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Abstract

A three—parameter family of explicit linear 3-step formulae is derived.
The conditions which ensure zero—-stability of the formulae in the family
are formulated. The absolute stability properties of the zero-stable
formulae in the family are investigated both for p =3 and p = 2 where
p is the order of the fon"‘mulae under consideration. Some numerical
experiments are carried out in order to illustrate that formulae with
good absolute stability properties can efficiently be used in the numerical
solution of the problems in which the absolute stability properties are

dominant.
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1. Statement of the problem

Consider the initial value problem for first order ordinary differential

equations defined by

(1.1) Y1=ﬂxry)! X £ [arrb:tv yeD
and
(1.2) yla) = yo

where [a,b] is an interval in & and D is a domain In R® with s € N.
Assume that the true solution y(x) of the problem (1.1) - (1. 2) exists
and is unique for x € [a,b] (it is well-known that this is so when f is

continuous and Lipschitzian with regard to the second argument). Let

the sequence

(1.3) Yy Yoo =res Yy

be a numerical solution of (1. 1) = (1.‘2), i.‘e. each ¥; is calculated so that
(1.4) y, =yl =r, i=1(1)N, xie[a,b}

where r, (i = 1(1)N) are "small" in some sense, i.e. y; can be consi=

dered as !'good! approximations of y(xl.).

In this paper it is assumed that : (i) the grid is equidistant . and (i) explicit
linear multistep formulae are used to obtain (1.3) ; however, in the last
section some brief remarks on the use of variable grid are given.

The assumption that the grid is equidistant implies that

(1. 5) X, = x +ih, x =a, h=(b-al/N, i=0(1)N.

The general explicit k-step formulae is defined by (see Lambert [6],

chapter 2)




k-1 k-1
(1.6) Yek T .E Ui Ypgei = D .E B; fn+|
i=0 i=0
where
(1.7} fopr ™ T s Yo

and it is assumed that k starting vectors are available before the
first use of (1.6).

By the use of formulae of type (1.6) the computational work per step in the
calculation of (1. 3) with a given stepsize h is minimized because:

(1) only one function evaluation per step is needed and (ii) no problems
with solving algebraic systems occur. Therefore the use of formulae

of type (1. 6) is desirable. Unfortunately, these methods have very small
regions of absolute stability. This fact sometimes causes difficulties
unless h is very small. The main purpose of this paper is to derive

some special formulae (1.6) which have large absolute stability regions

and which can be used in practical computations.

Denote by p the order of (1.6) (see [6], p. 23) and by S the absolute
stability region of (1.6). Then the requirement p =k will restrict
severely the search for formulae (1.6) with large absolute stability

regions S as seen from the following theorem.

Theorem 1.1 (Ueltsch & Nevanlinna, [5], p. 29).

"Let (1.6) be an explicit linear k-step method with p = k.
If [-a,0] ©S then a < 2 with equality only for k = 1.
O

Therefore the requirement p = k must be relaxed when absolute stabi-
lity regions which contain Intervals greater than [-2,0] are wanted. It
is well-known that for p = k=1 formulae (1.6) with absolute stability
regions which contain intervals [-a, 0] with an arbitrary a > 0 can be
constructed. For k = 2 examples for one-parameter families of formu—
lae of order p =1 with long absolute stability regions are given in
Mannshardt [7], van der Houwen [4], Zlatev & Thomsen [16, 17].

3
Practical implementations of such formulae are described in [16, 10].
A very general result for formulae (1.6) with p = k=1 is proved by
Jeltsch and Nevanlinna [5].
Theorem 1.2 (Jeltsch & Nevanlinna, [5], p. 30).
Let 0<a < mn/2, R>0 andk > 1 be given. Then there exist
explicit linear k-step methods of order p = k=1 such that they
are absolutely stable in the set
Q {uEé/|ui<RA}ar‘g(—p)\sa].
o, R ) .

However, note that the formulae used in the proof of this theorem seem
to be difficult for practical implementation when R is large and is
closed to m/2. Therefore the requirement that R is arbitrarily large
and o is arbitrarily close to m/2 will be relaxed but a new requirement
about the size of the error constant will be imposed. More precisely,

a three-parameter family of formulae will be derived from (1.6). The
conditions, which ensure zero-stability of a considerably large sub-
class of formulae in the three-parameter family, will be formulated.

A practical search for zero-stable formulae with large (or at least long)
absolute stability regions will be carried out. Some examples, which
demonstrate that the formulae found can be used efficiently in the solu-
tion of some problems, will be given. Finally; brief remarks on the
use of formulae in a variable stepsize variable formulae methods are

made.

2. A three-parameter family

Consider (1.6} with k = 3. Assume that :

-1 =-q =ay

(2.1) O'O = 2
(2.2) By = 45+2u,+0.50, - 28,,
(2.3) BO = _1.5+0_5(i1 +Bz'




Substitute ) ;31 and By in (1.8). The result is :
(2.4) Ynt3 T 02 Vg T 0 Vg — (T H ey +ayly,

= h[Byf g * (4.5+20,+0.50, -28,)f

2 n+1

+(-1.5+ 0,50, + az)Fn]

It is readily seen that each triple (ccz, ay ﬁz) € &> determines an
explicit 3-step formulae (2. 4) which order is at least 2. In other words
(2. 4} determines a three-parameter family of explicit linear 3-step
methods of order p € {2, 3, 4, 5}.

Consider the stronger requirement : p € {3, 4,5}. Consider a triple
{a,, ays 8,) and the formulae (2. 4) generated by the triple chosen.
This formula is of order p with p € {3, 4,5} if the elements of the
triple satisfy

(2.5) 27 + 4o, -0, - 128, = O.

Since this equation is linear and since the tripte was arbitrary, this

means that for each pair (o ) e hz a unique value of BZ can be

22 %
found so that (2. 4) has order p at least equal to three. This special
value of parameter 52 will always be denoted by ﬁ; and it is clear
that ’

(2.6) = 2.25+q,/3-a /12

Ba

Two examples which are well-known and commonly used in practice

(especially in the predictor/corrector schemes) are given below.

Example 2.1 The Adams-Bashforth formula of order two is found by

the following choice of the parameters

Example 2.2 The triple
(2.8) a,=-1, a;=0, s; = 23/12,

defines the Adams-Bahsforth formula of order three,

3. Zero-stability conditions

Consider the p-polynomial associated by the left-hand side of formula
(1.16) =

k-1 3
(3.1) plz) = £+ B o oty

i=0
The following definition corresponds to that given by Stetter [13] on
p. 206.

Definition 3.1 A linear k-step method is said to be strongly zero-
stable if (3. 1) has no root outside the closed unit disk and 1 is

the only root on the unit circle.

Consider the three-parameter family (2. 4) again. The restrictions
which must be put on the parameters of the family in order to obtain

strongly zero-stable formulae are given by the following theorem.

Theorem 3.1 The formula obtained by an arbitrary triple
(0‘2 y &y 32) € &> from (2. 4) is strongly zero-stable if the

pair ((I.z 2 OLI) is such that

(3.2) o, < =y,
(3. 3) a, > -1

and
(3. 4) @, > -3-2%,

are satisfied.




Proof Consider the p-polynomial associated by any method from the

three-parameter family (2. 4)

(3. 5) olz) = 23+m222+q1z-(1+a2+q1).
Since z = 1 is a root of (3, 5), it is clear that
(3.6) plz) = (z-1) P(2)
where
(3.7) = 22
P(z) z +(1+a2)z+(1+a2+a1).
Consider
(3.8) Q(z) = (1+a2+a1)zz+(l+c12)z+l
and
(3.9) Plz) = Jz-[q(o) P(2) - P(0) Q(z)]

- fo, #8q) [(on2+c11 +2)z + {1 #a )]

By a theorem originally proved by Schur [11] (see also [6] and
3 8 - - :
[8]) the roots of P(z) satisfy ]zil <1 (i =1, 2) when

3.100 [Pl < |a(o)]
and
(3.11) |[z] < 1

where z is the root of (3. 9),

F'

(3.12)

al

(3.13)

rom (3, 10) it is readily seen that
|1+ a, +ay | <1
nd therefore (3. 2) and

+a,+2 > 0

g oy

hold.

From (3.9) and (3.13) it follows that (3.11) is satisfied when

(3.14)

C QA+ a +2'.

[1+9,] ¥ By

The inequalities (3, 3) and (3. 4} can easily be derived from (3. 14),
Moreover (3.3) and (3. 4) imply (3. 13). Thus the theorem is

proved.

Remark 3.‘1

|

The region of strong zero-stability for the three-parameter

family (2. 4) is the inside of the triangle ABC given in Fig. 3. 1.

Remark 3.2 The requirement for strong zero-stability can be relaxed

(3.15)

(3. 16)

so that (3. 1) is allowed to have simple roots different from 1 on

the unit circle (see Dahlquist [1, 2], Henrici [3] and Lambert [67).

The formulae so found are called zero-stable (see Lambert [6],

p. 33). It is easily seen that on the inside of AB the formulae of

family (2. 4) are zero-stable but not on the end-points A (double

root 1) and B (double root -l]; The same is true for the inside of

8C but not for the end-points B and C (1 is a root of multiplicity 3).

On AC the formulae are zero-unstable. Indeed; on this side

3+ 2(12 +1 =0
which is equivalent to
p!(1) = 0.

The last equality shows that z =1

is a double root for (3. 5).
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The result obtained by Theorem 3.1 can easily be generalized. Con- }\ml
sider (1.6) again. Letk >3 and p ¢ {k=1, Kk, k+1, ..., 2k-1}. ;
Assume also that | N
E : Ao <+ 3
= i Ui
(3.17) ey 0 (i = 4(1)k)
and
= - 42
(3.18) U3 T-oy g ~ag_p-
Then the following theorem can be proved as Theorem 3. 1 {observing
that k-3 roots of the p-polynomial are equal to zero when (3.17) is -
satisfied and one of the other roots is equal to 1). i S i
. 1B
~
Theorem 3.2 The explicit linear k-step methods for which (3. 17) - (3. 18) N
hold are strongly zero-stable if the non-zero coefficients in (3. 1) t
satisfy
e >
4 1 %
(3.19) ot < Qg -3 2
(3.20) Cpog > —1
and B
.
N
N
N o=
i e NQ, = -a
(3.21) Qpmg > —3- 20, 4. ; v 2 1
O \ » N
~ ~
\ !
: ~
Finally, it should be mentioned that the following result can easily be \\ “\
obtained from Theorem 3. 1. &y ==3-20, E ~
| N _——f
Theorem 3.3 Let a, and a, satisfy (3. 2) - (3.4). Then the order p i
OO I, i
of the method is at most 3 (i.e. p € {2, 3}). f .
i Fig. 3.1

Zero-stability region for the three-parameter family

(2. 4) - each pair (CLZ, G’l) in the inside of the triangle

ABC gives a strongly zero-stable formulae.




4. Absolute stability properties of the formulae with p = k

Consider the set

(4.1) A= {(az,a1)/q2 = -2, 95(0. 05)0. 95, CL1=—OL2—0. 05(-0. 05)
max(-2. 95-—2&2, -0.95)}.

For each pair (0«2,0’.1) € A the corresponding parameter a; has been
computed by (2, 6). Denote the length of the absolute stability interval
on th.e negative part of the real axis by h1 and the length of the abso-
lute stability interval on the positive part of the imaginary axis by hz.
Both hl and h2 are non-negative functions of cxz and (11. The
values of these functions for each pair (0.2, Otl) € A have been compu-
ted by an algorithm based on Schur's criterion (see [6], pp. 77-79)
and plotted using the standard plot-subroutines available at RECAU
(the Regional Computing Centre at Aarhus University). The plots are
given in Fig. 4.1 and Fig. 4. 2.

According to Theorem 1.1 hf < 2 in this case. From Fig, 4.1 it is
seen that the largest values of hl can be found in a neighbourhood of
p.C (see also Fig. 3.1), The numerical experiments show that h1 e
for Gp»=3, A Gy =3 (see the plots on Fig. 4.3; the package deve-
loped by Sand and @sterby [9] has been used to draw all plots given
in this paper). However, the methods found by values of 0.2 and ml
which are very close to -3 and 3 have large error constants (here

the definition of the error constant given by Henrici [3] on p, 223 is
considered; Lambert [6] uses another definition, which is the same
as Henrici's for p'(1) = BogtByteee +B = 1). Nevertheless, some
methods can successfully be used in practical computations when the
absolute stability requirements for the problem under consideration
are dominant over the accuracy requirements (i.e. if smaller value

of the stepsize h should be used this is in order to ensure stable
computations rather than to obtain more accurate results ; see

Shampine [12] and Zlatev and Thomsen [18]).

Fig. 4.1
The length h,' of the absolute stability interval on the
negative part of the real axis as function of Og and oy
In this plot h1 = 0 when (ctz, [1‘} 4 A.

Fig. 4.2

The length h2 of the absolute stability interval on the
positive part of the imaginary axis as function of

a, and a,. In this plot h, = 0 when (Onz, G1) g A.




The following example illustrates that the application of some methods
of family (2. 4) with good absolute stability properties may be more

profitable than the corresponding Adams formula.

Example 4.1 (Shampine [12]) Solve the problem defined by

(4.2) y! 0.1y, - 199.9y,, y,(0) = 2.0,

(4. 3) vh - 200.0y,, y (00 = 1.0,
for x¢ [0,6].
O

The solution of this problem contains a small interval [0, c] where the
accuracy requirements are dominant in the efforts to obtain an accep-
table numerical solution. On the interval [c, 6] the stability require-

ments are dominant. The number c¢ depends on accuracy required

(if the required accuracy is lower, then c is smaller).

The integration on [0, c | has been carried out with Euler's formula and
with h = 0.0001. A method selected by oy = 2,35 oy = 2.05 and

By = 5; has been used in the integration on [¢,6] with h = 0.0075.
The whole integration has been performed with an error of magnitude
0(10-5) for ¢ = 0.045, The attempt to use the third order Adams-
Bashforth on [0.045,6] with h = 0.0075 has not been successful ; the
computations have been unstable. This method can be used to solve

this problem only if h is reduced to 0.0025 (i.e. three times).

Note too that if the accuracy required is of magnitude 0(10_2), then the
Euler formula should be used only on [0,0.015], while h = 0.0075 can
be used on [0.015,6] ; i.e. ¢ is equal to 0.015 in this case.

&
3

e

_,__

Fig. 4.3
Stability regions for some formulae in the three-parameter

family. The parameters used are as follows :

(1) o,=-1.0000, q,=0.0000, g} = 1.9167
(2) a,=-2.3500, &, =2.0500, B3 =1.2958
(3) a,=-2.7000, q;=2.5500, By = 1.1375
(#) g, =-2.9000, o= 2.8500 , B = 1.0458




Let us consider now the Fig. 4,2, It is seen that h2 < 1 for all methods

of the family with By ™ E; . This can be considered as a numerical illi-
stration (for k = 3) of the following theorem proved by Jeltsch and

Nevanlinna [5]. B+

Theorem 4.1 (Jeltsch and Nevanlinna [5], pp. 34-35)

Let re[0,1] and k€ [2,3,4] be given. Then there exist

explicit linear k-step method of order p = k with

(4. 4) (-r,r) €S, N
| 2 v

Let o, be fixed and close to —=1. Then h2 - 1_for oy - -3-2a, and

+

(cxz,cn]) € A. Note that in this case h, - 0. This should be expected;
see Theorem 5.1 in Jeltsch and Nevanlinna [5], p. 32. It is not neces-
sary to formulate this theorem here (too many auxiliary definitions and
statements are needed). Roughly speaking, the theorem states that

for the explicit linear k-step methods either [-i,i]dsS or [-,i]=S;

see more details in [5].

The above considerations are illustrated in Fig. 4. 4 where oy = -1.05
has been fixed and the absolute stability regions for the third order
formulae obtained with &y = 0. 4, o, = 0.1, a; = -0. 55 and 0-1 =-0,9
are plotted.

The absolute stability regions for some formulae in the
three parameter family. The parameters used are

= e = *
%y 1. 05, By = By and

(1) ay = 0.4
(2) a, = -0,1
(3) a, = -0.55

(4) ay = -0.9



5. Absolute stability properties of the formulae with p = k=1

Consider the set

(5.1) B = {{ayoa /oy = -2.8(0.2)0.8; o = —0,-0. 1-0. 2)max(-2.8-2 5, - 1. 0)}

For each pair (ogz,g_ 1) € B formula (2.6) has been used to compute B’é.
The quantities hl and h, (defined at the beginning of section 4) depend on
agay and By in the case where p = k-1 = 2. For each pair (0'2"11) €EB
a direct search for the value 52, such that h1(a2,g1,§2) > hT(az,q 1,62)

where Bz is in a neighbourhood of B;, has been carried out. Denote

F|1(<12,a W= h,(az,u 1,52). It is clear that h, is a non-negative function y
of Uy and oq- The corresponding function h2 is defined in a similar way.

The values of h1 and Hz have been computed for all pairs (qz,q, l) £ B. *
In the neighbourhood of some points (as e.g. (-3, 3) and (-1,0)) more re-

fined grids have been used. The results obtained by these computations \
can be summarized as follows.

According to Theorem 1.2 ?11 can be larger than 2 in this case. This /
is the case in the neighbourhood of the point ([12,(}_ 1) = (-3, 3). In fact,

very large values of h, canbe found for ((j_z,g, 1) -+ (-3, 3). Unfortunately, : o " s o ' i

in this case p'(1) = Bz +8,t BO tends to zero. This shows that the error

constants of the formulae so found {again the definition proposed by

Henrici [3], p. 223, is considered) become very large. Therefore the

pair (cy,z,cx, .') should not be chosen too close to (-3, 3) if the method is

Fig., 5.1
to be used in practical computations. The absolute stability regions of
. . . The stability regions for some formulae in the three-
some formulae are given in Fig. 5. 1.

parameter family. The parameters are as follows

The usefulness of the formulae In the numerical integration of some problems (M ay=-2.98, a4~ 2.9610 , By = 0.17
is illustrated by the following example. (2) oy = -2.98 , o= 2. 9609 , BZ =0.15
Example 5.1  As Example 4. 1 in section 4 with x € [0, 200]. (3) a,=-2.98, a,=2.9608, B, =0.12

] | (4) a2=—2.93, a]=2.9607, 62-_—0.09




The formula generated by 0, = -2.98 , g = 2,961 and Bz = 0.17 has
been used on the interval [c, 200] with a stepsize h = 0.05, while the
Euler formula has been used (as in Example 4. 1) on the interval [0,c]
with a stepsize h = 0.0001. Note that in this case c should have a
larger value (compared with the value obtained in Example 4. 1) because
both the formula is not so accurate (the order is p = 2) and a much larger
value of h has to be used. With ¢ = 4 the largest error observed on .
the whole interval [0, 200] was 0f ?0_3). The Adams formula of order 2
could be used with maximal stepsize h = 0.005 for this problem. It
should be noted that the first phase of the integration could be performed
much more efficiently (e.g. using the classical 4'th order Runge-Kutta
method or the method used in section 4, 1). However, our purpose here

is only to show that large stepsizes could be used. The problem of
efficiency of the computation is briefly discussed in section 6.

Let us consider now the size of 52. Again the largest values of h, are

= 2
in the neighbourhood of (-1,-1) and again h2 < 1. Some absolute stability

regions are given in Fig. 5.2,

The problems for which the formulae should have absolute stability regions
with large values of h2 (i.e. the problems whose Jacobians have some
eigenvalues which are large in absolute value and close to the imaginary
axis) require normally a greater degree of accuracy also. Therefore the
explicit linear multistep methods are not suitable for such problems. If

the use of explicit methods is desirable, then some Runge-Kutta method
(e.g. of order 4) will be preferable in comparison with the explicit linear
multistep methods (the scaled absolute stability intervals on the imaginary
axis wi-ll be comparable, while the accuracy properties of the Runge-

Kutta formula will be much better).

Fig. 5.2
Stability regions for some formulae in the three—

parameter family. The parameters used are as follows

(M a,=-1.0, a;=0.5, By = 1.4750
(2) a,=-1.0, ay=0.1, B, = 1.7083
(3 o,=-1.0, a;=-0.3, By = 1.8792
(4 a,=-10, a;=-0.9, By = 1.9792
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6. On the practical use of formulae with extended absolute stability regions

Typical for many practical problems is the fact that at the beginning of
the integration the accuracy requirements are dominant, while after that
the absolute stability requirements are much more important. This
normally means that the numerical integration cannot be started with a
large stepsize h in this situation unless the formula is both very
accurate and very stable. |f the additional requirement that the formula
is both explicit and linear multistep is imposed, then the formula will
not simultaneously be very stable and very accurate. This shows that
the formulae with extended absolute stability regions should be combined
with some other formulae (which are more accurate) in a VSVVFM
(variable stepsize variable formula method; see e.g. [15] and [ 18]).
The more accurate formulae should be used in the starting phase of the
numerical integration. When the absolute stability requirements become
dominant, an automatic switch to the formulae with extended absolute
stability regions has to be performed. In the case where predictor-

corrector schemes are used, these ideas have already been used by

Zlatev and Thomsen [ 19] in a VSVFM based on Adams predictor-corrector

schemes (which are the accurate formulae) and on some predictor-corrector

schemes derived in [ 14, 18] (which have better absolute stability pro-
perties than the corresponding Adams schemes). Similar ideas can be
used for the methods found in this paper.
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