysis, design, and
realisation, the main kind of support is the support for programming,
including editing, translation, debugging, and version control. This will
mainly support the realisation function, but if the environment is suitable
for prototyping, it may also support analysis and design. When users
are confronted with one or several prototypes much previously unstated
information about the user organisation is revealed. This may support
analysis. Support for the production of various kinds of documents, like
analysis and design reports, documentation, user manuals, and teaching
material is also an important kind of support for the product oriented
functions. Good text processing and facilities for making illustrations
are needed. Such facilities will support all product oriented functions.
Help in maintaining the relationships between different, in some sense
equivalent, descriptions of the product is also needed. Such help will
support all the product oriented functions and may also strengthen the
interplay between these functions. Of great commercial interest are the
environments for support of specific system development methods, for
example specialised diagram editors. These will certainly provide some
support to the analysis and design functions by making it easier to revise
the diagrams.

The realisation function covers more than the “pure” construction of
the system. It also covers the introduction of the new system, and as a
part of this, conversion. Conceptually this is perhaps a small aspect of
system development, but in practice it can be a major bottleneck in the
development of new systems. Often much effort is spent in developing
code which is to be used only once, and this development is made dif-
ficult by the fact that realistic tests are hard to perform. An example
of conversion support is the possibility to simulate the old database to
unconverted applications provided by some 4th generation languages.

2.3. SUPPORT FOR SYSTEM DEVELOPMENT FUNCTIONS 11

The process-oriented functions, evaluation, planning, and regulation,
can benefit from facilities for document preparation in the same way as
the product-oriented functions can. There are many products on the
market focussing on planning techniques like PERT [25] and on estima-
tion techniques like COCOMO [10]. Another help in planning can be a
shared calendar as discussed by Greif and Sarin [32]. Some aspects of
project evaluation may be supported by systems keeping track of hours
spent, etc., but this is a very small part of the evaluation function. This
illustrates the trivial, but important, statement that some support for a
function does not mean that it is fully supported. This is sometimes for-
gotten by system developers when they make the lack of the appropriate
planning “tool” respomsible for their insufficient planning. In the text-
book written by the MARS project group this syndrome is diagnosed as
“the myth of the tool”.

The regulation function is an expression of the need to change an
ongoing process in accordance with the plan. It is very hard to imagine
ways to provide computer support to the regulation function except for
the effects of communication support which indirectly supports many
functions, among them regulation.

The general functions, communication, decision, and socialisation, can
also be given computer support. Communication can obviously be sup-
ported by facilities for explicit communication like electronic mail, but a
shared storage of documents, programs, etc., may also support commu-
nication.

The decision function can be supported by decision support systems
and by systems making information about the process available for de-
cision making. Meeting support systems, like those developed in Xerox
PARC’s Colab [70], may also support the decision function. These are
examples of support for explicit decisions, but many, perhaps most, deci-
sions are not made in explicit decision making situations. Cohen, March,
and Olsen have made a study of how decisions are made in organisations.
They describe decisions as coincidental meetings of problems, solutions
and people [18]. It is not easy to make computer support for decisions
made outside of explicit decision situations, but in general facilities allow-
ing experimentation with alternative solutions to problems, for example
in design, will support the decision function.

The socialisation function is, of course, even harder to support explic-
itly. It is important, however, that the project group is allowed to develop

12 CHAPTER 2. THE CONTEXT OF SYSTEM DEVELOPMENT

as a group, that it may invent its own practices, etc. The development
environment may have impact on these issues by shaping the condition
for cooperation in the project group. It is therefore important that the
development environment can be adopted to the needs of the group.

The general functions go across the other functions of system devel-
opment. Therefore their support will also result in support for other
functions. This is especially obvious with support for communication.
When the examples of support for the process-oriented functions seem
“thin”, it is because these functions are hard to support directly, but
they may receive a lot of support from facilities supporting communica-
tion and decision-making.

Chapter 3

Kinds of Work in System
Development

In this chapter the second dimension of the framework on development
environments will be presented. This dimension is the kind of work sup-
ported by the environment. Every computer system is based on some
assumptions about the work context where it is going to be used. These
assumptions are often implicit. We will distinguish between four kinds of
work: individual, cooperative, bureaucratic, and market-organised work.
This classification is inspired by the transaction cost school [15, 16, 57,
69, 81] and by the field of computer supported cooperative work [19, 65].
All these kinds of work can be found in system development. The de-
velopment environments we mention in this chapter may all support the
system development process, but their applicability is restricted to spe-
cific kinds of work in system development.

Many computer systems do not fit well with the work context where
they are used. Much criticism has been raised of the naive or false as-
sumptions behind these systems. Examples of this criticism can be found
in Ackoff’s classical paper “Management Misinformation Systems” [1]
and in Ciborra’s criticism of the data- and decision-oriented views [16].
We can also observe that the use of computer systems have influence on
work patterns, but this influence is not deterministic. The same system
may have different impacts on different work contexts. Blomberg has
described how the same computer system led to different changes in two
different organisations [6].

13

14 CHAPTER 3. KINDS OF WORK IN SYSTEM DEVELOPMENT

3.1 Individual work

It is not so that individual work is totally different from various kinds of
organised work. All kinds of organised work are after all based on the
work performed by individuals. Individual work is, however, included in
the classification because many environments tend to ignore that system
development requires the effort of many people. Such environments focus
on programming as an individual activity. Central examples are Interlisp
and Smalltalk. One reason for the implicit focus on individual work is
probably that these environments have been developed in an exploratory
way with the aim of supporting exactly this style of work. In addition
Smalltalk has its origin in the Dynabook concept [40], a vision of the kind
of individual computer support that could be expected in the future.

The facilities of environments addressing individual work are editors,
browsers, “smart” help or correction facilities, etc. Many of these facilities
are referred to as “tools”. In this report the term tool is used in a
more specific meaning. A computer system cannot be a tool in itself.
A computer system can be used as a tool if the user considers it as an
extension of him/herself. An editor becomes a tool when the user can
stop thinking explicitly about how to use the editor and move the primary
attention to the object being edited [7, 8]. Tool use is normally individual,
but there are examples of collective tools and tool use [66].

3.2 Cooperative work

Computer supported cooperative work has recently received much atten-
tion. Cooperative work can tentatively be defined in the following way
[65]:

e people work together due to the nature of the task,

e they share goals and do not compete,

e the work is done in an informal, normally flat organisation, and
e the work is relatively autonomous,

where “organisation” refers to the actual organisation of the work unit
performing the work. This work unit may of course be a part of a
larger, less cooperative, hierarchical organisation. System development

3.2. COOPERATIVE WORK 15

has a strong component of cooperative work. It is normally organised in
projects. These are relatively autonomous and provide the context of a
relatively flat organisation. Using the theses in chapter 2 this way of or-
ganising system development can be seen as a consequence of the nature
of the work. Thesis PM 1 states that the management of the process can-
not be separated from the performance of the work, and the other theses
state that the different functions should be performed so that they can
support each other. Another argument for the importance of cooperative
work to system development is the high uncertainty characteristic to sys-
tem development [2, p. 57, thesis M 3]. High uncertainty is characteristic
to cooperative work [65, 69].

Computer supported cooperative work can be defined as a quality of
the relation between the context of the work and the computer system
[66]. This relation can be of many kinds. Three of these: medium,
shared material, and tool are of special interest to computer supported
cooperative work.

Facilities for electronic mail can obviously be used as a communication
medium. There are some examples of the integration of electronic mail
in a programming environment, see the use of mail in Interlisp described
by Teitelman [73]. Malone et al. have developed the Information Lens, a
tailorable mail system running on Interlisp-D [51, 52]. The system allows
for the definition of different letter-types, which can be classified in a
class hierarchy with inheritance of properties.

Shared material is of clear interest to system development. One ob-
vious problem is the administration of different versions and alternatives
of programs, while still allowing the work to proceed in a relatively infor-
mal way. This can be supported by facilities like the Source Code Control
System (SCCS) [61] and the Revision Control System (RCS) [76]. Kaiser
et al. present an example of a system which maintains the consistency of
concurrent updates to different modules of the same system [38]. This
work is based on an extension of the Cornell Program Synthesizer. The
work on databases for computer aided design data will hopefully result in
systems which are well suited to be used as shared material. Katz et al.
propose a version server for design data which is based on a distinction
between private versions (individual work), group versions (cooperative
work), and more official releases (bureaucratic work) [39].

Tool use, be it individual or not, can be very supportive to a coop-
erative work process. A central example for system development is how

16 CHAPTER 3. KINDS OF WORK IN SYSTEM DEVELOPMENT

environments like Interlisp and Smalltalk can be used to create prototypes
for the illustration of a design idea.

3.3 Bureaucratic work

System development does, especially in large and long-lived projects, also
have a clear bureaucratic nature. The process needs to be managed
carefully to deliver the right products in due time. Thus much of the
support for bureaucratic work will focus on the process-oriented parts of
the work, for example planning. There are also some bureaucratic aspects
on the product-oriented part, for example configuration control. Systems
like SCCS and RCS, which restrict and log access to the different modules
of the product, can support this aspect of the work.

3.4 Market-organised work

System development projects are often regulated by a set of commercial
contracts. Large systems are often developed by several contractors who
in their turn use sub-contractors. Dowson presents a system for maintain-
ing control with the different commercial contracts for the development
of large systems [24].

The kind of work supported is an important dimension of development
environments. Much research in programming environments has focused
on individual work. This research has, however, resulted in environments
which have many technical properties, for example incrementality, that
are badly needed in system development. It appears to be much easier
to obtain these properties if a restriction is made to individual use.
This report emphasises the importance of cooperative work in sys-
tem development. It is possible, however, that the argument about the
importance of cooperative work in system development is specific to the
Nordic countries. In a comparative study by Friedman et al. of the ICON
project it has been documented that the degree of external control, en-
forcement of methods, etc., in system development work is much higher
in the Netherlands than in Denmark [28]. The United Kingdom is found
to have intermediate characteristics. Friedman et al. have not found any
associated differences in the kind of systems developed or in the quality

3.4. MARKET-ORGANISED WORK 17

of the product. This does not mean that it is invalid to focus on cooper-
ative work in system development, but it does imply that one should not
consider cooperative work as the only kind of work relevant to system
development.

There are also tendencies towards a stronger emphasis on the bu-
reaucratic aspects of system development. Large software buyers like the
Department of Defence in the United States tends to make specific re-
quests about how the software is developed. This may include the use
of specific quality assurance techniques and other measures which are
primarily of a bureaucratic nature.

Chapter 4

The Role of Programming in
System Development

This chapter discusses the nature of programming, especially the relation-
ship between programming and system development. An understanding
of this relationship is needed to be able to discuss the impact induced
by new development environments on system development practice. The
role of programming is different in iterative than in phase oriented system
development. The development environments may restrict the possibility
to practice iterative system development. The discussion in this chapter
is used to introduce another dimension in the framework on development
environments. This is the suitability for prototyping.

Several important references on programming environments do not
relate their work to system development, for example the references on
Smalltalk [75, 83], Interlisp [73, 74], and on the Cornell Program Synthe-
sizer [60, 72] used in this report. The people behind UNIX have, however,
been showing some concern for system development issues. Kernighan
and Mashey discuss the support provided by UNIX for the software life
cycle [43]. For obvious reasons there are not many published attempts
at relating programming to the theory about system development pre-
sented in chapter 2. Two master’s theses from the Computer Science
Department, Aarhus University, have tried to relate programming to the
theory on system development presented by Mathiassen [54]. These re-
ports will be briefly reviewed. Thereafter, in section 4.2 programming is
defined as an activity in system development. In section 4.3 prototyping
will be discussed, especially the way prototyping has impact on the role
of programming in system development. This leads to the identification
of another dimension in the framework on development environments:
the suitability of the environments in supporting prototyping. Finally, in

18

4.1. SOME EARLIER WORK 19

section 4.5, some predictions about the future role of programming are
stated.

4.1 Some earlier work

In this section we will briefly review two master’s these which have tried
to relate programming to theory on system development. These are the
theses by Jgrgensen and Kammersgaard [37] and by Borup et al. [11].

In their thesis Jgrgensen and Kammersgaard introduce a conceptual
framework for the characterisation of programming processes [37]. They
define three subfunctions of the programming process: formulation, re-
finement, and realisation. These subfunctions are related to the subfunc-
tions of system development described by Mathiassen. The subfunctions
of programming are seen as overlapping with several of the subfunctions
of system development. The main strength of Jgrgensen and Kammers-
gaard’s work is that they base their discussion of programming on an
empirical case, and not on normative theory about how programming
should be nor on introspective studies of their own programming.

In this report programming is seen as a part of system development.
This becomes difficult when programming is described as a process. As
argued in section 4.2 programming is not a subprocess of system develop-
ment, but an activity. It would, of course, be perfectly valid to consider
programming as a process, and then define a set of subfunctions. This
would not, however, give much help in a discussion of the dynamic role of
programming in system development. There would also be a risk to end
up with a characterisation of the programming process which was based
on implicit assumptions on the role of programming in system develop-
ment. The work of Jgrgensen and Kammersgaard is therefore valid in its
own right, but it is hard to apply in the context of this report.

In Borup et al. a conceptual framework for program development is
presented [11]. Program development is seen as a smaller category than
programming, taking its starting point in a situation where the program-
mer knows the purpose of the program, its expected behaviour, and to
some extent how it can be implemented (p. 9). Borup et al.’s purpose
is to design and implement a programming environment, and therefore
they restrict the definition of program development to the parts of the
programming activity which can be supported by a programming envi-

20 CHAPTER 4. THE ROLE OF PROGRAMMING

ronment. More intellectual activities like formulation of visions and re-
flection about how the vision can be implemented are explicitly excluded
(p. 9-10).

Borup et al. identify four subfunctions of program development: pro-
gram construction, program examination, program documentation, and
program administration.

When relating program development to system development Borup
et al. relate program development to the subfunctions of system devel-
opment as described by Mathiassen. They conclude that the program
development process only deals with the construction function of system
development, that it is only concerned with the computer system, and
that it is not concerned with the organisation in which the system is to
be used (p. 19). Thus the report contains an explicit delimitation from
the wider context of system development. The focus is on programming
as an isolated activity.

Borup et al. define a program development system as the hardware
and all the program development tools used in the program development
process. The term programming environment is defined as synonymous
with a program development system (p. 22).

This definition of programming environments is very operational for
the purposes of Borup et al., but it is clearly too restricted to be used
in the discussion in this report. If the definition were applied here it
would lead to a strong distinction between programming environments
and system development environments, where facilities supporting ex-
perimental design and communication would be seen as facilities only
belonging to the category of system development environments. Borup
et al.’s restricted definition does not allow for a discussion of how the role
of programming may change because of the possibilities provided by new
development environments,

Another reason for not applying any of the two mentioned attempts
to relate programming to system development is that they have used
the framework by Mathiassen and not the newer framework from the
MARS project. This framework was developed after Jgrgensen et al. and
Borup et al. wrote their theses. The framework from the MARS project
does to a higher degree reflect the perspective of the system developers.
This should make it easier to discuss the role of programming in system
development.

4.2. PROGRAMMING AS AN ACTIVITY 21

4.2 Programming as an activity

It is important to be able to express that the role of programming in sys-
tem development is dynamic. Partially dependent on the properties of
the development environment, programming may support different sub-
functions of system development. In principle no subfunction is excluded.
This is because all system development functions can be given some com-
puter support, and if the development environment is tailorable the pro-
gramming activity may interfere with all system development functions.
Therefore it has little meaning to discuss on a general level which sub-
functions are those supported by programming.

By programming we refer to the work of developing programs. Using
the concepts presented in chapter 2 we see programming as an activity in
system development. Programming is not a subprocess of system devel-
opment since it is not possible to delineate when and where programming
takes place in a concrete process evolving in space and time. Examples
of subprocesses could be coding or discussions with users. Programming
is not a subfunction of system development. Functions have a purpose,
and as programming may contribute to many different purposes in sys-
tem development, we find it unreasonable to identify programming as a
purpose in its own right. To see programming as an activity is the only
choice if we want to stick to the concepts presented in chapter 2. This
characteristic is also close to our intuition.

It is not all programming that takes place within the context of system
development. Typical examples are students doing their programming ex-
ercises and computer scientists programming as a part of their research.
Experiences from these settings cannot tell much about the role of pro-
gramming in system development, but they may still have important
contributions to the discussion. The researchers may, for example, be
working on an experimental programming environment facilitating rapid
prototyping in a compiling environment.

Some consider systems programming as a kind of programming which
takes place outside a system development context. This is not in line
with the view of programming presented in this report. From a systems
programmer’s point of view the users are the application programmers,
not the “end-users”. This does not reduce the need for documentation,
stability, quality, etc. The main difference is perhaps the way the work is
organised. System development is normally organised in projects. Sys-

22 CHAPTER 4. THE ROLE OF PROGRAMMING

tems programming is more like a permanent maintenance activity. One
may also expect that much system development in the future may be
the development of specialised programming environments for the users.
Such system development will be a mix of systems programming and
classical system development.

Programming by the users is another example of a kind of program-
ming some look upon as taking place outside the system development
context. This kind of programming is not too common yet, but it is seen
in research environments where scientists, not computer scientists, make
their own programs for the analysis of data and for controlling experi-
ments. This programming activity can be seen as a part of an ongoing
system development process where new software is developed by explo-
ration and evolution.

4.3 Prototyping

Christiane Floyd presents an overview of different approaches to proto-
typing in [27]. She identifies three main types:

e Exploratory prototyping. This approach is very informal, the pro-
grammer is playing with ideas on the computer. It is normally
performed alone, and could be characterised as introspective pro-
gramming. Prototypes developed in this way are typically very
incomplete, they are only vehicles for some other activity. Such
prototypes are typically thrown away.

e Experimental prototyping. In this approach more emphasis is put
on a thorough evaluation of the prototype. This approach to pro-
totyping is the one most resembling the use of prototypes in other
industries. It can be characterised as use of planned experiments.

e Evolutionary prototyping. This approach, which perhaps should
not be referred to as prototyping at all, is based on letting the
system evolve through continuous use or testing in a realistic en-
vironment. It implies a circular, or spiral shaped, development
process.

Floyd concludes her paper by stating that the word prototyping could
be dropped entirely without changing the message of the paper. What

4.3. PROTOTYPING 23

we do have are different styles of experimentation. Experiments are used
to support different functions of the system development process. The
distinction between the three types is not very sharp, and different types
of prototyping may very well be combined. For the purposes of this
discussion, and in order to make the distinctions clearer, we will use the

terms exploratory programming, planned ezperiment, and evolutionary
development.

Exploratory programming

Exploratory programming does not take its starting point in a well for-
mulated vision. Instead the starting point is the playful programmer and
his/her computer equipped with a suitable development environment.
The programmer typically focuses on his/her own needs for computing
support, playing with ideas of what kind of computing support it would
be nice to have and with how some of these ideas could be implemented.
The vision tends to be formulated on the way. Certainly such endeavours
often, perhaps in most cases, do not produce anything useful except a
programmer with a better knowledge of the development environment.
In fact, exploratory programming is the recommended, and perhaps the
only way to learn Interlisp. This style of programming requires that it is
easy to modify and extend existing systems; keywords are incrementality
and tailorability. This style of programming is hard to describe with the
concepts of Jgrgensen and Kammersgaard, i.e. as a movement from for-
mulation, via refinement, to realisation, or with the characterisation by
Borup et al., i.e. as the construction of a vision. The problem and the
solution are in fact developed concurrently.

Exploratory programming is common in teaching situations and in
some research. Exploratory programming may be useful in practical sys-
tem development when it is important to develop new visions. There
is, however, a contradiction between the development of a specific prod-
uct and the free generation of visions. If used in system development
exploratory programming will mainly support the design and parts of
the realisation function. One can, however, imagine exploratory pro-
gramming involving the users. Experimenting with a potential computer
application together with a user can be a very efficient way to provoke
the user to tell more about his/her work, for example explaining why a
certain idea would not work. In this way exploratory programming may

24 CHAPTER 4. THE ROLE OF PROGRAMMING

also support analysis. Exploratory programming with the users may give
the users an idea of what can be accomplished on a computer, thus en-
abling a valuable interplay between knowledge of working practices and
technological phantasy. In the UTOPIA project [8, 78], which did not
use exploratory programming, experience has been obtained on design
with users. In UTOPIA the emphasis was on creating a mutual learn-
ing process where the system developers and the users learned about the
skills and technology of the other group. Clearly some development envi-
ronments are more suited for such mutual learning processes than other.
The “wizardry” style of programming typical to environments like In-
terlisp may be unsuited in a process where the users are to learn what
can be done on a computer.

Exploratory programming may also be used to develop computer sup-
port for the system developers, in other words to develop the project’s
own development environment. In this way any system development func-
tion may be supported.

Planned experiment

The planned experiment has, in terms of the system development func-
tions addressed, a narrower focus than exploratory programming. Its
main focus is on the design function, more specifically on the evaluation
of one or more concrete designs in an experimental setting. It may also
support the analysis function by the feedback provided on the prototypes
and it will of course support the communication between the system de-
velopers and the users. It is assumed that a separate implementation
process will follow the experiments. During this process it may turn out
to be necessary to change the design. The design function can therefore
not be totally supported by use of planned experiments.

Every strategy based on experimentation poses special requirements
on the development environment. Conventional programming environ-
ments are not very well suited for the development of prototypes. The
main problems being the lack of incrementality, i.e. the possibility to
make changes incrementally to an existing system, the difficulties in run-
ning incomplete programs, and the weak possibilities for experimenting
with different ways of interaction.

Planned experiments should be used with an awareness of what one
can test in an experimental setting. Goranzon argues that many effects of

4.3. PROTOTYPING 25

introducing new technology are long-term effects [31]. Some systems are
hard to learn but good to use for those who know them proficiently. Some-
times the patterns of cooperation in the user organisation are changed
due to the introduction of new technology. All these aspects are hard
to assess in a test set-up, they require long-term real use as the basis
for a reasonable evaluation. Planned experiments therefore have their
strength in the evaluation of issues which can be observed within a short
time span. Care must be taken in the evaluation of an experiment to
avoid a bias towards “pure” interface issues and systems that are easy to
learn.

Evolutionary development

Evolutionary development is a strategy which has very little to do with
the use of prototypes in the normal sense of that word. On the other hand
it is the strategy that has the strongest impact on the system development
process since it implies a cyclic shift of attention between analysis, design,
and realisation.

Evolutionary development may to a varying degree be combined with
the other strategies. In one extreme it may look like an iterated waterfall
process. In the other extreme it may use exploratory programming and
planned experiments to support analysis, design and realisation. Evolu-
tionary development can be very hard to manage. It may be hard to find
a point to terminate a cyclic process. The users will not be impatient.
They already have a useful system, and they can always find points of
possible improvement. This implies that the distinction between devel-
opment and maintenance may fade away. The main difference will be the
frequency with which the system goes through the development cycle. In
order to maintain some control of the development process it is important
that some evaluation criteria for the system are laid out beforehand. This
could, for example, be a set of specifications to be met before the system
is considered finished. In this way it is easier to determine that the origi-
nal goals of the project in fact are met. Care must be taken, however, to
formulate these evaluation criteria in such a way that the interplay be-
tween analysis, design, and realisation is not disrupted. Predetermined
specifications may cause the developers to focus on these and not on the
possibilities which they discover during the process. There is therefore
an inherent contradiction between the need to control the process and

26 CHAPTER 4. THE ROLE OF PROGRAMMING

the desire to let ideas evolve during the process. Any set of evaluation
criteria for the product represents a compromise on this contradiction.

It is only in an evolutionary process that the system gets tested in real
use during a longer time span. This is the optimal solution with respect
to getting the most qualified response from the “future” users, and thus
also getting the best possible input to the next development cycle.

Evolutionary development also introduces a number of complications.
It may be hard to get the users to participate in the evaluation of a proto-
type, but it may be even harder to make them work using an incomplete,
and perhaps erroneous system. In this situation the users may have to
put an enormous amount of resources into the development process. An-
other complication is the difficulties imposed by running test versions of
a system on production data. Often this will be simply unacceptable,
thus changing the process to a kind of repeated planned experiment. In
many cases the way out is to run the old and the new system in par-
allel, with suitable safe gateways between the two systems, so that the
old system will receive all transactions concerning “its” data, and so that
the new system can take care of all the new functionality and perhaps
perform its own version of the old functionality. The ultimate solution
is an environment allowing incremental execution of a changing system,
allowing old data — old objects — to be treated in the old way, assuring
that data created with the new version of the system will be treated by
this version at later occasions. In addition facilities for (semi-)automatic
conversion between new and old data are needed.

In an evolutionary process the task of controlling and maintaining
multiple versions of the system becomes extra critical. Conversion be-
tween versions must be possible, and it must be possible to reconstruct
earlier versions.

Evolutionary development is not without its problems. In a company
a 4th generation language was used for evolutionary development. It was
considered important that final code could be generated for every alter-
native presented to the users; the use of prototypes for idea generation
only was discouraged. One problem in this company was that the proto-
types for security reasons were not allowed to manipulate real data. The
users used the prototypes for actual work, this meant that data had to
be reentered when the system was put in operation.

4.4. SUITABILITY FOR PROTOTYPING 27

4.4 Suitability for prototyping

The discussion of the role of programming leads to the identification of
another dimension in the framework about development environments:
the suitability for prototyping. Different environments are suited for dif-
ferent development strategies both with respect to the degree and kind of
prototyping. Interlisp and Smalltalk are definitely suited for prototyp-
ing, primarily for exploratory programming, but these environments are
also useful as prototype generators for planned experiments. These envi-
ronments are, however, less suited for evolutionary development because
their use in evolutionary development necessarily implies that the final
product is limited to what can be implemented in these environments.
HyperCard [30] will also be useful for planned experiments. Examples
of environments well suited for evolutionary development are hard to
find, but many 4th generation languages give some support for this kind
of prototyping. Christensen et al. have documented, however, that this
potential seldom is exploited [14].

Many environments are unsuited for prototyping. One bottleneck is
the difficulties in generating testable systems. In a company a new mini-
computer based system for handling of customer services in bank offices
was developed. One major problem in testing was the parallel develop-
ment of the new hardware and software, another was the difficulty in
making tests with real data. A major part of the system was communi-
cation with central book-keeping systems, and special solutions had to be
found in order to test functions like a deposit of money without entering
erroneous data in the central system.

4.5 The changing role

The role of programming in system development is not static. The main
problem in system development was in the beginning the development of
programs, then it shifted to be the organisation of the development pro-
cess, and now it is to understand the work and the organisation where
the system is to be used [2, p. 43]. In this view the importance of pro-
gramming is falling. At the same time different prototyping strategies
and development environments extend the role of programming to new
system development functions. We claim that the role of programming

28 CHAPTER 4. THE ROLE OF PROGRAMMING

in system development is partially dependent on the capabilities of the
development environment.

Since the lack of suitable development environments is one of the rea-
sons for the low use of prototyping in system development we expect an
increased use of prototyping as the development environments improve.
Another claim we make is that this will result in an extension of the role of
programming in system development to more, perhaps all, subfunctions.
At the same time the relative importance of programming in system de-
velopment may continue to fall since programming productivity increases
with improved environments and since the problems of understanding the
user organisation accentuates. The old and the new role of programming
in system development is sought illustrated in figure 4.1 and figure 4.2.
In these figures programming is depicted with grey.

4.5. THE CHANGING ROLE

29

Phase 1 Phase2 Phase3 Phase4 Phase5 Phase®6
survey analysis design implementation test installatio

Figure 4.1: The role of programming in the waterfall model

: | Primary attention:
% analysis
A
A
A
*
AY
. M,
Primary s
attention: . B N T
design 5
>
pi
4
7
b
Fa
7
>
g
/
!
s
4
’,’ Primary attention:
‘ realisation

Figure 4.2: The role of programming in cyclic system development

n

Chapter 5

The Application Area

In the three previous chapters three dimensions of development environ-
ments which may be used to describe the work the environments can
support have been introduced. In this chapter the product of the work,
1.e. the computer systems developed with the aid of the environments, is
characterised.

Mathiassen uses the application area as one of three main character-
istics of system development methods [54], see also [2]. When discussing
and comparing system development methods it is important to be aware
of the application areas of the methods since the qualities of the meth-
ods are closely related to their application areas. The application area
is, however, seldom stated explicitly in the methods. This can be due
to commercial reasons or it can be because the authors prefer to believe
that their experiences are valid also outside the field where the experi-
ences have been obtained.

When discussing development environments to be used in system de-
velopment a similar distinction has to be made. It is not very interesting
to discuss whether UNIX is better than Interlisp without making it clear
what kind of computer system which is to be built. A given environment
is only suited for the development of certain kinds of computer systems.
We define this to be the application area of a development environment.

A thorough discussion of the application areas of various environments
would require a comprehensive classification of all kinds of computer sys-
tems. This is an enormous task clearly beyond the scope of this report.
Two distinctions which may be useful in describing the application area
of a development environment will be introduced. The first of these dis-
tinctions is whether the system is going to be integrated in a work process
or not. The terms work-near and technical systems will be used. The

30

CHAPTER 5. THE APPLICATION AREA 31

second distinction goes between single-user and multi-user systems.

Typical examples of technical systems are an operating system kernel,
a traditional compiler, and the software in a disc-controller. The prob-
lems these systems are supposed to handle are well understood and can
be considered separately from the organisation of the work. The basic
requirement to these systems is that they do not fail. It is often possi-
ble, and sometimes useful, to make formal specifications of such systems.
The development of technical systems often follows a phase oriented ap-
proach. Parnas and Clements have argued, however, that there is a need
for experimental strategies in this field too [58]. Technical systems are
traditionally developed in languages like Fortran, C, Pascal, assembly
language, and various specialised languages.

An environment for the development of technical systems should of
course provide general services for compiling, debugging, etc. Some fa-
cilities are more specific, however. Examples are program provers and
support for formal specification techniques. Since the actual surround-
ings of the product may be hostile for debugging or not even exist at
the time of development, it is important to be able to simulate this sur-
rounding. IBM’s Virtual Machine operating system makes it possible to
develop operating systems on a virtual computer. It makes testing a lot
easier and cheaper.

Work-near systems are computer systems which have to fit with the
user organisation and with the way the users perform their work. Such
systems cannot be seen in isolation and it is therefore necessary to focus
on the entire computer-based system [2, 54]. Good examples of work-
near systems are a text processor or an inventory system. Systems for
the support of cooperative work are also work-near systems. The user
organisation and the way the users actually perform their work are often
poorly understood. The requirements are often vague. This calls for the
use of prototypes, not only to elicit requirements, but also as a part of
the analysis of the user organisation.

The development of work-near systems is characterised by a high
degree of uncertainty. High uncertainty makes it hard to perform the
work according to a specific procedure. Use of prototyping is one way to
cope with high uncertainty. The organisation of the development process
should also reflect the high level of uncertainty. Using the transaction
cost theory [57, 81] one can argue that high uncertainty leads to more
use of group organisation or cooperative work in the development process

32 CHAPTER 5. THE APPLICATION AREA

[69]. Therefore development environments aiming at the development of
work-near systems ought to support cooperative work in system devel-
opment. Mantei and Teorey make a similar conclusion about changes
in the system life cycle caused by the incorporation of human factors in
the development process, although they use a totally different frame of
analysis [53].

The second distinction is between single-user and multi-user systems.
This distinction is central since there are many difficulties which only arise
when there are several users. Many of these difficulties are of a technical
nature, but there are also many problems in the interplay between an
organisation and its computer systems which only arise when multi-user
systems are being used.

Some environments are only useful for the development of single user
systems, examples are HyperCard [29], MacApp [64], and the many data-
base packages for personal computers, for example REFLEX [59]. It also
appears that Smalltalk and Interlisp are best suited for the development
of single user systems.

The development of multi-user systems requires the presence of some
means to handle concurrency problems. Examples are transaction pro-
cessing kernels like IBM’s CICS and the facilities in many database sys-
tems. Such facilities are also provided by most operating systems. Among
multi-user systems we can further distinguish between systems supporting
various kinds of organisations, i.e. between systems supporting coopera-
tive work, bureaucracies, and market organised work.

Many 4th generion languages can be seen as specialised development
environments with a very narrow application area. They typically focus
on classical, administrative applications that support market organised or
bureaucratic work [69]. Many classical system development methods also
focus on markets or bureaucracies, for example by their focus on formal
organisation, data flow, etc. Environments for the support of specific
system development methods will of course inherit the application area of
the supported method. Specialised diagram editors are a good example of
method support. We do not know of any environment which is especially
suited for the development of systems supporting cooperative work.

There are also some development environments which do not have
any application area at all according to the definition given here. These
are the teaching environments. The systems developed during educa-
tion are not going to be put in real use. Some teaching environments

CHAPTER 5. THE APPLICATION AREA 33

have, however, been very influential. A good example is the Cornell
Program Synthesizer. Many of the qualities of a good teaching environ-
ment are also relevant for “serious” software development, for example
facilities for high-level debugging and rapid prototyping. But there are
also many properties that are not desirable for a professional user, for
example extreme “user-friendliness” and verbose messages. Many teach-
ing environments include a syntax-directed editor. It can be questioned,
however, what need a professional programmer has of a syntax directed
editor. The developers of teaching environments have also been allowed
to ignore many issues that are critical in other contexts, like the abil-
ity to handle large programs, integration with existing applications, and
efficiency. This implies that the solution strategies chosen in teaching
environments cannot generally be transferred to environments for profes-
sional use.

Chapter 6

Technical Characteristics of
Development Environments

In this chapter the fifth and last dimension of the framework on devel-
opment environments will be presented. This dimension is the technical
characteristics of the development environment. Concrete facilities of
environments will not be discussed. Instead a number of characteristics
which can be used when comparing different environments will be intro-
duced. At the end of the chapter some concepts which the author has
found less useful for this purpose will be listed.

6.1 Uniform metaphor

The power of many environments has been achieved by viewing all phe-
nomena as instances of one general concept or metaphor. Examples of
such concepts are lists, objects, and files. We will refer to this as the
uniform metaphor of an environment.

The uniform metaphor of UNIX is the file. A typical UNIX program
produces output on one file according to input from another. All files
are considered as sequential files. The uniform metaphor of Smalltalk is
the object. The whole system is seen as a collection of objects passing
messages to each other. The user’s interaction with the system is also re-
garded as message passing. In a Lisp environment the uniform metaphor
is the list. All data and programs are represented as lists. The user’s
interaction with the system is regarded as passing lists to the system for
evaluation. The result of the evaluation is also a list.

Consistent use of a uniform metaphor results in a simple and homoge-
neous architecture. When the metaphor has been learned it can be used

34

6.2. PERSISTENCE AND SHARING 35

to combine existing facilities in powerful and predictable ways.

The major disadvantage of basing an environment on a uniform meta-
phor is that the metaphor can be too narrow. This will restrict the
application area of the environment. It will also make it difficult to
introduce certain facilities in the environment. One example is that it
will be very hard to introduce incremental compilation in UNIX. Since
everything is represented as files, small changes in a program requires that
the corresponding file has to be recompiled. To achieve an effect close to
incrementality the program has to be split up in many files. Under any
circumstances the file will be the unit of compilation.

6.2 Persistence and sharing

Persistence is the ability to support datastructures across program exe-
cutions. All development environments must support persistence in some
way so that the data (the programs) can be retained between the sessions
with the system. If the environment is based on a uniform metaphor the
ideal is that the uniform metaphor also is the unit of persistence, since
if this is not the case the usefulness of the uniform metaphor will be re-
duced. In UNIX it is simple to let the uniform metaphor be the unit of
persistence, because the uniform metaphor is the file. An alternative to
persistence is to make a residential environment. A residential environ-
ment is an environment where the primary copy of the program resides
in the environment itself as data structures [62]. In a residential environ-
ment the whole system is loaded in memory when the user is running.
The user’s core image is saved between sessions with the system. There
are some limitations with residential environments. One is that it typi-
cally will be necessary with a supplementary kind of permanent storage,
typically textfiles. This kind of storage may be in violation with the uni-
form metaphor. A second limitation is the difficulty in allowing sharing
of data.

By sharing we refer to the sharing of data (in this context often pro-
grams) between several users. As mentioned in chapter 3 shared material
is important in the support of cooperative work. In order to provide
shared material the sharing and the persistence must be in natural units.
In an environment with a uniform metaphor the sharing should be in
terms of the metaphor. UNIX satisfies this criterion. In UNIX there is

36 CHAPTER 6. TECHNICAL CHARACTERISTICS

further support for sharing and version control by facilities like SCCS
[61] and the RCS [76]. Dart et al. also point at the importance of per-
sistence and sharing. They use this in their critique of what they call
structure-based environments [23]. Among these environments are the
Cornell Program Synthesizer. Persistence and sharing are fundamental
properties of a development environment. If these properties are not
present in the development environment it is very unlikely that they will
be provided in the products made with the environment. This means
that environments that do not support persistence and sharing have a
very narrow application area. This does, for example, apply to residen-
tial environments.

6.3 Metaprogramming

Metaprogramming is to write programs that manipulate other programs.
Support for metaprogramming is clearly relevant for those who develop
the development environment. If a development environment is to be
adaptable or tailorable it is necessary that it supports metaprogram-
ming. If the programs are represented according to a uniform metaphor
it is easy to support metaprogramming. Such environments are often able
to “describe themselves”. This capability is especially well known from
Lisp-systems where the uniform metaphor — the list — is used for the
representation of data as well as programs. This has made it easy to write
Lisp programs which manipulate other Lisp programs. In Interlisp this
has been used to develop facilities like Masterscope and Do What I Mean
[74]. Conceptually the same capability can be found in UNIX, since the
uniform metaphor — the sequential file — is used for representing data
as well as programs. This metaphor is, however, much weaker than the
list metaphor since structure cannot be given a reasonable representa-
tion. This makes it much harder to copy the power of Interlisp to UNIX,
see the earlier discussion on incremental compilation. The weakness of
the uniform metaphor in UNIX can to some extent be compensated with
the available utilities for handling textfiles with a given structure. See
the description of the yacc and lex utilities by Kernighan and Pike [44].
In Smalltalk the uniform metaphor is the object. Program code is not,
however, represented in an object structure. For this reason the basic
means of expression in the Smalltalk language cannot be used to manip-

6.4. INTEGRATION a7

ulate Smalltalk programs in the same direct way as this can be done in
Interlisp.

If facilities for metaprogramming are present, and especially if these
are based on a uniform metaphor, it will be possible for the Programmers
to use the same competence and creativity in the development of the
product as in the development of their own computer support.

6.4 Integration

Integration of facilities is important for several reasons. One reason is the
need for integration which arises because several facilities are to be used
together in an activity. This is the case when a programmer needs to
browse existing programs, read design reports, and code a new program
at the same time.

A second reason is the need for integration which arises because sev-
eral related activities are to be performed concurrently. The environment
should not prevent this. One example of such activities are editing, com-
piling, testing, and debugging of programs. It is much to prefer that the
debugger is able to point at the place in the source program where some-
thing went wrong. In general integration is needed to allow the interplay
between various system development subfunctions.

A third reason for integration is that very few systems are developed
entirely from scratch. It is crucial to be able to use existing software for
standard task like databases and communication. In general one cannot
expect all these facilities to be written in the same language. Some sort of
object-code or run-time compatibility is therefore needed. Environments
like Smalltalk and Interlisp cannot provide this kind of integration. This
leads to a severe limitation in the application area of these environments.

6.5 Interactivity and incrementality

Interactivity has for a long time been considered important in develop-
ment environments. A prototypical example of interactivity in a devel-
opment environment is the kind of interaction known from residential
Lisp systems [62]. In these systems all effects of a change take place
immediately. An environment like UNIX is not fully interactive since it
still requires the programmer to perform the edit-compile-run cycle for

38 CHAPTER 6. TECHNICAL CHARACTERISTICS

every modification of a program. For a large system this cycle can take
considerable time.

The crucial aspect of interactivity in a development environment is
incrementality, i.e. the ability to perform stepwise modification of a pro-
gram. We can distinguish between the following kinds of incrementality
(adapted from Magnusson and Minér [50)):

e Incremental editing means that the whole program does not have
to be supplied each time, today a fairly conventional feature.

o Incremental check of context free syntaz is typically achieved by
a syntax directed editor restricting the edit operations to those
modifications of the program which are allowed according to the
grammar,

o Incremental check of context sensitive syntaz, often referred to as
semantic check, means that it is continuously controlled that vari-
ables are declared, types are compatible, etc.

e Incremental code generation means that the machine code represen-
tation of the program is continuously kept equivalent to the source
code.

o Incremental linking (and loading) means that a complete executable
program is available all the time. Incremental code generation and
linking are not very common. They are very hard to implement.

o Incremental execution means that it is possible to modify a running
or temporarily suspended program. This is certainly useful for de-
bugging purposes and for the execution of incomplete programs. In
section 4.3 we pointed at the need for this kind of incrementality in
evolutionary development. Another important use is modification
of real time systems that must run 24 hours a day.

Incrementality is often, and relatively easily, implemented by interpreta-
tion. In Interlisp, which uses interpreted as well as compiled code, new
or modified code is interpreted, whereas unmodified compiled code is ex-
ecuted as directly as allowed by the semantics of Lisp. Incrementality
is more easily achieved for certain languages, namely languages without
blockstructure and static scope. This is because in these languages cer-
tain checks always occur at runtime, even when the code is compiled.

6.6. ADAPTABILITY AND TAILORABILITY 39

The checks needed at “edit-time” are only local. The effects of a small
change, however, need not be local. This is only discovered at runtime
with dynamically scoped languages.

The usefulness of incremental code generation and linking, without
incremental execution, may be questioned. If the computer is fast enough
these operation may be performed behind the curtain in virtually no time.
What is needed is that all possible errors are detected interactively. In
this sense incrementality is a less central concept than interactivity.

When we turn to incremental execution, however, we make a con-
ceptual leap. Here it is not enough to replace incrementality by a fast
compiler behind the curtain. The old and the new code need to be related
in some way. This implies that the version handling mechanisms in the
development environment must be integrated with the runtime system.
We do not think that incremental execution can be implemented without
any restrictions on the unit of incrementality. More precisely we believe
that one should, in object oriented environments, restrict incremental
execution to deal with multiple versions of classes, allowing instances of
different versions of the same class to exist in the system concurrently.
Such a mechanism would, if combined with facilities for persistent ob-
jects provide the functionality asked for in section 4.3 on evolutionary
development.

6.6 Adaptability and tailorability

There is a growing awareness that computer systems should be adaptable
to the needs of the users. This for several reasons. One reason is that
different users have different preferences with respect to many details
which need not be the same for all users. A second reason is that use of
computers is becoming a more and more integrated part of human work.
This makes it much harder to make a final system before it is taken in use.
A third reason is that no work is static. It is therefore necessary to be able
to change the system as the work changes. Trigg et al. distinguish between
four ways in which a system can be adaptable. They distinguish between
flexible, parameterised, integratable, and tailorable systems. They define
a system to be tailorable if it “allows users to change the system itself, say,
by building accelerators, specialising behaviour, or adding functionality”

[77].

40 CHAPTER 6. TECHNICAL CHARACTERISTICS

Incremental execution is the ultimate solution to the implementation
of tailorability. A less radical solution is possible if the system is based
on the implementation of a basic model with some primitive operations
which can be combined in different ways as need arises [68]. This idea is
based on Jackson System Development [36].

The ability to build tailorability into the product is of special inter-
est for the implementation of work-near systems and for the support of
cooperative work. It may be used to overcome some of the difficulties
in adapting the system to the users’ work. In this way tailorability may
contribute to an extension of the application area of the environment.

As mentioned earlier tailorability in the development environment
may open up for computer support for all system development functions.
This may contribute to a changed role of programming in system devel-
opment. Tailorability in the development environment may also improve
the support of cooperative work in system development.

6.7 The programming languages supported

The programming language or languages supported is a central part of a
development environment. In order to support development of programs
in a given language the environment must have some representation of
knowledge about the language.

Some environments are single language environments. Central exam-
ples are Interlisp and Smalltalk. For these two examples a distinction
between the programming language and the environment is of little in-
terest. The Smalltalk programming language would not be of much value
without the Smalltalk environment.

Some environments can be parameterised with the necessary descrip-
tion of a language. The Synthesizer Generator [60] is a generalisation
of the Cornell Program Synthesizer [72] which is parameterised with an
attribute grammar for the programming language in question. Smalltalk,
Interlisp, and the Cornell Program Synthesizer can all exhibit a high de-
gree of integration, largely due to the focus on one programming language
or the explicit representation of knowledge about the supported language.
In the Cornell Program Synthesizer it is, for example, possible to execute
a program in the same units as those used in the editing of the programs.

Some environments are almost language independent. This means

6.8. CONCEPTS NOT USED 41

that the representation of knowledge about the programming language is
spread around at different locations in the environment, typically in the
editor, in the compiler, and in the debugger. As a consequence there is
little integration between these facilities. Although UNIX in principle is a
language independent environment it has a strong bias towards languages
which fit well with its uniform metaphor. One such language is the UNIX
shell, a language which is strongly geared towards the manipulation of
files. Another language especially fit for UNIX is the C programming
language. UNIX contains several facilities, for example yacc and lex,
which can only be used with C [44]. The scope rules of C reflect the fact
that C programs are to reside in files. The scope of the static storage
type is the file where the declaration is made. This is very convenient for
the packing of related C functions in one file.

The discussion in this section illustrates a dilemma. There ought to be
independence between the programming language and the development
environment in order to support the integration of programs written in
different languages. There should on the other hand be a well-designed
relationship between the facilities provided by the language and the fa-
cilities provided by the environment. Kristensen et al. propose that the
issue of modularisation should be regarded as an issue supported by the
environment rather than by the specific language [47].

6.8 Concepts not used

There is a plethora of concepts about development environments. The
discussion in this chapter reflects one view of development environments.
It therefore contains one selection of concepts about environments. Some
concepts excluded from the discussion are:

e Openness

®

Flexibility

User friendliness

Consistency

Comprehensibility

Understandability

42 CHAPTER 6. TECHNICAL CHARACTERISTICS

e Modularity
e Good design
e Factoring

The concepts selected have been selected according to two criteria: fun-
damentality and (relative) objectivity. A concept like user-friendliness
1s too subjective. To compare development environments according to
user-friendliness will result in lots of disagreements due to differences in
personal taste. The presense of tailorability is much easier to agree upon.
Some concepts are more fundamental than others. Openness can be pro-
vided by tailorability, hence tailorability is a more fundamental concept.
Another example is that consistency, comprehensibility, and understand-
ability can be provided by means of a uniform metaphor.

Chapter 7

Relations between the dimensions

In the previous chapters we have presented five dimensions for the char-
acterisation of development environments. These dimensions are not in-
dependent: support for the interplay between analysis, design, and real-
isation is typically achieved by support for prototyping; sharing of data
is central to the support for cooperative work in system development.
In this chapter we will use the dimensions to identify some schools or
traditions in the area of development environments. Thereafter we will
use the dimensions to describe the Mjglner project.

7.1 Schools in development environments

The first school is the tradition represented by Smalltalk and Interlisp,
with focus on the product-oriented functions and on individual work. In
this tradition there is heavy emphasis on prototyping, especially on ex-
ploratory programming. The application area is more diffuse since this
tradition does not really address the full context of system development.
In terms of the distinctions made in chapter 5 these environments aim
at the development of work-near single user systems. These systems will
like the development environments be highly interactive. A typical tech-
nical property of these environments is a strong uniform metaphor closely
connected to one programming language. The environments provide tai-
lorability and incrementality. Systems developed in these environments
are hard to integrate with other products.

A second tradition is the class of 4th generation languages. This tra-
dition also emphasises the product-oriented functions, but support for
planning is sometimes mentioned in advertising material. These environ-
ments typically contain facilities for sharing of programs, version control,

43

44 CHAPTER 7. RELATIONS BETWEEN THE DIMENSIONS

etc. There is no specific support for cooperative work, but these envi-
ronments are not primarily directed towards individual work either. The
emphasis on prototyping is not as strong as in the Smalltalk/Interlisp tra-
dition, but these environments can be used for planned experiments and
also for evolutionary development. Most of these environments aim at
a very narrow application area: classical administrative data processing,
1.e. work-near multi-user systems with a bias towards support for bureau-
cracies and markets. Several studies have shown that these environments
put clear limits to what kind of applications which can be built. See, for
example, the experiences from the Florence project [5]. In terms of tech-
nical characteristics these environments are not very advanced. They are
not highly interactive nor very adaptable. Support for metaprogramming
1s typically absent. These environments typically support a specific 4th
generation language, often supplemented with support for an interactive
query language. A major strength of these environments is integration.
Tasks like screen-layout and database definition are often supported in an
integrated way so that the systems developer can refer to specific fields
in the database when designing a screen layout.

A third school is defined by the software engineering environments.
Often these environments focus on the support for Ada, see, for example,
[13, 71]. In this school there is also a focus on support for the product ori-
ented functions, but many also address project management, configura-
tion control, quality assurance, etc. There is a strong tendency, however,
to support a purely phase oriented style of development. Clearly related
to this is a focus on bureaucratic rather than on cooperative work. This
can to some extent be explained by the enormous size of the projects
which this school aims at supporting. The role of programming is here
seen to be relatively isolated to realisation, since they are based on a view
of system development as an engineering discipline, where products are
specified before they are constructed. The application area is complex
and large technical systems like those embedded in modern weapons. The
set of facilities to be included in these environments is very comprehen-
sive, but there is little or no emphasis on facilities which could support
group work or prototyping. This is natural since there is a focus on phase
oriented development, and, as pointed out by Lennartsson [48], methods
based on formal specification are very popular in this school. Method
support, or method enforcement, is central in software engineering envi-
ronments. Dart et al. present a view which we believe is typical for this

7.1. SCHOOLS IN DEVELOPMENT ENVIRONMENTS 45

school. They claim that progress towards the ideal software development
environment [23, p. 26]

“requires a better understanding of the specification and de-
sign process and the development of formal methods that ap-
propriately capture information and decisions. A supportive
environment must capture and reason about the semantics
embedded in the method, and must process information in-
crementally to assist the designer in exploring design alter-
natives. A better formal understanding of the derivation of
efficient implementations from a specification permits more
automation of this process”.

Or in other words: Support for the whole system development process
can only take place if the environment is based on a model covering all
aspects of the system development process. We disagree with this view.
We do not think the goal of Dart et al. can be reached without severely
limiting the interaction between various activities and without destroy-
ing the imagination and intuition needed. Critique of this tradition has
also been raised by, for example, Parnas and Clements [58], Ciborra and
Lanzara [17], and Hanseth [34].

In addition to these well-known traditions some emerging traditions
can be identified. These have a stronger focus on cooperative work.

One of these traditions has emerged from the UTOPIA project [8, 78].
Within the research programme on “computer support in cooperative de-
sign and communication” at Aarhus University work is going on to design
a development environment based on the experiences from the UTOPIA
project [3, 9]. This tradition focuses on design performed in coopera-
tion between system developers and users. The environment which is
to be built is described as an application simulator. The application
simulator shall facilitate “cooperative envisionment” of future computer
applications. There is therefore a strong focus on prototyping, in the ter-
minology of this report primarily on planned experiments. The intended
application area is work-near systems.

Another activity in the above-mentioned research programme is to
develop support for communication in system development [3, 67]. In
this activity system development is seen as cooperative work and it clearly
aims at support for the communication function.

In the area of computer aided design much work with relevance to

46 CHAPTER 7. RELATIONS BETWEEN THE DIMENSIONS

cooperative work is going on. One example is the version server for de-
sign data described by Katz et al. [39]. Such facilities are relevant for
the support of cooperative work since there is great emphasis on how to
handle design data in a way which allows a group to work together on
a design. Since computer aided design typically addresses less flexible
technologies than software there is little emphasis on evolutionary de-
velopment. There is, however, emphasis on other kinds of prototyping.

Computer aided design focuses on technical products. A central example
is the design of VLSI-chips.

7.2 The Mjglner project

The Mjg¢lner project aims at developing an “industrial prototype” of an
environment for object oriented programming. The aim is to make an in-
cremental, interactive, and integrated environment that essentially makes
the strong properties of environments like Interlisp and Smalltalk avail-
able for industrial programming. The main components of Mjglner are
compilers for Simula [20] and BETA [46], a metaprogramming system
[49], a syntax directed editor [12], a fragment library [45, 47], a program
database [33], a window package [22], and an editor for O-SDL diagrams
[65]. Mjg¢lner clearly focuses on the product-oriented functions design
and realisation, i.e. the functions where programming traditionally takes
place. The proposal about a mail handler [67] is so far only a proposal.
It is a clear aim, however, to make an environment which can be used
outside the laboratory, in actual system development.

No explicit assumptions about the nature of work in system develop-
ment have been made in Mjglner, but some of the planned components
clearly address issues which are of interest to cooperative work. This ap-
plies especially to the fragment library and the program database. Mjgl-
ner aims at supporting prototyping, inspired by the exploratory style of
programming common to Interlisp and Smalltalk. Support for evolution-
ary development is also aimed for by the emphasis on incrementality.
The Mjglner environment will support tailorability in various ways. The
syntax-directed editor can be tailored to or specialised for various pur-
poses. The support for metaprogramming provides a general support for
user-programmed facilities for the manipulation of programs. The uni-
form metaphor in Mjglner is the object. Programs are represented as

7.2. THE MJ@LNER PROJECT 47

abstract syntax trees. The metaprogramming system defines an ob ject
oriented view on abstract syntax trees.

The Mjglner environment can support a variety of programming lan-
guages since the facilities in Mjglner are parameterised with a grammar
of the supported language. The tailorability in Mjglner is of course in
terms if the implementation languages Simula [20] and Beta [46].

Chapter 8

Final remarks

In this last chapter we will discuss some related literature and conclude
the discussion of the report.

8.1 Related work

Dart et al. present a taxonomy for software development environments
[23]. They identify four categories of environments: language-centered en-
vironments, structure-oriented environments, toolkit environments, and
method-based environments. Prototypical examples of these four kinds
of environments are Interlisp, the Cornell Program Synthesizer, UNIX,
and Software through Pictures® [80].

Many of the issues addressed by Dart et al. are also addressed in this
report. They point at the importance of the data and program represen-
tation for the integration of the facilities in the environments. This issue
is covered by the discussion of uniform metaphor in this report. Dart
et al. also state that commercial use of the language-based environments
like Interlisp is restricted to the development of prototypes.

Dart et al.’s taxonomy is based on knowledge of a larger number of
environments than ours. In an overview they mention 46 different en-
vironments. Their classification is able to put a number of the central
examples used in this report in separate boxes, see the prototypical ex-
amples above.

Compared to Dart et al. the framework presented in this report is
more theoretical. Dart et al.’s work is not based on a theory about system
development. They do not address the issue of different kinds of work in
system development. They do, however, clearly focus on the applicability

1The use of this example is due to Dart et al.

48

8.1. RELATED WORK 49

of the environments in actual system development. They use that to
criticise the limited applicability of environments such as Interlisp and the
Cornell Program Synthesizer. Their central distinction is programming
in the small versus programming in the large. They argue that many
experiences obtained with environments for programming in the small
do not scale to programming in the large. Dart et al. do not discuss
the application area of development environments. It appears, however,
that they make an implicit restriction to technical systems. Even though
they mention a large number of environments they do not include 4th
generation languages or PC-development environments like MacApp in
their discussion. Thus their scope is much narrower than ours. See also
the discussion in the previous chapter of Dart et al.’s view on system
development.

Ole Hanseth has made a theoretical investigation on “development
of software systems for support of software development processes” [34].
The theoretical basis of his work is very large, its most important parts
being Israel on dialectics [35] and Winograd and Flores, and their inter-
pretation of Heidegger, on design [82]. The discussion remains, however,
theoretical. There is no discussion of existing environments in the report.

Hanseth discusses factory work and assembly lines. He concludes that
system development cannot be organised that way. Instead he considers
various theories on cooperation and office work. This leads him to ad-
vocate support by providing systems which can be used as media and
tools, but he also emphasises the strong institutional nature of the en-
tire development environment. He argues strongly against support for
specific methods, stating that “the complexity and dynamics of software
development processes make it necessary to provide as much flexibility as
possible and to build as few presuppositions as possible about the process
into the environment” [34, p. 76].

Hanseth has a strong focus on design. He states that “all tasks (in
software development) are essentially design work” [34, p. 39, our ital-
ics], and he argues that software development is design plus reuse [34,
pp. 52-54]. Although we agree that design is underemphasised in current
methods and practices we disagree with Hanseth’s bias towards seeing
everything as design. This leads to ignorance of tedious analysis, the
need for disciplined coding, documentation, and almost all process ori-
ented activities. In our view the art of system development lies in finding
a balance between the need for more emphasis on design and the need

50 CHAPTER 8. FINAL REMARKS

for standardisation, documentation, careful management, etc. Hanseth
would not disagree to this since he concludes his report this way: “Our
conclusion is that we think that software development in the future will
be a dialectic between the analytic and the dialectic approach” 134, p. 77].
The main difference between Hanseth’s work and this report is therefore
a difference in emphasis. This report has a bias towards programming
support. This bias can be explained by the way this report has come to
be, especially by the relationship to the Mjglner project. This bias has
been justified, however, since it is traditionally in programming where
most of the computer support for system development has taken place.
A further justification is that new kinds of programming support may
lead to a change of the role of programming in system development.

Lennartsson discusses the distinction between programming environ-
ments and software engineering environments [48]. He sees programming
environments mainly as a research area whereas he considers software
engineering environments as an attempt to provide the ultimate solution
to phase-oriented system development. He argues that because of the
phase-oriented style of work, because of the need for compatibility, and
because of the educational level it will be very hard to transfer the re-
search based programming environments to the software industry. With
an analogy to expert-system shells and application generators he sees a
possible answer in a multi-level approach where the computer specialists
develop “tools” which the application specialists use.

Compared to our work Lennartsson uses a more specific definition of
programming environments. This results in a dichotomy which is very il-
lustrative in terms of characterising the narrowness of much research and
the conservativism of the industry. We find this point interesting, but
we have a different view on system development than the view of those
Lennartsson refer to talking about software engineering environments.
Many of the theses of the MARS project stress that system development
cannot be made in a strictly phase-oriented way, and we therefore see
many efforts in the development of phase-oriented environments as futile.
By our broader class of environments we can also observe that environ-
ments which are better suited for prototyping, for example 4th generation
languages and some PC-environments, do make their way into industry.

Concerning the multi-level approach we feel closely related to it. In
Mjglner there is much emphasis on metaprogramming and tailorability,
and the final environment will hopefully be useful for “too0l” construction

8.2. CONCLUSION 51

as well as for application development.

8.2 Conclusion

To some people a discussion of development environments is interesting
in itself. The discussion does, however, have a wider relevance. Many
of the properties of development environments are also desirable in other
contexts. The point we make here is that the ability to program and
modify should be present in any environment. Sandewall et al. go as far
as proposing that the system delivered to the users should be a modified
programming environment [63]. This idea becomes even better if the
application is written in a profession- or application-oriented language
[56]. If this is the case many standard procedures can be implemented
as programs in this special language, such that they lend themselves
to modification and evolution. Tailorability and incrementality will be
important properties of such environments, hence some of the properties
we have discussed in chapter 6 are relevant outside the scope of this
report. This analogy to other areas than system development has an
important weakness, however. Everybody is not interested in or able to
learn programming. This is therefore an idea which should be used with
care and it should not be used as an excuse for making bad products.

Cooperative work is an important kind of work in system develop-
ment. This report can be seen as a study of computer supported coop-
erative work within a specific field. There are also other kinds of work in
system development. A definition of cooperative work should therefore
not divide the world in two, it must reflect the observation that cooper-
ative work is an aspect of the work which is present at various degrees.
Another lesson to learn is that computer supported cooperative work is
not only to provide facilities like mail and meeting support, it is just as
much to construct the computer system in such a way that patterns of co-
operation are not disturbed or destroyed. There are reasons to fear that
much effort in software engineering environments will have a negative im-
pact on cooperative work. An example is the tendency to support specific
development methods or models. This may result in stricter control and
less autonomous work in system development.

Ole Hanseth writes in the abstract of his report: “We will analyze
how software development is carried out, just as we analyze an arbitrary

52 CHAPTER 8. FINAL REMARKS

field we intend to computerize” [34]. We do not, unfortunately, believe
this to be true. With the risk of overestimating this report, we claim
that it is not normal that system development is based on such compre-
hensive analyses of the field to be computerised as Hanseth’s and this
report. Secondly we are faced with another problem. How do we use
the understanding achieved in the analysis when we build systems? We
hope that we have succeeded in making some connections between our
analysis and the technical properties of the development environments,
but we feel that much remains to be done.

In aiming at comprehensive support for system development work
we are faced with a contradiction: More comprehensive support may
lead to environments which fix the way work is to be performed, see the
quotation of Dart et al. in chapter 7. Our problem is that we want to
develop support which goes beyond being a set of independent facilities,
while at the same time allowing the process to proceed undisturbed.

Since this report represents a mix of two different areas of research it
is appropriate to draw some conclusions specific to the two areas involved.

For the system development field a central observation is that new
environments will lead to changes in the way system development can
be performed. Programming, or “coding”, can no longer be considered
as a separate discipline which belongs to another field. Also a fortunate
development in the possibilities for achieving interaction between vari-
ous activities in system development may be expected. Prototyping can
perhaps be used as an instrument not only in design and realisation, but
also in analysis.

Research on programming environments should be related to the con-
text of system development. Many experiences cannot be scaled to indus-
trial programming, and the negative consequences of supporting specific
methods have been commented upon. Often programming environments
contain strong implicit assumptions about the nature of the work sup-
ported, for example its organisation, as well as assumptions about the
application area. These assumptions need to be made explicit and taken
into consideration. The failures of classical information systems need not
be repeated in the development of support for the system development
process.

This report has presented a framework for development environments.
Five dimensions of development environments have been identified:

8.2. CONCLUSION 33

e the system development functions supported,

the kind(s) of work supported,

the suitability for prototyping,

the application area, and
e the technical properties of the environments.

The framework will hopefully contribute to the discussion about develop-

ment environments by pointing out the relationships between issues from
the different research fields involved.

Bibliography

[1]

2]

Russel L. Ackoff. Management misinformation systems. Manage-
ment Science, 14(4):B-147-B-156, December 1967.

Niels Erik Andersen, Finn Kensing, Monika Lassen, Jette Lundin,
Lars Mathiassen, Andreas Munk-Madsen, and P4l Sgrgaard. Pro-
fessionel systemudvikling. Teknisk Forlag, Kgbenhavn, 1986.

Peter Bggh Andersen et al. Research Programme on Computer Sup-
port in Cooperative Design and Communication. IR 70, Computer
Science Department, Aarhus University, Arhus, 1987.

David R. Barstow, Howard E. Shrobe, and Erik Sandewall, editors.
Interactive Programming Environments. McGraw-Hill, New York,
1984.

Gro Bjerknes and Tone Bratteteig. A implementere en idé — samar-
beid og konstruksjon i Florence-prosjektet. Florence-report 3, Insti-
tute of Informatics, University of Oslo, Oslo, September 1987.

Jeanette Blomberg. The variable impact of computer technologies
in the organization of work activities. In Proceedings from the Con-
ference on Computer Supported Cooperative Work, MCC Software
Technology Program, Austin, Texas, December 1986.

Susanne Bgdker. Through the Interface — A Human Activity Ap-
proach to User Interface Design. PB 224, Computer Science Depart-
ment, Aarhus University, Arhus, April 1987. PhD thesis.

Susanne Bgdker, Pelle Ehn, John Kammersgaard, Morten Kyng, and
Yngve Sundblad. A UTOPIAN experience: on design of powerful
computer-based tools for skilled graphic workers. In Gro Bjerknes,
Pelle Ehn, and Morten Kyng, editors, Computers and Democracy
- A Scandinavian Challenge, pages 251-278, Avebury, Aldershot,
England, 1987.

54

BIBLIOGRAPHY 55

9]

[12]

[13]

[15]

[16]

[17]

Susanne Bgdker, Pelle Ehn, Jgrgen Lindskov Knudsen, Morten
Kyng, and Kim Halskov Madsen. Computer support for coop-
erative design. In Proceedings of the Conference on Computer-
Supported Cooperative Work, September 26-29, 1988, Portland,
Oregon, pages 377-394, ACM, New York, 1988. ACM order number
612880.

Barry W. Boehm. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

Karen Borup, Kurt Ngrmark, and Elmer Sandvad. EKKO — An
Integrated Program Development System. IR 51, Computer Science
Department, Aarhus University, Arhus, November 1983.

Karen Borup and Elmer Sandvad. Editor Specification. Mjglner
report DK-SYS-10, Sysware ApS, Aarhus University, Aalborg Uni-
versity Centre, 1986.

John N. Buxton and Larry E. Druffel. Requirements for an
Ada programming support environment: rationale for STONE-
MAN. In Horst Hiinke, editor, Software Engineering Environments,
pages 319-330, North-Holland, Amsterdam, 1981.

Sgren Christensen, Kaj Grgnbek, and Tove Rolskov. Arbejdsformer
under anvendelse af 4. generationsverktgjer. IR 69, Computer Sci-
ence Department, Aarhus University, Arhus, May 1987.

Claudio U. Ciborra. Information systems and transactions archi-
tecture. International Journal of Policy Analysis and Information

Systems, 5(4):305-324, 1981.

Claudio U. Ciborra. Reframing the role of computers in organi-
zations — the transaction costs approach. Office: Technology and
People, 3(1):17-38, May 1987. Paper presented at the 6th Interna-
tional Conference on Information Systems, Indianapolis, December
16-18, 1985.

Claudio U. Ciborra and Giovan Francesco Lanzara. True stories and
formative contexts in information systems development. In Infor-

mation Systems Development for Human Progress in Organizations,
Atlanta, May 1987.

o6

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

BIBLIOGRAPHY

Michael D. Cohen, James G. March, and Johan P. Olsen. People,
problems, solutions and the ambiguity of relevance. In James G.
March and Johan P. Olsen, editors, Ambiguity and Choice in Or-

ganizations, pages 24-37, Universitetsforlaget, Oslo-Bergen-Tromsg,
1976.

Conference on Computer-Supported Cooperative Work, MCC Soft-
ware Technology Program, Austin, Texas, December 1986. Proceed-
ings.

Ole-Johan Dahl, Bjgrn Myhrhaug, and Kristen Nygaard. SIMULA
67 Common Base Language. Pub. S-2, Norwegian Computing Cen-
ter, Oslo, 1967.

Hans Petter Dahle, Mats Lofgren, Ole Lehrmann Madsen, and Boris
Magnusson. The MJQLNER project. In Software Tools: Improving
Applications: Proceedings of the Conference held at Software Tools
87, pages 81-87, Online Publications, London, 1987.

Hans Petter Dahle, D. Menikosy, Georg Reeder, and Terje Rpd. An
overview of GUNGNE: the Computer Human Interface for Mjpl-
ner. Mjglner report N-EB-1.3, EB Technology/Norwegian Comput-
ing Center, July 1986.

Susan A. Dart, Robert J. Ellison, Peter H. Feiler, and A. Nico Haber-
mann. Software development environments. Computer, 20(11):18-
28, November 1987.

Mark Dowson. Integrated project support with IStar. IEEE Soft-
ware, 4:6-15, November 1987.

Salah E. Elmaghraby. The theory of networks and management
science. Management Science, Application, 17(2), 1970.

Preben Etzerodt, Finn Kensing, Bo Bagger Laursen, Kurt Kirkedal
Laursen, Lars Mathiassen, Birgitte Nielsen, Jgrgen Holm Nielsen,
and Carsten Underbjerg. Systemudvikling i praksis: Regnecentralen
af 1979, Arhus. MARS-report 3, Computer Science Department,
Aarhus University, Arhus, June 1984.

Christiane Floyd. A systematic look at prototyping. In Reinhard
Budde, Karin Kuhlenkamp, Lars Mathiassen, and Heinz Ziillighoven,

BIBLIOGRAPHY 57

[29]

[30]

[31]

[32]

[33]

[36]

[37]

editors, Approaches to Prototyping, pages 1-18, Springer-Verlag,
Berlin-Heidelberg, 1984.

Andrew Friedman, Jens Hgrliick, Harrie Regtering, and Bernard
Riesewijk. Work organization and industrial relations in data pro-
cessing departments: a comparative study of the United Kingdom,
Denmark and the Netherlands. Report for the Directorate of the
European Community — General Employment, Social Affairs and
Education, September 1987.

Danny Goodman. The Complete HyperCard Handbook. Bantam
Books, New York, 1987.

George O. Goodman and Mark J. Abel. Communication and col-
laboration: facilitating cooperative work through communication.

Office: Technology and People, 3(2):129-145, August 1987.

Bo Goéranzon. Bakgrunden. In Bo Géranzon, editor, Datautvecklin-
gens filosofi, Carlsson & Jonsson, Stockholm, 1983.

Irene Greif and Sunil Sarin. Data sharing in group work. ACM
Transactions on Office Information Systems, 5(2):187-211, April
1987.

Anders Gustavsson and Mats Lofgren. Yggdrasil, concepts and
programming interface. Mjplner report S-LTH-17.1, University of
Lund/Lund Institute of Technology, August 1987.

Ole Hanseth. Development of Software Systems for Support of Soft-
ware Development Processes. Report nr 803, Norwegian Computing
Center, Oslo, November 1987.

Joachim Israel. The Language of Dialectics and the Dialectics of
Language. Munksgaard, Copenhagen, 1979.

Michael Jackson. System Development. Prentice-Hall, Englewood
Cliffs, 1983.

Troels Mgller Jgrgensen and John Kammersgaard. FEt begrebsappa-
rat til karakteristik of programmeringsprocesser. IR 38, Computer
Science Department, Aarhus University, Arhus, August 1982.

58

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

BIBLIOGRAPHY

Gail E. Kaiser, Simon M. Kaplan, and J osephine Micallef. Multiuser,

distributed language-based environments. IEEE Software, 4(6):58—
67, November 1987.

R. H. Katz, M. Anwarrudin, and E. Chang. A version server for
computer-aided design data. In 28rd Design Automation Conference,
pages 27-33, ACM/IEEE, 1986.

Allan Kay and Adele Goldberg. Personal dynamic media. Computer,
33-41, March 1977. Also in [79].

Finn Kensing, Jette Lundin, Andreas Munk-Madsen, Henning Si-
monsen, Jytte Sgrensen, and Mogens Sgrensen. Systemudvikling i
praksis: Jydsk Telefon-Aktieselskab. MARS-report 2, Computer Sci-
ence Department, Aarhus University, Arhus, June 1984.

Finn Kensing, Lars Mathiassen, and Andreas Munk-Madsen. MARS
A Research Project on Methods for Systems Development. MARS-

report 1, Computer Science Department, Aarhus University, Arhus,
July 1984,

Brian W. Kernighan and John R. Mashey. The UNIX programming
environment. Computer, 14(4):25-34, April 1981. Also in [4].

Brian W. Kernighan and Rob Pike. The UNIX Programming Envi-
ronment. Prentice-Hall, Englewood Cliffs, New J ersey, 1984,

Bent Bruun Kristensen. The Program Fragment Library: A Pre-
liminary Specification. Mjglner report DK-5YS-12.3, Sysware ApS,
Aarhus University, Aalborg University Centre, November 1987.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Mgller-
Pedersen, and Kristen Nygaard. The BETA programming language.
In Bruce Shriver and Peter Wegner, editors, Research Directions in
Object-Oriented Programming, pages 7—48, MIT Press, Cambridge,
Massachusetts, 1987.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Mgller-
Pedersen, and Kristen Nygaard. Syntax directed program modular-
ization. In Pierpaolo Degano and Erik Sandewall, editors, Integrated
Interactive Computing Systems, pages 207-219, North-Holland, Am-
sterdam, 1983.

BIBLIOGRAPHY 59

48]

[49]

[50]

[51]

[52]

[54]

[55]

[56]

Bengt Lennartsson. Programming environments and paradigms,
some reflections. In Henning Christiansen, editor, Workshop on

Programming Environments — Programming Paradigms, Roskilde,
Denmark, 1986.

Ole Lehrmann Madsen and Claus Ngrgaard. An object-oriented
metaprogramming system. In Bruce D. Shriver, editor, Proceedings
of the Twenty-First Annual Hawaii International Conference on Sys-
tem Sciences, Volume II Software Track, IEEE Computer Society
Press, January 1988. Also available as PB 236, Computer Science
Department, Aarhus University, Arhus, November 1987.

Boris Magnusson and Sten Minor. III: an integrated interactive in-
cremental programming environment based on compilation. In Pro-
ceedings of the ACM Symposium on Small Systems, Boston, May
2-3, 1985, 1985.

Thomas W. Malone, Kenneth R. Grant, Kum-Yew Lai, Ramana
Rao, and David Rosenblitt. Semistructured messages are Surpris-

ingly useful for computer-supported cooperation. ACM Transactions
on Office Information Systems, 5(2):115-131, April 1987.

Thomas W. Malone, Kenneth R. Grant, Franklyn A. Turbak,
Stephen A. Brobst, and Michael D. Cohen. Intelligent information-
sharing systems. Communications of the ACM, 30(5):390-402, May
1987.

Marylin M. Mantei and Toby J. Teorey. Cost /benefit for incorpo-

rating human factors in the software lifecycle. Communications of
the ACM, 31(4):428-439, April 1988.

Lars Mathiassen. Systemudvikling og systemudviklingsmetode.
PB 136, Computer Science Department, Aarhus University, Arhus,
1981. Also DUE-report nr. 5.

Birger Mgller-Pedersen, Dag Belsnes, and Hans Petter Dahle. Ra-
tionale and tutorial for OSDL: an object oriented extension of SDIL.
Computer Networks, 13(4):97-117, 1987.

Kristen Nygaard. User oriented languages. In Roger, Willems,
O’Moore, and Barber, editors, Proceedings of Medical Informatics

Europe 84, Brussels, 1984.

60

[57]

[58]

[61]

[62]

[63]

[66]

BIBLIOGRAPHY

William G. Ouchi, Markets, bureaucracies, and clans. Administrative
Science Quaterly, 25:129-141, March 1980.

David Lorge Parnas and Paul C. Clements. A rational design process:
how and why to fake it. IEEE Transactions on Software Engineering,
SE-12(2):251-257, February 1986.

REFLEX for the mac. Borland International, Scotts Valley, Califor-
nia, 1986.

Thomas Reps and Tim Teitelbaum. The synthesizer genera-
tor. In Peter Henderson, editor, Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 42-48, May 1984. Pub-
lished as ACM Software Engineering Notes 9(3) and ACM SIGPLAN
Notices 19(5).

Marc J. Rochkind. The source code control system. IEEF Transac-
tions on Software Engineering, SE-1(4):363-370, December 1975,

Erik Sandewall. Programming in an interactive environment: the
LISP experience. ACM Computing Surveys, 10(1):35-71, 1978. Also
in [4].

Erik Sandewall, Claes Stromberg, and Henrik Sérensen. Software
architecture based on communicating residential environments. In

Fifth International Conference on Software Engineering, San Diego,
March 1981. Also in [4].

Jonathan Simonoff, MacApp Programmer’s Guide. Technical Re-
port, Apple Computer, 1987.

P&l Sgrgaard. A cooperative work perspective on use and develop-
ment of computer artifacts. In Pertti J arvinen, editor, The Report of
the 10th IRIS (Information Research seminar In Scandinavia) Sem-
inar, pages 719-734, University of Tampere, Tampere, 1987. Also
available as PB 234, Computer Science Department, Aarhus Univer-
sity, Arhus, November 1987.

Pél Sgrgaard. A Framework for Computer Supported Cooperative
Work. PB 253, Computer Science Department, Aarhus University,
Arhus, May 1988.

BIBLIOGRAPHY 61

[67] P&l Sgrgaard. HEIMDAL: Mjplner mail handler. Mjglner re-

port DK-15.1, Computer Science Department, Aarhus University,
November 1986.

[68] P4l Sgrgaard. Object oriented programming and computerised
shared material. In Stein Gjessing and Kristen Nygaard, editors,
ECOOP ’88 European Conference on Object-Oriented Programming,
Oslo, Norway, August 1988, Proceedings, pages 319-334, Lecture
Notes in Computer Science 322, Springer Verlag, Heidelberg, 1988.
Also available as PB 247, Computer Science Department, Aarhus
University, Arhus, May 1988.

[69] P&l Sgrgaard. Transaction supporting systems and organisational
change. PB 248, Computer Science Department, Aarhus University,
Arhus, May 1988.

[70] Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan
Lanning, and Lucy Suchman. Beyond the chalkboard: computer
support for collaboration and problem solving in meetings. Commu-
nications of the ACM, 30(1):32-47, January 1987.

[71] Vic Stenning, Terry Froggatt, Roger Gilbert, and Ellis Thomas. The
Ada environment: a perspective. Computer, 26-36, June 1981.

[72] Tim Teitelbaum and Thomas Reps. The Cornell program synthe-
sizer: a syntax-directed programming environment. Communica-
tions of the ACM, 24(9):563-573, September 1981. Also in [4].

[73] Warren Teitelman. A display-oriented programmer’s assistant. In

[4].

[74] Warren Teitelman and Larry Masinter. The Interlisp programming
environment. Computer, 14(4):25-34, April 1981. Also in [4].

[75] Larry Tesler. The Smalltalk environment. BYTE, 6(8), August 1981.

[76] Walter F. Tichy. RCS: a revision control system. In Pierpaolo
Degano and Erik Sandewall, editors, Integrated Interactive Comput-
ing Systems, pages 345-361, North-Holland, Amsterdam, 1983.

[77] Randall H. Trigg, Thomas P. Moran, and Frank G. Halasz. Adapt-
ability and tailorability in notecards. In H.-J. Bullinger and B.

62

BIBLIOGRAPHY

Shackel, editors, Human Computer Interaction — INTERACT 87,
pages 723-728, North-Holland, Amsterdam, 1987.

The UTOPIA project group. An Alternative in Text and Images.
GRAFITTI 7, Swedish Center for Working Life, Stockholm, 1985.

Anthony I. Wasserman, editor. Software Development Environ-
ments. IEEE Computer Society Press, New York, 1981.

Anthony I. Wasserman and Peter A. Pircher. A graphical, extensible
integrated environment for software development. In Peter Hender-
son, editor, Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Enwvi-
ronments, Palo Alto, California, December 9-11, 1986, pages 131-
142, January 1987. Published as SIGPLAN Notices, 22(1).

Oliver E. Williamson. The economics of organization: the transac-

tion cost approach. American Journal of Sociology, 87(3):548-577,
1981.

Terry Winograd and Fernando Flores. Understanding Computers
and Cognition. Ablex Publishing Corp., Norwood, New Jersey, 1986.

The Xerox Learning Research Group. The Smalltalk-80 system.
BYTE, 6(8):36-48, August 1981.

	pb-252forside
	PB-252

