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Preface

This book contains the position papers accepted at The 7th Workshop for
PhD Students in Object-Oriented Systems, which took place June 9-10, 1997,
in Jyviiskyld, Finland, in connection with the ECOOP’97 conference.

It is a tradition at ECOOP conferences to have a workshop for PhD stu-
dents, conducted by the network of PhD Students in Object-Oriented Sys-
tems (PhDOOS). The purpose of this network is to help leveraging the col-
lective resources of young researchers in the object community by improving
the communication and cooperation between them. In a year of the PhDOQS
network the workshop is the main event where we meet face-to-face. Between
workshops we stay in touch through our mailing list. More information on
the PhDOOS network can be found at http://purl.org/net/PhDOOS.

A conference workshop typically concentrates on a few topics chosen at
the outset. For this workshop, the technical topics covered were derived
from the research interests of the participants. Since the workshop had 36
participants, we partitioned the main group into several subgroups, each
having a more focused research area as topic. The work in these subgroups
had been prepared extensively by the participants. A little less than half of
the participants had submitted a position paper. Everybody had prepared
a presentation of his or her research work—a longer presentation for those
participants with a position paper, and a shorter one for those who just
provided a short abstract of their research work. The position papers are
presented in this report. A comprehensive workshop report containing a
short presentation of the research work of each of the 36 participants appear
in the ECOQOP’97 Workshop Reader.!

The technical sessions in subgroups were an important part of the work-
shop, but there were also other activities. In plenary sessions we heard two

!Unfortunately, the precise ISBN and LNCS numbers of the ECOOP’97 Workshop
Reader were not available when this was printed
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invited speakers, had a writer's workshop, and discussed issues related to the
network itself. We also had a discussion about the conditions of being a doe-
toral student in various countries, as a followup to an email based discussion
about this shortly before the workshop.

Our invited speakers were Prof. Mehmet Aksit from the University of
Twente and Prof. Peter Wegner from Brown University. They spoke about
their academic lives in retrospect, their current and future research, and
the PhD-getting process in general. We were impressed by wide range of
experience they demonstrated and thankful for the personal remarks they
made regarding our profession. We think it is invaluable to get this insight
when starting a career in academia or industry.

There were a couple of plenary sessions dealing with the network itself.
We felt, that the network is too inactive during the year, and that commu-
nication needs to be improved. The ECOOP workshop is good, but there
ought to be more of other things, too. To make this happen, the activities
in the network should become a natural and indispensable part of the daily
work of the members, as opposed to a beautiful idea that we can play with
after having finished our real work. ..

We picked up the idea from the year before to review each other’s pa-
pers. While the previous approach intended to have reviews only before each
ECOOQP conference, we now want to start a continuous review process. It
should be convenient and a good habit for members of the network to re-
ceive valuable feed-back from other members of the network about articles,
books, or selected parts of such written work, before submitting them to a
conference or publishing them. We also have to make sure that the authors
feel assured their work is not “gtolen” by anybody in this process. Since co-
operation is a basic tool in research today, keeping the work secret is not
an option. On the contrary, as soon as many people know that a particular
idea or approach originally came from one group of persons, it will in fact
be better protected against “theft” than without this community awareness.
The network is a great resource of knowledge and inspiration, we just have
to push a little bit to make it visible, accessible and useful for each member.

Another idea was to use the Internet more intensively to get in touch on
a regular basis. Real meetings are great, but difficult to arrange. Therefore
we want to try out “vitual meetings” using technologies like IRC or confer-
encing groupware. Whether in real life or via network cables, meeting other
people and getting to know them is a necessary precondition for good, lively
cooperation.

CONTENTS

Finally we had to find the organizers of next year's workshop. Erik and
Frank will continue for one more year. They are joined by Luigi Benedicenti
(Luigi.Benedicenti@dist.unige.it}. The homepage of the 1998 work
shop is http://purl.org/net/PhD00S/1998. If you want to join the n t-
work, take a look at http://purl.org/net/PhDODS. -

The following sections contain the position papers in a revised versio
which the authors produced shortly after the workshop. The articles are alslu:])

available electronically, on the URL ftp: imi
: p://ftp.daimi.aau.dk
eernst/phdws97/positionpapers. L o



A Synchronization-Scheme Using Temporal Logic
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Abstract: A new synchronization scheme based on the reflective model of objects and propositional
temporal logic with operator only for the past is suggested. Using the proposed scheme, not only state partitional and
state modification anomalies can be avoided, but history-only sensitiveness inheritance anomalies [Mat93b] can be
reduced as well. The scheme provides the separability between implementation and synchronization code in order to
overcome the above anomalies.

Introduction

The central concept of concurrent object-oriented programming is the sharing of knowledge beside
concurrency. The essence of knowledge-sharing is the re-use of the descriptions of objects. The advantage of
knowledge-sharing is in part that modularity increases, and also that a possibility of hierarchical structuring opens.
The tools of knowledge-sharing are subtyping and inheritance. These concepts mix strongly in sequential object-
oriented languages. The difference between the two concepts is in the difference between the levels of abstraction.
The inheritance is the concept of the level of implementation and means code-sharing, while the subtype is a concept
of the specification, the behaviour description level and the subtype hierarchy is based on the behaviour of the object
instances [Ame87].

The reflective model of objects supports inheritance in a natural way, because we can subdivide the
description in the reflective model into small components, which can be united with other components to form a
subclass easier. On the other hand, the menolithic handling of description leads to the delegation protocol that, as we
have seen, does not result in the most effective way of code-sharing.

The parallel object-oriented languages offer language primitives and/or general object level schemes to
program synchronization constraints. The most often used synchronization schemes in concurrent object-oriented
programming are the following:

s A logical expression belongs to each method in the case of guarded methods, and only those methods can be
selected for execution, the logical expressions of which are true.

s  Synchronization with enabled sets. After the execution of a method, the object always specifies the set of those
messages, the answer for which can be generated in the next cycles.

In case of the application of different synchronization-schemes, during the reuse of the code, various difficulties may
arise, which are called inheritance anomalies in the literature. Generally, we talk of inheritance anomaly if some kind
of difficulty arises out of the synchronization in the re-use of the implementation code. We can find several solutions
for getting rid of the inheritance anomalies in [Mat93]. The solutions are based on the fact that the occurrence of the
inheritance anomalies depends on the applied synchronization schemes. Using only one synchronization scheme, the
anomalies can occur easily, while changing the schemes, they can be avoided. The localization of the synchronization
code and scheme to the given object gives an opportunity for this. Thus we can apply a completely different
synchronization-scheme in the sub-class than in the parent class. The distribution of the synchronization code
between the objects can be done similarly to the inheritance of the methods. The above purpose can be reached for
example with the use of synchronizers and transition specifications as synchronization schemes.

In the present work, a new scheme with high abstraction level is proposed, which, first of all, can be used as
a specification tool, but it can be used as an implementation tool as well.

The setup of this paper is the following: in the first part, we shall give a description of the object model we
work with, then a new synchronization scheme, called synchronization set is introduced and tested on new or known
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problems that lead to inheritance anomalies, and finally,
scheme, is given.

The Object-Model

Lészlé Blum

a proposal for implementing PTPTL formulas used in the

In our paper, we shall refer to the reflective model of objects of the kinds described below. In the reflective
model, [Tom89] every object consists of the (recursive) composition of four objects: Meta Object, Container Object,

Processar Object, Mailbox Object:

The Meta Object manages the three other objects.
The Container Object stores the acquaintances of the object.

objects and synchronizes the object: uses a policy for choosing the next enabled message-

The Processor Object can change the state of the object upon receiving an enabled message from another object.
The Mailbox Object stores asynchronously received messages (requests for method-executions) from other

When the object executes a request, the Processor Object will be blocked, and no other request can be

enabled until the execution has been done.

Assigning temporal logical atomic formulas to actions

In our model, like in [Ara95], 2 truth-value for each atomic formula will be given to every method request
and method execution. For a method mi, m] means both the name of the method and an atomic formula having a

(ruth-value that corresponds to the execution state of the method in each time-point. [

n addition, we introduce an

atomic formula reg_ml, which describes whether there has been a request for the method m/ or not. An atomic
formula reg_m is true until there is a request for method mI in the Mailbox. A temporal formula of a method

expressing that it can be executed if there is no request for meth:
md, is the following,
—req_m3 n ®m4

Since we want to use temporal expressions for synchronizatio
structure of the object. Since only past-time temporal operators arc used, it is enough to build

od m3 and the previously executed one was method

n, we have to define the time-points of the Kripke-

up a Kripke-structure

up to the present. Taking {his into account, the next time-point to the Kripke-structure of the object is given when a
request for executing the method is satisfied. The period between two executions can be looked at as a container
period, during which the atomic formulas assigned to messages are given a value representing the next time-point.

Choosing requests from the Mailbox

In our model, the Meta Object of an object tries to send a request to the Mailbox to get the next accepted

request for a method after every request-execution or arrival of a new message. If successful,
Object execute the request.

A New Synchronization-Scheme

it makes the Processor

Further in this section, a new synchronizalion-scherne will be presented[Blu96]. The abstraction-level of the
scheme is rather high, because it uses temporal logical formulas for synchronization. The scheme is an extension of
the well-known guarded methods, where the constraints of a methed are collected in a set so that they can be

expanded when inherited. Using the scheme, the state modification and the state partitioning
be resolved and the history-only sensitiveness anomalies radically reduced.

Past-Time Propositional Temporal Logic (PTPTL)

anomalies [Mat93b] can

Laszlé6 Blum ,

In ﬂ.w model, PTPTL formulas are used to give constraints for method-execution. Past-time operators of I
PTPTL are similar to tr.a.nse used by‘[Al'leS], extended with operators atprev, punless, pwhile and after. For a !
Kripke-structure K [Kroger] and a time-point i, the semantics of the operators can be defined in the follé:wing way!

K(aatprev b)=t iff for the largest j<i where K(b)=t, K (a)=t¢. J

K(apunlessb)=t itf K, (b) =t for some j<i and K(a)=t Vkj<k<i |
o K(a)=t VRO<k<i

K (a pwhile b) =t iff K,(B)= f forsomejciand K, (@)=K,(b)=t  Vhk:j<k<i.

K (a after b) =t iff for all K, (b)=¢ (j<i) there is j<k<i such that K (a)=t. -

Synchronization Sets

In the model developed, the key structure i isti izati
L p y e is a set consisting of the elements (called synchronization

[ method_name, if_set]

where method_name denotes a method of the object and ¢f_set is a set of PTPTL
i . T f i
one synchronization set by which the methods of the object can be synchronized. el

Definition 1: A set tf_set of PTPTL formulas is called Tt . 3
the set is true. true at a time-point of a Kripke-structure, if each formula in

Taking an object O with a synchronization set §, a request req_method! in the Mailbox may be satisfied:

At ?f there is an element in S the method of which is method] and its formula set is true
2. if there is no element in § the method of which is method!. ’

Evaluating Temporal Formulas

gopdl: [al t :r(:]rn;::la ::::n llcl :asﬂy ;valua;ed at the present without changing the synchronization variables. In our
i . : 1:; 5 ula can change its prescn!.valuc, bec_ausr: requests for methods can change the values of

ic formulas belonging to them (See Figure 10.). But this change is not confusing, since most of th

opera:;rs are affected b’f the past time-points and the values of atomic formulas at lhc; past timeupgintsea;i,mpoml
:&aﬁciggﬁsigvx ;::; gfa; a trying pl‘.‘.Flod (?f a urnc-po.int, \yhere we can test how the formulas are changed by
e be](jné, ur requests is satisfied, we view it as a new time-point to which the values set during

req_mi
Test of formulas
\ Tnving period
Kipke-stnucture of an object 'eq;m?/ New time-point created
20 ] Y A |
A EN
LR T SN
req_ml
4 o req_m2
Figure 10. Assigning atomic formulas to a new time-point
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Operations with Synchronization Sets

In case of inheritance, the synchronization set of the descendant objects can be established by using the
following operators on synchronization sets:

Let S1 and 2 be two synchronization sets and MS is a set of method names and #f_sef is a set of PTPTL
formulas, then

§7+52 means the union of sets §1 and 52
b. SI++[MS, tf set] denotes the union of the formula sets of those elements of 1, that first element of which are

members of MS. If MS contains all of the methods of SI, then this may be denoted in short by SI*++if_set.

=

For example, let S1={{methodl, {forml, form2]], [method2, [form3, formd}]]
SI+ +[{methadl],[formS}]:{[merhodJ, {forml, form2, form5)], [method2, (form3, form4)]}

Applying the operator +, the descendant object can revise the synchronization set of the ancestor object by adding |
constraints to the methods that are independent of those used in the ancestor object. With the operator ++, more
constraints can be added to the constraints of the ancestor.

Remark 1: Combining operators + and ++, we can absolutely revise the constraints inherited from the ancestor, ifwe |

use the operator ++ with set (False} and establish the new constraints using operator +. |
|

Using Synchronization Sets to Avoid Inheritance Anomaly - some examples

Partitioning of Acceptable States Anomaly

Since the synchronization set is an extension of guarded methods, this kind of anomaly can not occur [Mat93].

Modification of Acceptable States Anomaly

The classic example for this kind of anomaly is in [Mat93b). Consider an abstract mix-in class Lock capable to lock
and unlock. Inheriting the class Lock together with another class C, the descendant object can lock and unlock its
methods. In the example, the class b-buf is an implementation of the bounded buffer, which we want to be lockable.
The two ancestor classes are described by an ABCL-like syntax (see figure 1. and 2.). We introduce the notation
synch_set: to define the synchronization set of an object, The synchronization set Locks describes that method lock is
enabled if locked=false and unlock is enabled if locked=true. Combining classes b-buf and Lock we would like to get
a descendant class [b-buf, whichis a lockable bounded buffer (see figure 3.). The synchronization set [b-bufS is
established by expanding the formula sets of each element of b-bufS by formula _locked and expanding this set by

LockS:

Ib-bufS={[put, {in<out+SIZE, —locked)], [get, {in>=out+1, —locked}], [lock, {—locked}],
{unlock, {locked}]}

In this way, in the class 1b-buf, the method get() is enabled, when it is enabled in the ancestor method and it is not

locked.

Class Lock: ACTOR {

bool locked

public: public:
void Lock() { locked=0:}
void lock() {locked=1;}
void unlock() {locked=0;}

synchset:

Class b-buf: ACTOR {
int in, out, buf[SIZE]

void b-buf() { in=out=0;}

void put( int item ) {in++; }

int get () {out++;)
synchset:

LockS={{lock, {—locked}], [unlock, {locked}1} b-bufS={[put, {in<out+SIZE}], [get,

Liszlé6 Blum 5

Figure 1: The class lack, synchronized by synchronization |} {in>=out+1}]]

=0 Figure 2: The class bounded buffer

Class Ib-buf: b-buf, Lock {
public:
void 1b-buf();
synchset:
Ib-bufS=b-bufS*++[—locked}+LockS

}

Figure 3: The lockable bounded buffer

History-Only Sensitiveness Anomaly

Since the scheme developed gives a stronger tool for this type of anomal s Wi i

. ‘ y, more examples will be given.

a,) Consider a sub_class of b-buf (Flgure 2.), gh-buf [Mat93], that has only one new method ggex(). gget() works as the
method get(), but is enabled only if pui() has not been invoked right before it. gb-buf is shown in figure 4.

Class gb-buf: b-buf {
public:
int gget() {out++;)
synchset:
gb-bufS=b-bufS+{[gget, {in>=out+1 —@put}]}

)
Figure 4: The class gb-buf

btt:;ﬁ was cxp::nded uflly %'uh one ele;-nen[ belonging to gget(). The temporal formula holds if no put() was executed
at the previous time-point. We can see how eas itisto ies li is i i
ey y it is to resolve anomalies like this, putting temporal operators in

b.) The next subclass, sb-buf, of b-buf adds a new method, is_full(), that indi i

t.hc pattern f}f three get() methods immediately followed by “.;1;“ pft)f( ) methn:iia;:;:;iet:z: :::r:f:; ln‘:xfcl'lt:!'liE " -F'b‘bﬂf-
is_full can interrupt the chain of three get()-s and two pui()-s and get the chain start ag‘ain.(See Figure 5.) llr.)con'b
seen how great of the expressive power of PTPTL is. In sb-bufS, the first part of the PTPTL formula sel. of :; ©
expresses that gef() is enabled if two put()-s were executed after a get() or is. _full() was executed last or the iet:md
was called after the creation of the object (because of the definition of ).

Class sb-buf: b-buf {
public:
void Sb-buf{}
synchset:
sb-bufS=b-bufS+{[get, { (Pput and P@put and P@@get or bis_full) or
(@get and @Pput or Bis_full) or
(@get and ®@@get and ®@@bput or bis_full)],
[put, {(Pget and P@get and D@®@get or Bis_full) or
] (@put and @Dget or bis_full)]}
Figure 5: The class sb-buf

;:.rigonmder a[dass democ witI? methods m and m2 and synchronization set democS (Figure 6.). We would like to
o ; anew class desdemoc with the same methods and with the same synchronization, but in addition m3 is enabled
if and only if m2 and m/ were last requested at the same time.
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Class democ: ACTOR {
public:
void Democ() {...}
void m10f...}
void m20){...}
void m3(){...}
synchset:
democS={...}
)

Figure 6: The class democ with some methods m1, m2 and m3

Class desdemoc: democ {
public:
void Desdemoc() {...}
void m30{...}
synchset:
desdemocS=democS++[{m3},{ ®req_ml and ((req_m1areq_m?2) atprev (req_mlvreq_m2))}] }

}
Figure 7: The class desdemoc

We can see in Figure 7. the new class desdemoc. We only added one more strict constraint to the formula set of
method m3. The formula holds if m/ has been requested, and if m1 or m2 have been requested recently, then both

were requested at the same time. |

Application of synchronization sets

In [Blu97], we gave an implementation method for temporal formulas in the synchronization sets. The
method is based on the recursive expressiveness of temporal operators, and on the fact that we can evaluate these 1
formulas storing the previous values of formulas in newly introduced variables. Using the method, the pumber of new
variables is three times the number of binary temporal operators in formulas plus the number of unary operators. |

In the future we want to examine how to prove the correctness of a synchronization of an object and how to
describe an object using the above-mentioned scheme.

Conclusion

In the paper, a new synchronization scheme was developed. The abstraction level of the scheme is rather
high, so we can look at the scheme as either specification or implementation of synchronization of methods. The
scheme is an extension of guarded methods, where the constraints belonging to methods are contained in a set (called
synchronization set). The synchronization and implementation codes are separated, so both codes can be inherited
separately.

In [Fer95], the known inheritance anomalies are suggested to be solved by (nested) Conditional Critical
Regions. We can easily find the relationship between nesting the CCR for inheriting the ancestors' synchronization
and using the operator ++ for adding new synchronization constraints to the parents’.

In the future, what we are also developing is to decide whether a synchronization defined by a
synchronization set contains a contradiction and whether it can be a correct synchronization. With the method, we can
answer the first question based on the fact that a synchronization set can be expressed by one large PTPTL formula.
Extending PTPTL with future-time temporal operators [Ara95][Kes93], we can label a formula expressing that for
every time-point there will be a combination of messages satisfying the synchronization criteria. We can find
arbitrary Kripke-structures satisfying the synchronization criteria by using the tableau method for full propositional
temporal logic [Kes93].

Léaszlé Blum 7
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Abstract

Architectural specifications of software systems show them as a collection of
interrelated components, and constitute what has been called the Software Archi-
tecture level of software design. It is at this level where the description and verifi-
cation of structural properties of the system are naturally addressed. Besides, the
use of explicit descriptions of the architecture of software systems enhances system
comprehension and promotes software reuse. Despite several notations and lan-
guages for architectural specification have been proposed, some important aspects
of composition, extension and reuse have not been properly addressed, and deserve
further research. Our approach tries to address some of these open problems by
combining the use of formal methods, particularly process algebras, with concepts
coming from the object-oriented domain, such as inheritance, polymorphism, and
parameterization.

Keywords: Software Architecture, formal methods, w-calculus, compatibility, inheritance

1 Introduction

The term Software Architecture (SA) has been recently adopted referring to the level of
software design in which the system is represented as a collection of computational and
data elements, or components, interconnected in certain way. From this point of view, we
can consider SA as the level where the architecture and structural properties of software
systems are described. SA focuses in those aspects of design and development which
cannot be suitably treated inside the components that form the system {18]. Among
them are included those which derive from the structure of the system, i.e. from the way
in which its different components are combined.

The significance of explicit architectural specifications of software systems is twofold.
First, they raise the level of abstraction, facilitating the description and comprehension
of complex systems. Second, they increase reuse of both architectures and components.

*This work was funded in part by the “Comisién Interministerial de Ciencia y Tecnologia” (CICYT)
under grant T1C94-0930-C02-01.
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However, effective reuse of a certain architecture often requires that some of its compo.
nents can be removed, replaced, and reconfigured without perturbing other parts of the
application [14].

Although object-orientation can be applied to all levels of software design, in SA the
more general term component-oriented is preferred, allowing to consider not only objects
but architectures, interaction mechanisms and design patterns as first-class concepts of
a software architecture [13]. However, most concepts coming from the object-oriented
paradigm can be almost directly applied to SA. In particular, we are interested the appli-
cation of inheritance, parameterization and polymorphism to the specification of software
architectures.

Despite of the importance of architectural aspects in software development, their de-
scriptions have been traditionally limited to the use of certain idioms [18], such as client-
server architecture, layered architecture, etc. These textual indications were generally
accompanied with informal box-and-line diagrams. However, these descriptions lack of a
precise meaning, which limit their utility to a great extent [1].

Only in the 90’s appeared the first Architectural Description Languages (ADLs). ADLs
address the need for expressive notation in architectural design. They try to provide
precise descriptions of the glue for combining components into larger systems. However,
most of the work is to be done yet [6]. While the proposed notations seem useful for
the description of complex software systems, most of them are not formally based (see
Section 6), which prevents the analysis and proof of the properties of the systems and
architectures described. In addition, several significant issues, such as parameterization
or inheritance, are not usually addressed.

2 The Role of Formal Methods

Our interest focus on the application of formal methods to SA. Formal specifications have
a precise meaning derived from the semantics of the notation used and they admit several
forms of reasoning, providing a formal basis for ADLs and allowing the development of
verification tools.

The success on the application of formal methods to SA depends on the ability in
finding models and formalisms adequate to this level of the development process. To this
effect, process algebras are widely accepted for the specification of software systems, in
particular for communication protocols and distributed systems. The systems so specified
can be checked for equivalence, deadlock freedom, and other interesting properties.

In particular, we propose the use of the w-calculus [11] for the specification of software
architectures. The w-calculus is a simple and powerful process algebra which can express
directly mobility [5], making easier the specification of dynamic systems. Mobility is
achieved in the w-calculus by passing channel names as arguments of messages. Since the
names received can be used as channels for future transmissions, this allows an easy and
effective reconfiguration of the system.

The calculus permits the specification of both local and global choices. Local choices
indicate that a process may decide, not depending on its context, to commit to a certain
transition or not, and model nondeterministic behavior. Global choices indicate that a
process only commits to a transition after an agreement with another process performing
the complementary action (either by local or global choice), and model deterministic
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behavior. Thus, using the m-calculus, we are able to express whether a process can
initiate a certain communication (and then it requires that its environment could follow
its decisions), or it just offers a certain behavior to its environment.

The formal basis of the 7-calculus permits the analysis of the specifications for bisim-
ilarity, deadlock and other interesting properties, and also the development of automated
verification tools [19]. However, the w-calculus is a low level notation, which makes dif-
ficult its direct application to the specification of large systems. Hence, a higher-level
notation is required. Formal specifications in 7-calculus can he incorporated into the de-
scription of components by extending one of the existing ADLs. As it will be shown in the
following sections, the use of formal specifications in our approach address issues of system
composability, extensibility, and parameterization in a similar way to their treatment in
the object-oriented paradigm.

3 Composability

One of the properties that we may analyze in a software architecture is composability,
which we could define as the capability of the system of being composed by combining its
components as indicated in its architecture. Composability can be checked by determining
whether the components of the system are compatible or not. Furthermore, in order to
enhance reusability, we should be able to check if a certain existing component can be
used in a new system where a similar function is required. Again the intuitive notion of
compatibility arises.

System compatibility could be determined by composing in parallel the elements under
checking. Then, the resulting system would be analyzed for deadlock. However, this
would be impractical for complex systems, as it requires the analysis of all the interaction
traces of large specifications. Instead of that, we propose the use of explicit interface
specifications, or roles, for each connection or attachment between components of the
system, indicating the behavior of those components as seen from outside. Then, each
attachment between roles is checked locally for compatibility. This reduces the complexity
of the analysis to a great extent.

In our approach, a software component is specified by a set of roles, which describe
its behavior in relation to the other components it is attached to. Thus, roles may be
considered as partial specifications of the interface of a component. As we usually want
to attach roles that match only partially, equivalence checking, using for instance the
bisimilarity relations established for the w-calculus, is not well suited for our purposes.
Thus, we have defined a relation of protocol compatibility in the context of w-calculus.
This relation ensures that two components, represented by a pair of roles, will be able
to interact without deadlock until they reach a well-defined final state. In this context,
the analysis of the composability of a software architecture is reduced to local analysis
of compatibility. Compatibility ensures that any software system built according to the
specifications of the architecture will not produce a deadlock caused by the interaction in
any attachment between its components.

A formal proof of the properties of compatibility is out of the scope of this paper, but
it can be found in [4]. Compatibility analysis can be easily automated in a similar way
to the characterization devised by Sangiorgi for the bisimilarity relations [16].
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4 Extensibility

In order to promote effective reuse of both components and architectures a mechanism
of redefinition and extension of roles and components is required. In the object-oriented
paradigm reuse is achieved by inheritance and polymorphism. Inheritance refers to a
relation among object classes by which a heir class inherits the properties (methods and
attributes) of its parent classes, while it can extend them by adding its own properties.
The inherited properties may be redefined, usually under certain restrictions, but roughly
speaking, we may say that the interface of the heir class includes those of its parents.
Inheritance is a natural condition for polymorphism, as it ensures that the derived classes
will have at least the same properties than their parents. Thus, a relation of inheritance
would be also of use for specifications of software components.

However, in our context the interface of a component is defined not only by the
signature of its properties (i. e. the signature of its roles), but this interface also includes
the behavioral patterns described in the roles. Thus, redefinition of behavior is restricted
by several conditions, which define what we have called a relation of inheritance among
roles. These conditions ensure that role compatibility is closed under inheritance, in the
sense that if two roles are found compatible, any derived role related to one of them by
inheritance will be also compatible. Once again, we refer to [4] for a formal definition of
role inheritance and its properties.

Role inheritance can be easily extended to components. A child component inherits
its roles from its parents, while redefinition is restricted by the conditions defined for role
inheritance. Since the relation ensures the maintenance of compatibility and deadlock
freedom, it defines the conditions for polymorphism to take place, allowing the substitu-
tion of a component in any system by a specialized version which inherits from the former,
with no need of checking the compatibility of the modified attachments. This gives place
to a mechanism of architecture instantiation, by which a software architecture can be
considered as a generic framework [14] which can be partially instantiated and reused as
many times as needed.

Component frameworks derive from the idea of design patterns, and they represent
the highest level of reusability in software development: not only source code and single
components, but also architectural design is reused in applications built on top of the
framework [15]. Since our specifications can be verified for compatibility, this promotes
both software reusability and quality.

5 Example

We will show the implications of our approach by means of a well-known example. Con-
sider the architecture of a typical Producer-Consumer system. This architecture is built
from three interconnected components: a Producer, a Consumer, and a temporal store
that we can describe as a Buffer. Suppose that the Producer generates several items and
sends them to the Buffer, using an operation in, until it decides to quit, which is notified
by sending a predefined event wquit. On the other hand, the Consumer retrieves items
from the Buffer, using and operation out, and performs some computations with them.
The Consumer ends when it has got all the items generated by the Producer, which is
notified by the Buffer with an event rquit.
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component Producer-Consumer {

component Producer {
interface empty;

interface role Writer(w, q)

composition }
p : Producer;
¢ : Consumer; component Consumer {
b : Buffer; interface role Reader(r,q) = ...;
attachments } i
p.Writer(in,wquit) <> b.Input(in,wquit); component Buffer {
c.Reader{out,rquit) <> b.Output(out,rquit); interface
} role Input(i,iq) = -..;

}role Output(o,o0q) = --+;

Figure 1: Architecture of a Producer-Consumer system

From the description above, we can derive the specification of the interface of the
components. Events in and wquit form the interface between the Producer and the
Buffer, while out and rquit form the interface between the Buffer and the Consumer
Figure 1 (left) shows what could be the specification of our system in a typical ADL. Thf;
Producer-Consumer system is a composite which contains three sub-components, each
one instance of a certain component class. These subcomponents (to be more exa.::t the
roles that represent their interfaces) are attached to each other, making the previously
described interfaces.

The correctness of the attachments can be determined by static analysis, checking the
conformance of the names of the operations and the type of the parameters l,)ut mere type
checking doesn’t ensure that the system will not crash during execution. Fc’)r instance zie
Consumer can invoke an out operation when the Buffer is empty and the Producer, has
quitted the system. This behavior will lead to a deadlock or a run-time error, dependin.
on the actual implementation of the operations. Thus, a correct performance of’ the systerﬁ
requires that the components involved follow a certain protocol.

In our example, the Producer may invoke in an undefined number of times, but it
must finish sending an wquit event. This behavior must be specified by the role E;riter
On the other hand, the Buffer is defined by two roles. Role Input must indicate that the.
Buffer is able to accept either in or wquit at any time, but always ending in wquit after a
sequence of in operations, while role Dutput must specify that the Buf fer will perform out
opera.t.ions only when it is not empty, and that a rquit event will be sent when the Buffer
empt.l(?s after the Producer has quitted. Since the Consumer doesn’t know whether these
conditions have occurred or not, this will be specified as an nondeterministic behavior of
Fhe Bu.ffer, using local choices. Finally, the Consumer must perform out operations until
it Teceives a rquit event, this being described in role Reader as a deterministic behavior
using global choices. Figure 1 (right) shows the specification of system sub-com t’

and their roles. o

.Role protocols can be specified in the w-calculus (but they are not included here to
avoid detailed explanations about the syntax and semantics of the calculus), and we could
arlal.yze the compatibility of the attachments Input <> Writer and Dutpu1t <> Reader
finding out that the architecture is composable. Thus, an instance of this architecture:
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such as

prodcon : Producer-Consumer;

will be deadlock-free.

However, not every Producer-Consumer system follows exactly these protocols. Lets
consider a certain Producer’ which generates exactly four items before quitting. Let role
writer’ describe this behavior. Using the relation of role inheritance, we can verify that
Writer’ inherits from Writer, and thus Producer’ inherits from Producer. Hence,

prodcon’ Producer-Consumer(p : Producer’);

an instance of Producer-Consumer in which the Producer has been replaced with an
instance of Producer’, will be also deadlock-free.

Similazly, we could extend our Buffer with an operation flush, that empties the
Buffer, and add this new behavior to the Input role. Once again, we can verify that the
new Buffer’ inherits from Buffer. Thus, Buffer’ can be used in any system containing
a Buffer, as in

prodcon’’ : Producer-Consumer(p: Producer’; b : Buffer’);

with no need of checking the compatibility of the extended role Input’ with the roles
representing the particular Producers in these systems.

In conclusion, a single proof of role inheritance allow the replacement of a component
in any system belonging to a family of related (but not identical) systems. Liveness
properties of the architecture are ensured by static checking even in a scenario of dynamic,
i.e. at run-time, binding.

6 Discussion

In the last few years several proposals related to the specification of software architectures
have been presented. However, most of them are not formally based, which prevent any
kind of analysis of the systems so specified. All these proposals are compositional, in the
sense that they consider a software system as a composition of several more elemental
units. However, they differ in which are considered the elemental units for the composition
of software systems. Some of them, like Darwin [9], consider that systems are built from
components, while others, like Wright [3] or UniCon [17], also includes connectors as
first-order elements of the notation. In [3], this distinction leads to the use of ports for
components interfaces, and roles for connectors. This causes an asymmetric interpretation
of compatibility which would lead to different relations of inheritance for ports and roles.

Besides, the distinction of components and connectors at language level does not
scale very well. If we think of composite structures, formed by several components and
connectors, the distinction vanishes, as usually these structures share characteristics of
components (computation, data storage) and connectors (they serve to interconnect other
components). The composition of components and connectors would lead to hybrid com-
posites with free ports and roles which could not be classified either as components or as
connectors. In order to maintain regularity and simplicity, we do not distinguish at lan-
guage level between these categories, and all system components are specified the same,
as a set of roles which represent their interface.
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If we focus on formal methods, several papers [2, 7] have already proposed the use
of formal notations, such as CSP or the Chemical Abstract Machine, for architecture
specification. In (8] the ‘{r—.ca,lt.:ulus is used for defining the semantics of Darwin, where
direct expression of mobility in the calculus is used to endow this language with lazy
instantiation and direct dynamic instantiation mechanisms. However, the modeling of
the interactions among components is not considered, and type checking is reduced to
name equivalence. Aspects of inheritance and extension are not considered either.

With regard to compatibility, our proposal follows the ideas developed in [2], which
uses CSP to determine compatibility of ports and roles. However, as it is stated in [8], CCS
or GSP do not seem appropriate for the description of evolving or dynamic structures.
Qur proposal tries to solve this problem by using the m-calculus. Direct expression of
mobility in the calculus makes easier the architectural specifications for dynamic systems.
Furthermore, [2] does not address inheritance or specialization.

In [20], finite-state diagrams are used for the specification of what they call protocols,
and relations of compatibility and protocol subtyping are also provided. Our approach
differs from theirs in several relevant characteristics. Some of them derive from the richer
expressiveness of process algebras with respect to state diagrams, as indicated in [12].
First of all, the use of the w-calculus allows the specification of dynamic systems simply
by sending channel names as arguments of messages, while their proposal refers only
to static architectures. Second, using the 7-calculus, every message is send or received
through a certain channel. Scope rules permit the restriction of channels to a set of
Processes, resulting in specifications more robust, modular, and also closer to software
implementations, while in [20] channels are not considered, and every message is sent to a
common pool, from which it could be retrieved by any component in the system; this being
easily error-prone. Third, the 7-calculus distinguish between global and local choices,
allowing us to express scenarios in which a component may decide locally to commit to
a certain transition or not (asynchronously), or in which the components involved in a
communication globally agree in the commitment. However, their approach only takes
into account synchronous global choices.
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Abstract
This paper outlines a framework for building Generic Reusable Vertical Business Object

Models (GRVBOM). A GRVBOM is a conceptual model of a Specific Industry or a
blueprint of that industry capturing the essence of the industry. The paper presents an
approach to tackle and resolve the problems inherent in doing so, and suggests that the
resulting Vertical Industry Reference Model can be applied to assist Information
Systems developers to rapidly provision solutions as business changes. The main idea is
to accurately reflect the business in a model, capturing the core business objects and
processes of a particular industry so that this model will evolve and can be reused to
develop solutions to multiple problems either within the same organisation who built the
model or by different organisations of the same industry.

1. Introduction

Business information systems continue to be developed on the basis of business
requirements which are only a snapshot of a business’s dynamic life. This type of
development, not taking into account overall conceptual and clear understanding of the
business has resulted in large amounts of waste in terms of continually developing new
systems from scratch (Jacobson 1995, Taylor 1995, Partridge 1996, Graham 1994, Martin
1992). It is argued that these systems have failed because of a fundamental lack of
understanding of business systems as living systems.. We suggest that the business
system must be understood in context to other businesses and in relation to the industrial
sector that business belongs to. The anomaly in business is that there is a lack of
prevalence of generic models for vertical industries However, this type of understanding
and development of vertical industry models is a very difficult task Systems Analysts,
Software Engineers, Information Systems developers face. This is because they have
minimum resources of time and money with which to develop, efficient, fully functional,
maintainable systems that captures the business requirements for many projects. We
suggest that a separate group of developers should spend an initial overhead of time and
money to develop a reference model that captures the overall core business and once
developed this would be an extremely useful tool that these developers can use as the
starting point to several business application developments. These developers can then
work within this business framework to make decisions and to develop specific systems
that meet the requirements in multiple projects, hence saving time and money in the long
term. This reference model would be a Generic Reusable Vertical Business Object Model
(GRVBOM).

1 i1 u z B
; This rc;earch is funded with an award from British Telecommunications plc.

A Vertical Industry is a family of organisations within the same industrial sector, e.g.
Telecommunications, Banking, Manufacturing , etc.
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It is difficult to understand why something as common-sensible as building Generic
Reusable Business Object Models of Vertical Industries has not become a central and
essential feature of business modelling before. If getting such significant improvements in
building such models were easy, it would have been done long ago. One of the problems
is that a Generic Business Model is usually misunderstood. It is assumed that the model
defines the business as generic, however this is not the case. There are core, common and
generic aspects of a business that can be captured which is applicable to many
organisations within the same Vertical Industry. Another problem is that it is difficult to
see general patterns for the high level classes that will supersede the original lower level
classes. The secret is in the object paradigm and the categorising of specific businesses
into specific industrial sectors. This gives a much better, much more conceptually
accurate, understanding of a business in context and in relation to other businesses. Digre
(1995) has highlighted the need to build vertical industry models and Rutt and Stringer
(1996) of the OMG Vertical Industry Domain Task Force (OMGVIDTF) have started
work on a Telecommunication Vertical Industry Model.

The paper is structured as follows. Section 2 identifies and describes some of the
characteristics of a GRVBOM. We then develop a framework within which generic
objects and processes within vertical industries can be captured, analysed and
represented. These generic activities represent the core business object and processes for
that particular industry.

In section 3, we highlight the implementation of the GRVBOM in its application in the
Telecommunications Industry and the Finance Industry. We conclude with the suggestion
that the GRVBOM is a viable modelling approach and present an overview of further
work in progress to evaluate the viability, usefulness strengths and weaknesses of a
GRVBOM.

2. The Generic Reusable Vertical Business Object Model

This section gives an explanation into some of the characteristics of a GRVBOM. At the
heart of the model is a Core Business Model (CBM). The core business model is built
within the framework of generality and ability to be reused within a Vertical Industry.
Most importantly, it presents an approach to model the conceptual understanding of the
business using Jacobson’s Use Case Engineering and Rumboughs OMT. The core
business model can be mapped onto uses cases and a business object model. It must be
stressed that the GRVBOM is built independently of any application development.

2.1 GRVBOM- Core Business Model

At the centre of the GRBOM is the Core Business Model. This is built by analysing the
existing documentation, systems and operations within the domain of interest of a
particular industry. Then the generic business processes, business objects and the
interconnections are captured and represented in a GRBOM - Core Business Model
{CBM). Figure 1 shows the GRBOM-CBM.
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Figure 1 The GRVBOM- Core Business Model (CBM)

2.2 GRVBOM- Generic Characteristic

When using the word generic you must qualify it with the level of genericity you are
dealing with. The idea is to appropriately distinguish the general from the specific.
Generality is a relative term and the next few paragraphs will explain this in the context
of this research.

Genericity is the staged refinement of entire models (Vernadat 1992). The concept uses
stepwise instantiation to go from aggregations of generic components, through increasing
specialisation’s of business domains, to enterprise, facility, and work area
implementation. Genericity is a controlled process which utilises principles of
specialisation, inheritance, relationships, and contexts to leverage reusable industrial
models and rapidly provision tailored solutions.

The concept of genericity should be used to specialise the langnage and semantics
appropriate for each business domain. The business langnage should be defined in terms
of higher level generic constructs. Subdomain specialisation will in turn be defined in
terms of domain constructs.

Figure 2 is a genericity diagram which utilises the above mentioned ideas and is an
important component of the GRVBOM. A core business model can be built for each
level.
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Figure 2 GRVBOM- Genericity Diagram

Generic Models in the context of this research describe certain kinds of scenarios which
are common to vertical industries. Hence integrating the understanding of a family of
industries. The similarities of these scenarios are reflected in the corresponding business
object models, i.e. they have the same or similar structure. A generic model can help the
modeller to develop and analyse his/her own model. To take advantage of a repository of
generic models there must be an understanding of these models and a way of analysing
the user specific model and a generic model. There must be a way of comparing and
contrasting existing generic models and newly designed user models (Digre 1996).

Sutherland (1996) forcefully pointed out that it would be wiser to build vertical industry
models that fit specific industries as opposed to Fowler’s (1996) idea that there should be
a master model that can be adapted to any industry. Sutherland (1996) argues that each
industry provides different services, functionality and mechanisms to run the business.
The complexity of all the different objects and behaviour interactions within an industry
is so great that it would be more realistic and effective to build a model to suit a particular
industry. It is with this in mind that this research is justified in the building of a GRBOM
of a vertical industry..
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It would be much easier to understand one particular industry in detail rather then trying
to understand all industries and capture the common core element of all industries.
Usually, practitioners have expert knowledge of one industry as opposed to knowledge of
all industries and this expertise can be drawn upon in building a GRVBOM. GRVBOM
would be a reference model when building new systems for that particular industry.
GRVBOM of a vertical industry will provide strategic competitive advantage to an
organisation within a particular industry that posses and makes use of a GRVBOM as
opposed to an organisation that does not posses this model. The critical enablers for
building GRVBOMSs are generalisation-specialisation, use case engineering and object

technology.

2.3 Reuse Characteristic

Systematic reuse is a general principle that is instrumental in avoiding duplication and
capturing commonalty in inherently similar tasks and domains. Frakes and Isoda (1994)
say that companies that have a better understanding of the business domain and
implement systematic reuse will have a powerful competitive advantage. Reuse usually
implies software reuse but this project will address reuse at the business knowledge level
as opposed to just software reuse. There is a notion that every business has unique
requirements and therefore unique solutions have to be proposed for the information
system of each specific business. However, this is not necessarily the case. There is an
understanding that vertical industries have much in common, and there is a need to
exploit this commonalty therefore avoiding arbitrary duplication when developing similar
systems for a particular industry. There is a clear market trend that organisations cannot
afford this bespoke systems development approach in today's turbulent business
environment and must develop systems that can survive when businesses change. One
approach to achieving systematic reuse is to build business objects (Arrow et al. 1995)
that are generic, stored in a enterprise-wide repository as assets and therefore can be
reused as required. This involves enterprise modelling which is a major area of
application for object technology and software reuse (Fraser and Macintosh 1994).

The GRVBOM is a reference model that can be reused by systems developers in the
development of multiple projects. Figure 3. shows the GRBOM reuse dimension. The
diagram shows the positioning of the CBM in relation to business modelling and
Information Systems modelling. The CBM is designed for reuse (DfR) and then
applications are developed with design with reuse (DwR) in multiple projects.
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2.4 Business Object Model

Jacobson’s Use Case Engineering (Jacobson et al. 1995) and Rumbough’s OMT
(Rumbough et al 1991), were used to build an Object-Oriented Model of the above CBM.
Figure 4 shows the overall business object modelling dimension. The Generic Processes
in the Core Model were represented as a series of Use Cases containing various Business
Objects. Object Management Group Business Object Domain Task Force (OMGBODTEF)
(Arrow et al. 1995) have defined Business Objects as “a representation of a thing in the
business having attributes, behaviour, relationships and constraints. Select OMT was used
as a CASE tool to support the building of GRVBOM models and because it provides a
repository to store the Business Objects and Models. Select OMT is a fully functional
CASE tool that supports Rumbough’s Object Modelling Technique and Jacobson's Use
Cases and Object Interaction Diagrams. The business processes and business objects of
the Core Business Model are mapped to use cases and business objects of the business
object model, see figure 5. The business objects are made up of interface objects, control
objects and entity objects.
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3. GRVBOM Implementation

The GRVBOM was applied in the development of a GRVBOM of the Customer Services
Domain of British Telecommunication plc GRVBOM-CSD-BT (Choudhury and Sun
1997). This showed that GRVBOM is a viable modelling approach. This model is being
evaluated against BT’s existing object-oriented customer models, which have already
been analysed by previous analysts to develop various systems for BT applications, for
example customer billing systems, customer enquiry systems, customer marketing
systems, etc. The generic nature of the GRVBOM is being evaluated by instantiating the
model in different domains for example the Finance domain. We are currently carrying
out a Case Study, similar to the one in the Telecommunication Industry, in the Customer
Services domain of a Credit Insurance company which can be generalised to the
Insurance Industry which in turn can be generalised to the Finance Industry sector. In
order to justify the usefulness of the GRVBOM, evaluation criteria are currently being

developed and these will be used in subsequent testing and further development of the
GRVBOM framework.
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4. Conclusion and Further Work

We have p.resented‘and explained the need for the development of a GRVBOM

GRVBOM is an object-oriented business model that is general to a vertical industry' ;f
the he.a\r.t of tt}e model is the Core Business Model that can be built for each level (I)f ]
Genericity Diagram. This model can be used and reused by information syste i
developers as the starting point of several application developments. Currently, work isn‘}s
progress to evaluate the appropriateness and usefulness of the GRVBOM by \;vay of ca::,

St‘l:ldies in the Te_leconununications Industry and the Finance Industry. The results fro
this evaluation will be presented in a future paper. "
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Abstract

This paper presents my PhD research work in very general terms.
My main interest is programming language design. Since language de-
sign is so hard, I've chosen to generalize and regularize the design of an
existing, high-quality OO language, namely BETA. A good language
combines good expressiveness through few, well-designed abstraction
mechanisms with a high degree of safety through compile-time analyz-
ability. I'm using two main tools in this process, an actual implemen-
tation of the generalized language, and formal semantics. A formal
language specification helps in spotting inconsistencies and bad lan-
guage design, enables strict conformance checks on an implementation,
and supports the further development of the language in light of the
insight gathered. The purpose of an implementation is to discover the
pratical properties of a language, that is how it actually behaves as a
tool for a programmer. The generalized language embodies a notion of
inheritance built on constraint solving, and this enables an unusually
profound separation of concerns, and also improves on the possibilities
to specify and enforce multiclass type consistency constraints.

Keywords: language design, language implementation, formal semantics, type
systems, inheritance, abstraction mechanisms, separation of concerns

1 Introduction

An important part of the history of computer science is devoted to the design \
and specification of programming Janguages. There is an analogy between
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the notion of a progamming language and a fractal like the Mandelbrot set:
it yields an unfolding of a seemingly small and simple seed (e.g. z 22 +¢)
into a very complex entity; in this case the syntax and semantics of the
programming language is the simple seed, and the entire set of realized and
potential programs is the complex unfolding of it.

It is hard to evaluate a seed with such a large and complex unfolding as
a programming language. It may be, loosely, considered as a chaotic system,
since even small changes in the seed may have a profound impact on the
unfolding. Two approaches to evaluating it are to use previous experiences
about particular aspects of the seed, and to actually do some unfolding. The
first approach amounts to choosing language constructs and combinations
of constructs which are “known” to work well, and possibly to work well
together; for the second approach one must experiment with carefully selected
example problems, investigating how solutions to them may be expressed.
Or, alternatively, one may use the language in a lot of mission critical real-
life projects and then conclude in rich detail why it is no good. ;-)

My approach is to take a language—BETA—which I find quite well-
designed already, and then to adjust the design in ways that improve the ex-
pressiveness and flexibility of the language without loosing the safety of strict,
static type checking, and ensuring that it is still possible to create tools—
compilers, debuggers etc.—and programs with good performance. When the
language was first designed in the 70'ties, it was a prime consideration that
it should consist of few, but very expressive, orthogonal concepts. This has
also been a primary criterion in my process of generalization.

Section 2 describes the current language BETA; section 3 outlines and
motivates the changes I've made to the language, and section 4 presents
a progression of language mechanisms which should hint at the expressive
power at hand. Finally section 5 concludes.

2 The Language BETA Today

BETA [9] is a modern, strictly typed, object-oriented programming language,
coming from the Scandinavian tradition [8, e.g.] which produced the first
object-oriented language, Simula [2]. The language has a somewhat unusual
syntax which may at first confuse some people, but it is actually both simple
and consistent. A good example is that assignment and parameter passing
is written in the evaluation order and using an arrow, which is natural but
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very unusual. For example, what is usually expressed somewhat like y:=x
is written x->y in BETA, and aProcedure(x,y,aFunction(u,v)) is writ-
ten (x,y,(u,v)->aFunction)->aProcedure. Note that this allows you to
return more than one result, and to deliver parts of such a return list to
different receivers: returnsTwoResults->(takesOneArg,takesOneArg).

A more profound—but equally unusual—property of BETA is the unifica-
tion of many programming language concepts into one, more general concept,
the pattern. The pattern concept subsumes and generalizes the concepts of
class, procedure, function, coroutine, process, exception, and more. It de-
scribes structure in terms of attributes, input and output properties, and
behaviour. Think of it as a class concept equipped with behaviour, which
you might just describe as a default method or function. Focus on the be-
haviour of a pattern, and it may be used as a procedure or function, de-
pending on the input/output properties; describe some state using attribute
declarations, and the pattern may be used as a class; patterns nested in the
“class” may be used as methods. Patterns are descriptions and objects are
substance created according to such descriptions. If the substance is used for
an extended period of time it is like an “object” in traditional languages; if
the substance only survives briefly, it is more like a procedure invocation.

There is general block-structure, i.e. support for unlimited nesting of pat-
terns and objects. This means that whenever you create an instance of a pat-
tern P’ textually nested within the declaration of a pattern P, the instance
of P' is immutably associated with one particular enclosing instance of P,
and the P’ instance has access to that enclosing instance of P. This makes
it possible to use an instance of a nested pattern as a method invocation for
the enclosing object—a method usually wants to read or write the state of
“jts” object. But it also lets you save such a “method invocation” for later or
repeated execution, which is needed for futures and callbacks, or in general
for “closures” as they are usually designated within the functional language
community.

The notion of subpatterns—and the mechanism inhkeritance which pro-
duces them—enables the construction of class hierarchies as known from
other languages; but since a pattern is also a procedure we get the unusual
but very useful notion of pre-methoding, i.e. inheritance hierarchies of proce-
dures and functions. The wirtual pattern concept of course supports similar
usage as the concept of virtual member functions in C++ [3, 13] and (non-
frozen) method features in Eiffel [10]. But since a pattern is a class, it
also supports type-safe constrained genericity as do parameterized classes in
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Eiffel, and it supports the equivalent of Eiffel's declaration by association.!
Note that a BETA program does not need a universe-wide “system-validity
check” to ensure that a program will never give rise to a type error at run-
time. Nevertheless, a programmer may choose to write BETA programs that
may produce run-time type errors at certain well-known places (the compiler
emits a warning for each place), effectively accepting an unsafe program in
return for the greater flexibility.

There is a working implementation of BETA [5] developed by some of the
original language designers among others. The actual semantics of the imple-
mentation along with informal language descriptions has been the starting
point for my specification and generalization of the language. There has been
some attempts at deseribing the formal semantics of (parts of) BETA [1, 7].
These specifications have not centered on describing the language but rather
on slightly different things, such as comparing various variants of inheri-
tance, or using a particular formalism. Consequently, they have not yielded
a description which is sufficiently close to BETA as to be useful for a lan-
guage development or implementation effort. For example, they describe a
language in which the semantics of name lookup and/or assignment and pa-
rameter transfers depend on the actual type of an object, not on the statically
known type. Such a language probably cannot be typechecked statically, and
it certainly behaves a lot differently than BETA. One could have the suspi-
cion that semantic descriptions of languages tend to describe Smalltalk-like
languages, since such a “typeless’ semantics is much easier to specify. In
my opinion, both the static checking of programs and formal specifications
of languages are so valuable facilities that they should be reconciled.

3 Generalization and Regularization

From this already very general language I have worked towards a more gen-
eral and regular one. The regularization part has to do with those parts of
the language where the implementation is best explained in terms of prag-
matic decisions taken in order to implement an actual compiler within rea-
sonable time, producing programs with a good performance. For example,
the Mjglner BETA implementation does not support obtaining a dynamic
reference to an integer (“to take its address”), or of instances of other ba-
sic, predefined patterns. Should we formalize this into a description of sim-

1uAnchored” declarations, as in x: like y

FErik Ernst 29

ple non-object entities and complex, user defined objects? Should false
and true be patterns? Should they be specializations of boolean? Should
there be a notion of the object “one” and the object “two” and so on, as
in Smalltalk [4], such that computations on integers and other simple val-
ues would be computations on special references to unique, always-existing,
immutable objects, or how else should we get started in the description of
state?

T've arrived at a description which uses both values and objects, and hence
is more in line with traditional formal semantics, and which consequently
goes against the “everything is an object” philosophy known from informal
descriptions of object-oriented languages [4, in particular]. The description is
using the formalism Action Semantics [11, 12]. It is still under construction,
though.

The generalization part has to do with the type system, particularly
inheritance—or specialization, as it is normally designated in the Scandi-
navian QO tradition. Normally, specialization is an operational mechanism,
in the sense that it supports the construction of a derived entity from an ex-
isting entity and an difference specification. For example, using the name of
some particular class you may specify a subclass of it by listing the enhance-
ments (e.g. some new attributes and enhanced versions of existing attributes).
The class being built on is known precisely, and the enhancement is known
precisely at the place of specialization. Building on more than one base class
(multiple inheritance) does not change this.

My model supports a more declarative approach in which specialization is
defined by a constraint solving process. The pattern denoted by a particular
pattern attribute is computed by collecting all constraints on that attribute
in scope. The combination of two patterns entails the combination of the
constraints on common, nested patterns, so the specialization operation is
smplicit in many cases. It is this implicitness that allows the construction
of separate patterns which may by weaved in a delicate way through multi-
ple inheritance, in particular because the combination of behaviour is very
expressive. The combination of block structure, specialization, and virtuals
makes for a quite complicated setting from a type-checking point of view,
but for the programmer this generalization appears as the removal of a num-
ber of limitations. Among other things it becomes possible to inherit from
a virtual pattern. Examples of the new possibilities and the reasons why we
want them will be given at the workshop.

With constraint based specialization, a new level of “static properties”
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emerges: traditional static knowledge says something at compile-time about
all potential runs of a program. The new level says something at the time of
library construction about every possible library application.

Here's a longer explanation: Since a type checker is a theorem prover for
a special class of theorems, type checking supports establishment of some
precise statements about the run-time properties of a given program. Now,
for reuse-oriented libraries there is yet another “time,” namely library con-
struction time. As long as a library is always used as-is, this presents no
new challenges. With inheritance and genericity, however, there could be er-
rors that make it impossible to compile a program using a library, and there
could be problems at compile-time or at run-time arising because of contract
violations.? The problem is that specialization of classes and instantiation of
parameterized classes (e.g. C++ templates) is a more intrusive usage of li-
brary code than just calling some functions i a C library. More expressiveness
goes along with more fragility.

We need more expressive constraints on library code, such that library
users can tailor a library extensively, guarded against contract violations by
a good checking system, and not impeded by superfluous constraints.

The constraint based specialization mechanism in my generalization of
BETA is one step towards that impossible goal, expressing “the right” prop-
erties that hold or should hold for all specialized or instantiated versions of a
reuse-oriented piece of code. In particular, it is able to express type relations
within a group of classes that should hold across specialization. This it not
in any way a special property of libraries, that is just a convenient frame to
give motivation for the usefulness. It is a general property of patterns.

4 Some Levels of Expressiveness

When designing a template class in C++, one builds a description entity
which will generate a somewhat homogeneous set of instances. If an attribute
of such a class has the same type designation as a formal argument of one
of its member functions, they will have the same type in all instances, which
gives some nice, simple consistency guarantees. But a template cannot be
thoroughly type checked, most of the type checking must be done individually
for each instance. This may give rise to problems when using the template:
perhaps a class parameter is not acceptable, because the template accesses

2Using Eiffel parlance
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a member which is not present in that class. C++ templates are little more
than textual macros.

In Eiffel, constrained genericity allows real type-checking of the parame-
terized class, such that no instantiations of a parameterized class will be able
to provoke type errors within the source code of the parameterized class.
But if you have a set of interrelated, parameterized classes, you will have
to specialize them one-by-one even if the specialization follows simple, strict
and well-known rules. From the language point of view you have specialized
them independently, and any regularity in this is treated as purely acciden-
tal. When you start using the result, any mistakes in this regular, manual
undertaking may give rise to compile-time errors or, worse, run-time errors.

In BOPL [6], a family of languages constructed for the presentation of
object oriented type systems theory, you may specialize a set of classes as a
whole; the type relationships are kept intact by a mechanism called capturing.
Specialization of one class implicitly creates a whole family of specialized
classes by finding the transitive closure of type dependencies and recreating
the entire, reachable graph of type relationships “at a higher level.” The
simplest example is the ListNode class whose Next member of type ListNode
gets specialized along with the class; this special case works like a 1like
Current declaration in Eiffel. Another example: assume that you have a
Tree class associated with a Node class, and the Node class has a Value
member of type Object.? If you derive a TextNode class having a Value of
type Text, a class which is a specialization of Tree will be created implicitly.
This implicitly constructed class would for instance have an insert method
taking an argument of type Text in stead of an original insert taking an
argument of type Object. The details are a little more complicated, but this
is the general picture. This actually realizes a multiclass type consistency
support mechanism, and that is an important step forward. A problem is
that the implicitly derived classes are available for use by the implementation
of the derived classes themselves, but they have no (known) names and hence
cannot be used in all the ways normal classes can. Another problem is that
you may not alweys want to have the semantics of such a generalized version
of like Current—some types should not be captured.

In today’s BETA, specialization (i.e. inheritance) is expressive enough to
subsume constrained genericity, and you may use nesting to ensure that a
group of classes are specialized as a group, so you can have capturing for

3The most general type in that type system
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exactly the patterns you want to capture. There is no type algebra, how-
ever, allowing you to specify the constructions of patterns in terms of other
patterns. The only facility of this kind is the single inheritance mechanism
which demands that both the base class and the enhancement specification
are compile-time constants. The generalized BETA language supports the
specification of relative constraints on patterns, such that a pattern may be
known to be an enhancement of one or more other patterns even though none
of them need to be known at compile-time. As a result of this you may for
instance specify some design patterns® as working, reusable, and checkable
code, not just as rules of thumb.

5 Conclusion

This is a very brief presentation, and hence it concentrates on the large
picture and the motivation of the work I've done during the PhD getting
process sofar. Inevitably, the properties of the work seem like unsupported
assertions, but I hope to make up for this at the workshop! The main topic
of this work is programming language design, development, and application
of formal semantics. Starting from the nice language BETA I've developed
a more general and regular language by means of an actual implementation,
and work is in progress on an action semantic specification of the result.
The type system has been generalized considerably, allowing for a constraint
based notion of inheritance which has the traditional inheritance mecha-
nism of BETA—already unusually expressive by the way—as a special case.
The generalized language supports the expression of multiclass type relation
consistency constraints, and in combination with pre-methoding it allows an
unusually effective separation of concerns. For more information please check
http://www.daimi.aau.dk/~eernst/gbeta.

*One example I'll give at the workshop is about the observer design pattern
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The design and implementation of telecommunication systems requires special features
from an object-oriented language like real-time constraints, concurrency, dedicated object
states and asynchronous communication. This paper defines terms which classify these and
other requirements and evaluates the object-oriented language SDL.

1. Introduction

A telecommunication system like an ISDN network comprises a great variety of software
components. It includes software for switches, the terminal equipment (like a simple
telephone) but also for the management of resources and the provision of high level services
like time dependent call forwarding. Software for telecommunication systems like other
software must be fast, robust and easy to maintain (e.g. extensible).

Like in many other application domains telecommunication software has to comply to
standardized interfaces in order to enable interoperability between software of different
vendors. The international standardization body ITU-T (International Telecommunication
Union - Telecommunication Sector) accounts for the definition of interfaces using formal
description techniques. The main language to define the behaviour of telecommunication
systems is SDL (Specification and Description Language). The current version SDL‘96
[Z.100] provides abstract data types, concurrency, asynchronous communication and type
based definitions. The use of SDL is not confined to the standardization area. The language
was successfully applied for the design and implementation of large communicating
systems[PL.112A]. However the language could not keep up with recent developments in the
domain of distributed (telecommunication) systems (ODP [X.901], TINA-C [CM94]). The
following sections motivate what language concepts are necessary for the design and
implementation of telecommunication systems and how SDL fulfills these requirements.

2. Application area

The term telecommunication system as used in this paper denotes all kinds of software
necessary to provide a telecommunication service. Examples for telecommunication services
are

= Basic Telephony,
» Conference Call,
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¢ File Transfer.
These services may be based on existing telecommunication networks like
* PSTN (Public Switched Telephony Network),
+B-ISDN (Broadband Integrated Services Digital Network) or
« TINA-C Distributed Processing Environment.

Telecommunication systems can be distinguished from other distributed applications since
they

s must satisfy real time constraints,

= must comply to standardized interfaces,

« use specialized hardware (e.g. language recognition devices),
= mostly use asynchronous communication and

= involves the transport of a variable or constant stream of data (e.g. a telephone call).
The experiences presented in this paper are results of projects for the design and
implementation of telecommunication systems at Humboldt-University Berlin, mainly:
* PLATINUM [PL112A],
« OOSPEC II [NF96],
«PT87 [PT87] and
+ CAMOUFLAGE [HK97]

3. The object-oriented language SDL

The following description of SDL is a simplification, for a complete reference, the reader is
referred to the ITU recommendation Z.100 [ITU96].

SDL is the ITU Specification and Description Language. It is standardized in the ITU
Recommendation Z.100 and it is based on the concept of communicating extended finite state
machines. Each state machine works in a stimulus/response fashion. SDL is mostly used for
the specification of telecommunication systems, but can be used to describe any discrete
system which exhibits an event-driven control flow.

With the 1992 revision of SDL, object-oriented constructs were introduced into the
language. SDL now contains a typing concept for structuring the system, and concepts of
virtuality and inheritance to allow for hierarchies of types.

SDL provides concepts to describe both the structure and the behaviour of a distributed
system. On the structural level, a system or system type is subdivided into blocks. The
concept of block is usually used to express physical distribution, meaning that the processes
inside different blocks are executed at different physical locations. A block consists of sets of
processes, which define the behaviour of the block. The behaviour of a process is described
using a state-transition-diagram, which is shared by all processes of a set. All processes
execute independently from each other, and possibly in parallel. They communicate by
exchanging signals. The signals are delivered via signal routes and channels, and end up in the
infinite input port of the receiving process.

To further substructure the behaviour of a process, services and procedures may be used. A
service can be used to group the transitions of a process by the signal that is consumed as a
stimulus. Procedures define transitions that can be invoked during a transition. Procedures are

similar to the subroutines found in other programming languages, whereas services are similar
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operation) can be invoked from the associated active object or from another passive object
which is associated to the active object.

SDL supports passive objects with algebraic defined abstract data types using ACT ONE,
Operations of passive objects can be defined with executable code too.

6. Threads

A telecommunication system must support different threads of execution. With the term
thread an execution context is denoted. Every active object has its own thread. Executable
attributes of passive objects which are associated to an active object are executed in the same
thread as the active object. Two threads can be executed in two modi relative to each other:

e concurrent: both threads can be executed at a given time,
« alternative: only one thread can be executed at a given time.

Concurrent thread execution models the existence of multiple processors which execute
threads simultancously. Alternative execution requires a scheduling mechanism which grants
execution time to a thread. Alternative scheduling can be

e non-deterministic: external scheduling - e.g. from timer events or
« deterministic: the executed code determines what thread is executed next [Mad93].

Often non-deterministic alternative scheduling on a single processor is used as
approximation of concurrent execution for simulation purposes.

Concurrent and alternative execution are both necessary in telecommunication systems.
Concurrent execution is provided by a multi-processor architecture. Alternative execution is
necessary to guarantee a fixed order of execution of threads. This could be for instance
necessary to have exclusive access on data in a special part of the transition or to assure a
special order of signal sending which are sent from different threads. Although this could also
be accomplished by means of synchronization between concurrent threads it is more
convenient to simply mark the threads as alternative threads.

The classification of active objects in a structural and hierarchical composition and the
classification as alternative or concurrent are different kinds of classification. That means that
three active objects a, b and ¢ contained in an entity e should not necessarily have the same
execution relation between each other. If a and b are executed concurrently it is not necessary
that a and c are executed concurrently. Often the SHC is also used for the classification of the
execution relation because such a classification is easy to understand as there is only one
classification for two purposes. The language SDL yields an example: a process composed of
services specifies alternative execution of all contained services but a block composed of
processes specities concurrent execution of all contained processes.

6.1. Time

A language suited for the design and implementation of telecommunication systems should
support at least two time models. An implementation of a telecommunication system will run
under real time conditions and therefore support real time values, e. 2. for timer. The design of
the telecommunication involves another model of time: model time. In this time model one
can assign a certain amount of time to an action or to a signal transport (e.g. no time progress
during signal transport but a time progress of one during execution of an action). The assigned
time has nothing to do with the time needed to execute the actions during simulation. Instead
it indicates time progress under certain conditions.
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SDL has no means to specify the duration of an action or a signal transport. Timers are
associated with a duration in SDL. This duration implies a partial order of timer expirations.
SDL tool providers give additional timing semantics to SDL specifications, e.g. the timer
duration is used as real time value of a certain unit.

7. Communication

An active object must be able to communicate with other active objects. Communication
can take place when one active object is the source for the communicated information, another
object accepts the communicated information and there is a way to transport the information
between the objects. Two kinds of communication should be supported:

« stream communication
« operational communication

Stream communication denotes a continuous exchange of entities from the source object to
a sink object. This kind of communication is necessary to model a continous data flow like a
speech channel in a telecommunication system. Stream communication takes place between
special attributes of an object: stream attributes.

Operational communication denotes the invocation of an operation (an executable
attribute) at a target object. An operational communication comes in two flavours:

» asynchronous communication and
« synchronous communication.

The source of an asynchronous communication does not wait until the operation is finished.

Asynchronous communication can be devided into two groups:
+ communication with assured reception,
« communication with assured invocation and
= communication with non-assured reception.

Using assured reception the source of the communication waits until it is assured that the
operation reaches the target and that the target can execute such an operation. It is not assured
that the operation is executed (the active object can decide to die before the operation is
executed). Assured invocation implies assured reception. It guarantees in addition that the
operation was started. Non-assured reception does neither guarantee that the operation reaches
the target nor that it is started.

The three kinds of asynchronous communication are necessary to mirror the high time and
security constraints of telecommunication systems. For instance telecommunication systems
must assure that a communication which delivers the billing information reaches the object
which provides billing, but the source object should not wait until the billing information is
actually stored. This requires asynchronous communication with assured reception.

If the target can terminate before all operations are executed that are already delivered to
the target and one wants to assure that the operation is executed assured invocation must be
used. This may be necessary in systems in which an object is replaced by another object, but
the pending operations are not transferred to the new object. The old object terminates but
notifies all sources of assured invocation operations about the failure of execution.

; Communication with non-assured reception is necessary to communicate logging
information which can be discarded because an object terminated. SDL provides this kind of

N
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communication through signal sending.

Using synchronous communication the source object waits until the operation is finisheg,
This kind of communication also provides results of the operation to the source object. SDL,
supports synchronous communication through remote procedure calls.

Communication between two active objects should be allowed only if a communicatipy
path exists which supports a special kind of communication. These communication paths can
be established explicitly and implicitly. Explicit communication paths improve reliability
because during analysis and execution tools can check whether the specified communicatioy
paths are used. Explicit communication paths can also improve readability because the reader
can recognize the communication structure of the SHC without viewing the code which
invokes communication. Specifying communication paths has the disadvantage that it 5
tedious work, that it can deteriorate readability because it enlarges the specification and that j;
does not improve security if all objects have disjoint sets of comumunication interfaces (see
next section about interfaces).

SDL allows explicit and implicit communication paths.

8. Interfaces

The implementation of an operation is hidden from the outside world of an object. It is alsg
hidden how a stream is produced or consumed. This information hiding serves to protect the
programmer from writing code which depends from implementation details. Only attributes
exposed in interfaces of an object can be accessed from outside the object. An interface
contains a fixed set of attributes of an object. The interface contains information how an
object can access attributes of another object. Communication can take place only if an object
has access to an interface and to an attribute in this interface of another object. Objects
provide the implementation of an interface.

There are two kinds of interfaces:

« Stream interfaces: which contain stream attributes only and
* operational interfaces: which contain data attributes and executable attributes,

During the design of a telecommunication system the programmer can write down the
interfaces of an object without caring about the implementation of the interface. This
simplifies the task of writing distributed systems. It hides unnecessary implementation details
when a task is devided into smaller tasks

Gates, exported variables and exported procedures are the attributes visible from outside a
process in SDL. However there is no notion of an interface in SDL. The description of
external visible attributes and the implementation are not separated.

9. States

Telecommunication protocols are described with finite state machines. Active object
should therefore have a special data attribute with a fixed set of values which serves as srate of
the object. An interface is tied to a subset of all defined states. Access to an interface is only
possible if the active object is in one of the states which are tied to the interface.

Objects in telecommunication systems communicate only if the object is in a certain state.
For instance in the B-ISDN UNI Q.2931 [Q.2931] protocol the reception of an alerting signal
(asynchronous communication with non assured reception) is only allowed if the object is in
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delivered". . . '
smg];ietl:a?s state associated operations since it allows selected signals to be received in

selected states only.

10, Predefined Passive Objects

i i imple passive objects like integer values or
nguage used for implementation needs simp| i
Ev;ge]: Iigangguages for telecommunication systems need furthermore ume‘values to denote
e iration of timers. More sophisticated objects are necessary‘for mappings ?vmch store
E: Z):Etions between two objects. Such an associating is needed to tie call specific information
2550
umber. )
3 ?5;;]{,1 gas a great variety of predefined passive objects (SDL uses AC.'It ONE to deﬁpe data
es). SDL can be combined with ASN.1 [X.208] to be able to use additional values like sets
types)-

or sequences.

11. Summary .

From experiences with the design and imp]emcntati()l"l of tclecognmur;)ipatwrt] syste.lgs
Janguage constraints are defined. Such a language needs active and passive o Jectg 0 prov: g

Jecommunication service. Active objects are map_pcd to threads whxch.can e execute
i tly or alternatively. Objects provide data attributes, executable attributes and stre'?\m
Cgrlict)u:::sll )j\ttributes are grouped in interfaces. Interfaces are necessary to establish
Eorrnmuni;:ation. Communication can take pl?ce asynchronous and.synchlronous. T

The ITU-T specification and description languag? SDL is FIe&gned prm'lral? \ for
telecommunication systems. However it does not provide all required features. The m
restrictions are

e no interface definitions,
s sophisticated hierarchy definition, . . . |
» no asynchronous communication with assured reception and assured invocation an

« limited use of alternative threads.

12. Outlook

This paper does not elaborate requirements about object references, real timg constraints or
partitioning of language units. It is the starting point for a dc.eper analysis of language
requirements. Other languages like CHILL, LOTOS or ROOM will be evaluated as done for

SDL in this paper.
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ABSTRACT

In recent years, Business Object technology is considered to be one of the ideal approaches to

deliver solutions to achieve the objective of Software Best Practice (SBP). However, the current

henomenon has shown that the strategies proposed only see the business from the IT developers' pair
of "tinted glasses" with the developers looking at the business from their own perspectives. The
influence of business end-users over SBP has since been neglected. Business end-users hold business
knowledge and they pose to be the most ideal candidates as business information providers and system
testers and responders.

Dynamic Systems Development Method (DSDM) is derived from the concept of Rapid
Application Development (RAD) with additional principles emphasising on user's involvement.
DSDM provides an ideal environment to enable developers to produce quality software while deliver
on time and within budget through the techniques of: joint requirement planning (JRP), joint
application development (JAD), function points, time-boxing, clean room technique, feasibility
studies, business studies, functional model iteration, system design and build iteration,
implementation. The holistic approach of DSDM is to form a vehicle to drive the developers and end-
users together. Traditionally, developers tend to put a subjective view on their work presuming this
is what the real world needs. A fundamental assumption of DSDM is that nothing is built perfectly
first time. As a result all steps can be revisited as part of its iterative approach. Thereforethe current
step needs be completed only enough to move to the next step. DSDM not only provides a life-cycle
but also the necessary controls to ensure its success.

This paper attempts to integrate two of the existing techniques namely: (1) Business Object
Architecture (BOA) and (2) Dynamic Systems Development Method (DSDM) life-cycleenvironment
to develop a Dynamic Business Object Architecture (DBOA). The DBOA model contains business
objects holding business knowledge. The architectural design of the BOA makes the business object
components easy to be reused. The rejuvenation of life-cycle through different stages of prototyping is
to enable the developers to build a model at an early stage of the project before any significant
investment is incurred and allows the developers to modify the system throughout the development
phases. The holistic approach of DSDM through substantial user involvement has brought the
business end-users and software developers together to achieve the objective of SBP. CAD
Consultants Ltd. (a credit insurance agent)'s system has been used in this paper as a case study of our
development work.

1 INTRODUCTION

Sofiware Best Practice (SBP) is not only the objective of the European Commission (EC) as a
driving force of software initiative but also the objective of commercial organisations and as well as
research and development bodies’ aim to achieve [ESPRIT97]. Software developers are striking hard
to bring new products and strategies to improve software quality.

Although there are many ways to achieve the objective of SBP, we believe that if we want to
use software to solve business problems, we should understand the business first. A situation in the
world can be in any shapes, any forms. It can be very fuzzy and complicated too. We need to make a
structured model of the situation in order to make it easier to tackle the problems. There should be a
balance between the business problems and software solutions. If the solutions are less than the
problems, the software will not be able to meet the business requirements. However, if the solutions
are more than the problems, we would be running at a risk of going over-budget or not meeting the
deadline. Another thing is that the end-users and the software developers should pass the right
messages to each other. All the end-users care about is the user interface, which reflects the performance
of the system. End users do not have to know what programming languages are used nor whether the
system is built using Object-oriented method or not. These jobs are passed to the software developers.

In order to deliver a system appropriate to the business needs, end-user’s involvement is not
only essential but also critical. There are four ‘C’ factors maintaining the relationship between the
software developers and the business end-users namely: (1) communication; (2) co-ordination; (3) co-
operation; and (4) compromise. There is no longer a vendor/purchaser relationship. It should be a
partnership. Business and IT should set a common goal together and work hand-in-hand towards the
goal. To fulfil this goal, the research work contained in this paper is focused on Business Objects
(BO), Business Object Architecture (BOA) and the Dynamic Systems Development Method (DSDM)
life-cycle environment. The paper is arranged in the following order.
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In section two, we address the concept of BO, how it is constructed and its problems. Section
three explains why an architecture is needed and the way to construct it. In section four, we discuss
about life-cycle and the DSDM life-cycle approach. Section five describes the integration between BOA
and DSDM to produce a Dynamic Business Object Architecture (DBOA). Section six describes the
case study and evaluation. Section seven is the conclusion. Section eight is the future work.

2 BUSINESS OBJECT

The current climate of object-orientation is still predominantly focusing on the analysis and
design methodologies, programming languages and user interfaces [Ramackers96]. However, these
effortsonly emphasise on how to produce ‘software systems® rather than how to produce ‘business
solutions’. We have adopted the Business Object technology as [Sutherland95] describes Business
Object as “where in the object are the business”.

Business Object, as defined by the Object Management Group (OMG)’s Business Object
Domain Task Force (BODTF) in their Common Facilities Request For Proposal (RFP CF-44) is: “A
representation of a thing active in the business domain including at least its business attributes,
behaviour, relationships and constraints. A Business Object may represent a person, place or concept.
The representation may be in a natural language, a modelling language, or a programming language”
[Shelton96]. In other words, business object is still an object but it extracts the abstraction from the
business and simulates it to software components.

The standard definition of Business Object is yet to be finalised by OMG but we have
proposed in this paper how we construct the Business Object.
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Figure 1 : Event Diagram

2.1 Modelling the Business Process

We have adopted Jacobson’s Use Case Engineering (UCE) as a foundation to develop
Business Objects as shown in Figure 1. UCE has provide a very powerful mechanism to force IT
developers to understand the business before anything else. Our Business Object model starts with an
Event Diagram to model the business processes on a high abstraction enterprise level.
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teraction Diagram (Flowchart) . . '
g eT}m lntemct%un diagram shown in Figure 2 is used to define the business procedures in detail.

There are actions, decisions, input and output nodes in the diagram.
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Figure 2 : Interaction Diagram
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2.3 Use Case Model

Kitty Hmlg

Having defined the business
] 1 . processes, we use the Actor and use Cases
13’&1;t.lt:mslups between the business processes and how the people handle the processes t; c};:ﬁne fhe
n Figure 3, each use case represents a task inside the business processes, - Al

Figure 3 : Use Cases and Actor

2.4 Use Cases and Objects

In the Use Cases and Obj i ing in Fi
« jects diagram showing in F, j i
st ] { owing igure 4, objects are d d
; ::;lses sA;t: rt[l)uézsiéasge, T‘erimar: t03 |c:;m1fy \;'_ha; objects should be included in the Uégvga.sgioomn ltjifg
i € pes of objects namely: (1) | j icati
e y: (1) Interface Objects 9
oundary between the end-user and the system); (2) Control Objects (manipula{ing thea;:]n'::ltlilglﬁﬁg

and.perfonnanceof the system); and
carries out different duties.

(3) Entity Objects (storing the static data). Each type of object

2.5 Complete

2) [nterfas
3) Control

00000000
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Use Cases Model )
Figure 5 shows the communication between the:-

1) Business End-Users and the Interface Objects;
ce Objects and the Control Objects;
Objects and the Entity Objects;

) Entity Objects and the System Developers
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Figure 5 : Complete Use Cases Model

i Use Cases and Business Objects .
&° B“sﬂss:hown in Figure 6, the [nterfaccO??Ject, Cor}trol
derived from the UCE have now formed Business Objects.

encapsulate Use Case Objects.

R y NEEARO —o X

Account
Currncy.

Object and Entity Objects which_ are
In other words, Business Objects

FaxSarver

Figure 6 : Business Use Cases and Business Objects

ty Objects

2.7 Business Object encapsulates Enti
Figure 7 expands from Figure 6.

Business Object, we then defin

e the attribu

Having identified what Entity Objects to be included in the

ithin each Entity Object for aggregation. The pu_z:inaas
il e tg(ut.‘;ide the selection from within the

Figure 4 : Use Cases and Objects

Object itself has its own attributes and operations that are

apgregated Entity Objects.
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Figure 7 : A visualisation for a Business Object with attributes

2.8 A Road Map of Business Object

As shown in Figure 8, Business Object starts with business process and is followed by the
interaction between the Actor and Use Cases. Objects are derived from Use Cases. The Interface
Object, Control Object and Entity Object play differentroles. Business Object encapsulates the Use
Case Objects in the form of a package consisting of business processes, functionalities, operations and
static data,

Objects &
Cases & Business Classes
Oblects

Interacfion  Use Cases & Objects

Figure 8 : A Road Map of Business Object

2.9 Problem of Business Object

When it comes to complexity managemen

serve all purpose. One Business Object has only

t, no single definition of a Business Object can
a single interface definition and is unable to take
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differentpoints of view [Daniels96]. Moreover, we do need workflow direction to describe different
1 ¢ . . . .
business transactions within an organisation.

T ARCHITECTURE (BOA) ) ) )

. ?hliSlTi?fmﬂz‘:fr(s: in Business Object has prompted the adoption of k};usmessB O%b;]r(::)t

i (gOA) Cory Casanave - Chair of OMG Business Object Dm;nam Task Force él )
o hit ctl:lre to represent the components that are used to ‘mode! the business problems an
deﬁnes 3 As shown in Figure 9, our proposed BOA frameworki; to adopt both iI‘op»Dm.vn
Sy Sysl?m- roaches. After defining the Business Processes from a h!g]} le\fel abstraction, E_nnty
e l?'mm‘l-'d[J at‘1Pf}ijt=d Bonc;m-Up. Finally, Business Objects are tl'on'ned which integrate the Business
gh']::;:easref:mi]}ionalilies and operations together. Business (zleECtS d(i a::g:])emi‘.{?;ilrai; et;}ecsrt:}tlye

- E i f Object-oriented encapsu 3 he

Obj'ects (a.s oppofc:ltt?lethe“::;r:vg)mlll?elil}:r:?’ oTlg iintity Objects stay in. the same position at t'he
e Objecrsfr . or1¥ Benefit of which is that different Business Objects share a single Entity
i g £ mi‘fywe ‘want to change the attributes of the Entity iject, we only have to cha.nl%e
S T]tllfr: g(;i’antage is that not only we can reuse the Entity Objects but also we can reuse the
OBILZ?ﬁeﬁﬁ lgruiesses. Business Objects can also be reused as a package as well.
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Figure 9 : BOA Framework
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4 DYNAMIC SYSTEMS DEVELOPMENT METHOD (DSDM) LIFE-CYCLE
ENVIRONMENT

Life-cycle methodologies are used by software developers and
controllability for their project management. There are different
[Hargrave96], Spiral [Bohem86], Fountain, Pinball
Development [Martin91],

[Henderson-Sellers96]),
ideal environment to enal

5 DYNAMIC BUSINESS OBJECT ARCHITECTURE (DBOA)
DBOA is a technique to develop a BOA using DSDM’s
substantial user involvement, frequent reviewing, testing,
stages of development. The iterative life

even on a conceptual level. Figure 10 s

the DSDM life-cyclemodel. Among each life-cycles, there is an increm
through these phases moving anti-clockwise from the to
prototype, 2™ phase functional prototype, design proto
the transfer points from one phase to another and the grey ones show where the develo
retum to an earlier phase. The white arrow indicates that the BOA madel ¢

Functionaf
B Fhase 2 Ao

Protatype

Figure 10 : DBOA Model

6 CASE STUDY AND EVALUATION
6.1 Case Study - A New Buyer System

The case study project is to combine the Domestic Buyer and Export Buyer's data files
together to form a single file and single interface. The project spanned a five week period in terms of
five time boxes as shown in Figure 11

project managers in facilitating
types of life-cyclessuch as Waterfa]|

Rapid Application
Dynamic Systems Development Method [DSDM95(a)]. DSDM provides an
ble developers to produce quality software while deliver on time and within
budget,

holistic approach by means of
and identification of problems at the early
-cycle also enables developers to review and modify the model
hows the DBOA model. The BOA is situated in the centre of
ental prototyping approach
p with feasibility studies, 1" phase functional
type and implementation. Black arrows show

pment can easily
an always be re-
architectured at any stage of the life-cycle.
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Figure 11 : Time-boxing in DSDM Life-cycle

; i jonal. BOA model
6.2 C’lj’;lse it“\gny;:: lé;tslt?rln* project had been delivered on t;n:’ iat}r:d ﬂ:\;aisg_e&a;zn:n B
ik i icle to communical ) T o
: i e i B ith other business objects. At the en
was considered to be satis e o ihiadier . I o
: : o i t much involved in the w
business requirements ity was satisfied, and had clearly fel ver?'_ b Pk
P uier cge“sl:l:tl} tll?e{: project was felt by the cr_:mple.te hl:an:i ’i rtl!l;:! ;)1]1%) s
e e Thel{-;fneassseunctial end-users who had been so actively involve
Iso the equal n . -
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i . . o
e resulcti{)fat:tli]zu‘l:::es:rength. None of them 1is pen'tmu‘liau-ly1 cr'm[::lﬁt?::ih a{zg,
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. del and software 1 g
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b an i i oject. There was an 1
. involved in the proj ) B
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a2 igni tly, if not more so, the us X o
e lhel?bsi{'st;e;‘r:{r tiqell’f gislf;;gﬁn I¥ is also worth mentioning that the experience was (i
responsibilil .
ime!) enjoyable for the developers. . ST
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T a1 i doubt. e CO! ; T e
g i ake the right decisions, pa
JRP and JAD sessions was S et it ‘
: b d i IT project has become
o i el volvement of the business engl-users, an o
o Ar;d ‘l})ecsaizzzso;rtf)‘jz;ea;yhils“is consistent with the prototyping that the function of
more of a bu ; =
. - e i i to revisit the
pes SOIV? busingss p\:o approach worked. The rejuvenation o_f Life-cycle en:ll\);dg ;155 ek
o e pmtlotyg&r‘l:% a[:Ei modify it in respense to the clrcunt\_s;::;:::qu.“emem oo
B T i pac i 1 design from a conventl . / i
: s wor s But at least it was something for
A e nctio totype was very much imperfect. Bul L e SO el
it Ti:fii:uhnc"i%talpir);c;es?gf refinement which went on through Time-bo ;
S sl i . iti fix the imperfections. ) ; o
i opportunities to f1X . ) i alin 2
resuhedmmﬁerg;;p:;ﬁve ease, what would have been an impossible
B We met, Wi 3
conventionallife-cycle.
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7 CONCLUSION

Although the result of the above case study is considered to be successful, DSDM is still pot
a mature technology. There are several ‘challenging’ areas where we would have to warn the
developers when using the DBOA approach:-

8 Friction between developers and end-users - there is always a situation where the developers and
the end-users do not get along well.

B How to select the “right” people and 10 ower them to make “right” decision?: this is more : ram Extracts
to do with business isfue agd ifcan only be"g,nproved through experience. DCSIgH Patterns as Pl'og

B Time-boxing Syndrome: everything is set inside a time-scale agreed with the business end-users, .
If planning is insufficient, developers would juggle between Eydun Eli Jacobsen o
time-boxes. They will be forcedto omit some unfinished tasks if they overrun the time-boxes or Department of Computer Science, Aalborg University
get panic to catch up at later time-boxes or they might have to abandon project if under pressure. %P ik Bajers Vej 7E, DK-9220 Aalborg @, Denmark

B Work Pattern / Paradigm shift for developers : the boundary between IT and business world is Fredrik Bajers ej, N bsen@es aucidk
taken away. Developers have to cross the border to communicate with the business end-users and E-mail: jacobsen @cs.auc.

to experience business environment rather than developing the system in their own environment. April 4. 1997
pril 4,

8 FUTURE WORK

B Tackle the challenges: Continue to research on the strategies to tackle the challenges as listed
2bove; Abstract

Object Repository/Reuse Library: Object Repository and Reuse Library for managing reuse is to be

developed through CASE tools, As the DBOA is developed under a rapid and iterative life-cycle, ; i ikistenice HE g

appropriate CASE environment is critical. High level development tools and 4GL implementation del. Regarding a software developer as a user, we point out the exis ; e

will continue to be used in the future projects using DBOA as a foundation. The combination of both e g] odel of a software development system and the software developer

of these technologies means that design/implementation iterations which a few years ago may have between the conceptual m

conceptual mode a 80! e system. To minimize i i sof evelopment
11 d T this gap, extendmg tware di ]

- . P of a software sy N : )

| | | systems (o support architectural abstractions is motivated. A two level model consisting of a

program level and an extract level is proposed.

i eates the user’s
We present a view on software systems and emphasize that a software system cri
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regarding abstraction over structures in software systems, and as such it is a more convenient Concepy
when discussing extensions of a design language as it covers other kinds of abstractions than
and object relations and collaborations,

With the arrival of new architectural abstractions comes also an increased distance between a Soft-
ware developer’s design language and the conceptual model represented by his software developmeny
system'. The more abstract or complex the new concepts are, the longer the distance between lan-
guages becomes. The distance between the languages is problematical since developing software i,.
volves both languages and translations between these, and the longer the distance between languages,
the harder it is to develop software using the specific software development system.

We are therefore interested in an understanding of design patterns, and to describe a model for the

these, and to describe a software development system in which design patterns are part of conceptua|
model represented be the software development system.

Just clagg

3 Program Level and Extract Level

We regard programs and design patterns to reside at two different levels. The programs reside at the
program level and design patterns reside at the extract level. The overall idea is that the programs

themselves are expressed at the program level, and our additional understanding of the programs is
expressed at the extract level.

3.1 Program Level

A programming language is a language for describing a processicomputation. The program is exe-
cuted by an interpreter which is constructed to meet the semantic specification of the programming
language. The structure of a program is given by an abstract syntax, and can be understood as a series
of elements arranged in accordance with the abstract syntax.

A program can also be understood more independently of the abstract syntax—general patterns
for organising elements and their relations can be identified and understood at a general level (we
might think of composite and observer design patterns here). These patterns will of course contain
elements that are part of the abstract syntax, but the organisation is different from what is dictated by
the abstract syntax. A program element in a program can be understood through several patterns, and
the patterns hence become perspectives on a program.

It is these different understandings of a program that we want to capture at the extract level.

3.2 Extract Level

At the extract level we want to be able to express how we perceive a program. The main element
at the extract level is the extract abstraction which design patterns are special cases of. The idea

behind extract abstractions is that we group together relevant program elements and consider these as
a whole.

Two kinds of operations are relevant for extract abstractions:

1. Operations on the relations between extract abstractions and program elements. This is related
to connecting program elements and extract abstractions, creating program elements from ex-

'We use the terms 'construction language” and the conceptual model represented by the software development system
interchangeably.
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ct aDs! i will discuss
b (l'aCﬁ()l'lS and creati ng extract abstractions from ju ograin elements. (<
tras > acl T Wi

this in Section 33

s on extract abstractions themselves. As a starting point we u;emﬁefxﬁ;ezzi ::5
; resented in [Kristensen and @sterbye, 1994]. an} he-re we 0 togest =
Stracu;:(s:tpabstractionw aggregation, decomposition, gcnr-:rahsan;lljonr and spec;x : il:plznéxu :;t
R : abstraction on the basis on mor
grﬁgatio_“ meﬂ-];:c?:: :’sitifg:n mZarrl!Zmel:va:tdecompose a (more complicated) extract abstrac-
abstr_actlons- e simy li extract abstractions. Specialisation means that _we form a new ex;ract
b lm(" i ddiE roperties to it. Generalisation means that we omit some propemf:s Tom
it byt: timgn pIn order to understand these four operations on extract abstracuops we
- efthr:::: zl:lsu:cierstz;nding of the notion of properties. Only then we will be able to outline an
mus

algebra for the operations.

o 0peration

ider an extract abstraction to be a sequence of extracts, where an extract can. either (;l;;
i lement or an extract abstraction. The properties of an extract abS(‘l'ﬂCthl'.l are "
L Pl‘ﬂgfa“f : e“tiains. In order to combine extract abstraction we need to define opcratlot;s (ad-
Ze: 0; ezt::ffvsﬁl:iﬁ;)n on plroperties. What should happen when we add two method-extracts?, two
ition,

class-extracts?

3.3 Relations

. . : :
I this section we discuss various operalions mv:)lvmg both program elements and extract abstractions
it}

Processes. We discuss the three above mentioned processes.

i i ion are
Creating program elements from extract abstractions. The ele.rncms in the extrac; abf:actlo =
f re'cd ind possibly renamed. The extract abstraction functions as a template for the prog
copi ;

code.

i lements are coupled to
i tract abstractions where the new e
reating program elements from exi str i
; greadyge)i:istigng program elements. The existing program elements are .extendedt?gn(;e i
of) the elements in the extract abstraction. Here we need to define matching operal

program elements and extract abstractions.

i lise that
isti i of an extract abstraction. Here we real
ing existing program elements as instances ' ;

’ Marki:::;n cxist;énl; cin be seen as an instance of an extract abstraction. In practnce,f hov:r;ve:,
somet ; ! -
somethini existing will rarely fit to an extract abstraction, so some support/guidance for adj
ing the program elements to the extract abstraction will be needed.

i i ents:
Types of references  An extract abstraction can be related to two kinds of program elem

Concrete program elements. These program les P lise: y and th lemes
[ ] elements cannot be special d, e €l nts

i i tions, eic.
might, depending on the language, be imperatives, declarations

iali and meth-
o Abstract program elements. These program elements can be SH&Clallsed, e.g. c!a:setsh et
ods. By relating abstract program elements to extract abstractions we can coupie peci
s, : :
sation of program elements to specialisation of extract abstractions.




56

Eydun Eli Jacobsey

Also w an categori ract abstractio nto those that are self contai 1€
€ C categorise ext a ons 1 an If d,

dependent on program elements. g i

The first group can be ex i m an

i : emplified by the observer patt

g purpose pattemns. The latter group consists of context-dependent patterns pAs :xa Cllnthel-
. Mmpies We.

l‘mght consider patterr s related to a S])eClﬁC hamewotk, which means that ﬂlﬁy are domair specifj
P
C.

4 Summary

We presented ivati i i
o Sopmem : motwanon for suppol.'tmg higher level abstractions than object and classes in soff

- Sugges?;;rontmenlts. The. motivation was rooted in the idea of the user’s conceptual rnsc?dt\]wu-E
P e a two level view on software. The program level, which contains the o e

p of the system, and the extract level, which contains descri e
of the system and how parts are combined.
i Some worl(. on software development environments su
ut much remains to be done on the conceptual level.

ptions of how we perceive partg

pporting patterns has already been done,
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Abstract. While object-orientation has become a standard technique in modern software engineering,
most object-oriented systems lack persistency of objects. This is rather surprising since most objects
(e.g. objects in a graphical editor) have a persistent character, thus, they persist past the execution of
some program. Nevertheless, most systems require the programmer to implement load and store
operations for the objects, In this Ph.D. work we demonstrate the seamless integration of database

functionality into an object-oriented development environment, in which the surving of objects is for
free. A proof-of-concept prototype implementation has been done in the Oberon system, called

Oberon-D.

Keywords: databases, typing

1 Introduction

In today's software engineering projects the advantages of object-orientation such as reusability
and extensibility are well-known. ‘While object-orientation is a very common feature of modern
software development environments, persistence is not. This is rather surprising since in most
applications the objects do not only exist temporarily but persist beyond the execution of the
program that created them. Examples are user interface objects of a graphical editor, design
objects of a CAD system, and document objects of a workflow system, to mention just a few, If
persistence is not supported by the chosen development environment, the software engineer has
two possibilities: On the one hand, he can change the environment. But this is often impossible,
because high efforts and costs are combined with the used environment. On the other hand, he
can try to add persistence 1o the chosen environment by implementing read and write
mechanisms for various object types. It would be advantageous, however, to add persistence as a
general feature to the object-oriented development environment, instead of reimplementing it
repeatedly for every program that needs it. The main contribution of this paper is to demonstrate
the ease of integrating database functionalities into an object-oriented development environment,
in our case into the Oberon system [WiGu89].

Oberon-2 [M&Wid1] is a general purpose programming language in the tradition of Pascal and
Modula-2. It combines the well proven type system and module concept of its ancestors with the
new concept of record Lype extensions. Additional improvements like basic string operations and
type-bound procedures make the language more convenient to use. But Oberon is also a run-time
environment providing Mark & Sweep garbage collection, dynamic module loading, run-time
types, and commands. Commands are procedures that can be called interactively from the user
interface by clicking on their names. They provide multiple entry points into a module.
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In the p]ojeCt Ob = b
eron-D 97 t owi b [+ t
: n [K]’la ] he foll b4 databas features are added to he Q]
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2 Persistence

Persi : »

onglstence is a t?haractensuc describing an object's
Jl cts may survive between program runs. In contr

only exist during one run of a program,

Persistence in Oberon-D i i i
Ao transiemDol}:' :;tmned_ by a persistent heap on the disk. Persistent object
e A mumad ; are in the tranglent memory. Transient and persisgents o
s i oo Y. Accessing a persistent object leads to loading the obj 'Objem
nt objects are not accessed from transient objects anﬁ mzr(:: {ﬁm il
, they will he

Writteﬂ back to thﬁ i t i1 1!
! persisten heap. Fﬂrsis ent Oblﬁ(: which
; ; ts whic are not l'eferencﬁd by a pf:l'S'Slent

so(z;\r:la:l:flects are allocated with Oberon's standard
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object that has been registered using the proced
pointer to) an object that should become a pe
serves a unique name for the root. i

Apphca 10ns ay
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Persistent.GetRoot (obj .
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referenced from th 4 the root, persistent objects which i s T

The following cggzsg.eﬂlve ro(;lt object can simply be accessed by Poi?t:rdézg?y o ndirec
A agment s ] . erencing.

root with the key "myroot": ows how to make a list of objects persistent by Tcgislefing its

lifeti )
ifetime. IE’[ a language with persistenge.
ast to persistent objects, transient objwI
S

: fprocedure ‘NEW. They become persistent a
y) from a persistent root. A persistent root is an

ure Persistent.SetRoot (obj, key), where obj is (i
sistent root and key is a user-defined string that

TYPE
Node = POINTER TO NodsDasc;

NodeDesc = REC 3
it ORD data: INTEGER; next; Node END;

P. q: Node;

NEW (p); p.data := ...;

NEW (q); q.data := ..,;

p.next := q; g.next := NIL;
Persistenl.SetRoot (p, "myroot*)

This persistent list can be accessed as follows:

Persistent.GetRoot {p, *myroot®);
WHILE p # NIL DO I
Out.int (p.data, 10);
p = p.next
END

Markus Knasmiiller »

al point is the deallocation of unused persistent data. Transient data is reclaimed
omatically by a garbage collector that frees programmers from the non-trivial task of
e llocating data structures correctly and thus helps to avoid errors. We also use a garbage
:z?;ecw; for persistent data. All disk objects that are not accessible from a persistent root are
arbage and will therefore be removed in the next run of the garbage collector. The garbage
Eouector is started explicitly by calling a command. A persistent root with memory name can

removed by the function Persistent.RemoveRoot (n).

After the presentation of the usage of persistence in Oberon-D the implementation is
oduced: Each object is identified by a unique key, the object identifier OID. In order to make
an object persistent it is necessary to map it into an external representation. There are three
decisions involved: When should the object be externalized, where should it survive, and how

should this mapping work?

. When?
This point was easy to decide. An object should be externalized when it is no longer referenced

by a transient object. There is only one possible time to map such objects: between the Mark and
the Sweep phase of the garbage collector. All persistent objects that are unmarked after the Mark
phase are externalized. Externalizing an object earlier would allow that it could still be changed
afterwards via references to it. Externalizing an unreferenced object after the Sweep phase is
impossible, since the object does not exist any more.

» Where?
All persistent objects are stored in a single persistent heap. Their positions are reflected in their

OID. In future versions we plan to investigate the use of multiple heaps (see also Section 5).

» How?

An externalization procedure is called for all objects, that should be externalized. This procedure
maps them to their external presentation by writing the type of the object and the object's data to
the disk.

Another interesting question is how to load persistent objects. The trap handler is responsible for
reading persistent objects. Every time an OID is dereferenced, an illegal pointer trap is caused.
The trap handler determines the register whose contents caused the trap. If the register contains
NIL the standard trap handler is called, otherwise the absolute value of the register's contents is
equivalent to a persistent object's OID. In this case the trap handler loads the object into the

transient heap.

othef ce’ntr

intr

3 Schema Evolution

Persistent objects can exist for a long time, but in this time the environment may change, .2.
new experiences and new demands can influence the persistent objects. These environment
changes can lead to new object structures to better meet the needs of the applications. Such
changes are often not supported by the database system, so the user is himself responsible for a
schema change, which means high efforts and costs for the user. It would be advantageous if the
system supports the user by handling these changes automatically. Such a process - called
schema evolution - is often missed, because of the high implementation effort and the produced
additional delays. Our solution is to integrate the schema evolution process into the persistent
garbage collector. S0, no additional delays are produced, and the implementation is rather easy.
For the user of Oberon-D the schema evolution process is rather simple. He has to start the
persistent garbage collector, which migrates all inconsistent objects to the new type
automatically. So schema changes, like adding or deleting of attributes, renaming attributes, and
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modifying the inhetitance hierarchy can simply be detected and repaired. There is also 4
possibility to handle schema changes in a manual way, thereby the user has to implemen; -
transformation procedure, which reads the object from the disk, by using the special ty,
PersMaps.Map. With this procedure changes such as summing up of two attributes
component are possible. The following code fragement shows such a procedure.
PROCEDURE TransProc* (map: PersMaps.Map; o: SYSTEM.PTR);
(* transformation procedura for type T *)
VAR a: T x, y: LONGINT;
BEGIN
a:= SYSTEM.VAL (T, o); (* o interpreted as of type T *)
map.ReadLint (x); map.ReadLint (y); a.sum :=x +y;
map.Readint (dummy);
map.ReadBool (a.cond)
END TransProc;

to a new

The schema change which is done with this procedure is shown in Figure 1.

0Old Type Structure; New Type Structure:

TYPE TYPE
T = POINTER TO TDesc; T =POINTER TO TDesc;
TDesc = RECORD TDesc = RECORD

x, y: LONGINT; sum: LONGINT;
z: INTEGER; cond: BOOLEAN
cond: BOOLEAN END

END

Figure 1. Old and new type structure of type T.

Also the implementation of schema evolution is rather simple. It is done during a persistent
garbage collection run. Oberon-D uses Stop & Copy [Wil92] garbage collection to delete
obsolete persistent data. This algorithm uses two heaps (files) and copies all accessible objects
from the heap fromHeap to the heap toHeap.

For each referenced object the garbage collector checks if its type was modified since the last
garbage collector run. If so, the object is read from fromHeap using the old type definition and
written to foHeap using the new type definition. Between reading and writing, a conversion
from the old to the new format is done. The general idea can be seen in Figure 2.

0Old
Read Conversion
feomHcap old -> new
format

Figure 2. General idea of schema evolution process

In a first step, the garbage collector has to find out which types have been changed. It iterates
over the list of persistent types and checks for each type if the old type structure still equals the

i 61
Markus Knasmiller

t type structure which is obtained from the run-time type information (available by the
i ; i ed type structure is marked.
tem). Each type with a changed type st

oberm;: 3;ls:ext s)tep, an attribute mapping list is built for every marked type. I;‘shot\;s f[}l(;;:] Stc:) Fl;};

P :butes of the old type to those of the new type. To build the mapping list, ;31 g
e and the new type are first collected in two separate field ‘llStS contamu;g tl '[?h nagle = g
Olld ggis of all fields including those of their supertypes (see Figures 3 and 4). The fi
the

s for which a transformation procedure was specified are not included in this field list.
type:
Old Type Structure:

TYPE A = POINTER TO ADesc;
TYPE B = POINTER TO BDesc;

New Type Structure:

TYPE A = POINTER TO ADesc;
TYPE C = POINTER TO CDesc;

= RD
TYPE BDesc = RECORD TYPE CDesc = RECO!

J R
a: SHORTINT; :._ L[NO'I;IESIENT'
b: LONGINT; = o

E§$: END;

TYPE ADesc = RECORD (BDesc) TE-PII;- ADesc = RECORD (CDesc)
Sy P x: PROCEDURE;
e:B; ’
x: PROCEDURE; END;

END;

Figure 3. Example for type change

The attribute mapping list is then built as follows: For every field y in Old an entry is created in
ist i i it ld:
ing list if one of the following conditions ho . . )
mi\'?;pgzﬁﬁns a field x with the same name as the field y ancll x:=yis avalid ass1gnmcn:i. e
. The yet unmapped part of New contains just one field x with the same type as y (x and y may
have different names).
hat could
ing li i the types of x and y. Any fields of New t
list entry contains the offsets and : ields
goinl?s g::iiped will get undefined values later. Figure 4 shows the mapping list for the example
in Figure 3.

Node Structure

oldoff | oldform

newoff |newform

Attribute Mapping List
0 | INTEGER 2 | LoNGINT | GJA s | 16 | PROC
0 | SHORTINT 11 | LonaiNT| | 5| A 7|8 11| PROC
a b,c c,d e X

Figure 4. Example for an attribute mapping list.

The entry (b, ¢) was included, because when b was inspected in Old, ¢ was th‘? only u‘;lrélappz(:
LONGINT f;eld in New. The same holds for the entry (c, d). The. entry a was mclm(i;d e::l:] 2
the corresponding fields in Old and New were assignment compatible. Field d from w
included.
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If a transformation procedure was specified, this procedure does the mapping,

attribute mapping list is used. After the garbage collection, the type list is changed to contaip g,
new type structures, ;

otherwige i

4 Query Language

Object-oriented databases support accessing to data by implementing programs. This
convenient for professional programmers, but not always for end users who prefer simple acces;
via an SQL like language. Such an SQL like language for object-oriented databases, calleg
OQL, is presented by the Object Database Management Group (ODMG) [Cat96]. In ouy work
we implemented an Oberon-2 binding for the ODMG-93 standard.

In order to exchange data between the database and a program there must be a mapping
between the object types in the database and the types in the Oberon program. Basic ODMg
types such as integers or strings are mapped to standard Oberon types. Types for which there is
No counterpart in the Oberon language such as relations and collections are mapped to abstrag
data types defined in a module OML. This module defines the collections Set, Bag, List, ang
Array. Before a collection is used it must be allocated and initialized by specifying its elemen;
type.

Objects in Oberon have a unique identity, and references to objects may appear in a variety of
naming contexts. These names can be accessed from OQL. The object query language can be
used to perform database queries. There are two ways to call OQL commands from Oberon
programs: one can call a method of a collection object, i.e. col.Select (cmd), col Exists (cmd), or
col. ForAll (cmd), alternatively, one can call the procedure OQL.Query (cmd, res). The
parameler cmd is a string containing an OQL command in which all visible Oberon variables can
be used (i.e., local variables, global variables or persistent roots).

In both cases the OQL command is translated into an Oberon-2 program, which is compiled
and executed "on the fly", which means that the user is not aware of the translation.

The ForAll method is a universal quantification, which returns TRUE if all the elements of the

query can be fetched. That means col.Select ("age = 15") returns the same result as the OQL
statement select all from col where colage = 15,

The procedure OQL.Query (cmd, res) executes the OQL command emd, and returns the result
in the parameter res, which is a structure of type OML.Value. Value has an attribute class
indicating the type of the result as well as attributes for each possible type of result. A very
simple example of such a call is OQL.Query ("3 < 4", res) which retrieves a value res with
res.class = OML.Bool and the boolean attribute res.b = TRUE,

As an example for the query language we show an Oberon-2 application that accesses an
ODMG software database containing information about modules (type Module), procedures
(type Proc) and variables (type Var). Each module has a name, a codesize, a set of procedures
procs, and a set of variables vars. A global variable mods holds the set of all modules. The
procedure Query in Figure 5 shows how to perform OQL queries from within Oberon (an
asterisk after a declared name means that the name is exported).

MODULE §W

TYPE
Module
ModuleDes
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Database;

JPOAT OML, 0L

+ = POINTER TO ModuleDesc;
c* = RECORD
name”: ARRAY 32 OF CHAR;
codesize®: LONGINT;
procs™: OML.Set;
vars®; OML.5et;
END;

Proc* = POINTER TO ProcDesc;
D
pesc* = RECOR ‘
pm:ame*: ABRRAY 32 OF CHAR;
vars™: OML.Set;

END;

var* = POINTER TO VarDesc;
= ORD
varDesc* = REC .
name*: ARRAY 32 OF CHAR; i
type*: SHORTINT; (* unigue number ident. typ

END;

AR .
4 mods: OML.Set; {* set of all modules *)

PROCEDURE Query"; !
VAR ¢: OML.Collection; res: OML.Value;
GIN ) .
5 (*-- 8.g. all modules with codesize > 500 )
¢ := mods.Select (‘codesize > 500%); -
* e Il iocal variablas with name I Y
ot e ("select var from mods, mods.vars as var where var,name!0 I
OQL.QUB: Jue of res.class = OML.Pointer and res.o s a refarance
(* => the valui X A i
Types™ ) 2
*_. a.g. all proceduras of module = o
( L“gu: p(-slact m.procs from mods as m where m.n.ame r':ey,i:::m i L T—
o rfr:; value of res.class = OML.Pointer and res.o is a refe
("=> .

("
END Query;

END SWDatabase.
Figure 5. Example

5 Future Work

i ing items (see also
b D is an ongoing project. The next steps will be to add the following
eron-D i ' :
Stt '//www.ssw‘uni-linz.ac.aUPrOJegtleberonD.html)ée .
R - Another interesting point is the occurren i vy
o t the database is in a consistent state at the next sy L
y control limits simultaneous reads and updates by Dl e
Ithough Oberon-D is a 8
the data [Cat94, p.69ff]. A . .
ewd(i)ffferent tasks working simultaneously on the persistent heap

f a system crash. In that case the system

must guarantee thi
¢ Concurtency: Concurrency.
give all users a consistent vi
database system, there may be
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Additionally, the already i i
: A y implemented fi iti i i
bl unctionalities will be im
. Optnmlzatton of the persistent garbage collection: Garba
caching the old and the new heap of the copy collector in
n}emory can be taken for this purpose. Depending on the
of each block the time profit is over eighty percent. The
have yet to be found. ‘
* Usage of more than one he
ap: In the current version all obj
b : n all objects are st i
: a?. In. future versions the user should have the choice between diffored ;n s, L
pplication can have its own persistent heap e e <8 o

* Schema evolution should b
VO ¢ supported by offering the user a sch iti i
the description and revision of the schema through a graphical ;seernilri::}::::g ool This S8

* Furthermore our work will b : .
Batiliais; e evaluated by implementing a huge example, probably a software

proved in the future, The mogt

ge collection can be optimizeq b
transient memory. Nearly al] of th
number of cache blocks and the si 3
best values for these two pa:ame[:r:
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Abstract

The object-otiented paradigm is a new technology for producing software. This new technology
has many benefits for parts of the entire software development cycle (analysis, design and
implementation phases) : the object-oriented development process is iterative, the object-oriented
paradigm emphasize reuse, the items of interest are always the objects, ... Thus, engineers and
managers want to use this technology in their own field. But, for critical systems, which need a
certification, the testing process is an important task.

Then, the testing techniques for object-oriented programs should be studied even though some
people can think the object-oriented paradigm seams to be the panacea. By applying usual
testing techniques (i.e. those for procedural programs) for object-oriented programs one found
two major problems. First, procedural testing techniques are not well-suited for object-oriented
ones : there is an intrinsic difference between the procedural and the object-oriented approach
(structure vs. behaviour). Second, the new useful features introduced (such as encapsulation,
inheritance, or polymorphism) imply new problems for the testing process : problems of
observability and undecidability, for example.

Then we are interested in studying these new mechanisms with the tester viewpoint in mind
through three major questions. What are the new problems taised? How usual solutions for the
testing process can be applied (or extended) or do we have to find new ones? and, How object-
orientedness (the new mechanisms) can help us for the testing process?

1. Introduction

The testing process of a software is part of its verification process, which aims at verifying that
its implementation meets its specification. Testing consists in exercising the software with input
values. In practice, testing the software with all the input values from the input domain
(exhaustive testing) is not feasible, Then the tester has to select a subset of the input domain that
is well-suited for revealing the real, but unknown, faults. The selection is guided by test criteria
that relate either to a model of the program (structural testing) or a model of its functionality
(functional testing) [Beizer 1990].

Given a model and a criterion, there are two principles for generating test inputs : deterministic
and probabilistic. In the deterministic approach, test inputs are selected from the input domain
(generally by hand) in accordance with the criterion [Beizer 1990]. In random, or statistical,
testing, test patterns are selected according to a defined probability distribution on the input
domain : the distribution and the number of input data are determined according to the adopted
criteria (see e.g. [Duran & Ntafos 1984, Thévenod-Fosse et al. 1995]).
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Testing is then accomplished in three main phases (testing levels) :
© unit testing is the test of small building blocks

can be independently tested). With
focuses on testing subprograms (the
hundred or fewer, lines of code);
integration testing is the test of an integrated aggregate of one or more units;
System testing (software, library, ...).

(the unit is the smallest piece of Software
"procedure-oriented” software in mind, ypj; t tha‘
work of one programmer which consist.

L ]

Object-Oriented paradigm is a radically new approach to software construction [Korsgp
McGregor 1990, Hill 1996]. It introduces new features 5o that some people can consider tegyjy
useless. Even if object

-oriented development methods increase reusability, testing is sti1]§
necessary step to produce highly reliable softwar

1 e because to err is human. An extensive Survey
of the literature on this topic can be found in [Binder 1996].

In the remainder of this article, we discuss the modifications introduced
paradigm in the testing process. We present short]
and some work on these topics.
mvestigations.

by the object-oriented
y the problems raised by this new approach
And finally, we describe directions for our further

2. Testing of Object-Oriented Programs

In object-oriented programs, subprograms (i.e. object methods) cannot be considered as the
basic unit of testing. Indeed, object methods take part all together in the object behavioy,
Hence, the smallest unit to be tested in an object-oriented program is the instanciation of one
class. Moreover, due to this change of testing level and new features introduced by object-
orientedness (like encapsulation, inheritance or polymorphism), usual models of programs and
then associated test criteria cannot be applied directly. Nevertheless they are still well-suited for
some parts of the test, typically algorithm testing. Then with object-oriented programs, there isa
need to find new models and new criteria, or to modify usual ones,

To find new models, one have to understand the new features i

ntroduced by object-orientedness
and the problems they raise.

Objects are the basic run-time entities in an object-oriented program. They are instanciation of
classes and encapsulate both state and behaviour (i.e. attributes and methods). Testing a class,
the basic unit in an object-oriented program, is impeded by three major mechanisms as explain
in [Lejter et al. 1992, Turner & Robson 19934, Barbey er al. 1994, Mc Daniel & Mc Gregor
1994, Kung et al. 1995] ; encapsulation, inheritance and polymorphism,

* Encapsulation implies a problem of observability because the only way to observe the state of
an object (during testing one want to check the coherence of the object’s states) is through its
methods. There is a problem if some attributes cannot be reached through a method.
Proposed solutions are intrusive and consist in adding methods in the class under test for
observability or deriving this class by new one wi isibili i

to be tested but one can
hods don't need retesting (if the parent class is already tested). It is a

i i d on the object's state.
m the parent class from the child class, because
among other things attributes may be different. Thus

tested according to the set of object's states.

S of Sevem%
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idability. It is very
: d dynamic binding introduce a Qroblexr;h?)g ‘\;[iﬁe&d?:\l, ‘;E;d At
olymorphistt, £ s%ble to statically determine which meh. method is made or when a
gifﬁcult orT f:}:’ﬂgl_‘;gfl’:; appears when a call t? a pohﬁgﬁ; 1(l;ccha:acteristic oF polymofphti;
case. 1he : eters. Nevertheless, an ise, they cannot
D e s e (i, 1y ot
methods C&0 h%“llll)erlison'e can specify the expected minimal fea
hic).
polymorp

task) and all its possible redefinitions.
(the ta

‘ on testing levels,
tly takes these mechanisms into account. They concentrate
k curren :
S%Irri]:];vg;d methodologies.
fl

i i hanges to
i ing, i i ...) are used with some c| '
i i.e. unit testing, integration testing, . e
Classigai tes:ilélngt;gvggg(;‘:m:niln [Fiedlger 1989, Jctar%?gge.ncﬁs ]:rtné:;ls:g (1sZe c].g. T
test objec Y bject-oriented programs are stu 2 testins
lﬂds)sqlttarl;lilfaosrs (z)mjd interclass testing (see e.g. [Kung et al. 1993])
1994]), intra-

is the basic
odel. Because the class is the !
is also introduced through & new I i se the behaviour is
e Clsatfzslt}aeg‘;glsli;; (l)lave to consider its b?lha‘;“lodli;- 1;;);1 ;gllzsp?lfgtoconsﬁtute K diia
unit for testing "ie. values stored in each o Koo 1953k T ot
preak down mtohstaitseziate-based testing [Kung et al. 1993,'1\1‘;1.:5;t e rather tom e
wp;csentatlgzl-t;rblasse d testing focuses on objects’ state-depen
. oote and indivi 1 data. lementary diagrams
controtlhstrug‘t::fea;rtlitliléﬂ?gg“ahe class), Kung et a&ﬂri;in;éjﬁ::frgﬁl‘ggn diag:gl (digplayli
With the n ineering of source code : the block branc
S o from 0 reyeseagggl;ssmiﬁion relationships between c,:af,f:tsﬁéd) the object state
jubgriiance, ?ggm%mg)ntrol and data flow graph associated ;,c':nea?hat models the object-state
facem (%‘kmd l'?icacl concurrent, communicating state machine
diagram (hierarc )

dependent behaviour).

Testing at

ject-oriented features.

hodologies are introduced to takg advantage pf Og'lle‘i;}?gr?mnce Hicrarchy for
fiicd mportant (ilarmld et al. 1992] consists in co nStruCtlngDe nding on the inheritance
]ncremen_tal o g es in parallel with b cless hicsarcy, d Pi?:le to use or not test cases
e h1§t0tr)yet0f Cnatsi?c parent class and the child class, one can dec
relationship betwee desi test cases. : ied in [Thévenod-

gn new { : iented programs is studied in .

from the parent class, or 1) testing for object-oriented prog ; that progressive
e v (\)\f/ stauis;l::gi (lséggfuégphasis%s put on the inheritance mechanism 5o P
Fosse & Waese ;

testing of small subsystems {class cluster) is facilitated.

Y . .).
Most ()[ the W()lk deSCIlbe above is made from the Oitwal I\t 15 (1'6 ngln rng,

1 fI‘ S € al al S VErse € (&%)

Another a])]) oach consists in tﬂstlﬂg from formal SPClelCaUOIl. From thlS p()l](t (!I view, W‘}]k
has becn ﬂ]ade for pfocedufal pIOgramS alld also fOI Object-()l le]]ted pr Ogl'allls s¢e €.8. Do ng

& Frankl 1994, Barbey et al. 1996]).

i is and design
doing formal specification, one can however use appropriate analysi
Without doing fo f o] s
o v, ol ol in i by, P,
In some work, p Waeselync , . se e 93] f
. el 19 i finite-state machines pr g
Eimackine e Lo Harel 1988], an extension of finite b eing
: pti havioural aspec!
o e St:ltcgzgr;fru[cmrcd descriptions are also used tolmoc(iel 1%69 ;11 ol e o
e hlerz'amh'lf‘:h"venod-Fossc & Waeselynck 1993, Waese yr;n i i
a software : in [b edon Statecharts [Harel ez al. 1990], for df_;Slgnd gesign R e o
e alm?‘lttlgs\?vork is made to use object-oriented analysis an
ately, I
g}:ftoerstg:g pryocess [Binder 1994, Poston 1994].
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3. On going work

In that context, our purpose is to stud

y new models (and test criteria for these models) o
adaptation of classical ones

that take into account object-orientedness. New features i,
encapsulation, inheritance, polymorphism, dynamic binding or genericity have to be addresgeg
in such models, This first step in our work will be made without being worried about the testing
level (unit testing, integration testing, class testing, ...) or the testing technique which wif] be
applied according to the studied model (deterministic testing, statistical testing, ...).

In that direction we are interested in extension of state-machines (for object-orientedness) so that
testing techniques based on state-machine could be applied, or extended. At the present time
work is made to use Statecharts in object-oriented design. Coleman et al. [Coleman et al 1992]'
extend Statecharts in Objectcharts so that they characterise the behaviour of a class as a
machine. Typically, Objectchart transitions correspond to state-

State
object attributes define Objectchart states. With Objectcharts,

changing methods of a class and
one can described the inheritance

This approach addresses inheritance, dynamic changing, associatiop
relationships. These two approaches and the model introduced

by Kung ct al [Kung et al. 1993)
are very close because they try to address the same things from the same graphical language -
finite-state machines.

1991] and its union with the Booch's method [Rumba
Indeed, in these methods, the behavioural aspects are d

Then we are interested in applying statistical testing to object-
case studies have already confirmed the high fault reveal
procedural programs (see e.g. [Thévenod-Fosse e al. 19957)

oriented programs because several
ing power of this technique for

References

[Barbey et al. 1994] S. Barbey, M. Ammann and A, Strohmeier, “Open issues in testing
Object-Oriented Software”, in Proc, of the European Conference on Software Quality, pp.257-
67, 1994,

[Barbey et al. 1996] S. Barbey, D. Buchs and C. Péraire,
Testing for Object-Oriented Software”, in Proc. of the 2nd
Conference, (Italy), pp.303-20, 1996,

[Beizer 1990] B. Beizer, Software Testing Techniques,
1990,

“A Theory of Specification-Based
European Dependable Computing

Van Nostrand Reinhold, New York,

[Binder 1994] R. V. Binder, “Design for Testability in Object-Oriented  Systems”,
Communication of the ACM, 37 (9), pp.87-101, 1994,

[Binder 1996] R. V. Binder, “Testing Object-Oriented Software: a §
Software Testing, Verification & Reliabili , 6, pp.125-252, 1996,

[Chow 1978] T. S. Chow, “Testin g Software Design Modeled by Finite-State Machines”, JEEE
Transactions on Software En gineering, SE-4 (3), pp.178-87, 1978.

urvey”, Journal of

69
iche
Yvan Labic ' .
Y bjectcharts or How to
. Hayes and S. Bear, “Introducing Obj 15 of |
g s ira?:' }r? %gjgét%:ii?tzg,gcsig”, IEEE Transactions on Software Engineering, 18,
Use Statecharts |
.. ¢ ASTOOT Approach to Testing
e Doong and P. G. Frankl, “The ‘00T Tedine
[Doongo& Etr:dnkl-’lrég?aﬂlsg; ACM gTransaca‘icms on Software Engineering and Methodology
Object 7 101-30, 1994, | L
g PP-I(;II 3f ; 1984] J. W. Duran and S. C. Ntafos, “%ggezilu?ggg of random testing”,
Tl fwar Engineering, SE-10 (4), pp.438-44, ]
nsactions on Software Eng ) ! PP "
IEEEIT"‘: 989] S. P. Fiedler, “Object-Oriented Unit Testing”, Hewlett-Packard Journal, pp
[Ficd er . E.

. icati .514-30,
% l?81“:’988] D. Harel, “On Visual Formalisms”, Communications of the ACM, 31, pp.514
[Hare . ’ | . '
B 1996] D. Harel and E. Gery, “Executable Object Modelmg2 :gfk;_"SafSZ}éarts ,in
Jrarc! ‘;‘Ltg: ?’&h Int. Conf. on Sofrware Engineering, (1. Press, Ed.), pp. i ,Sh ! g
g 1 1990] D. Harel, H. Lachover, A. Naamad, A. Pm.{;h, kl\ld P(}":',ll,:\lr’irﬁl:\me:{n;'or’[he.
Harel et al. and M. Trakhtenbrot, “STATEMATE : A Worl ;gtw VD L
shmI}-Traugtn gf Comple;( Reactive Systems”, IEEE Transactions on Softwa
Developme:
-13, 1990. . o .
- ey and K. J. Fitzpatrick, “Incremen
. 1. Harrold, J. D. McGregor el
[Hm‘mldo?tggjcig%?iemed Class Structures”, in Proc. of the 14th Int. Conf. on Sofl
E’i?;gfering, (Melbourne, Australia), pp.68-80, 1992.

; . . . 6,
H'll 1996 D R:iG Hil] Objecl-Oi iented Anal ySis & S[mulﬂ“o.ﬂ, AddlSOH- W eSley, 199
1 o Desilon ]

o L 3 5 ti n
en & Erickson 1994] P. C. Jorgensen and C. Elréc;l;son, ‘Object-Oriented Integratio
B Communications of the ACM, 37(9), pp.30-8, : iy
[Korson & McGregor 1990] T. Korson and J. D. IE‘/I;!G;%gorI,’ 4gn6d0erit§é10 ing Obj
i igm” icati of the ACM, 33, pp.40-60, i
ifying Paradigm”, Communications o . - f
a Unifying L. 1993] D. Kung, J. Gao, P. Hsia, J. Lin and Y. Toyoshlm‘;, gﬁmgrég;i(:::g ;)’r1
[K?lngafé ql'.esting of -Object-Oriented Programs”, in Proc. of the Working
w
ggverse Engineering, (IEEE, Ed.), pp.202-11,Y19;3. s, €. Chen. ¥. Kim and Y. Son,
J. Gao, P. Hsia, Y. Toyos , C. Chen, Y. | 3
[llgﬂnglg[iflg 19a9:15} g'bjlf:cl:ltr-l(%}iented Software Testing and Maintenance Environment
e el
Cm:mmliications of the ACM, 38, pp.75-87, 1‘;955. I —
: . Lejter, S. Meyers and S. ss, “Su o o
%‘?Jets:egtPc:‘i(.Jgigrgnzs]‘ 1\;[EEE J1‘"ralrtsacn'ons on Software Engineering, 18(12), pp. 1}!041 5[ ”
ri . : *
i Gregor, Testing the Polymorp
i 1994] R. Mc Daniel and J. Mc ' the i
gl\fc Eﬁjilsggexieﬁrg%ggsesg Dgpartment of Computer Science, Clemson University, Technic
RIET A y
N°TR94-103, March, 7 1994. ) ' .
Reponl’n t al. 1994] G. C. Murphy, P. Townsend and P. 8. Won_}g, : gEg)cfenences with Cluster
:Ell:ldduga)s(seTgsiing", Communication of the ACM, 37 (9), pp.39-47, :

[Poston 1994] R. M. Poston, “Automated Testing from Object Models”, Communications of

0Sto . M. 1

the ACM, 37 (9), pp.48-58, 1994. N i

baugh 1996] J. Rumbaugh, “To form a more perfect umm;ti. SUngéng the OMT an

][SRoli)lélhillfthods“,Joa;mal of Object-Oriented Programming, 8, pp.14- ,dd ; o=t Sl

Blaha, W. Premerlani, F. Eddy and W. Lorensen,
h et al. 1991] J. Rumbaugh, M. Blaha,
g{;fg;?%gie:ted Modeling and Design, Prentice Hall, 1991.

é - . Waeselynck, “Statemate
é 1993] P. Thévenod-Fosse and H. :
A[;r hiY:cil (t)(():1 -gt‘z\:iz?if;l ‘Tveasf:fglg}f’m]i Pmc.] of the International Symposium on Software Testing
i s
ar?cs)Analysis, (Cambridge, USA), pp.99-109, 1993.

e —




70

Yvan Labjep,

lynck, Towg,
n P:l'0c_ 27”:5%1:1

[Thévenod-Fosse & Waesel

s elynck 1996] P. Thév -

2 ;g;récs'?i lf]pg;og;‘gl ttfwTTTsrmg Objecr—Qriemed Przl;?"gnioslslzggd (%) )
R olerant Computing (FT CS-27), (Seattle, T %

[Thévenod-Fosse er al. 199
Eve Sse et al. 5] P. Thévenod-F
flta;?tlcal Testing » in Predicrably Dependab[: Sé'z, =
- Kopetz and B. Littlewood, Eds.), ESPRIT Basizl%‘

[Turner & Robson 1993 Apric,
; S C.D.T 95
Orient a] [urner and D. I. Rob ; - -
( SE%tse)d S; ograms, Computer Science Divison, Scl?ocs)?lt])‘fGEmdance'for the Testing of Op;

» University of Durham, Technical Repo ngineering and Comp Ject-

rt, N°TR uter Scj
[Turner & Robson 1993b] C. D. Turner and 2/93, June 19933, Ence

Orien[ed Pl‘Ograms" in P, D. 1. RObSOn “The St :
ims”, roc. of the C ; ate-Based Testin ;
Ed.), (Los Almitos, California, JIi]s A), ;;gg;’j% 01"9 g;bﬁWare Maintenance, (1. Cg, Osf-ol?}i?:sc:

[Waeselynck 1993] H. W,

Doctoral Dissertagion, 1o csclynek, Vérification de Logiciels Criti

1055 1ssertation, Institut National Polytechnique gec'lﬁoilcozlélequﬁ\iag ll%ﬁ;e(f:t ﬁag“”fque.
! ©93.008,

USA), June 1997), N°96431

Waeselynck and Y. Cr
% 7 's) “
fing Systems (B. Randel, 1.c. v
esearch Series, Springer Vel‘]agl 19 priy

Implementing Generic Types
for SDL92

Martin von Lowis
Harald Béhme
Humboldt Universitét zu Berlin
Lindenstr. 54a
10117 Berlin
E-Mail: loewis@informatik.hu-berlin.de

SDL‘92 supports the concept of parametric types to allow using a type in different contexts.
The SITE generator produces C++ code for a given specification. This paper presents an
approach to translate generic SDL types into C++.

Translating SDL to C++

The ITU-T Specification and Description Language [Z.100] is used to define telecommunica-
tion services and protocols. It supports structural and behavioural specification elements. Inits |
1992 revision, SDL introduced concepts for object oriented specifications and generic types.
The SDL Integrated Tool Environment (SITE, [Sch95]) provides tools to analyse and execute
SDL specifications. Execution of SDL is based on a translation process of a given SDL specifi-
cation to a set of C++ classes. The generated C++ code is structurally similar to the original
SDL specification: For a given SDL entity (system, block, process, procedure, service, data-
type specification), a fixed number of C++ classes is generated, usually one.

The generated classes are derived from classes defined in the SDL runtime library. The inter-
working between the generated classes and the library classes is defined by means of method
calls: The generated code calls methods defined in the library, and the library calls virtual
methods implemented in the generated code. This set of methods defines the interface of an
abstract SDL maschine. The interface allows the implementation of the SDL maschine in diffe-
rent ways. There are currently two SDL libraries: The simulation library allows the execution
of a specification using a simulator, and the prototype library provides the interworking with a
given target system.

SDL Context Parameters

The object oriented features were introduced into SDL in order to facilitate re-use and encap-
sulation. Instead of defining a system Or process instances, a system type or block type can be
designed and stored in a package. Applications can use these definitions either to define
derived type definitions, or to instantiate these types in their target context. Virtual types allow
one to replace a type with a different one in a redifinition of the enclosing type, and virtual
transitions allow one to replace single transitions (i.e. action sequences) in the redefinition of a
process type or procedure.

Unfortunately, these mechanisms are not sufficient for applications where instances of the type
need to interwork closely with the environment where they are instantiated. Therefore, SDL92
allows to parametrise a type definition with context parameters.
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The following kinds of context parameters are supported in SDL*'92:

¢ Process context parameters define a process instance set. They can be used to create new
processes in the set, or send signals to the instance set (meaning that an arbitrary process in
the set will receive the signal).

* Procedure context parameters allow to pass a procedure definition to a type definition (e.g,
procedure or service type definition). For example, a generic procedure could apply a given
procedure to each element of an array.

* Signal context parameters can be used to send and receive signals defined in the context.
The context parameter can also be used to specify channels and signal routes that transport
the signal.

* Variable context parameters can be passed to procedures and services, so that they can
access and modify values of a variable of the context. For procedures, the same effect can be
achieved by passing the variable as an actual in/our parameter to each call. By introducin ga
variable context parameter, it is specified that the same variable is accessed in each call.

 Timer context parameters can be passed to procedures so that the latter can set the timer and
receive the timeout signal. This is desirable if a procedure with states should return either o
reception of a signal, or reception of a timeout.

* Synonym context parameters allow the use of symbolic constants in a type definition, where
the actual value of the synonym is available only in the context of the type instantiation.

* Remote variable and remote procedure context parameters allow the type to export and
import a remote entity which is defined in the context of an instance.

* Sort context parameters allow to pass data type definitions to a type definition. A sort con-
text parameter can be used almost everywhere where a sort definition can be used, including
variable declarations, formal parameters to procedures, processes and signals, as well as in

syntype definitions. Using the sort context parameter as a base type in sort specialization is
not allowed.

Many of the context parameters come in three flavors: unconstrained, constrained by base type,
and constrained by signature. For an unconstrained formal context parameter, a definition of
the right entity kind can be passed as actual context parameter. If the context parameter is cons-
trained by a base type definition (keyword atleasf), the actual context parameter must be of a
type that is a specialization of the context parameter constraint. If the context parameter is
constrained by signature (keywords fpar and returns or operators and literals), the actual con-
text parameter must support this signature. For procedure and process context parameters, this
means that the formal parameter lists must match. For sort context parameters, the actual sort
must provide the operators and literals defined in the constraint.

Translating Generic Types to C++

One objective of the SITE C++ generation is to allow separate compilation of packages. In
other words, an SDL package should be compilable into a C4++ library that can be linked with
the code produced from an SDL system definition using that package. Current C++ compilers
do not support code generation for C++ templates, instead, they instantiate the template for
each parameter combination at compile time. This technique contradicts with the objective of
separate compilation, thus translating generic types to C++ templates is not acceptable. In
addition, some context parameters, especially process instance sets, are not adequately transla-
table to C++ templates.

Instead, actual context parameters are represented as instances of C++ classes throughout the
SDL runtime system. For most parameter kinds, the usage of these instances in the generic
type is straight forward and similar to the usage of those entities in non-context-parameter
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statements. The differences are discussed below_.‘ Generally speal.:ing', if the interface rec!uired
from the context parameter is provided by the virtual SDL machine interface, the same inter-
face is offered by the objects representing acontext pg.rameter. For sort context parameters, the
interface is specific to the sort, so a different mechanism must be used.

Implementing Genericity as Specialization

In the case the interface needed inside the type definition is available in the SDL run.time
Jibrary, implementation of context parameters is straight forward. An fexarnple §howmg the
usage of process context parameters should illustrate that approach. First, consider the follo-
wing specification snippet which does not use context parameters.
signal pl_created(PId);
process pl; fpar i integer;

start;

stop;
endprocess;
process p2 referenced;

procedure proc;
start;
create pl(10);
output pl_created{offspring) to p2;
return;
endprocedure;

This defines a procedure which first creates a process in set pl, then sends a signal to p2
notifying about the process creation, For the process creation, the following code is generated

P_pl_SetPtr ->
create (my_process(), new arglist(l,SDLInt(10).addr()));

First, the instance set pointer is accessed. Then a method create is invoked on the instance set.
This method expects the parent process and the argument list. The argument list is represented
in an arglist object, which carries a variable number of arguments. The class arglist was intro-
duced in the SDL maschine interface primarily to support inheritance and genericity.

The output statement is translated into

SDLSignal *sig = new SIG_pl_created;
sig->arguments () ->put (1, SDLOffspring () .addr()) ;
output (sig, MY_B_y->P_p2Z_SetPtr);

This creates a new signal instance, sets the arguments, and calls the procedure‘s output
function. The put method again belongs to an arglist object.
Now, if context parameters were involved, the procedure could be defined as

procedure proc <process cpl atleast ptl;
process cp2;signal cpl_ created(PId)>;
start;
create cpl{10);
output cpl_created(offspring) to cp2;
return;

endprocedure;
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The create action is now translated to
P_cpl->create (my_process(), new arglist(1l,SDLInt(10).addr()));

and the output to

SDLSignal *sig = SIG_cpl_created->copy();
sig->arguments () ->put (1, SDLOffspring () .addr ());
output (sig, P_cp2);

In the create statement, the context parameter is accessed using the P_cp! member of the pro-
cedure. This points to the instance set that was passed as actual context parameter when crea-
ting the procedure. Because P_cp] is known to be of at least Instance_ser* (in C++), the call of
create is possible. Since the actual parameters of the process are encapsulated in a special
object, the same signature for process creation can be used for all process definitions. This
allows to define the create function as virtual in the SDIL, runtime library. A similar discussion
applies to the output function; this function expects an SDLSignal* and an Instance_set*.
Since the context parameters are known to be derived from these classes, the call to the library
function output is possible.

For the signal context parameter, things are somewhat different: It is necessary to create a new
instance of the signal. However, the new operator cannot be used since the class name of the
signal is not known when compiling the procedure. Instead, the SIG _cpl_created member car-
ries an instance of the actual signal context parameter. Every derived SDLSignal is required to
implement a copy function which returns the new signal. Using the arglist interface of this
signal, it is possible to insert the parameters into the signal.

This approach can be extended to most other context parameter kinds. Procedures have a
methods to create new instances, as well as to invoke an instance. Timers have methods to set
and reset them, as well as to identify a given si gnal as timeout signal of the timer. Variables of
well-known sorts have methods that are well-known to the SDL compiler. Synonyms behave
like read-only variables. The remaining issue is the implementation of sort context parameters.
Especially difficult is the implementation of sort context parameters with signature constraints,
which is discussed below.

Sort Context parameters

The following example will help to identify the problems with implementing sort context para-
meters, First, a non-context-parameter example:

Procedure proc;
fpar i integer;
returns integer;
start;
task i:=i+i;
return i;
endprocedure;
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This gives the following declaration for the variable:
¢lass PROC_proc /* ... */ { /* ... */
gpLInt& VAR _i() {
if (!_VAR_i)_VAR_i = new SDLInt({();
return *_VAR_i;

}

} . . -
and the expressions are compiled into

wAR_i() = VAR_i().add(VAR_i());
VAR_PROC_Result ()=VAR_i();

Each variable is represented by a dynamically allocated instance of the C++ class correspon-
ding to the type of the variable. This class supplies all the operafoEs that are dt_aﬁned for tt_le .
type, as well as the literals of the sort. In the example, only the "+" operation is used, which is
compiled into the add method. .

Using sort context parameters, this specification could be extended to

procedure proc <newtype like_ int . )
operators "+": like_int,like_int -> like_int;
endnewtype>;
fpar i like_int;
returns like_int;
start;
task i:=i+i;
return 1i;
endprocedure;

This is a generic routine that ,doubles* its argument, which can be of any type tl‘nat supports.
"4+". Among the predefined types of SDL, this includes Integer, Real, and Duration. In the dis-
cussion below, this example goes on by passing Integer as the actual context parameter. )
When deciding how to implement sort context parameters, it is desirable that the expressions
involving context parameters are compiled into similar code as the ones without context para-
meters. In particular, the expressions should still compile as

VAR_i() = VAR_i().add(VAR_i());
VAR_PROC_Result ()=VAR_i();

In order to support this interface, VAR_i must return a reference to a class that implements an
assignment operator and an add method. Following the approach taken for variables of non-
context sort, this method is implemented as

Class PROC Praé [%. %8 { 1F v ¥}

TYPE_like_ int& VAR_i(){
if (!_VAR_i) _VAR_i = FCX_like_int->copy();
return *_VAR_i;

}

}

Instead of initializing the variable by calling the operator new for a type, a virtual copy
function of the actual context parameter is called to get a new instance. g
In order to supply the signature of the context parameter, the class TYPE_like_int already
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needs to support an add method. However, the implementation of the actual context parameter
(e.g. SDLInt) cannot be called, since the actual context parameter is not known when compi-
ling proc. In addition, TYPE_like_int cannot serve as a base class for SDLInt, because the base
class of SDLInt is already defined elsewhere. Since inheritance and virtuality cannot be used
directly, delegation is employed.

Delegation means that the class implementing the actual context parameter is not SDLInt, but
some wrapper around SDLInt. This wrapper needs to implement the add method by delegating
it to the SDLInt. Because add creates a new value, this wrapper can be implemented as

struct formal wrapper{ //base class for all wrappers
virtual formal_wrapper* copy()=0;
virtual formal_wrapper* add(formal_wrapper* other)=0;
}:
struct actual_wrapper:formal_wrapper{ //wrapper around SDLInt
SDLInt wvalue;
actual_wrapper (const SDLInt& v):value(v) {}
formal_wrapper *copy(){return new actual_wrapper (value);}
formal_wrapper *add(formal_wrapper *o) {
//this invokes SDLInt::add
return new actual_wrapper (value.add(o->value));

}:

Because of the requirement to create new objects, and because the layout of these objects is not
known in the base class, this wrapper class returns pointers to objects instead of references.
Since the interface for all other values in the SDL runtime assumes references and automatic
memory management, the actual context parameter is another wrapper around the
Sformal_wrapper.

class TYPE_like_int{
formal_wrapper *value;
TYPE_like_int (formal_wrapper *v):value(v){}
TYPE_like_int(const TYPE_like_int& o):
value(o.value->copy()){}
~TYPE_like_int () {delete value;}
TYPE_like_int* copy(){
return new TYPE like_int(*this);
)
TYPE_like_int& add(TYPE_like_int& other) {
return value->add(other.value);
}
};

Using this approach, it is possible to implement all operators found in sort context parameter
constraints. In order to implement literals as well, additional protocol has to be introduced, if
the constraint includes an infinite number of literals, i.e. a literal pattern. In this case, the asso-
ciation between literal name and literal value must be communicated via character strings.

Summary

Generic types in SDL providea mechanism to support encapsulation and re-use of types. Com-
piling generic types to C++ is mostly straight forward, using abstract interfaces and factories.
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In order to support operations that are not included in the abstraf;t int_erface, a bridge patt_ern
must be used. One wrapper class is needed to delegate the funcu?nahty, anotper deals w1th‘
memory management. For those context parameters that use the interface as implemented in
the library, execution speed is identical compared to not using context parameters. For sort
context parameters, the amount of method calls for evaluating an expression increases by a fac-

tor of three due to the delegation.
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1 Transcendent and immanent aspects must be interwoven

Either software developers lament “If only software engineering could be more like
X..” whete X is any intensive-design profession says Dough Lea or experts in
computer science spend lots of time discussing the pros and cons of different
paradigms in computer science. They pay little attention to the intrinsic nature of
the problem to be solved and even less to the global problems mankind has to face
urgently.

Thus I introduce a problem and its intrinsic nature straightforwardly: the need to
generate architectural/structural/landscape design within an urban ecosystem context
enabling the design and planning of sustainable cities. There are fundamental processes
underlying what I would call an ecodesign modeling. Basically what happensin a
natural ecosystem also reflects in the urban ecosystem because we are embedded in
the former. The green designer’s goal is to create an environment to improve the
physical, mental, psychical health of the human beings. Scientists have been showing
certain environments help man to keep his cellular oscillations. R.S. Ulrich compared
data of recovery for pairs of patients submitted to surgery who are expected to
experience considerable stress. To carry out the experiment, pairs of patients with
the same surgery, sex, weight, age, tobacco use and previous hospitalization were
booked in identic rooms with exception of the view through the window. A member
of each pair looked into a grove, while the other looked to a wall of brown bricks.

Individuals with view for trees needed only aspirins, recovered sooner and left the
hospital earlier. The wall patients received more analgesics, narcotics, complained
quite a lot and spent more days at the hospital.

I am going to trace back the implicit origins of the latter behaviour. In archaic
Greece, the notion nomos-physis (law-nature) formed a unity. In the feelings of the
ancient Greeks, nomos is primarily the distributive justice from which nobody could
escape. Each one had access to a site during his/her existence without the need for
written laws. With the advent of currency and the shift from oral communication to
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writing, anew political space and time emerged accompanied with the dissolution of the
basileus - central figure of the archaic communi

tariam power. The logic of polis prevajleq
and hence the dissociation from cosmos.

This opened the gate to the Platonic conception of cosmos creation by a Demiurge
whose creation is anthropoi, human and male, making us view earth as a passive
container or receptacle. The separation fro Physis and the cosmos as well as the
women segregation has led to an entropic behaviour towards the site and the Planet.

Although this has been the mainstream trend, Aristotle’s ideas have loomed on the
horizon tuning with the scientific ideas of self-organization and pointing forwarg
the environmental degradation even at Greek times. For him, physical research must
deal with conditions and characteristics of physical objects without contrasting them

with the properties of things eternal. This caused departmentalization but is more

than a method. It carries with it a certain autonomy for the subject thus treated.
Summarizing,

while Plato cares for transcendent reasons, Aristotle cares for
immanent reasons. Our mandatory task is to reconcile both trends in the sense that

time is ripe for attempting to incorporate at least embryonically both transcendent
and immanent aspects into our approaches.

2 Homeostasis is common to the planet and to the human being

The question is how to introject
modeling? First we have to try to
the modeling.

James Lovelock in his theory of Gaia unravels
living matter, air, oceans and land surface form
seen as a single organism and which has the capacity to keep our planet a fit place
to life. Gaiais a cybernetic or feedback system which seeks an optimal physical
and chemical environment for life on this planet [Joer92 7

Likewise the ergonomist or the human factor engi
thermal state of the body both in comfort and in h
an analysis of the heat balance for the human bod

y:
Moreover the triad of temperature, potential ey

apotranspiration ratio and average
total annual precipitation in mm determines a range of natural life zones or ecosystems
in terms of world plant formations and their associated local biodiversity,

There are two fundamental processes associated to life: one “order from order”and
the other “order from disorder”. Hence information and energy are the two
ingredients of life. Order from order is the information stored in the DNA molecule
and responsible for the generation of myriad of life forms. Paradoxically, the more

such an encompassing vision into an ecodesign
discern the fundamental dimensions embedded in

the Barth’s nature: ...the Earth’s
a complex system which can be

neer is well aware that the general
eat or cold stress is dependent on
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3 Formalist computer science
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implemented in CAD [RGY6).
Richard Coyne, the only architect of the research team in their cen

the failure of his logic models to

hermeneutic nature of desi gn.

ter after realizing
generate design reacts and recognizes the

4 Hermeneutic computer science

Although the formalist computer science is still the mainstream, there is a growing
opposing trend in the artificial intelligence meetings and more recently in the object
oriented paradigm through the introduction of design patterns and prototype-based
object oriented lan guages. The formalist paradigm in philosophy and science orbits
around centralization, control, hierarchy, predictability and ‘provability’. Its ideal
model follows the atomic model language. Its visions are grounded in the philosophies
of Descartes, Hobbes, Leibniz, Russell and Whitehead. Babbage, Turing and von
Neumann illustrate the formalist philosophy in computer science, Newell, Simon
and Minsky , in artificial intelligence.

Bo Dahlbom and Lars Mathiassen [DM97] adds that the romantic view grew out of
a reaction against mechanistic thinking and was formulated towards the end of the

18th century, primarily by German Philosopher-artists like Herder and Hegel(.....)

Where the mechanists saw structures and systems, the romantics saw processes and

change.  Likewise followers of the hermeneutic thinking emphasize autonomy,
multiple perspective, self-organization, change, evolution, interpretation,
malleability and flexibility.  They argue that any formal syntax fails in grasping
the intrinsic properties of the natural world [ West97]. Hus

serl, Heidegger, Gadamer,
Weotsky and Foucault represent this trend in philosophy as well as the
conlemporaries Maturana, Varela, Prigogine and Gell-Mann, In computer science,

it reflects in the viewpoints of Floyd and colleagues, Coyne, Dreyfus brothers and
the post-artificial intelligence works Sfrom Winograd.

In the sixties, this trend was represented by the LISP exploratory programming; in
the seventies, it moved to Prolog and in the eighties, to Smalltalk, However, the
object oriented paradigm behaves rather like a Janus head. Hermeneutization begins
to be introduced in the formalist world in parallel to object-oriented methods not
hermeneutic [Aksi97]. And the confusion arises,

I'believe hermeneutics has the nature of the rainbow, its colour gamut varies from

infrared to ultraviolet and appears in the sky after the rain due to the diffraction of

light. To try to mimic its composition, first dealing with the primary colours and
then the secondary colours orange, green an purple will not lead to its circular shape
ranging from red to ultraviolet and even less ignoring the need of interaction with
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light and water, An hermeneutic method has necessarily a holistic nature. It leads t
1g an ..

diversity in unity.

5 The Model of Primary, Secondary and Tertiary Waves (MPSTW)
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secondary waves and act like phenotypes and involve a geometric intuition that creates a
specific geometry to model the urban morphogenesis through tilings, discrete groups of
the plane and fractals. To develop this submodel I demonstrate taht architectural design
may be considered alanguage with its planes function and form and their stratas substance
of the function, form of the function, substance of the form and form of the form. All these
processes are applied to the elements of the architectural design, namely, environmental
comfort (thermal comfort, acoustics, daylighting), activities, structural systems, hydraulic
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installations, etc. Its outcome is the eco-system with hyphen or the architectonic artifact. It
has an autopoietic nature insofar as it grows from the smallest artifact (the buiidipg and
support facilities) passing by the neighborhood and boroughs to the susfainable city and
the bioregion. A finer granularity unravels through the subeco-system with hyphen or the
sum of the processes applied to each element. They work out like the figures of alanguage
(asign is composed of figures). This partaking of the urban phenomenon especially thl’OLllgh
the hypothesis repeatability causes the emergence of the tertiary waves or the blending
of design and planning. Or the eco-system with hyphen defines the the urban ecosystem
and is defined by it. Moreover it allows the designer and the user to start modeling by any
of the processes adding flexibility and malleability to the design and planning enhancing
participation of the citizen.

6 Self

Hence the MPSTW falls within an hermeneutic trend. Indeed, its elements and processes
behave themselves with dynamism and flexibility. They are not variations around a
theme. Classes are useful when multiple instances of similar objects pervade the problem
space. Hence sharing attributes among the objects as well as programming exploratorily
is fundamental. The independence of each element or process suggests an object. Each
object accepts or delegates tasks to the other. Each element and each process is
unique. There is no need for classes No clear taxonomy for tasks is defined, hence little
need for inheritance [Grog97]. Moreover, MPSTW is built for cooperative work among
designers and citizens covering total synergetic interaction among its members.

Martin Abadi and Luca Cardelli {CA97] insist on that everything can be better
represented in terms of objects, even functions and classes. The b:iisic constructions are
simpler, flexible and powerful. Hence naturally a prototype ased object oriented lmguagc
tunes with the hermeneutic nature of design enhancing it Wegner insists on that objects,
classes and inheritance are not orthogonal. Classes are defined in terms of objects,
inheritance in terms of classes. The essence of a class can be defined independently of
the object and the essence of inheritance independently of classes and objects [Wegn87].

Inheritance as amechanism to share resources defined incrementally intemnalizing shared
resources treat the latter as part of an extended self (identity). Hence the definition of
inheritance in terms of a particular mechanism of self-reference enabling the interalization
of remotely defined operations as part of the extended identity of the object is called
delegation. . .

The delegation based languages allow the objects to share and internalize operations
from ancestral objects called prototypes, that work as instances and templates for the
descendents. Hence the prototypical languages are languages based on delegation that
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carry out delegation by prototypes. And the chosen language to implement MPSTW is
Self, a prototype based object oriented language.

Ungar and Smith [SU95] emphasize the concreteness of the prototypes because
they are examples of objects instead of format descriptions and initializations.

The shared behaviour by a family of objects is hold by a separate object that is the
father of all the objects, even of the prototype. This way, the prototype is absolutely
equal to any other member of the family. The object that contains the shared behaviour
plays the role of a class, except that it only contains the shared behaviour without
format information. These parent-objects are called traits-objects.

Self contains graphical objects called morphs that behave exactly like the
object. Since MPSTW also has a graphical nature this feature is very relevant.
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Abstract

In order to enhance the language support for the
development and use of object-oriented frameworks,
we propose to elaborate on the conceptual under-
standing of frameworks, especially regarding archi-
tectural issues. For this purpose we suggest the use
of different perspectives on frameworks. The differ-
ent perspectives supports different needs in a frame-
work's lifecycle, and they should be used as inspi-
ration for developing alternative representations of
frameworks, e.g. languages. In particular we pro-
pose the idea of abstract frameworks and framework
components.

1 Introduction

Within software engineering in general, reuse is
considered to be a part of an effective development
process. This effectiveness origins from the quali-
tative and economical benefits reuse accomplishes.
Using previously developed and tested components
when building an application saves development ef-
forts and reduces the risk of introducing errors into
the system.

Object-oriented software development further-
more benefits from the use of abstraction: A com-
posite object encapsulates various parts, an abstract
class encapsulates common properties (attributes
and methods) of several classes. Abstractions and
abstraction mechanisms make software develop-
ment easier, because they let the developer work
with fewer elements—abstracting from details. This
also makes it easier to communicate about software.
The goal of providing programming languages with
better abstractions and modeling constructs has been
pursued within conceptual programming (Examples
include roles, complex associations, activities. See

for example [Kristensen, 1994]).

The software architecture
[Garlan and Shaw, 1996] level of design is con-
cerned with the description of elements from
which systems are built, interactions among
those elements, patterns that guide their com-
position, and constraints on these patterns. In
[Buschmann et al., 1996) software architecture is
defined as: “A software architecture is a description
of the subsystems and components of a software
system and the relationships between them. Sub-
systems and components are typically specified in
different views to show the relevant functional and
-non-functional properties of a software system.”

In [Kristensen, 1996] the notion of archi-
tectural abstraction are discussed. Design
patterns [Gammaet al., 1995] and frameworks
[Johnson and Foote, 1988] are described as being
two different examples of categories of architectural
abstractions. The categories are characterized dif-
ferently in the universe of architectural abstractions
according to a set of dimensions, including Level of
absiraction, Degree of domain specificness, Level
of granularity, and Degree of completeness. In the
same paper it is claimed that language mechanisms
and architectural abstractions mutually influence
each other; the available language mechanisms pro-
vide the means for expressing and implementing the
architectural abstractions, and the architectural ab-
stractions provides inspiration for the development
of new language mechanisms.

In [Jacobsen and Nowack, 1997] it is argued that
an architectural abstraction provides functionality,
logic structure, abstraction, and reusability. Archi-
tectural abstractions are abstractions over safiware
entities (design and implementations), and not nec-
essarily domain concepts. If the latter is also the
case we have a modelling situation, where concepts
in the application domain is modelled by concepts
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in the software domain. Many types of patterns  an application developer with a perspective on the
and frameworks adheres to the notion of architec- framework to be used (the product), as well as a
tural abstractions. Frameworks have the benefit of perspective on how to use it (the process).

supporting the reuse of analysis, design, and imple-
mentation [Johnson and Russo, 1991], but they are a
complex type of software, hard to design, maintain,
and use. Design patterns on the other hand are not
nearly as complex, they are smaller in scope, and
they provide very useful abstractions when commu-
nicating about software. Patterns however, due to
their nature, do not support the reuse of actual code,
and the process of instantiating a pattern in a given
context is non-trivial. Moreover many patterns do
not deal with architectural issues, but rather vari-

ous (sometimes language dependent) programming
tricks.

Our Goal To manage the complexity of object-
oriented software designs and implementations we
propose to use architectural abstractions as means
for decomposing complex software systems into
more conceivable units. Frameworks are architec-
tural abstractions, as they provide reusable abstract
designs for specific domains. Furthermore differ-
ent notions of patterns can be used as architectural
abstractions, providing different perspectives on the
design. However, both frameworks and patterns
contain a lot more information than the architectural
abstraction: code, documentation, diagrams, prose
etc. We are interested in refining the architectural
aspects of frameworks, and for this end, we propose
the use of different representations of and perspec-
tives on object-oriented frameworks.

2 Perspectives

Patterns as Perspectives

In general different notions of patterns pro-
vide different perspectives on  software
[Tacobsen and Nowack, 1997].  With regards to
frameworks, the different notions of patterns sup-
port different stages in the development process
[Tacobsen et al., 1997], as well as the framework
application process. Some object-oriented pat-
terns [Coad, 1992] facilitate the modelling of
domains, design patterns [Gamma et al., 1995]
provide abstractions to discuss designs, and meta
patterns  [Pree, 1995] provide framework users
with a hot-spot perspective, indicating where and
how to adapt a framework. Furthermore pattern
languages used as framework documentation, such
as the one proposed by (Johnson, 1992], provide

Software Architecture Level

All of the above perspectives are based the same
representation: the objects and classes of the frame-
work, and the individual types of patterns are a unit
in the perspectives. Others are possible. For exam-
ple the software architecture level of system design
suggest the use of components and connectors as
basic units [Garlan and Shaw, 1996]. Components
and connectors are used to describe the high-level
composition of systems independent of the individ-
ual components’ and connectors’ representations,
which can be formal specifications as well as im-
plementations.

We believe that a software architecture perspec-
tive on frameworks would be very useful, as it
would make the architectural guidance provided by
a framework explicit. We believe that the archi-
tectural constraints embedded in a framework, is
its primary contribution and benefit (as opposed to
reuse of analysis (domain concepts) and implemen-
tation (code reuse for instance by providing black
box components in an accompanying class library).
The architectural constraints are the hardest part to
get right (requires iteration and/or experience), it
should be fixed (it is the backbone of the applica-
tion), and hence you will have to live it for a long
time.

A problem with conventional frameworks is that
the architectural constraints are not very visible,
they are not first class entities. The rules and pat-
terns of collaborations that objects must follow in
order to adhere to the framework architecture is not
made explicit. At best it is hidden in the methods of
the abstract classes of the frameworks (for example
a template method), but often is simply described in
the framework documentation (for example as pat-
terns).

One reason for this is that the medium for de-
scribing the architecture is the same as the medium
for describing the actual code, namely an object-
oriented programming language, which is basically
designed for specifications of data structures and al-
gorithms, and not for the high-level composition of
software.

[ —
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3 Representation

A framework is currently always expressed in an
object-oriented programming language. Based on
the different perspectives on frame?.works. as ;he
ones described in the previous .secuun.'alternatwe
representations should be examined. It is useful to
distinguish between different types of_represenla-
tions in framework development, evolution, and us-

age.

Levels of Abstraction and Genericness

Typically a framework is expressed in a speciﬁ'c
object-oriented programming language. Thc appli-
cation of the framework is also condu‘cled in ﬂ.me pro-
gramming language, and the resulting apphcaum
can be compiled and executed. We term this type of
framework a conventional (or concrete) framzwm‘lf.

A framework can also be expressed in a generic
object-oriented programming language. Such a
generic language is a suitable common extract of
similar conventional existing object-oriented pro-
gramming languages with a suitable syntax and se-
mantics. By a straightforward translation it should
be possible to translate a generic framework to a
concrete framework. The purpose of a generic
framework is to make the description of a concrete
framework independent of a specific language and
its corresponding environment.

Furthermore it should be possible to express a
framework in an abstract notation, resulting in an
abstract framework. This again would re,qu'u? a
suitable notation. We believe that such a notation
should be based on the object-oriented par‘ad:gm,
and include aspects of conceptual programming and
the software architecture level of design, see de-
scription of framework components belqw. An:l. ab-
stract framework is not complete as it cjant be
adapted, translated, and executed, because it lacks
sufficient details.

Framework Components

A major part of the complexity of framfsworks lq
caused by the lack of intermediate abstractions. This
is part of the reason why patterns have been success-
fully applied in framework development, d.ocumenf
tation, and use, as they provide this abstraction level.
However, patterns are not made explicit in frame-
works, and in order to benefit from the patterns used
in in a framework, one must rely on the framework
documentation to describe the applied patterns.
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We want the possibility of representing an ab-
stract framework by a collection of associated
framework components. -

According to the processes involved with
framework-centered software development, and the
different possible perspectives on frameworks we
identify the following characteristics that a frame-
work component should possess:

Characteristics A framework component is an ar-
chitectural abstraction. That is, it can be used t'o (_.le-
scribe the architecture of a framework by providing
architectural rules and constraints that the frame-
work implementations (classes, methods) must ad-
here to.

o Framework components can be specialized and
composed like conventional classes and ob-
jects.

o Framework components can be parameterized
and instantiated.

e Framework components support both fra{'ne-
work adaption as well as framework evolution.
Possibly by providing different interfaces.

+ Framework components do not contain or spec-
ify methods or other imperative constructs. In-
stead they specify rules constraining the meth-
ods supplied by the framework.

Concrete & Abstract Parts

One approach to get a better understanding of
framework components would be to extrapolate on
the notion of abstract classes. In the following
we characterize 'concrete’ and ‘abstract’ object-
oriented system parts.

Applications & Frameworks An object-oriented
application is primary build out of concrete parts, al-
though a mature and well-structured application also

contains abstract parts.

An object-oriented framework consists of a set
of abstract classes facilitating the reuse of arc!]llcc—
tural designs. Furthermore a framework typically
contains concrete classes, describing possible ways
of fleshing out the superstructure imposed by the
framework’s abstract design. The latter typically
consists of black box components organized in a Ii-
brary. This is reuse of implementation.




90

We believe that the framework’s abstract design
is build from general abstract parts, and the frame-
work’s concrete implementations is build from gen-
eral concrete parts.

Concrete Parts A concrete object-oriented sys-
tem part is build out of objects & classes. This
includes the use of instance variables, references,
operations (terminology somewhat fuzzy), inheri-
tance, nesting ; in general a very limited selection
of language constructs. But the selection is well-
known and supported by most object-oriented pro-
gramming languages,

Abstract Parts An abstract part is build from ab-
stract classes, virtual (deferred) methods, template
methods, abstract coupling. It is important to note
that all but virtual methods are conventions, —not
supported by language constructs.

An abstract part is used to describe a partial
generic software domain. Furthermore abstract parts
are used as templates for concrete parts. This im-
plies that they must posses properties supporting
this.

Future work

Based on the different possible perspectives on
frameworks, we need to decide what kind of archi-
tectural information a framework component should
represent, how to represent it, and how to combine
different framework components into a complete ab-
stract framework.
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Abstract

Synchronization of concurrent activities is a major issue of concurrent object-oriented programming
languages, as we deal with fine grained synchronization involving objects and methods. In this paper
I propose the separation of the synchronization code from the algorithmic code of a concurrent ob-
ject, arriving at two objects: one that implements the algorithmic behavior, and the other one that is
responsible for controlling concurrency. I introduce an event model to carry out the link between the
two objects. T will also present a new way of deriving from classes with concurrency control, The
inheritance step is split into two steps: one for the sequential behaviour and one for the concurrency
control. This new mechanism together with my event model solves many problems of the well
known inheritance anomalies.

1 Introduction

Parallel architectures force programmers to use new programming models. It is obvious that
coarse grained concurrency on a process level is not enough: multithreaded applications are
needed. For object-oriented programming this means that objects can be accessed concurrently
by multiple threads of control. The language must provide means of protection for objects to
prevent inconsistent object states in the case of concurrent access. This protection is called con-
currency control, the implementation of which is called synchronization code.

In the following I will present a mechanism to model the concurrency control in object oriented
languages. This model completely separates the synchronization code from the object and in
turn encapsulates it in a so called synchronization object. The link between these two independ-
ent objects is established by an event model introduced in Section 3. One major problem with
concurrency control in object-oriented languages is inheritance. Section 4 will show how inher-
itance works with my separation model. The problem of the so called “inheritance anomaly”
[MaYo93]! is addressed in that Section, too. Section 5 briefly describes the current and future
work.

1. Matsuoka and Yonezawa evaluated the discrepancy between reuse of a class by subclassing and the an-
notation of classes for concurrency control. They showed that deriving from a synchronized class can
lead to a reimplementation of algorithmic behaviour only because of incompatibilities of the concurren-
cy control. They called this discrepancy the inheritance anomaly.
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2 Synchronization Objects

A common way to introduce concurrency control to a language is to separate the synchroniza-
tion description from the sequential algorithm [Hal94]. The synchronization is not mixed into
the code of the methods, such that the reusability of a class, for example by inheritance, is im-
proved. The problem with most of these implementations is that the synchronization constraints
are still too closely tied to the methods. This arises from the fact that the binding between meth-
ods and synchronization constraints is too fixed. It is not possible for subclasses to break these
bindings in order to extend or modify the synchronization constraints of a base class. An exam-
ple of this sort of synchronization is the Synchronizing Actions by Neusius [Neu91]. It turned
out that such synchronization mechanisms tend to increase the number of anomalies that occur
when deriving from a synchronized class.

The basic idea of my synchronization mechanism is to split the state of the concurrent object
into a sequential and a concurrent part, as shown at position @ in Figure 1. The sequential part
contains the actual state and the methods of the object that implement the algorithmic behav-
iour; the concurrent part contains the state and the behaviour necessary for the synchronization
of the concurrent object. This leads to a complete separation of the sequential part from the syn-
chronization part. These two independent parts are in turn modelled as classes of their own (po-
sition @ in Figure 1): the sequential class and the synchronization class. The logical union of
the two classes is the concurrent class. Instances of these classes are called sequential object,
synchronization object, and concurrent object. The synchronization object is responsible for
controlling concurrency in the sequential object. The binding between a sequential class and a
synchronization class is called the synchronization relation, which is realized by the event mod-
el. It is the most critical part of the design of an object oriented synchronization mechanism, and
therefore I will focus on that in the next sections.

concurrent object

sequential
state

synchronization
state

@

sequential

€ synchronization’
abject

object

synchronization
relation

Figure 1: Separating the sequential state and the synchronization state of an object.
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3 The Event Model

The synchronization relationship is based upon the event model. The event model raises several
events when executing methods of a sequential object. The language model defines several im-
portant events like entering a method or exiting a method. If the programmer of the sequential
class wants to synchronize on a specific event he only has to tell the the compiler that he wants
to catch this event and name the occurence of that specific event. Program 1 shows an example
of such an annotation in a language similar to C++: the raises statement is used to raise spe-
cific events (e.g., Entry) and to name this event (e.g., M1Entry (a) ). Table 1 shows all ex-
isting event types.

Event name Event Description Where to annotate

Entry / Exit entry/exit of a method method declaration

Call / Return outgoing call / return of an outgoing call | method invocation

IEntry / IExit | internal method enter / exit method declaration

[Call / IReturn | internal call / return of an internal call method invocation

Custom raise a custom event while executing anywhere inside a code
inside a method block

Table 1: Available event types.

class Seq Class {
void Ml(int a) raises Entry M1Entry ( a )
Exit MiExit ( )
{
. Meth-Code ...
}
SyncMapping RW {
SyncClass RWSync;

M1Entry (a) -> ReaderEntry ()i
Mi1Exit () -> ReaderExit ();

}i

Program 1: Annotation of a sequential class, Reader/Writer syncronization.
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The actual relationship between the events defined in the sequential object and the synchrop;.
zation object is established by the event mapping. Those events which are defined inside the se-
quential class are mapped to specific methods of the synchronization object within the sequen-
tial class, The programmer is able to specify several mappings inside the class to enable the use
of the class in several different contexts. The concrete mapping is choosen when instatiating 4
class. If nothing is specified with instantiation, the default rnapping2 is applied. An example for
such a mapping is shown in program 1.

Each time an event is raised by the sequential object, the execution is transferred to a specific
method of the synchronization object. If the event cannot be processed by the synchronization
object because of a blocking condition, the activity is blocked until the blockin g conditions for
the event no longer exist. These conditions are specified in the event-handling-methods of the
synchronization object. My event model simplifies the task of deriving a subclass from a con-
current base class. The next section introduces this feature and takes a closer look at what is
called the inheritance anomaly.

4  Separation and Inheritance

One of the most important issues when definin g a concurrent object oriented language is inher-
itance. A programmer refines or specializes a class by subclassing. When inheriting from a con-
current base class, two classes are involved: the sequential class and the synchronization class.
The normal inheritance mechanism must be split into two separate inheritance steps, one of the
sequential class and one for the synchronization class. In the following I will call this sort of
inheritance “concurrent inheritance”.

Inheritance from the sequential class is used to refine the algorithmic behaviour of the sequential
base class (BC). Embedding the extensions of the sequential subclass (SC) in the concurrent
context implies that the refinements in the subclass must have their own synchronization code
associated with the subclass methods. As shown in Figure 2, this is done by deriving another
subclass from the associated synchronization base class (syncBC), resulting in the synchroniza-
tion subclass (syncSC). These two subclasses are now one logical unit, the concurrent subclass.
The methods from BC have a synchronization relation with syncBC, and SC has a synchroniza-
tion relation with syncSC. In many synchronization schemes the relationships above the border
of modification are fixed®, which is the reason why inheritance anomalies occur [MaYo093].
Even if the code can be modified, this contradicts the basic object oriented ideas of inheritance.
The number of inheritance anomalies is reduced by untying the fixed relations between the base
classes. Figure 2 shows the general pattern of the relationships between classes if inheritance
from a concurrent base class is employed. Looking more closely at concurrent inheritance, we
can distinguish four specific configurations which allow us to categorize certain problems of in-
heritance.

2. the default mapping is the first mapping defined in a sequential class

3. The implementation of base classes is often imported from class libraries, which are delivered in binary
form. Modifying these implementations and the associated synchronization specification is impossible.

Stephan Reitzner

subclasses sC

border of modification H
(=)

------- # inheritance relation

~affl=== synchronization relation

Figure 2: Inheriting from concurrent classes

Different configurations of concurrent inheritance

The four categories are shown in Figure 3. These configurations can be modellf:d w%th the alg
of the presented synchronization scheme by using object-oriented conce!ats like mhentan‘ce :%n
late binding. The inheritance anomalies described below do not occur with my synchronization

scheme. The usage of the four categories are:

syncBC

o) (e

SC syncSC

w =
e e

a) sequential inheritance b) additive inheritance

¢) changing inheritance d) replacing inheritance

Figure 3: Different configurations when deriving from concurrent classes.
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5 Current work

Typing of annotated classes

The presented synchronization scheme has very much flexibility in combining sequential ob-

jects and synchronization objects. A subclass for example can make modifications in the syn-

chronization relation of the baseclass. It would be useful if the programmer of a sequential class

could specify the minimum needs of synchronization necessary for his object. One way to

achieve that is typing. I am currently working on a type system for concurrent objects to secure

the composition of a sequential object and a synchronization object. Both the sequential object
and the synchronization object have a concurrent type (Figure 4): a sequential object specifies
its synchronization requirements, whereas a synchronization object defines the synchronization
mechanisms it tenders. A pair consisting of a sequential and a synchronization object is type
conform with respect to a certain mapping, if the synchronization requirements of the sequential
object are met. I have to find out what the term “subtype relation” means in this context.

Events SyncMethods

MIEnter ReadEnter
ceauential MIExit ReadExit Reader/Writer
gb' t M2CP1 ummy synchronization
e Object
ntry WriteEnter
M2Exit |-s—#-{WriteExit
Mapping

Figure 4: Concurrent type of objects.

Implementation with MetaJava

I am trying to implement the presented synchronization scheme into languages like Java. The
main problem is to raise events like entering a method and to make these events visible in the
language itself. This problem could be solved by using meta systems. We have developed a plat-
form called “MetaJava” [KIG96]. It allows us to attach any meta objects to normal Java objects.
The meta object then catches several events like method invocations to the attached object (see
Figure 5). The above mentioned synchronization objects could be modelled as meta objects.
The problem with these meta obijects is, that they catch all events of a certain event class even
if it is not specified inside the sequential object. Therefore the meta object must have all infor-
mation from the raise statements and the complete mapping of the events in order to make the
correct decisions. I am currently developing a MetaJava module to implement my event model

for synchronization.
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Object Reference

sequential
-_— cgbj(-:(:t
- B —

Invocation —_

synchronization
Meta Object

Figure 5: Synchronization event model with MetaJava (Method Enter Event).
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1 Introduction

To design an operating system solely based on state-of-the-art functiOI.lal (objelct—orlented}
analytic and constructive methods is always somewhat unnatural. If is difficult to answer

questions like

. Lo

o What about Threads? Are they objects? If so, how do other ObJElT.tS l;;ecome actx;e.
What about critical sections in the code of the objects, parallelism? If not,, what
else and what does this imply?

?
e How about reflection? Do only single objects reflect or the whole system and how?

e How about distribution?

e Is a suitable error detection/handling possible without mixing up with the actual

functionality?

This difficulty stems from the fact, that the operating syste;r})] Canﬂbe;ZinLii%r:; d;f;ezesg
angles. The functional hierarchy model, the thread model, elre t;c i Currentq‘; {S7tems
other views of an operating system are fairly. orth.ogonal .to cach other. - hes.e)\riew&
usually were designed with an overall model in mind, which was somsszz;:ﬁ Clissniean
Such models tend to neglect other views beyond a chosen I.nrajor one. v

the procedural/functional or the thread/process perspective.



2 OBJECT ORIENTATION IS ...

To make things simpler, the (neglected) views are restricted to fit the model of the main
one. For instance, to unite the functional {objects) and the activities (thread) view
the object definition is modified into "everything is an active object”, which means each
object has (mostly only) one thread somehow assigned to itself during its whole lifetime.
Or, the other way Tound, threads are declared to be special objects and are temporarily
attached to the (actual) objects. Models of the first kind do not allow objects to be as
fine grained as known {rom software development, models of the second kind are usually
very complicated to handle.

)

Beyond this, the mixing of views leads to a lot of tangling code whithin the components of
the system which has nothing to do with their actual function. It is about the other views
besides the functional: threads synchronisation, reflection, error detection/handling...
This code is very difficult to further develop and maintain. This property of the views is
called cross-cutting [KLM*97] and so they are to be regarded as aspects.

2 Object orientation is the most powerful integrating
technology, but still not powerful enough

Object orientation was intended for breaking large systems and structures into peaces
of conquerable, understandable size (regarding OOA), for constructing systems without
being overwhelmed by their sheer size (OOD), and programming without continually
reinventing the wheel (OOP), Exactly these areas mark its strengths. Therefore, object
orientation can be used for integrating other technologies into large systems quite easily.

But as soon as one makes object-orientation a dogma, the resultant solutions are likely
to suffer: imagine, for instance, a database into which lots of small, simple data entities
like names and income figures have to be stored. Turning everything into object would
make the little relational database inefficient, offering no other advantage than that in
future the additional storage of multi media data would be easy. If that is not needed,
the overhead which has to be paid is too high. The more efficient solution regards the
whole database as a single object, which just happens to work internally with another (the
relational) technology. The interface methods of this database object do the necessary
integration (conversion) work between object and relational model. This way the (more
efficient) relational internal the implementation would be hidden and be replaceable by
an object-oriented one as soon as really needed.

The situation is a bit similar with the discussed views of an operating system: collapsing
everything into a single (object) model resulted in- complicating rather than simplifying
things. But not every view is as easily integrated by conventional means as the relational
data model in the example above.

The integration of the above-mentioned views of operating systems affect not just a single
part identifiable in the functjonal (object) model, but a large part of the system. The
way of the threads through the code has to be restricted reasonably, appropriate syn-
chronisation enforced. Meta knowledge about the objects of each class to be collected
and forwarded to an instance capable of reasoning about the whole operating system.

.
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It has to be distinguished between local and remote actions. If all the code for.this is
hand-written into the various components of the system, it results in large portions of
tangling code as mentioned in the introductory section.

To avoid tangling code, tools are needed which allo.w the a.xlla.lyst!’programmer/designer
to independently deal with the separate aspects or views, which bring them. together_, and
turn the whole into a working system. The code whlc'h .the human .deals with then is nocii
mixed and only about one aspect a time. Therefore, it is much easier to understand an

maintain.

Object orientation focuses en functional (de)compos.itit_)zll. But.especially on ].:fxrge. sof;v
ware systems, various technical constraints and pecuhafrltles. are imposed, resulting in the
different views of the system. Dealing with these views is nowadays lcallled aspectual
(de)composition and performed additionally to funCtJ.OI.la.l (de}compos:ltlon. Ground-
breaking research in this direction is done under supervision of Gregor Kiczales at Xerox

PARC [KLMT*97, ILG*97, LK97, MKL97].

3 CHEOPS

The CHEOPS! object management hierarchy is depicted in Figure 1. Th.e ro.ot of this
hierarchy, the class object manager, will be part of the system core which is alrleady
running on bare hardware and bridges the semantical gap between hardware and objects.

Object bace
(Object Object Object level

class class meta
object object level

meta-meta
level

class object

a (core meta level)
manager

Figure 1: CHEOPS object management hierarchy

It is (among other tasks) responsible for loading the code of thfa class object and.object
classes into memory and instantiating the class objects. Hen.ce1 it ths as me_ta ob_}ecF for
class objects. For each class, only one class object can be instantiated during runtime.

!CHemnitz OPerating System
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3 CHEOPS

A class object is responsible for (de)instantiatin
Moreover, it provides the meta interface for
best runtime environment which can
hosts by transparently setting up pr

g of the objects of the class it represents,
this objects, tries to ensure that they get the
be established, aids the migration of objects to other
oxies and a lot more.

Meta object interfaces without a wa
about the system itself would be u

y to reason about the system’s behavior and knowledge
reason about its behavior, we deci

seless. Since we want the operating system as a whole
ded to concentrate the knowledge as well as most of the
reasoning within a single component, the adaptation manager. The knowledge about itself
and the mechanisms connected therewith form an independent aspect, since it represents
a view of the whole system as well as the object management hierarchy.

The knowledge we lay down in the shape of Prolog clauses. We use Prolog as an as-
pect language for this because it is an established language in the field of knowledge
representation, and a number of reasoning systems have been successfully built using
it. Additionally, its meta computation

facilities allow for checking new knowledge before
accepting/learning it, and thus keep the knowledge base free of avoidable conflicts.

o uses_irg(1 1.pd_drive).

adaptation uses_irq(03.ctherl),

manager

1 irq_usage(X,Y):-
2 " findall(X.irq_usage(X.Y),[X]).
N
N
N
functional ) .
N

aspect > N i knowledge the system

z R SR possesses aboul itself

Thread-1d. & -data

Object-Id. . i

Threads

Figure 2: CHEOPS object management, threads, knowledge-about-itself aspects

But how are the knowledge-about-itself aspect and the object view brought together? The
adaptation manager is pro,

grammed by hand, as an object encapsulating the inference
mechanism. When describing the knowledge-about-itself aspect, the programmer writes
down Prolog clauses. These clauses are to be picked up by the class object class generator
tools. These tools add code to the class object classes, which forwards the knowledge
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0 P g wihe e ] is i i e has to be

the ada tation mar (54 object is mst.antlated. Ohh

t ager when th class ] ; er cod G b

han(iw itten in C++ such as code for adaptation requests i‘ :Jm.the GE‘)]CChS. HOV\ ]t: Ca.l"l be
itabl yl enelrated Dl’lt- of the knowledge—about—itseli view is Stlll SUb ect to mvestlgatlon.

suit B

t
i t: The code for the thread managemen
lies to the threads aspec nan: ;
- ;amg te?ﬁzﬁlzi};nappopn;nt of the system core, code needed for synchrobmza.tlon with
. o Eh i above.

» gaardato the instance variables is woven in by source code generators as

re

i ly compile-time, partly runtime weaving
i hat is understood under partly : .
This rfs‘?_mblje\st ‘zoran f11:3-time the above-mentioned generators add th.e lu;{owle:figde iozo
[KLE/'I glr].de for irlgtance {Nhen executed, this code adds class specific knowledg
warding code, nce. Wh
the knowledge base during runtime.

i t
i ; iled, and executable. It rather is a se
is not a single program, woven, compiled, . s 8 set
e resilrtell;sts which git a few properties a.dded.durmg the weaving aln;i ;:;)r&l;;l ;?Eéuia_r
- coen;Elelv hand-coded entities. Modern operating systems retain a lo
som 3 . ;
structure from the source code level during runtime.

4 Related work

i i i knowledge
i in an operating system using a
introduced the concept of adapt;venes-s : i
[Hecglll o r(;]is oint of view, the system consists of executlo_n base, ob::‘lerval:1_cm‘lri:\‘|,s‘r e
Ease‘le;genbasep In his concept, knowledge base and reflection form the main
now 3 :
the system, like objects or processes 1n others.

: i ject-oriented operating system is related
o CHE [YTTSQ’ Y?ck%] ajc:hilf::tbrsfhecct;vfhzze:ie object—or?ented op<‘erati{1g syst.ems
O ot i ‘;hi I:tstlileir'own behavior. However, they significantly Ehﬂ'er in archntec;
iy l:' ts are generally active, CHEOPS objects are passive ].mtll they ge
i Aper};m; t1‘?t31j':corarily In CHEOPS, a single instance (lt}'{e adaptation manager)
Z thsf;iz:ﬁi;l:reﬂect?ve oper.at'lcms. In Apertos, this task is divided among reflectors.
oe

) instances of a special class
i i ((192) CHEOPS class objects are ins bty
e e intain. Of each class object class, there is only
i j tain. Of each ¢ j " .

] tailored to the objects they main i sretsony
ObJeFt ila:(fe ?n the object management hierarchy. Thqu enables us t(])\ mc})]re ea£s1 y}scegthe
(f)i[llte o E:Jser\er guard, and proxy objects. Moreover, it offers a hook where to p

ers, 0 er, : Y cts.
code stemming from other aspect descriptions.

d of optimistic imple-

+95 /e owe our awareness fOI‘ the nee ;

cork of Calton Pu [PABT95] we ' | : stic e

ilzlt\:t)iron alternatives, their shielding with guards ouhm?e ‘ﬂ;e;;jam compu path,
: : iti ated.

and their reflectional exchange when guard conditions get vio

ition in their white paper on
i - i ectual decomposition in t
. but most important: introducing aspe < ! e
:Il,aest;\-etl: [KLM*97], the team of Gregor Iuczalgs at }\eroi PJQRC S:C;ﬂd:o 1 S}Eape e
ineffective) discussions in our team, how everything was t0~ e rc{ug’ i L e
: eobject whilst it really was, for instance, a rule better written down
an 3
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5 Future Work

The CHEOPS systemn is being implemented at three points in parallel. As of now, a
part of the system core is already running on bare i486 hardware, the object management
(tools for automatically generating raw class object classes and the hand-coded class
object manager) is implemented as a prototype running on top of Linux. The current
prototype of the adaptation manager is implemented as a combination of a daemon and
a dynamically loadable Linux kernel module. After the evaluation phase, the last two
components will be ported to the native kernel. Moreover, the class object class generator
tools will be supplemented to generate code for the knowledge-about-itself aspect,

At least the adaptation manager prototype will be further developed under both systems.
We are interested in how this new technology is usable under “cld” operating systems
especially how applications unaware of the existence of the adaptation manager can still
use old configuration interfaces (/etc, for instance) and the system as a whole in spite of
being old-fashioned can profit from adaptation management. Therefore, the most pressing
work is to further populate the till now sparsely filled knowledge base. In order not to
program the whole knowledge base manually, new interface and development tools (eg.
gateway functions for some Jetc config files) will have to be designed and programmed.

Regarding aspect-orientation, our project is still very much at the stage which Kiczales et
al. [KLM*97] describe as experimenting with metaobject protocols to get a feeling what
design is most suitable for aspect language (-restrictions) and what weaving technique is
best used. Step by step the gained experience will be reflected in future versions of our
code generator utilities and runtime mechanisms.
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Mobile Object Systems: The Next Generation

Michael J. Zastre

University of Victoria, British Columbia, Canada

Abstract, Mobile objects fit into the matrix of internetworks, large data
sources, and powerful network clients. The union of mobile code, state
plus data has many applications, such as distributing control in workflow
or groupware systems. The next generation of these systems of travelling
objects must address two groups of issues. Mobile Objects in-the-smallis
the name I give to concerns over mobile object construction and arrange-
ment. Mobile Objects in-the-largeis my term for the issues involving large
systems of mobile objects (dozens to hundreds) interacting together. It
includes concerns over how these systems can be validated from the spec-
ification and synthesis of the mobile and interacting portions of an ob-
ject graph given a database of application domain knowledge. 1 explore
these two aspects of next generation systems in more detail, using a
workflow example for motivation. Standard meta-programming facilities
are re-cast into the mobile agent support environment (e.g. for mem-
ory management, run-time stack examination, heap manipulation), and
1 propoese additional facilities. Specification of mobile object interactions
and expressibility of their properties, and currently technology’s bearing
on these, is discussed, and future work suggested. A schematic for a sys-
tem synthesis tool is also presented. All discussions are ultimately aimed
at the research and development of an integrated set of mobile object
system construction tools,

1 Introduction

Mobile Object Systems are continue to receive increasing attention from the re-
search and industrial development communities. The transport of code plus inter-
mediate results (state), combined with plentiful bandwidth and spare computing
capacity at servers and client workstations, is changing the face of distributed
computing. First generation mobile systems have focused on solving important
issues such as how mobility may be expressed, and the ways in which security is
assured. Other characteristics are:

— application programming interfaces (APIs) hiding developers from important
implementation decisions; and
_ small low numbers of objects interacting with each other (less than 10)

Examples of these systems include Java Aglets [11], ML-based Facile [10], a
derivative of Modula-3 and Oblig called Visual Obliq (3], Telescript [18], and
a new language and environment from the University of Geneva named SEAL
[16]. They are descendants from previous work on distributed systems and pro-
gramming languages, such as the ground-breaking work of the late 1980s by the
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Emerald Project [8] and that of the 1990s Sun’s Java Language and especially
the Java Virtual Machine and its sandbox security model.

“ pre-mobile
prtomoble

second generation

Fig. 1. Generations of mobile ohject systems

first generation

Mobile Object technology promises to become ubiquitous. Before this hap-
pens, however, I believe that at least two aspects require much further research:

— Mobile objects-in-the small: programming environment support for develop-
ing mobile object systems, such as for the construction, transmission, recep-
tion, and resource management of these objects, where the system developer
determines the implementation decisions underlying the mobile object system
itself. This constitutes an Open Mobile Object System (OMOS).

— Mobile objects in-the-large: tools for specifying and exploring the interactions
of large (dozens) and very large (hundreds) of systems of mobile objects
whether these objects enter a network from outside an enterprise, or originate
from within the same intranet.

These should be the characteristics mobile object’s next generation of languages
and systems (see Figure 1).

Mobile object research must ease the development and deployment of large
distributed systems. The following section of this paper outlines a sample prob-
lem from the Very Large Database research community. This will place into
context the research problems discussed throughout the text. The rest of the pa-
per explores these two characteristics (in-the-small and in-the-large) of second

generation mobile object systems, outlining the research problems I am investi-
gating as part of my Ph.D. research.

2 Motivation

A combination of highly-available networks and plentiful bandwidth, plus pow-
erful processors and large data capacity on each desk, has led to groupware and
workflow systems. These combine the capabilities of distributed systems and very
large databases. Operating systems such as COOL [12] have been developed for
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this, and database researchers recognize. workflow’s unanticipat(:zd usle of]ex:zb:::%
data stores and systems [2]. Mobile objects can be used at v:;nous evels ikal
as “glue” knitting together interactions across databases and as encapsu

of tf:\en:l::iaét.. al. [1] have examined the use of wor‘kﬂow:v ina tell;p!;orge coir::t;::::i:-;
a composite diagram of their diagrams‘ appears in FlguFe 2.. ata as(iatabases
tions with a central control are broken into sub—transaﬂtlons,;a‘rmus gt bages
are accessed more than once. Workflow syst.e.rns are complex de(.:use of -
between the independence of each databf:,se mmu‘ltaneously and the rigulriesn;ue
sub-transaction results cannot be committed until the uv.erall transac 10111 s
ceeds; the interval from start to finish may be several minutes or several days.

Service Request

d GOC/TIR LFACS
E:;:xiti:?:) (query) {assignmennt request)

COSMOS
(assignment request)

Direction of Workflow

K. MARCH
B anston pacet)
(comm

Fig. 2. Telephone company workflow (from Asari et. al)

Similar workflows may be seen in other oﬂilce envi:onmentsi sucl'} ?s tllet‘[f)a—
per flow through an insurance company (adding new clients into n: ormat ;(::
system, servicing claims, handling inquiries), governn.‘lent. degar:menbi;tﬁrdlta-
lishing houses. Mobile object systems are an a-ppealu.'lg t.echno‘cugy
centric and process-centric workflows by providing objects that:

— encapsulate the data item (form, database query, database query r:;ult};te

_ store state in the form of intermediate results to forward on to ano etr sl 1

— combine methods and data to determine the next stage, step, or con :o 0;
data site (i.e. person, machine or server) needed to complete current an
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future stages in the workflow; and
— encapsulate code in the form of methods acting on both

the data within the
object and data at the site at which the mobile object

currently resides.

This exposes weaknesses with current mobile object systems:

— (in-the-smali) One size of object does not fit all; system developers may need
some functionality of these systems but not all. Object data encapsulation
and transport will depend on the application, the use of replication, and
the degree of independence mobile objects should have from the executing
platforms.

— (in-the-large} New objects and their interactions should be derived from
some sort of specification; mobility could be “boilerplated” into the objects
in the same way Visual programming systems automatically generate code
for GUIs. These specifications of larger systems must be used to prove certain
properties, such as correctness of interactions, freedom from deadlocks, and
the confirmation that definite results will be obtained.

3 In-the-small: Current Work

A claim made by the meta-
of computation may front a
are often best made by th
to specify computation on

Programming community is that the black box model
verage case implementation decisions. These decisions
e software developer [9, 5. A meta-interface is used
the computation, as opposed to a regular interface
which specifies computation on the data domain. Exposing the implementation

details of mobile chject system will require careful design of the meta-interface.

J. Templ’s dissertation [15] demonstrated that a modern object-oriented im-
perative programming language can benefit from meta-programming facilities.
In this case, Oberon is extended with facilities for:

— traversing (or “riders”) through heap space and its data structures;

— traversing through the run-time stack for both examining the data and mod-
ifying it;

- introduction of “filters” at run-time which stand b
procedure servicing that event, with the filters
back” mechanism that may
and linked system.

etween an event and the
in effect acting as a “call-
extend the functionality of already compiled

These apply to mobile object systems. Traversing through heap space is
needed to swizzle state and marshal the object graph into a format suitable for
transmission. Traversing through the run-time stack captures the current point
at which a series of method invocations has been interrupted; this is transmitted
to the new site as the computation’s continuation point. Templ demonstrated
that the effort required to develop sophisticated debugging and shell tools was
greatly reduced when these meta-programming facilities were used. A similar
benefit is obtainable for mobile object systems.

meta interface

Fig. 3. Schematic of Database object showing interfaces

My current research asks “what additional meta—programm’ing facilities a.;e
required to support an open mobile object system (OMOS)?” I propose the
following mechanisms:

— Network protocol riders modify how data is trans.fer.red .to and frolm ;.;tlzeh:fe—:
ecuting platform through the network .laye.r. Optlmlzat;lons 2re fkafo ) e
by system developers, such as comm\.mlcatmg through t! e ni l:vi et
mine the presence (or absence) of objects at the r.emote site thal ];n'e zaded
by the travelling object. Access to t.hf: network mterfacg a.ls;;)l atows lut'mn
tion of custom security code at this point where the mobile object exec

the network. '

- ﬁ;’iﬁiﬁfmﬁ:ﬁl‘:z riders can be used with sec:urity a.nd/or resot}l‘rce mo;}}l}trg;

ing mechanisms. For instance, a recently arrived ob]ec.t would z:v:,-me uim

bound immediately to safe (and virtually powerless) 1mplert1;|en ZIOT}, il

authentication succeeds. At that point, methods wou]d. be boun wlljl =

sions having more functionality; several levels of security are pO:;;lﬁl de.dd ‘

Figures 4 and 3. The advantage is given t(:\ the OMOS_ de.velopir, who decide

when binding occurs (equivalently, choosing whe:n bindings c ?.ng‘la). -

Security riders in conjunction with heap space riders, used to imp Emenmm

curity models that “watch” the computations and react to susrmt:lfips rii e

Ontology filters insert conversions from one knowledge represen :' 10n‘ conle

other. This is useful when a mobile object from one orgam;ad.lo.n. vt) e

vocabulary arrives at another with an equally entrer}ched (an: dls.;lcq‘r; L

cabulary but related concepts. What those conversions are,ian %‘hi ﬁ]}i

are represented, are determined with the users and the de.vt? o;l)er. 5

ters hook into the method invocations at points deemed critical.

|

Referring to Figure 4, the authentication/increased f\}nctionality examp!e 13
the figure is one of a method binding rider. Another is for a coarse-graine

adaptation:
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Fig. 4. Per-Object Bindings of Mobile Object to Database Methods

— lightly loaded server offers a powerful method im
 server retracts implementation, substituting less
server load increases over some threshold.

plementation to object;
CPU intensive version as

Another aspect of meta ing i
-programming is the development of meta-obi
E;g::colsﬂEMC()iPs) for mobile object systems, which have been shown Ot(;]e;itg
as they develop code [5]. I propose to examine characteristics of mobile

object system MOPs by investigati i i i
ke i gating their use in the following type of mobile

— data-centric workfow
— process-centric workflow
— distributed database query frameworks

= industrial information exchange protocols for Process management (e.g. STEP)

Protocol characteristics will be analyzed, and a common set of operations iden

tlﬁe;{.m order t:0 be added to the original list of mechanisms given above
focuse:ngnazslgcliﬁe me!;?img.ramming with computational reflection [13], which
Ject’s modification and adjustment of its own d l
algorithms given the results of com i 8 o i et
. putation {which itself will depend
data collected so far in the current and previous environments) })t is nc;,\lz :ﬁz

" e e e P

e
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focus of this research, but rather an important topic in the distributed artificial
intelligence community.

4 In-the-large: Future Work

Mobile objects promises to aid in and reduce the development effort required for
distributed system deployment. This leads to two observations:

— At present there is no technique which can demonstrate a large system will
achieve its specified aim.

— No tools exist for decomposing a large distributed system specification into
mobile and stationary portions. Note that this is different from determining
what processes may migrate for load balancing purposes.

The problem with the first item is not that “satisfying a specification” is in-
expressible. For instance, I have performed experiments with casting interactions
between objects into CCS (Calculus of Communication Systems) [14] and the
temporal properties of the system into a temporal logic (p-calculus [4]). Unfor-
tunately, freely available concurrency workbenches with built in model checkers
have difficulty testing all but the most trivial properties of systems such as those
in Figure 2 I propose that patterns of mobile object communication can be ex-
ploited and thereby leading to model generators tuned to these characteristics,
hence eliminating the state explosion problem. I feel that another possible solu-
tion is to use the results of object-oriented process modeling along with emerging
theories of object interaction [17]. My goal in this phase of the research is to de-
velop property verification techniques for very large (dozens to hundreds) of
cooperating mobile objects. This must be implementable and eventually formed
into a tool.

As for the second item, any success in developing a decomposition tool will de-
pend on the existence of domain-specific packages. For instance, success has been
reported for using the OO approach to taking a DSP system from specification to
an optimized implementation using frameworks and synthetic benchmarks (7, 6].
In a similar spirit, ] suggest that this is applicable to mobile object system design
and implementation. As an example, given the details of a paper-based workflow
process, such as:

— dependencies between documents and forms;

— sets of personnel able to perform the human work;
— locations of those people and their machines; and
— distribution of the data amongst a set of servers

an analysis tool will generate a list of mobile and stationary processes. After
verifying that the system as specified has desirable properties (e.g. it is possible
that all parts of the document can be completed and delivered to a specific
department) and doesn’t have bad ones (e.g. deadlock, starvation), then code
and data needed by the mobile objects is laid down.
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