Institute of Mathematics University of Aarhus

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

Yf
[
|
[
:
:
5
':'
!

CONTENTS

T Introduction .« . . . » B G e e w e e % e
2. OCODE + o« s s o8 a2 w o omh S EB
I Design Criteria . ..o oo s oo
4., StatiStiCS « « o o v s o s a8 s 8 2 8 s a0 0 s a2
5. internal representations and optimizations

6. Input/Output and Interface to Environment

7 58 A New Access Method for Statics .« o v 0 v 0«
8. The OCODE Machine « « « « « « + « P
9. The OCODE Emulator « « .« « oo o s oo R
10. The OCODE Assembler c iEeME R
11.. Conclusions .« . s« .+« P E e E TR
12. References .« .« + s a0 o0 § o W oW e

20

25

37

42

45

47

——

1. Introduction

In the spring of 1973 it was decided to implement the language BCPL
"2 3] on the experimental microprogrammable computer RIKKE-1 [s, 6]
being constructed in this department. The language was chosen to be the
systems programming language for RIKKE-1, one argument was the
possibility of transferring the Oxford Operating system 0S8 [9 J to
RIKKE-T.
As there existed an intermediate object language OCODE [2] for the
translation of BCPL,one way of accompl ishing this goal was to write
an emulator for some internal representation of OCODE (or a slightly
modified version of OCODE) and an OCODE assembler that would assemble

symbolic OCODE into this internal representation.

This paper describes the design process for an internal representation
of OCODE, the resulting machine, the emulator, and the assembler, and
finally there is a discussion of our experiences of running the OCODE
machine during the past B months. Some future analysis and possible

modifications are mentioned,

The OCODE machine was designed and the OCODE emulator was written
during the summer and autumn 1973 by Bjarne Stroustrup and the author.
The OCODE machine has been running on RIKKE-1 with a mini-system

written in BCPL since July 1974, Some modifications have been made during

this period.

. |

S OCODE

in [2] Martin Richards defines OCODE as an intermediate object
Janguage for the transiation of BCPL. OCODE is a symbolic language
running on an imaginary stack machine which corresponds closely to the

structure of BCPL.

As shown in figure 1 the BCPL compiler first translates a program into
a tree representation which is then translated into OCODE (this is
describéd in more detail in [3]). Atlasta code generator generates
the code for the target machine. We use the same structure, but our
code generator is called an assembler because our machine code is

so close to the symbelic OCODE.

The OCODE machine has 3 sorts of data: local, global and static,

each with its own accessing method. Local variables are placed on the
stack and are addressed relative to the activation pointer, P, which
points to the currently active stackframe. Global variables are placed
in a vector of consecutive cells and are addressed relative to the start
of the vector. Static variables are addressed by symbolic addresses

(labels) so their allocation in the OCODE machine is not specified.

e)=

(ocone Jo— raans |9

S\ cG l—=(Machine Cod{

Figure 1 : The structure of the BCPL compiler,

The stack is organized as shown in figure 2. The activation pointer

P points to the first cell in the active stackframe, and S gives the

number of cells in the stackframe. S'is adjusted each time an element is

pushed on the stack or popped off the stack. P is adjusted on proce-

dure or function entry or exit:
e of P is filled into the cell that P is now pointing to,

on entry P is set to & new position,

the old valu

and the return address in the code is put into the next cell; on exit

O is reset to the old value, S is adjusted,and the return address is used

to resume execution of the previous procedure.

e—————— Next free stack cell

Current s
stack fr*amn%

Feturn addrgss

Previous
stack frame

teturn a ¢SS l

teturn addrgss

Figure 2 : The stack

3. DesignCriteria

|t was decided to keep close 10 the OCODE described by Martin Ri-
chards, but on the other hand we wanted to make modifications that would
H

optimize storage utilization and execution time if possible.

The data organization and accessing nicthod of the OCODE machine

is well described in 2]. 1t can be directly transferred to a machine

with the following registers:

G pointing to the global vector
P containing the activation pointer
= pointing to the top element of the stack

(as opposed to { 2] where S denotes the number

of elements in the active stackframe)

Local variables can be addressed relative to P, global variables relative
to G, and static variables by absolute address. (The decision about
static variables has later been revised: see section 7.) Furthermore,

in order to make the addressing independent of the physical machine,
sonmeaddress mapping should be used to transform virtual addresses into

physical machine addresses, e.g. BASE-LIMIT registers.

As for the code, no internal representation is indicated in] 2] so here
we had to make our own decisions. A major design criterion was that the
amount of storage space occupied by a "typical' program should be
minimized, not only to save space but hopefully also execution time

since less memory references would be required.

Since RIKKE-1 is a 16 bit machine our OCODE machine should be a
16 bit machine with a store of up to 64K words. Otherwise the design
should be independent of the RIKKE-1 hardware,

It was also decided that the OCODE emulator should be designed such
that it could run in some multiprogramming system allowing different

emulators to operate concurrently.

4, Statistics

In order to be able to decide on & reasonable internal representation

of OCODE which would optimize memory utilization for the code, we
picked out some BCPL routines from the runtime library (WRITES,
UNPACKSTRING, PACKSTRING, WRITED, WRITEN, NEWLINE,
READN, WRITEOCT, WRITED, and WRITEF) and from the BCPL
compiler (JUMPCOND, TRANSSWITCH, and TRANSFER), and
translated them into OCODE, using a BCPL compiier running on the de-
partment's GIER machine. (This was a bootstrap version of the com-
piler in INTCODE [4], and the INTCODE simulator was written in

ALGOL, so it was a very slow translation, taking about 8 hours).

This material was, of course rather small (about 300 lines of BCPL, of
which almost 1/3 was manifest and global declarations). The reasons
for not taking more material at that time were the slow translation
speed and the fact that the results were to be calculated by hand

(since we did not know what to look for we could not make an automa-

tic analysis).

Table 1 shows the distribution of the instructions in the translated
code (leaving out the assembler/loader directives which are given in

table 2).

The directive GLOBAL produced by our version of the compiler seems
to be a replacement for the directives INITGL. and INITGN described in
[2]. 1t is of the form

GLOBAL k 9, Ln1 9, l_n2 ceee Gy I_hk
where k, 9yr Igs --a Yy are integers, 9y -+ 9 representing glo-
bal variable numbers, and I_n] SR l,nk are assembly parameters

(1abels).

The most important information we get from table 1 is that a few in=
structions occur very frequently whereas most instructions occur rather
infrequently.ln our attempts to optimize storage utilization we must
therefore pay special attention to the frequently occurring instructions
since the total result of the optimization will be heavily influenced by

these instructions,

Table 1. Distribution of OCODE instructions.

Compiler rout. Runtime rout. Total
B % no. %o ne. %o

e [, =

LP 64 15.3 97 19.0 161 173
LLP 2 0.4 2 0.2
SP 7 1.7 32 6.3 39 4.2
LG T4 V.7 26 5.1 100 10.8
JIjEiCS

e 18 4,3 3 0.6 21 2.3
s 6 1.2 6 0.6
1S

SL

LN 50 12.0 88 %2 138 14.9
TRUE 1 0.2 1 0.1
FALSE

LSTR

MULT 1 0.2 1 0.1
DIV 1 0.2 1 0.1
REM 1 0.2 1 0.1
PLUS 22 53 38 7.4 60 6.5
MINUS 4 150 38 1.6 12 1.3
EQ 5 1.2 9 1.8 14 T8
NE

1S 1 0.2 5 1.0 6 0.6
GR 1 0.2 1 0.1
LE 1 0.2 4 0.8 5 0.5
GE 1 0.2 1 0.1
LSHIFT 2 0.4 2 0.2
RSHIFT 7 1.4 7 0.8
LOGAND 4 0.8 4 0.4
LOGOR 2 0.4 2 0.2
EQV

NEQV

NEG 2 0.4 2 0.2
NOT 1.0 4 0.4
RV 21 L o) 15 2.9 36 3.9
STIND 5 1.0 5 Q:5
JT 4 1.0 4 0.8 8 0.9
JF 6 1.4 17 43 23 2.5
JUMP 9 2.2 15 2.9 24 2.6
GOTO 6 1.2 6 0.6
FINISH 1 a2 1 0.2 2 0.2
SWITCHON 1 0.2 2 0.4 3 0.3
STACK 60 14. 4 40 7.8 100 10.8
STORE 12 2.9 15 2.9 27 2.9
RES 2 0.4 2 0.2
RSTACK 2 0.4 2 0.2
FNAP 6 1.4 3 0.6 9 1.0
RTAP 37 8.9 i8 3.5 55 5.9
SAVE 3 0.7 9 hJFi s 12 1.3
FNRN 2 0.2 2 0.2
RTRN 8 1.9 14 2.7 22 2.4

418 FH PZQ

Before turning to the internal representation of instructions let us
note the following:
1) The instructions STACK and SAVE have identical effect, and

will therefore be implemented as one instruction denoted STACK.
2) The differences between RTAP and FNAP can be moved to the
return, so that we need oniy one instruction for calling routines
or functions, denoted RTFNAP.

3) The LSTR instruction can internally be represented by LLL

loading a pointer to the string on the stack.

Table 2. Assembler/loader direcrives.

DS PO | o
LAB 22 45 67
ENTRY 3 9 12
DATALAB 3 3
ITEML 3 3
I TEMN
GLOBAL 1 1 2

5. Internal representations and optimizations

Our first assumptions are the following:
1) The OCODE machine has a store of {up to) 64K 16 bit words.

2) We must be able to address any location of the store, so ad-

dresses that are not limited by some criterion must occupy 16 bits.

3) Any instruction must be addressable, i, e. it must start at a

word boundary.

5,1. Initial version

Assumptions 1, 2, and 3 are made. Because of assumption 2 the address
part of addressed instructions must occupy 1 word, and because of as-
sumption 3 the operation code must then also occupy 1 word. This does
not apply to the instructions accessing the global vector. If we Iimit the
size of the global vector to 1024 words, then these instructions can be
contained in 1word, with a 6-bit opcode and a 10-bit address field.
Addressless intructions will also occupy 1 word because of assumption
3. Table 3 shows the storage space required by our example programs

under these assumptions.

5.2. First optimization: Byte addressing

Now it seems to be a waste of storage space to use 16 bits for an operation
code, remembering that there are about 50 OCODE instructions, so let
us replace assumption 3 by
31) Any instruction following a LAB, ENTRY, RTAP or FNAP
must be addressable.
This change can be made because we can only branch to these instruc-

tions.

Now we can split up each word in 2 B-bit bytes letting each operation
code occupy {at most) one byte, so that addressed instructions will oc-
cupy 3 bytes (1 byte for the opcode, 2 bytes for the argument), address-
less instructions will occupy 1 byte, and instructions accessing the glo-
bal vector will occupy 2 bytes. However assumption 3! tells us that

some instructions must start in the first byte of 2 word, so we must

Table 3. Storage requirements using word- and byte-addressing

word addressing

byte addressing

no. bytes bytes L
LP 161 3 644 0.9 483 20.5
LALE 2 0.2 8 0.3 6 0.3
SP 39 4.2 156 LS 117 5.0
LG 100 .8 200 6.5 200 8.5
LLG
SG 21 2:3 42 1.4 42 1.8
LL 6 0.6 24 0.8 18 0.8
LLL
sL
LN 138 9 552 17.9 414 17.
TRUE 1 1 2 0.1 1 0.
FALSE
MULT 1 0.1 2 0.1 1 0.0
DIV 1 0.1 2 0.1 1 0.0
REM 1 0.1 2 0.1 1 0.0
PLUS 60 6.5 120 3.9 60 2B
MINUS 12 1.3 24 0.8 12 0.5
EQ 14 1.5 28 0.9 14 0.6
NE
LS 6 0.6 12 0.4 6 0.3
GR 1 0.1 2 0.1 1 0.0
LE 5 0.5 10 0.3 5 0.2
GE 1 0.1 2 0.1 1 0.0
LSHIFT 2 0.2 4 0.1 2 0.1
RSHIFT 7 0.8 14 0.5 7 0.3
LOGAND 4 0.4 8 0.3 4 0.2
LOGOR 2 0.2 & 0.1 2 0.1
EQV
NEQV
NEG 2 0.2 4 0.1 2 0.1
NOT 4 0.4 8 0.3 4 0.2
RV 36 3.9 72 2.3 36 1.5
STIND B 0.5 10 0.3 S 0.2
JT 8 0.9 32 1.0 24 1.0
JF 23 2.5 92 3.0 69 2.9
JUMP 24 2.6 96 3:1 72 3.4
GOTO 6 0.6 12 0.4 6 0.3
FINISH 2 0.2 4 (4 08 | 2 0.1
SWITCHON 3 0.3 72 2.3 72 3.1
STACK i12 12.1 448 14,5 336 14.3
STORE 27 2,9 54 1.7 27 1.1
RES 2 0.2 8 0.3 6 0.3
RSTACK 2 0.2 8 0.3 6 0.3
RTFNAPRP 64 6.9 256 B.3 192 8.2
FNRN 2 0.2 4 0.1 2 0.1
RTRN 22 2.4 44 1.4 22 0.9
NOOP 72 3.1

929 3086 12353

add a nooperation (NOOP) to the instruction set which can be inserted

in the second byte of the previous word if necessary. The number of

NOOP's to be inserted is estimated as:

(#LAB + #ENTRY + #=RTAP + # FNAP) / 2
= (67 + 12+55+9) /2="71.5~ 72

Table 3 shows the memory requirement after this optimization, and

the gain of storage space amounts to

23.8%

5.3, Second Optimization: Short arguments

We now turn to the restriction of assumption 2 that addresses (and

constants) should always occupy 16 bits. Is this reasonable?

If we allow for 2 or 3 versions of the same instruction with different
sizes of the argument we can in each case use that version of the in-
struction in which the actual argument can be contained. We now get

this modification of assumption 2:

2') We must be able to address any location of the store, so
addressed instructions (except those accessing the global vec-

tor) must have a version with a 16-bit argument.

In the following it is shown that this flexibility gives a substantial

saving of storage space.

First look at the constants. What are constants used for? Probably
mainly for the step length in for-loops, and for indexing in (small)
vectors, and if this is true, most constants will be ltigmali". Now, we
have already on page 9 decided upon an instruction format for accessing
the global vector with 6-bit opcode and a 10 bit argument. The same
format could be used for instructions with a constant argument in the
interval [=512, 51 1], and in our example it turns out that all constants
are within this interval. Of cours e we still need the ability to have a

16-bit constant, so we must have 2 versions of the LN instruction.

But we can go even further if we note that about half of the constants

are used immediately in an arithemetic, comparison or shift operation.
These instructions operate on the 2 top elements on the stack and
place their result on the stack. If we add a version of each of them
with a 6-bit opcode and a 10-bit argument, we can replace the com-
bination of an LN instruction followed by one of these instructions

by the new version,

Example:

if Kk is in the interval [~512, 511], then
LN k
MINUS

is replaced by

MINUS10 k

Thus we save one byte of code, and moreover we save an instruction

decoding and a push and a pop of the stack.

if our arithmetic or comparison operation is symmetric, we may have

some other load instruction between the LN and the operation.

Example:

if k is in the interval [=512, 511], then
LN k
LG n
PLUS
is replaced by
LG n
PLUSI10 k

Now we turn to the addresses. As far as global variables are con-

cerned we have already made the optimization (page 9).

Eor static variables we cannot hope to gain anything since we have
decided that they should be addressed by absolute addresses. (This

decision has later been revised, see section 7.).

The dynamic (local) variables, howevenr are addressed relative to the
P register and their addresses are known at compile time, so here
we can use the shorter format for gsmall' addresses. But how often
do we really need to address up to 1024 local variables? Certainly
only if we use vectors, Otherwise thenumber of local variables is
probably in most cases not more than, say, 10 or 12, so we can use
an even shorter format for addressing these variables. With a 4-bit
opcode and a 4-bit argument we can squeeze an addressed instruction
into one byte, and it turns out that about 80-90% of these instructions
actually will use this format so there is a substantial saving of space,
since the instructions involved (LP, SP, and STACK) are about 30-

350 of the total number of instructions. *)

The result of these optimizations is given in table 4, showing the di-
stribution of the instructions with different argument sizes, and the

storage requirements after the optimization.

Note that more than 50% of the instructions are 1-byte instructions,
and that almost 30% of all instructions use the very short format (4

| bit opcode - 4 bit argument). The gain of storage space is a further
36.5%

compared to the previous version, and
51.6%

compared to the first version.

Finally we decided that jump instructions (JUMP, JT, JF, RES) should
use relative addressing, and so they can also have a version with a 6-
bit opcode and a 10-bit argument. However the assembler can only make
the optimization for backward jumps since the size of the argument is
not known for forward jumps until the label is defined. The optimiza-
_tion of backward jumps is not included in table 4, so the gain of storage

space is a little more than mentioned above.

*) Later results show that the constant arguments as well, can in
most cases use this ultrashort format, since 0 and 1 are the most
used constants, and other one-digit constants are also used much
more than larger numbers. Negative numbers, even -1, do not
seem to be of any importance. However, a larger amount of data
should be analyzed before final conclusions are drawn.

————

14 i
Table 4. The result of using "'short!! arguments
4-bit |10-bit{16-bit Total |
no arg| arg arg arg no. bytes [‘
1
|
= * 146 15 161 176 11.7 |
LLP s s 2 2 4 0.3 |
sp - 29 10 39 49 3.3
LG = - 100 - 100 200 13.4
LLG = - - |
SG = . 21 23 21 42 2.8 |
Ll - = 6 6 18 1:2 |
LLL - -
sL - -
LN - - 63 63 126 8.4
TRUE 1 - @ = 1 1 0.1
FALSE - s -
MULT - 1 - 1 2 0.1
DIV = 1 = 1 2 0.1
REM = 1 - 1 2 0.1
PLUS 18 s 42 - 60 102 6.8
| MINUS 1 » 1 - 12 23 1.5
EQ 5 = 9 = 14 23 1.5
NE - -
LS 4 s 2 - 6 8 0.5
GR - 1 - 1 2 0.1
LE 3 - 2 - 5 7 0.5 \
GE - 1 - 1 2 0.1 |
LSHIFT - 2 - 2 4 0.3
RSHIFT 2 - 5 = 7 12 0.8 |
LOGAND 4 - - = 4 4 0.3 |
LOGOR 2 - e - 2 2 0.1 |
EQV - e ;.
NEQV - w o
NEG 2 - " - 2 2 0.1
NOT 4 = = = 4 A 0.3
RV 36 = - - 36 36 2.4
STIND 5 & = = 5 5 0.3
JT - @ .8 8 24 1.6
JF & - 23 23 69 4.6
JUMP = & 24 24 72 4.8
GOTO 6 & - < 6 6 0.4
FINISH 2 & - = 2 2 0.1
SWITCHON 3 = - - 3 72 4,8
STACK = 96 16 112 128 8.6
STORE 27 - o - 27 27 1.8
RES o - 2 2 6 0.4
RSTACK e - - 2 2 6 0.4
RTFNAP = - 64 64 128 8,6
FNRN 2 - - = 2 2 0.1
RTRN 22 - - = 22 22 1.5
NOOP 72 - - = 72 72 4,8
no. 221 271 | 3869 65 |926 1494
o 23.9 29.3 139.8 | 7.0

- T ———

6. Input/Output and Interface to Envirocnment

No attempt is made here to specify completely a micromonitor allow-
ing multiple emulators. Only a number of restrictions which can be
reasonably required of emulators in such a system are mentioned as

design goals for the OCODE emulator.

6.1. Input/Output i

|

|

The emulator must not directly perform 1/O on the physical machine I
but should issue requests to an !/O nucleus which is common to all |
|

emulators in the system [107.

The OCODE machine should initiate 1/0 by writing a pointer to the
1/ O request block in cell 0 of its store. Whenever the main loop of
the emulator finds a nonzero content in cell 0 it will assume that 1
it is a pointer to a request block for the 1/0 nucleus or for the mi-
cromonitor. The emulator must then take proper action to pass the
request on to the nucleus (e.g. convert logical (OCODE) addresses]
to physical (RIKKE) addresses), and then return control to the sy- I

stem.

6.2. Interrupts

In order to allow for I/O to take place concurrently with normal com=-
putation, and to prevent a virtual machine from monopolizing the phy-

sical processor, some sort of interrupt system must exist. However,

in a microprogrammed computer with a large number of control regis-
ters and lines it is not appropriate to have a hard interrupt since it

must be disabled most of the time. (At least this is true with RIKKE-1,
unless we restrict the use of hardware resources very much and gua-
rantee that no error can occur between the occurrence of an interrupt

andthe return to the interrupted program.)

A better solution would be to let the Yinterrupt!! be a testable condi-
tion, and impose the programming discipline that any emulator in the
system should test for this condition at regular intervals, the {maxi=

mum) length of which is determined by the system (but it should not be shor—

ter than to allow for all normal virtual machine instructions to be
decoded and executed within the interval). If the interval is fixed at
50 us (in the RIKKE-1 impiementation), all OCODE instructions ex-
cept the SWITCHON instruction can be executed.

Since the RIKKE -1 hardware does not provide a single testable con-
dition indicating change of the status of some l/O device we cannot
directly use this approach, but a logically equivalent system can be
made by polling the status flags of all devices, and comparing them to

the previous status.

6.3. Emulator entry and exit

Having detected that it has to exit (either because of a request or be-
cause of an "interrupt") the emulator must enter a routine saving the
state of the virtual machine and resetting the hardware to the system
standard before returning to the system. When the emulator is en-
tered the opposite function is performed: a routine initializing the
hardware for the emulator and the virtual machine is executed before

the emulator starts emulating the instructions of the virtual machine.

Subsections 6. 1. — 6. 3. imply a structure for the emulator as shown

in figure 3.

Fetch, De
Entry code, and
Y Execute 1.
instructiol
no .
System
ra
4 ve no
S Interrupt request
yes

Figure 3. Structure of emulator interface to environment.

6. 4. Provisional /O instructions

Because we could not e xpect an I/O nucleus to be available at the
same time as the OCODE emulater, and in order to be able to test
the emulator and the l/O nucleus independently, some primitive I/O
instructions were included in the first version of the OCODE machine
instruction set. These were:
STARTI , using the contents of the stacktop as device
number for selecting input device
STARTO , using the contents of the stacktop as device
number for selecting output device
INPUT , reading one character {(or word) from the selec-
ted input device, and placing it on top of the stack
OUTPUT , writing the contents of the stacktop on the se-

lected output device.

MNote that these instructions use physical device numbers, and that
they make no interpretation of the binary values they input or out-—
put, which implies that all character conversion routines must be

written in BCPL.

6.5. "The SWITCHON Problem" |

The problem of the SWITCHON instruction is that its execution may

take such a long time that we cannot let it complete without allowing

for interrupts to be handled. The approach we have taken to solve

this problem (which may not be the final solution) is the following:
The SWITCHON instruction produced by the compiler:

SWITCHON k Ld K1 l_rlT KZ an e ¥ Kk I_nk

is assembled into
LN k

SWITCHON S LnT KZ L!"Iz wir Kk I_nk Ld

so that our SWITCHON instruction will assume the value k to

be on the stack.

The SWITCHON instruction format has one byte for the operation
code and one word for each of its arguments (so that there may be an
empty! byte between the operation code and the first argument),

and in the following description it is assumed that the program counter
(PC) points to the first argument {K1) when the instruction has been

decoded and execution starts.

The instruction will in sequence compare K1, Kz, e Kk with the
switch variable, which is on the stack and if it finds that Ki is equal
to this value it will jump to the label I_r\i (which is assembled to a
relative address). If no match is found it will jump to the default label

(Ly-

The instruction now works roughly like this:

1. pop k off the stack
2, test k > maxno then
$(ki= k = maxno

count:= maxno

$) or
$(count:= k
k:= 0
$)
3. for i =1 to count do

compare and branch conditionally
4, test k=0 then
use default label
or

$(push k on stack
take care that the next instruction
to be executed is SWITCHON

$)

This implies a lot of overhead, especially point 4,

Leaving out points 2 and 4, we have the following more exact de-

scription of the SWITCHON instruction

$(
pop ()
for i=Ytolby-1do
$(
x:= rv PC
PC:= PC + 2
ifx = stacktop goto L // match
$)
PC:=PC+ 1 // default

L: PC:= PC + rv (PC - 1) = 1
pop {)
$)

where the routine pop () is defined as

let pop {) be
${ v:= stacktop
Si=sS -1

stacktopi=rv S

$)

20

7 A New Access Method for Statics

The modification described in this section was first proposed by
Nigel Derrett, and is being implemented by Eric Kressel and Ib Holm

Sgrensen,

The idea is that static data items (static variables, labels, routines,
functions, strings) should be addressed relative to a register, like

local and global variables,

The new register is called

DB Data Base register

)
Now this does not give us very much unless we further require that the
DB register points to the data area of the (possibly seperately compiled)
code segment currently being executed. This means that the DB register
must be changed when the locus of execution changes from one segment to
another. This can only occur in the following situations:

- routine or function call

- routine or function exit

- goto
so the DB register must be updated exactly in these situations.

]

Having introduced the DB register it seems natural to have a similar
register pointing to the code segment:
CB , Code Base register

which is updated at the same time as the DB register.

We can now see what information is necessary to identify a label (or

a routine or a function). First of all we must be able to identify the
code— and data-area of the segment containing the label. This is done
by the SEGMENT DESCRIPTOR (fig. 4) consisting of the two base re-
gister values to be used in the new segment, Secondly we must know the
entry point within the code area corresponding to the label. Since there
may be several entry points in one segment, this information must be
separate from the segment descriptor, so we have a LABEL DESCRIP-
TOR {fig. 4) containing a pointer to the SEGMENT DESCRIPTOR and

the relative address of the entry point within the code segment.

21

L_abel var*ial:;re

Data

Segment

et s
_Segment] .‘“"'1
1
1

Eniry -
¥ R j“i‘w_ﬂ_—_—.
L Database e

LABEL
DESCRIPTOR

Codebase =

[}

¥

i

i =

{ SEGMENT
: DESCRIPTOR
I

I

1

t

Figure 4. Structure of a Label.

A variable containing a pointer to a LABEL DESCRIPTOR will be

denoted a label variable.

Now we can describe what happens when a goto is executed. Assume
that the OCODE machine has the top element of the stack in a regis-
ter called stacktop, and that it contains a peinter to a LABEL DE-
SCRIPTOR.

Using the following routines {described in BCPL)
letpop () be
${ Y:= stacktop
Si=5 -1
stacktop:= v 5

$)

and goto { } be

i Zew py O * 1) ,/ Msegment"
uniess Z = IB do
$(iB:i=2 // update 18 1'
CBi=rv Z // update Code Base i
DB:=rv (Z + 1) // update Data Base ‘
$) '
PCi=rv Y // update Program Counter
$)
the OCODE instruction GOTQ wli!I now simply do the following:
${pop ()
gote {)
$)

Here we have assumed an extra register IB which always points to the
SEGMENT DESCRIPTOR of the currently active segment. Thereby we
have optimized the goto { } routine since we avoid updating CB and

DB when it is not necessary. Y and Z are Hprocessor registers! used

only for intermediate storage.

Routines and functions are referenced in the same way as labels, but
in order to be sble to make proper return, the return information in

the stack must be extended (fig. 5)-

C==+— |

Segment
£ 1 e (COdEbasE
= ocepter. .
-1 SEGMENT o
. DESCRIPTOR i
]
i od

‘ L Code

i“"""‘“‘"""’"""‘“"’ﬁ l Segmem
L_.m.;::_h{

- =ff‘-!—rch-.p —

Figure 5. Return information in stack.

Now the routine- and function call instruction (RTFNAP k) becomes:

$(rv (P+k):=P

ey (P+K+1) = PC
rv (P +k+2):= 1B
P:=P+k
Y := stacktop
goto ()

$)

Routine return (RTRN) becomes:

(s =P-1
stacktop = v S
Y i=P+1
P:i=rvP
goto (}

$)

Funtion return (FNRN) becomes:

$(s =P
Y =P +1
Pi=rvP
goto ()
$)

The advantages of this system are:

// return link
// return point in code

// return segment

1) We can use a shorter instruction format for static data re-

ferences, so we save space

in the code.

2) The code is relocatable, since it is only referenced via the

SEGMENT DESCRIPTOR.

3) The code can be shared by processes, and interactions can be

prevented by giving each process its own data area.

4) Loading will be easier, since the loader has no chains of

references to update, but need only establish the descriptors.

Of course we do not get these advantages without paying for them with

some disadvantages:

1) The descriptors, and the return information in the stack re-

quire extra space.

e

24

2) There will be more work on procedure entry and exit, and

on goto.
3) 3 new virtual machine registers are introduced.

1t would have been nice if advantage 2 was also valid for the data. This

is not possible because we can construct pointers in BCPL using the

lv operator.

25

8. The OCODE Machine

in this section the OCODE machine is described as of Mmarch 1975 with
addition of the modification described in section 7. The machine has
peen running on RIKKE-1 for about 8 months with a few modifications

peing made during this period.
. 1. Registers
The OCODE machine has 16 registers:
SASE : Physical (RIKKE) address of the first cell in the
OCODE machine store. Any other address is rela-

tive to BASE.

LIMIT . The size (number of cells - 1) of the OCODE ma-

chine store.

G . Pointer to the global vector.

PD . Base of stackarea. Used to detect stackunderfiow.

P . Activation pointer {pointer to the currently active
stackirame).

= . Stacktop peinter.

T . Stack Limit. Used to detect stack overflow, and

to protect the top of the store against overwriting.

1B . Pointer to the SEGMENT DESCRIPTOR of the ac-

tive segment.

cB . Code Base. Pointer to the code area of the active
segment.

DB . Data Base. Pointer to the data area of the active
segment,

26
{L ARG . The argument (if any) of the instruction being exe-
| cuted,
CcP . Bits 8- 15 contain the operation of the instruction
being executed.
Bits 0 — 7 contain the operation code of the next
instruction to be executed if it has been fetched.
PC : Program Counter. Contains the address relative
to CB of the next word to be read from the code
stream,
CR . Condition Register. Used for various software
interrupts.
|
ET 4 Errortype. If an interrupt has occurred ET con-

tains the reason for interrupt.

DC - Pointers to c!ecoding tables. Used internally by

the emulator.

8.2. Address Space

| The logical address space {the store) of the OCODE machine is a
linear store of 16-bit words. The size of the store is determined by
the LIMIT register which contains the highest legal address. The
maximum size is 65536 words. The upper part of the store can be pro-
tected against overwriting by means of the T register which contains

the highest legal address for writing. T must never exceed LIMIT.
The BASE register is used for transforming addresses of the OCODE
machine into physical addresses. Any other address mapping could

be used instead of the BASE - LIMIT approach used here.

8.3 The Global Vector

An instruction accessing the global vector has a 10-bit address field

which is interpreted as a signed integer in the interval [-512, 511]

&

I S

27

(2's complement). The maximum size of the global vector is thus 1024

words with the G register pointing to global number 0.

a. 4. Static Variables

Static variables are addressed relative to the DB register which is

updated when a GOTO, RTFNAP, RTRN or FNRN instruction is exe-

cuted., See section 7 for details.

g.5. The Stack

The storage area in which the stack can grow and shrink is bounded
by the addresses contained in the registers PO (stack base) and T
(stack limit), The P register contains the activation pointer to the

currently active stackframe, and the S register points to the top ele-

ment of the active stack *).

Details about the stack administration (procedure call and return)

are given in section 7 and figure 5
8.6. The Code

Code is allocated in segments which are accessed by means of labels
{or function or routine entry points) as described in section 7 and fi-
gure 4, The segment descriptor of the active segment {i.e. the seg-
ment in which execution is currently going on) is copied into the CB
(codebase) and DB (database) registers, and a pointer to the descriptor
is in the IB register. These registers are only modified by the GOTO,
RTENAP, RTRN and FNRN instructions as described in section 7.

The code consists of a sequence of instructions, each of which may oc-
cupy 1, 2 or 3 B-bit bytes (except for SWITCHON which occupies 4
bytes for each branch). As the machine has 16-bit words, 3-byte in-
structions always cross a word boundary and 2-byte instructions may
cross a word boundary.

*) In the RIKKE-1 implementation the top element is kept in a ma-
chine register (LR [0]) and is only written down to store when
the stack is pushed or when a STACK or STORE instruction is
executed.

Wwhen instructions are executed in sequence, a pseudo-byteaddres-

sing is applied. Bits 0 - 7 of register OP are used as a buffer to
hold the second byte of the last word that was read from the instruc-
tion sequence, and a condition flag is used to tell whether this is an

OPCODE or it is part of the argument of the previous instruction.

However, branch instructions (JUMP, JT, JF, GOTO, RTFNAP,
RTRN,and ENRN) only branch to words, so execution is always re-
sumed in the first byte (bits 8 — 15) of the word branched to. This im-
plies that it may be necessary to insert a NOOP before an instruction
which one wants to branch to so that the instruction is placed correct-

ly in the first byte of a word.

a.7. Instruction Formats

There are 4 different instruction formats in our OCODE machine. Some
OCODE instructions as produced by the BCPL compiler have 2 or 3
different internal representations, and the assembler decides (based

on the size of the argument) which representation to use in each case.

B8a7: b Instruction Format 4 — 4

ARGU- \
lOPCOD_E MENT

7 4 3 Q0
4 bit operation code, 4 bit argument,

This format is used for the instructions LP k, SP k, and STACK k,
when the argument, k, interpreted as a nonnegative integer, is less
than 16.

8,7.2. Instruction Format 6 - 10
OPCODE ARGUMENT
15 109 7 o]

6 bit operation code, 10 bit argument

This format is used for instructions which interpret their argument

as a signed integer in the interval [—512., 511].

29

§.7.3. Instruction Format g - 16

Al
OPCODE ARGUMENT
23 16 15 87 0

8 bit operation code, 15 bit argument,

This format is used for instructions with an argument, when the ar-

gument cannot fit into format 4 - 4 or 6 - 10,

B.7.4. Instruction Format 8 - 0

OPCODE
0

7

8 bit operation code, NO argument.

This format is used for instructions which take their arguments (if
any) only from the top of the stack, and for the SWITCHON instruc—

tion which has a special argument fetch.

g.8. Listof OCODE Instructions

In the following list of OCODE instructions, the internal represen—
tations are given in decimal. For the 4 bit and 6 bit operation codes
the decimal value corresponds to an 8 bit value with 4 or 2 0-bits to

the right, thus all decimal values are unique.

Some of the more complicated instructions are described in previous
sections, the remaining ones are described briefly in the table, using
ngtacktop!' to denote the tOp-of;stack register
iyt to denote a !'processor register! used for intermediate
storage

and the routines:

tet push ()} be
$(rv Si= stacktlop
s: =5+ 1
$)

30

and pop {) be
$(v:= stacktop
S:=5 -1
stacktop:=rv S

$)
All the unused operation codes (including 236, 237, and 238 which

are marked with * in the table, and 240 - 255 which are not in the

table) will cause an error if they occur in the code stream at a place

where an operation code is expected.

31

List of OCODE instructions.

Internal representation]
MNemonic | =, .mati Format|Format|Format sheptdesciipticn
4_-4| 6-10 8-16| 8-0
= \ 0 \ // no operation
-
- \ 2 stacktop := rv stacktop
- l 3 rv S:= stacktop |
- ‘ 4 l // see section 8. 11 |
- 5 push () !
| stacktop:= true
- 6 push (}
‘ stacktop:= false
' 7 // see section 7
8 // see section 7
9 stacktop:= - stacktop
10 l stacktop:= — stacktop
11
12
13
14
15
16 pop ()
PN Y stacktop
pop ()
17 // see section 7
18
19
20 pop ()
stacktop:= stacktop A
21 pop ()
stacktop:= stacktop Vit

32

Internal representation
mnemonic short description
Format| Format|Format|Format
4 4 6~ 100 818 8 -0
EQV - - - 22 pop ()
stacktop:= stacktop =Y
NEQV - - - 23 pop ()
stacktop:= stacktop § ¥
SWITCHON - = e 24 // see section 6.5
- = - 25
w = - 26
- . - 27
s - - 28
- - = 29
- - - 30
- = = 31
k-
PLUS - = = 32 pop ()
stacktop:= stacktop + Y
MINUS = = - 33 pop ()
stacktop:= stacktop - Y
EQ - - - 34 pop ()
stacktop:= stacktop =Y
FNE - - - 35 pop ()
stacktop:= stacktop =|= N
LS 2 - - 36 pop ()
stacktop:= stacktop <Y
GR - = = 37 pop {)
stacktop:= stacktop > Y
EE e w = 38 pop ()
stacktop:= stacktop =Y
GE - - - 39 pop ()
stacktop:= stacktop =Y
MULT - - = 40 pop ()
stacktop:= stacktop * i
- - - 41 pop {)
D stacktop:= stacktop div Y
REM = - - 42 pop e

stacktop:= stacktop rem Y

a3 ;
Internal representation
HingMBnic Format| Format| Format Format short description
4 = 4 6-10l 8- 16| 8 -0
T - -
LSHIFT - - - 44 pop ()
stacktop:= stacktop lshift ¥
—
RSHIFT - - - 45 pop () I
stacktop:= stacktop rshift ¥
- - - 46
- - - 47
PLUSI10 k - 128 - - stacktop:= stacktop + k
MINUS10 kK - 132 - - stacktop:= stacktop - k ‘
] _—4—-'-" \
EQl0 k - 136 - - stacktop:= stacktop = k
NE10 k - 140 - - stackiop:= stacktop % k
LS10 k - 144 - - stacktop:= stacktop < k ‘
GRI10 k - 148 - - stacktop:= stacktop > k i
LE10 k - 152 - - stacktop:= stacktop = k
|-
GE10 k - 156 - - stacktop:= stacktop 2 k
MUL T10 K| - ‘ 160 - - stacktop:= stacktop * k
DIVIO k # ‘ 164 - tackiop:= stacktep div k| |
TREI\MO Kk - ‘ 168 - - stacktop:= stacktop rem K
- | - = i
LSHIFTIO kK - ‘ 176 - - stacktop:= stacktop Ishift' k
1 il
1
RSHIFTIO k= 180 - - stacktop:= stacktop r‘shif} k |
1 |
- 184 - -
- 188 - - ‘
| e]]
LN k - 192 224 - push ()
stacktop:= k
ol - 196 225 - push ()
stacktop:= DB + n
LL n - 200 226 - push ()
stacktop:= rv (DB + n)
sSLn - 204 227 - rv (DB +n):= stacktop
W AR

—

34

Internal representation
mnemonic short description
Format|Format| Format | Format
4 - 4 6 - 10, 8-16 B-0
RSTACK k - 208 228 - S:=P + k // equivalent to
//SPk+1 STACK k + 1
JUMP n - 212 229 - PC:=PC +n
JTn - 216 230 - pop ()
if Y <0 then PCi= PC + n
JF n 2 220 231 - pop ()
unless ¥ < 0 do PC:= PC +n
LPn 48 96 232 - push ()
stacktop:= rv (P + n}
LLP N - 100 233 - [push {)
| stacktop:=P +n |
|
SPn 64 104 234 - rv (P + n):= stacktop [
pop ()
STACK k 80 108 235 - rv S:= stacktop
Si=P+k-1
stacktop:= rv S
LGn - 112 * - push () [
236 stacktopi= rv (G + n) [
LLG n - 116 * - push ()
237 stacktopi= G +n
sSGn - 120 * - rv (G + n):= stacktop
238 pop ()
RTFNAP K - 124 239 \ - // see section 7

36

OCODE machine. When an error is detected by the emulator, the
type of the error is written in register ET, space for return links
is aliocated on the stack, and the registers are dumped above this
as parameters for the interrupt routine. Lastly a routine call is si-
mulated for the routine pointed to from cell LIMIT - 1. This is sup-

posed to be a general interrupt handling routine,

The following errors are detected by the emulator (other errors
could be included, e.g. arithmetic overflow):

- Reading above LIMIT

- Writing above T

_ Stack overflow (attempt to set S above T)

- Stack underflow (attempt to set P below P,

can only occur if the return link is violated)
_ Stackframe underflow {attempt to set S below P)

- Bad code (attempt to execute an undefined operation code).

The FINISH instruction is treated in the same way as an errofn, i.e.

it simulates a call of the interrupt routine.

37

9. The OCODE Emulator

The structure of the OCODE emulator on RIKKE-1 is partly dependent
on the structure of the RIKKE-1 hardware so we briefly review some

of the facilities of RIKKE-1.

g.1. The RIKKE-I1 Hardware

Figure 6 shows the structure of RIKKE-1.

The Control Store is 51 2 words of 64 bits.

The Microinstruction Seguencer can use a number of sources to se-

lect the next address, among which are:
- Current address
— Current address + 1
- Current address - 1
- Current address + data from microinstruction' {relative addressing)
- Data from microinstruction (absolute addressing)
_ One of 2 return jump stacks, each with 16 words

_ Data from Main Data Path.
The address is selected based on the value of a condition (there are
a few restrictions onthe combinations of address sources in the true

and false case in the same microinstruction).

The Main Data Path consists of a Bus Selector and shifting and mas-

king capabilities. It has connected to it a number of registers and func—
tional units, some of which are:
- Arithmetical-Logical Unit (ALU) with 2 inputs of which the one
input is one of
- 4 Local Registers (LR[0: 3]) which can be operated as a
stack {but not necessarily)
- Working Registers:
) WA : 256 registers of 16 bits
WEB : 256 registers of 16 bits
WA (and WB) can be operated as 256 registers or as 16
groups of 16 registers.,

We only use the latter option.

TheMain Store is 32 K words of 16 bits.

38

X

Facilities

I
Control instruction l
Store Sequencing
Main
b Data Input
Path
N Structure Qutput
Control

1

Store

>

Figure 6. The RIKKE-1 System.

39

9.2. Resources Used by the OCODE Emulator

The store of the CCODE machine is allocated inthe RIKKE-1 Main
Store. The registers occupy one group of 16 registers (WA), and the
top element of the stack is located in LR [0], but is written down in the
store when the emulator gives up control {(e. g. in order to call the

1/0 nucleus).

The emulator itself uses 4 groups of 16 registers (WB) for decoding
purposes and 1 group to hold the constants —1 through 14. In addition
some of the Control Facilities and one of the return jump stacks are
used, and the code of the emulator occupies about 300 words of Con-

trol Store.

9.3, Structure of the Emulator

Using the return jump stack it is easy to impl ement subroutines in
RIKKE=1 microcode, and the code emulating each OCODE instruction
is actually a subroutine called from the main loop of the emulator. A-
mong other important subroutines are the routines for reading from
the code stream and administrating the (pseudo-) byte-addressing, rou-
tines for (10-bit and 16-bit) argument fetch, and the following routines:
READ , reading from main store
WRITE , writing to main store
PUSH , pushing the stack
POP , popping the stack

READ and WRITE map logical to physical addresses and check the

validity of the addresses.

PUSH and POP check for stack-overflow and stackframe-underflow,

respectively.

The emulator interface to the environment was described in section 6

and figure 3.

Figure 7 shows the structure of the main loop of the emulator. It

shows that after the instruction fetch the instructions are split up

This is done by using the first 4 bits of the operation

into 16 groups.
code as index in a table (allocated in a group of WB registers) of en=-

try-points in the emulator.

GROUP 0
ARG.FETCH
DECODING
EXECUTION

IFETCH .
and first step

of
DECODING

.

GROUP 15
ARG.FETCH

DECODING
EXECUTION

Figure 7. Main Loop of the OCODE Emulator.

Each of the groups then performs an argument fetch before the de-
coding is finished, and finally execution of the instruction is per-
formed. Since some instructions occur in different versions with

different argument fetch the decoding and execution may be common to

several groups.

Some of the groups are decoded using a table, as in t.he first step,
but now the last 4 bits of the operation code is used as index in the
table (note that the 2 middle bits in the 6-bit operation codes are thus
decoded twice, but this does not cost us anything). Other groups are
decoded bit-by-bit (by an if - then - else construction). This is rath-
er expensive in control store, so it is only done in the cases where
something useful can be dor:le in parallel with the decoding.

As an example figure 8 shows how the arithmetic instructions with—
out arguments (GROUP 2) and those with a 10-bit argument (GROUP

8, 9, 10, 11) are decoded using a common table.

41

GROUP 2 GROUP 8, 9, 10, 11
10-bit
POP argument
fetch

DECODING TABLE

T

(execute instruction)

Figure 8. Argument fetch and decoding of
arithmetic instructions.

This means that the operation codes must be selected so that they
allow for this common decoding. Thus we have slightly violated the
decision that the design of the OCODE machine should be machine-in-
dependent (at least it is dependent on a decoding strategy which was

selected as the most efficient for implementation on RIKKE-1).

42

10. The OCODE Assembler

The job of the OCODE assembler is to take a segment of symbolic O-
CODE and to produce a code segment, a static data segment, a global
initialization part, and linkage information for the loader. However we
will not go into details about the loader format but concentrate on the

optimizations done by the assembler.

For instructions with different argument sizes the assembler will de-
cide the argument size to use based on the value of the argument. In the
case of a forward jump the value of the argument is not known so the

argument size will always be 16 bits.

With the arithmetic instructions with an argument the situation is a
|ittle more complicated. In order to be able to construct these instruc-
tions the assembler must always remember the previous instruction.

If the assembler finds an arithmetical, comparison or shift instruction
in the symbolic OCODE stream and the previous instruction was a LN
with a 10-bit argument, then the LN instruction is removed, and instead
the arithmetical, comparison, or shift instruction is inserted in the
version with a 10-bit argument. Other wise it is inserted in the ver-
sion without argument. |If the operation is symmetric, the assembler
will look at the 2 instructions previously inserted and if possible make

the optimization.

The BCPL compiler produces some OCODE instructions that are supér—
fluous. These will be removed by our OCODE assembler. Examples

are:

1) STACKI
STACK]
The first instruction is superfluous, so we get

STACK j

2) JUMP 'L_n1
// anything except LAB or ENTRY
LAB L_r'\2
Anything between the unconditional branch instruction and

43

the first following LAB or ENTRY will never be executed
and can be removed, so we get

JUMP Ln
LAB I_nz
The same optimization is made for
RTRN, FNRN, GOTO and FINISH

1

3) STORE

This instruction is unnecessary in our implementation be-

cause the stack is always pushed before an item to be loaded
onto the stack is read from the store. Thus even if we
want to load the top element onto the stack we are al-
ways sure that it is in the store when it is read since

pushing the stack implies writing the stacktop register

down into store.

There are a few other problems that are solved by the OCODE as-

sembler:

:[1) Our procedure call and return will not work correctly if
| a function is called as a routine because the FNRN will
‘ leave a result on the stacktop. Therefore we must reset
| the stacktop after returning, so
RTAP k
becomes
RTFNAP k
| STACK k
(where the STACK k instruction is placed in the next
word, so a NOOP is inserted if the RTFNAP k ends in
| the middle of a word.)
In the same way
i FNAP k
| becomes
RTFNAP k
STACK k + 1
although the interpretation of the result when a routine

| is called as a function is meaningless.

44

2) We assume that the RES instruction always jumps to a
RSTACK instruction, and thus we can substitute
RES Ln
by
JUMP Ln
since the RSTACK instruction saves the stacktop. Thus

we do not need an A register for saving the stacktop.

45

1T Conclusions

When we started this project we had no experience in this sort of
work, and moreover we did not know very much about either the
BCPL language or the RIKKE-1 machine (which had just been de-

signed, and the first description [5] was being prepared).

It turned out to be a great advantage in finishing and debugging the
OCODE emulator that we were at the same time (autumn 1973 and
spring 1974) testing the RIKKE-1 hardware, and we had a very fruit-
ful cooperation with the people writing the RIKKE-1 microassembler
and simulator [7] without which it would have been a very hard job

to test the emulator.

But still the main problem was deciding the internal representation
for the code and the organization of the OCODE machine. The amount
of data analyzed was no doubt too small, but on the other hand it has

turned out that our results are similar to those obtained at Oxford

[11].

It is planned to include in the OCODE assembler a facility to make a
(static) analysis of the code being assembled, and it should be easy to

add a facility for dynamic enalysis into the OCODE emulator.

We now feel (based on the results from Oxford) that there would pro-
bably be an advantage in having more instructions with the 4 bit op-
code - 4 bit argument format (RTFNAP, LN, PLUS), but there is no
room for these in our instruction set without making other changes
(probably changing the 6 — 10 format to 8 — 8 except for the instruc-
tions acessing the global vector). There is also the possibility that
a3 -5o0r5- 3 format would give an advantage over 4 - 4, but this

must await further analysis. "

About mid-July 1974 we succeeded for the first time bootstrapping
'the OCODE machine onto RIKKE-1 with a "mini-system" (written in
BCPL) and loading and executing a yser program! (a very small
program computing factorials). Since then a few errors have been

found and corrected at all levels (RIKKE-1 hardware, OCODE e-

46

mulator, "mini-system', OCODE assembler, RIKKE-1 microassem-

bler, RIKKE-1 simulator).

The "mini-system" has been further developed, and the BCPL com-
piler and the OCODE assembler have been transferred to the OCODE

machine on RIKKE-1, so that today we can edit, compile, assemble,

load,and execute BCPL programs on RIKKE-1.

[1-

[2]

[3]

[4]

[5]

[6]

(7]

Le]

47

References

M. Richards: The BCPL Reference Manual.
Technical Memorandum no. 69/1 - 2.

The Computer Laboratory, Corn Exchange Street, Cambridge.

M. Richards: The Portability of the BCPL Compiler.
Software - Practice and Experience, Vol 1 (1971).
pp 135 - 146,

M. Richards: BCPL, A Tool for Compiler Writing and Syétem
Programming.

AFIPS Spring Joint Computer Conference 1969

pp. 557 - 566.

M. Richards: INTCODE -~ An Interpretive Machine.
The Computer Laboratory, Corn Exchange Street, Cambridge.

Bruce D. Shriver: A Description of the MATHILDA System.
DAIMI PB-13, Depariment of Computer Science, University of
Aarhus, Denmark, April 1973,

E. Kressel, J. Staunstrup: The RIKKE-1 Reference Manual.
DAIMI MD-7, Department of Computer Science, University of
Aarhus, Denmark, April 1974,

E. Lynning, E. Kressel, H.0.S. Andersen, |l.H. S¢rensen:
A Users Manual for the Simulated RIKKE - MATHILDA System
on the CDC6400.

DAIMI MD-12, Department of Computer Science, University of
Aarhus, Denmark. December 1974. '

P. Kornerup, Bruce D. Shriver: An Overview of the MATHILDA
System.
DAIMI PB-34, Department of Computer Science, University of

Aarhus, Denmark, August 1974,

[e]

[10]

[11]

48

C. Strachey, J. Stoy: The Text of OS Pub.
Oxford University Computing Laboratory, Programming Re-
search Group, Oxford, England, 1972.

Robert F. Rosin: Proposal for a Nucleus |/O System,
DAIMI PB-23, Department of Computer Science, University of

Aarhus, Denmark, January 1974.

N. Derrett: Design of Computing Mechanisms,

University of Oxford, May 1974.

