


ABSTRACT

Schemes of concurrent programs are considered. The result
of a scheme is defined as a set of traces, where each trace is
a partially ordered set of symbol occurrences. It is shown that
to each scheme corresponds a set of equations determining the
result of the schemej it is shown how these equations can be
solved and that the solutions of these equations are regular
trace languages. Next, a notion of action systems is introduced;
an action consists of its resources and its transformation.
Some properties of action systems are shown. Interpretations
of schemes are defined as mappings which assign actions to
scheme symbols. Interpreted schemes can be regarded as concur-
rent programs. It.is shown how the results of schemes can be
lifted (via interpretations) to the results of programs. Some
examples of applications the described methods to prove concur-

rent programs correct are given.
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0, ILTHROLUCTION

In order to make proofs about systems clear and simple,
it is convenient to split them into two parts. One part, say
"structural®, deals only with a general scheme of a system
which has to be proved; the second is connected with detailed
description of tiie system components, operation and data struc-
tures, decision structures, etc.; let us call it "substantial™
part, In this paper an attempt is made to draw a border line
between structural and substantial part of proofs about comcur-
rent programs, to find some general methods for carrying out

these parts of proofs, and to combine them together.

This approach is not new; there are papers aboul concurrent
programms dealin;y with such a division in a more or less implicit
way [Karp & Miller 1969 ],[Hoare 1972|,[XKeller 1973],[Keller 19741,
[Ashcroft 1975],[Lauer 1975],[Mazurkiewicz 1975],[Keller 1976],
[Owicki & Gries lQ?GJ,[Lazurkiewicz 1976]. tere, however, we
malke this distinction sharp looking for basic primitives of
schemés (subjects of structural part of proofs} and systems

(subjects of substantial part).

As a mathematical model of concurrent programs suitable
for the structural analysis we take Petri Nets [Petri 1962],
[Petri 1973], [Petri 1975], [Petri 1976]. An investigation of
this aspect of Petri net theory has already been initiated
[Lautenbach & Schmid 1974], [Lauer & Campbell 1975], [Keller 1976],
{Mazurkiewicz 1976], [Lautenbach 1977]- The notion of a concurrent
scheme defined in the paper is derived directly from concepts of
net theory. Each concurrent scheme generates a set of processesj
our first goal is to describe processes on the same level of abstrac=-
tion as string of symbols are described in automata theory. However,
strings constituting a perfect model of sequential processes are no
more available for concurrent ones, so we need another notion. To
this end we define traces, which are alternates of strings for con-
current schemes (cf.[winkowski 19771). Treating strings as linearly
ordered sets of symbol occurrences, traces are such sets but
partially ordered only. The algebra of traces used in the paper
is similar to that of strings; we have notions of concatenation,
language, regular expressions, etc. Having defined traces, we can
reduce the investigation of schemes to analysis of trace languages
generated by them. Equations in the domain of trace languages are
used extensively to that purposej; we follow here the approach of

[Blikle 1972], [Blikle 1973].

To deal with "substantial" parts of proofs, we used here
an algebra of actions. Roughly speaking, actions are state
transformations of some resources of a system. Actions are

independent, if they act on disjoint sets of resources. The

notion of independency is crucial through the whole paper;




independent cctions sre allowed to be perfoirumed concurrently,
Actions form » comnlete lattice with a composition operation
and an independency relation. Similar systems are considered
in [2likle 19711,[Dlikle & Lazurlkiewicz 19721, but without
independency relation. It is not our intention to analyse this

clgebra in the paper; what we are concerned with is the notion

of interpretations of the algebra of traces into the algebra
of actioms. Such an interpretation is a bridge between schemes
and systems; using the terminology of catesory theory, it is

a functor froi the catesory ol trace laguages into the category

of action systems.

The paper is organized as follows. First, the notion of
traces is introduced; it is shown that the ordinary technique
is applicable for solvipg equations defining trace languages,
In the second section concurrent schemes are considered. It is
shown how to each sclieme an equation defining its processes can
be formulated and solved. In the third section a notioﬁ of
action systems is introduced and interpretations of schemes

are defined. Some examples serve to illustrate the method.

TRACES AND TRACE LANGUAGES

1.
t V be an al habet with elements called letters or symbols.
Le alpfiade”
Pe sequences of letters are strings over V; the empty string
Finite s

4 ted by & ; the set of all strings over V is denoted by V¥.
is deno

I be a binary relation over V called independence generating
Let e

lation: we say that two symbols a, b in V are independent, if
relation:
£ b and either (a,b) is in I or (bya) is in I. Anticipating
a
erations we can say that letters in V will represent

further consid

tions to be performed by conéurrent systems; independent Jetters
action

i11 be interpreted as actions which can be performed concurrently.
wi
Let V and I be fixed for the rest of this section (except
examples). Define EI (or simply &, if T is understood) as the
least equivalence relation in V* satisfying the following condi-
¥ .
tion for all strings w', w" over V©:
{a,b) is in I => w'abw" = w'baw". (1.1)
By'traces over V w.r. I we shall mean the eguivalence classes of
A rolation. Since 2 identifies all strings over V which differ
only in the order of comsecutive independent letters, in a trace

we abstract from this order. This abstraction converts then

sequences of symbols, i.e. linearly ordered sets of symbol occur-

rences, into partially ordered sets of such occurrences.




<or any string w over V, the trace containing w will be denoted

by [WWI (or simply [wl, if 1 is understood), and called the trace

generated by w. 4As it is known fron: the general theory, each
string w generates exactly one trace, and any twe traces

are eitber identical or disjoint.

BXALPLE 1.1, Let V = {a,b,c,d,e}, I = {(b,c),(b,e),({d,e)}. The

trace [abedeac| is the set:

{abcdeac, abcedac, acbdeac, acbedac, acebdac}

and can be represented by the graph:

Such a construction of a partially ordered set from a family
of linearly ordered sets is a particular case of a more general

construction which follows from the theorem:

THI.OREM 1.1. Any partial ordering relation Q in a set X is unigely
determined by a mnonempty family of linear orderings in X fnamely,
the family of all extensions of Q to linear orderings); convarsely,
any nonempty family of linear orderings in X determines uniquely
a partial ordering in X {namely, the intersection of all members

of the family).

Proof follows directly from the Szpilrajn-Marczewski theorem
stating that each partial ordering can be extended to a linear

ordering.ﬂ

Define the concatenation of two traces by the equality:

[wllu] = [wua]; (1.2)

it can be easily proved that this definition is correct, i.e.
that the result of concatenation of traces [W] and [u] does not
depend on the choice of "representants" w and u (£ is a congru-
ence w.r. to concatenation). The concatenation operation is

associatives

[w](lull+]) = ([w][uD)[~¥], (1.3)

and the trace [E] is the neutral element for concatenation:

[e][w] = [w][E] = [w]. (1.4)

Let L be a set of strings over V; denote by [Lj the set of all

traces generated by strings in L:

[L] = {[w]]|w is in L}. (1.5)

From this definition it follows that for any languages L', L"

over V {(i.e. sets of strings over V) we have

L'cL" => [L']¢[L"], (1.6)

[Lrur"] = [L']ulL], (1.7)




and that [V*] is the set of all traces over V. Subsets of this
EXAMPLE 1.2. Let V = {a,b,c,d,e I= a
set are called trace lan;uages over V; to make the distinction fytiyp Syt 8]y {(a,c),(a,d),(b,a),(e,c),

o N e.,d)}. Then [(abecd)*e] is the following trace 1 :
between them and usual languages over V more explicit, the latter ( ' )} [( ) ] & anenages

will be called sometimes string laguages over V.

{[e],[abcde],[abcdabcde],[abcdabcdabcde], -

o ) ) ‘
Ihe concatenation of two trace languages T', 1" is defined
as usual: or, in graphical form:

{@' a s

TP = {trEn |t is in T', t" is in TV}, (1.8)

By @ we denote the empty trace language, by E the unity languape

{[E]} (we shall usually omit braces {,} around sinpletons). EE T
+1

is a trace language ' 0 g i 1 B = =
guage, then T is defined as E, T as T T3 the

iteration of T is defined as usual:

wa (1.9)

From the definition of trace languages it follows

Let Ai ’ Bi be string languages over V, for 1, = 14324440,
! 1 =
[L ][L"J = [L'L"]5 Tt is known from the theory of formal languages
REey = il
(L]® = [L7], (1.10) that the set of equations

]

(L]* = [L*].

X, = A XUl X, 0 e VA X LB, 1=1,..,m, (1.13)
has the least (hence unique) solution being a string language

over V. There exists a simple technique which enable us to express

(w]lL]

{lwl}L] = [wi] = [{w}L]

[{wulu is in L}], (1.11) this solution by means of iteration, conmcatenation and union

of coefficients of the equation; this technique is based on the

In particular, for w in V¥, %
|
[w*] = [{e, wy, ww, www, o k

|

= {[e], [w], [ww], [www], ...}, (212) fact that the least solution of the eguation
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X = AXuB (1.14)

is the language A*D. The same technique can be applied to

equations defining trace languages, via the following theorem.

o

TPLOREE 1.2. If the string languages X?,Xz,

8]
..,Xn form the least

solution of the set of equations

X = U Ay %o Hy, $ 2 Ry syl (115

0- g
then the trace languages [le,[xgj,..,[xg] form the least solution

of the set of equations:

X, = U [4;;0x,008,], 4 =1,2,..,n. (1.16)

Proof., It is known, that

(=]
6] m .
e U)ol 3 = aa,. 0, (1.17)
m:l
where
1 m+l O m
Xy = By, X" = Jt'=1j A; X5 UB;. (1.18)

Similarly, the least solution of (1.16) is the vector of trace

0 0
languages Tl,Tg,..,Tﬁ, where
0 5
m .
Ti ) H T:i.’ i =1,2,..,n, (1.19)

and wlere

n
1 m+1 m
Ti = [Bi], Ti = Jk'u}l[Aij]T‘j [Bi]' (1.20)
But Ti - {xi], and by induction T? = [XT} for each m, hence

Ty = U] = 1) = (%), (1.21)

m=0

for each i = 1,2,..,n.ﬂ

This theorem allows us to solve equations defining trace-
languages by means of usual equations for string languages.
For instance, the trace language defined in Example 1.2 is the

least solution of the equation
T = [abed]Tu[e]. - (1.22)

At the end of this section we define the length of any trace
over V. Informally, it is the length of the longest path in the
graph representing a given trace; formally, the definitiom is

as follows. A string u = aj8y- - 2, is a chain in a string w, if

Wom WoR Wi AW Wy B W (1.23)
for some (possibly empty) strings WosWysee-9W , and as,a, 4 are
not independent for each i = 1,2,...n-1. The number n is called
the length of the chain. Now, the length |[w]| of a trace [w]
is defined as the maximal of all lengths of chains in w. It
does not depend on the choice of w, since the equivalence =

preserve the length of the longest chain. It follows directly




from tlhie definition that the following statements are true

all traces t and strings w over V:

|t ]

3%

03

[t] =0 => t = [&];
leren | < fer ]+ [en]s

[[wl] < |w

The last inequality, as we shall see in the next sections,

in an abstract way a motivation for organizing tasks in a concurrent

for

(1.24)
(1.25)
(1.26)
(1.27)

expresses

systems; the difference |w| - |[w]| is a measure of what we gain

due to such an organization.

EXAMPLE 1.3. Let V and I be such as defined in Example 1.2 and

let consider the trace [{abed)™e] for a positive n. The length

of this trace is 2n+2; the length of the string (abcd)n

4n+l, so that the gain is here 2n-1. |

e is

It can be easily observed that string languages are parti-

cular cases of trace languages; indeed, if the relation generating

independency is empty, then the equivalence relation is reduced

to the identity relation, traces are simply strings over V (strictly

speaking, one element sets of strings), and the length of traces are

exactly the length of corresponding strings.

2. CONCURRENT SCHEMES

Concurrent schemes are thought as abstract models of con-
current systems; a concurrent scheme can be converted into a
system by an interpretation which assigns concrete meanings to
symbols of actions occurring in the scheme. Therefore, a concur-
rent scheme corresponds to a class of concurrent systems; facts
concerning schemes are then general and wvalid (via suitable

interpretations) for a variety of systems.

By a concurrent scheme Z we shall mean a pair

where w is a function with nonempty finite domain called the set

of action symbols of Z; assigns to each action symbel an ordered
(P

pair of finite nonémpty sets called respectively the entry to
and the exit from the action symbol; elements of these sets are
called control symbols of Z; SO is a finite nonempty set of

control symbols, called the initial configuration of Z.

Let Z = (W ,SO) be a concurrent scheme fixed for the rest

of this section (except examples); all subsequent notions will

be defined relatively to this scheme.
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Denote the set of action symbols of Z by V, the set of
coutrol symbols of Z by P, the entry to a€V by En(a), the

exit from a €V by Ex(a).

Concurrent schemes can be represented graphically using

the graph

to denote the equalities

En{a)

i

{pl’pz""’pn}’

Ex(a) = {rl’r2""’rm}’

and marking with dots graphic representations of control sym-
b i .

ols in SO
In Example 2,1 we define some simple concurrent

schemes which will be considered in the sequel,

EXAMPLE 2.1,

(a) (Four seasons scheme)

Vo= {a’blc!d}f P = {1,2,3,4}, 8y =

En(a) = {1}

En(c)

4]
—_—
[95]
——

]

Ex(d), En(b)

Ex(b), En(d)

[
~—
=
——

Ex(a)$

il
n
——
I}

Ex(e).

u
iy
=
——
1]

(b) (Pipeline scheme)

V = {a,b,c,d}, P =

{1}, Ex(a)
{6} ’ Ex(d)

En(a)

L]

En(d)

{lv213|h!5s6}! SO = {1'213}1

{h}’ En(b) {2,&}, Ex(b)

{3}, En(c) = {3,5}, Ex(c)

1]

15

(g8t
{2,6}.
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{c) (Producer- consumer scheme)

¥
{ayb,c,a}, P = {1,2,3,4,5}, S Lm0

i

{4}, Bn(p) = {2,4}, Ex(a) = {1,2},

n

Bn(a) = {1}, Ex(a)
o

En ( d)

51, Bx(a)

= {3}: En(e) = {213}1 EX(C) = {2’5}-
(d) (Accident scheme)
Vo= {a,b,c,d} P = {1921334}9 SO = {1:2}5
En(a) = {3} = Ex(b), En(d) = {2} = mx(e), En(e} = {1,2},
Ex(a) = {1} = En(bn), Ex(d) = {4} = En(e), Ex(c) = {3,4}

(e) (parallel addition scheme)

V. = {a,b,ng;e}, P = {112!3!""!5!6}9 SO = {1}r

1]

{l}! Ex(b)

{h} ’ Ex(d)

{3,u},
{6},

En(a) = {1}, Ex(a) {2}, En(b)
EB(C) {3}! Ex(c) {5}’ En{d)
En(e} = {5:6}1 Ex(e) = {1}-

il
]
1]
]

(f)(Parallel factorial scheme)
Vv = {a,b,c,d,e,f} , P = {1,2,3,4,5,6,7,8} , Sg = {1,5,7},

En(a) = En(b) = Ex(a) = {1}, Ex{a) = {2}, En(r) ={7},
ex(b) = {3}, En(c) = {3,5}, Ex(c) = {4,6}, En(a) = {4},
En(e) = {6!8}1 Ex(e) L {538}1 Ex(f) = {8}' '




The scheme Z is said to be proper, if there exists a family

C of subsets of P such that:

() =€, (2.1)
(ii) For any subsets S',S" of P:
stesvec => stec, : (2.2)
(iii) For any subset S of P, and any ag V:
En(a)ns = ¢, Ex(a)ns = ¢,
E<->{ (2.3)

En(a)us € ¢ Ex(a)u s € c.
From now on we shall assume the scheme Z to be proper, and we
shall consider only proper schemes in this paper. In particular,

all schemes in Example 2.1 are proper.

The family C mentioned in the above definition will be

called the family of configurations of Z.

Two c?nfigurations 8', 8" are coexistent, (S’,S")G Coex, if
s'As" = @, s'tus"e C. (2.4)

Then (2.3) can be stated as follows:
(En(a),s) € Coex <=> (Ex(a),8) € Coex. (2.5)

Two action symbols a, b are independent, (a,b)e E, df

their entries (or, equivalently, their exits) are coexistent:

(En(a),En(b)) € Coex. (2.6)

19

EXAMPLE 2.2. The following schemes are not proper:

Bag, b ) P8, 8,8, 15,78k L)y da)

are (some) configurationsy

{2,8},{4,7,6},{3,4,9}, {u,9},{=2,9}

are not configurationsj

({5,7},{3}), ({8},{9}), ({8},{3})

are coexistent;

are not coexistent;

(b!c)I(e!C)!(e!d)'(elf)'(dlc)

are independent action symbols;

(b,f),{a,g),(a,e) are not independent.

({5,3},{3,4})s ({5,7},{4,3}),({3},{10})
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The dintended weaning of a concurrent scheme is the following,

Action symbols correspond to actions of a system components.
Configurations correspond to control states of these components;
two confisurations are coexistent, if they correspond to control
states of two disjoint system components, and independent action
symbols correspond to actions of such disjoint components. A sys-
tem is proper, if an action of a component cannot disturb actions
of other disjoint compenents. Consequently, independent action
symbols must be interpreted as actions using disjoint resources
of t..e system. In a proper system, conflicts are not excluded;
that is, in some configurations a decision should be made which

of not disjoint components is allowed to act.

In Example 2.2 some nonproper concurrent schemes are defined
as well as examples of configurations, coexistent and not coexis—~

tent configurations, independent and not independent action sym-—

bols.

In order to define the meaning of concurrent scheme in a
strict way, we need some more definitions.
Let MC C XV X C be defined by the equivalence:

En(a) € s', Ex(a)C s™,
(s',a,s")EM <=> (2.7)
S'—En(a) = SN Ex(a).

From (2.5) it follows that (s',a,S") €M implies

(s',8) € Coex <=> (5",8)€ Coex. (2.8)

21

A path from S' to S" in Z is a string of action symbols
alaz"‘an’ n20, such that there is a sequence of configurations:
(50,51152’--15n}
with

8, = 8'y §, = 8%, (5, . ,8,,8,)€N, (2.9)

for all i = 1,2,..,n. Observe that the empty string is a path

from S to S for each configuration S.

Each path from S' to 3" describe the sequence of system
actions while passing from the configuration S' to the configu-
ration S". According to the observations made above, if some
action symbols in a path are independent, then the corresponding
actions of the system are concurrent, and the order of their
execution is not specified. Therefore, if a path has to be a
description of what is going on in the real system, we should
neglect this order and describe the action between S' and S"
by a trace rather than by a string. These traces should be
generated from strings over V by the independence'relation I in

V, like in the previous section.

These considerations lead to the following definition.
Let T denotes the set of all traces over V with respect to I.

The result of Z 1is a function

Res: CXC -> T




whicli to eacl: pair of configurations assigns a trace language:

Res(s',8") = {[w]|| w 45 a path from S' to sn}, (2.10)

The result function of a scheme describes every possible action
of a corresponding system - finite as well as infinite, if we
agree to understand an infinite string, and an infinite trace,

as an infinite set of all its initial finite segments.

Properties of Res function are of our principal interest
in this section. In particular, our aim is to reduce investiga=-
tions of Res function of different schemes to some algebraic
operations on trace languages. In Example 2.3 at the end of
this section we specify some values of Res function for pre=-
viously (in Example 2.1) defined schemes, together with proofs
of these results; now we formulate some properties of result

functions which make possible carrying out such proofs.

The set of all functions from CX C into T is partially

ordered in the obvious way:

'S f" <=> for each §',S": £'(5',s")¢ fr(s1,s"), (2.11)

where the sign € in the right hand side denotes the usual set-

~theoretical inclusion. Using: this ordering we can formulate the

following theorem:

23

oREM 2.1 The result function of Z is the least function f
THIiLORL onk

cX¢ into T satisfying the following conditions:
from

(1) [E]€ £(5,8), (z.12)
(i1) (s',a,s")&M => [alf(s",s) & £(s',s) (2:19)

for all configurations S,S',S".

£. Tt is clear that Res function satisfies (i) and (dii). Let
o -

Pro

now f satisfies these conditions and let t € Res(s',S"). Then

there is a path aja,...a from S' to S" in Z, with t = [alaz...an],
and a sequence of configurations (SO,Sl,Sz,..,Sn) such that
(Si—l’ai’si}é M for i = 1,2,..,m, S5 = s', s, = 8". Since £

satisfies (i),
(2.14)
[ele£(s,,8,),
and since f satisfies (ii),

[e JE8;8, )€ £(S,_1»S.)s 1 = 1,2,..,1, (2.15)

hence
[a,1{ay]...[a )[E] & £(54:8,), (2.16)

- i least
i.e. t€f(s',s"}). It means that Res € fy hence Res is the lea

function satisfying (i) and (ii).[
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GG OLLAKY. The Res tunction is the least solution of the following

set of ecquations:

x(st,sn = ) Telx(s,sm), ar s 4o, (2.17)
(st,ms)€ n

xshyey =\ Talk(s,sn) o Lel, (2.18)
(s',a,8)€EM
where S', S" run over all configuratiomns in c.

Since the above set of equutions is finite (there is only
a finite number of all configuratiomns in each scheme), and all
these equations are left linear, the values of the solution are
regular trace languages (expressible by iteration, union, and
concatenation of the coéfficients). These wvalues can be found
by classical methods; however, the right hand sides of the equa-
tions contain usually some redundant terms which introduce nothing
but a combinatorial explosion of cases to be considered. To avoid
this redundancy, we have the next theorem which makes the solu-
tion of the equations much simpler and practically applicable.
First, we guote the following lemma:

LEMMA 2.1. If w' = a e eay is a path from S' to S"

Mgt Py

in Z, and (ai_J,ai) €I, then
w"' = a.a resd

1%27--%3%51 n

is alsc a path from S' to S" in Z, and [w'] = [w"].

Proof is obwvious. ﬂ

25

As a matter of fact, the assertion of the above lemma was

a motivation for introducing the trace concept.

We say that two configurations S',5" are separate in Z, 1if

they are coexistent and for each a in V:
En(a)< S'u 8" => En{a)g s' or En(a)C s". (2.19)

THLEOREM 2.2. If S',S" are separate configurations, then for

each configuration W such that S' & W:

Res(S'uv s",W) = \\,)

(s',a,8)EM

[a]Res(5ws",w) (2.20)

Proof.' 2 ' follows from (2.13), since (S',a,S) M implies
(stvs",a,Se«S") M, In order to prove '€ ', we have to show

that for each path w from S'u 8" to W there are a€&V, S€C, and

a path v from SuS" to W such that (8',a,S)€EM and [w] = [av].
Let w = a;a,...a_ . Since &' & W, there must occur in this path

an action symbol a with En(a)ns' £ @. Let a; be the first occur-
rence of such a symbol in w. Since S',S" are separate, En(ai)g St
En(ak)g $" for k<i; hence, (ai,ak)é I for k<i. Using (i-1) times

RIS - W

L 2 =
emma 1 we get [w] [aiala2 i-1%441

...an]. Let S be such
that (S',ai,S)E'M; then aja,...a; ja, ,-.-a is a path from

S 8" to W.][

The above theorem enables us to reduce considerably the
amount of work needed to solve equations (2.17),(2.18); it gives,

in fact, a possibility to analyse concurrent schemes locally,




doaling wit: separnte confipurations. The next theorem gives
o wmevioc For rurther simpliiication of equations which is possible
in most freouent cases occurrin; in practice (a.j. in case of

analysing cooperating sequential processes).

e say that on action symibol a is conflict free, if for

any other action symbol b, a £ b,

in{a) N En(b)

1]

@. (2.21)

TLRONEN 2.3, If a&V is conflict free, En(a) &€ ¥, and

(s',2,8") €M, then
Res(s',W) = [a]Res(s",w) (2.22)
Proof follows directly from Theorem 2]
Theorems 2,1, 2.2, and 2.3 are basic tools for solving
equations for Res {unction, In Example 2.3 some applications

ot these tlieorems for proving facts about schemes are civen.

The result function for a scheme can be a basis for some

generalizations. ©.g5. we can extend Res function to Res function:

putting

Res(8',8") = U

sreg _S-l’sné §ll

Res{s',s").
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By a dead configuration we understand such a configuration

S that En(a)NsS = § for each a in V. Let D denotes the set of

j all dead configurations of Z. The function Cont:
Cont: C => T

is defined by the equality:

Cont(s) = U Res(s,W).

WED

Equations for Cont have a particularly simple form:

Cont(s') = k&d)

(stya,s")e M

[ajCont(S“);

if s', S" are separate, then

Cont(S'u s") = L“)

(S',a,S)é M

[a]cont(suLsm);

if a€V is conflict free, and (S',a,S")€ M, then

Cont(s') = [a]Cont(s").

a These equations can be used in schemes containing no dead con-

figurations to find Res(S,W) for fixed W; namely, we extend
the considered scheme by adding to it a new action symbol c¢

and a new control symbol P, with
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Bn(c) = w, Ex(c) = {p}, EXAMPLE 2.3.
and then using the equivalence { (a) (Four seasons). Demote Res({i},{1}) by q(4).
Res(s,W) = L <=> Cont(s) = L[c]. (1) = [a]a(2)u [€] by (2.18)
a(2) = [pla(3) by (2.22)
a(3) = [e]a(s) by (2.22)
a(y) = [a]a(1) by (2.22)
Hence

a(1) = [abeala(1)v [€]

.

]

Q1) [(abed)*].

There is no independent symbols; an example of a trace
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(L) :ripeline scheme). Denote Res({i,3,k},{1,2,3}) by a{4,],k). (¢) (Producer - consumer scheme).
Denote I{es({i,j,k},{l,Q,j}) by Q{i:\jrk)-
%{1452,3) = [alu(h,2:3)0 [&] by (2.18)
wWh,2,3) = [o]u(1,5,3) by (2.22) Q(1,2,3) = [ala(4,2,3}u [ela(1,2,5)v [ €] by (2.18)
Glls5y3) = [elulr,2,86) by (2.22) a(1,2,5) = [ala(1,2,3) by (2.22)
@(1,2,6) = [ala(1,2,3) . by (2.22) a{4,2,3) = [e]a(4,2,5)u[blal1,2,3) by (2.17)
Q{4,2,5) = [a]a(u,2,3) by (2.22)
lience

Hence

[abea]q(1,2,3)u [£]

o

=
-

“
N

o

&
i

Q(%,2,3) = [ea]a(s,2,3)u [bla(1,2,3)
@(1,2,3) = [(abea)*]. .
q{4,2,3) = [(ed)*pla(1,2,3)
Independent symbols: {a,c),(a,d),{b,d). ixaaple of a trace:

Thus

Q(I,Z:B) = [a(cd)*b}Q(l,?.,j)U [cd]Q(l,:Q,j)u [S]

.
. e

Q(1,2,3) [(a(ed)*buca)*].

Independent symbols: (a,c),(a,d),(b,d). Example of a trace:

{(cf. Example 1.2)
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(a) (scciaent senene). Lenote es({1,4},(1,2}) by a(1,s). |

(e) (Parallel addition scheme ) I

I

i

R ; > : te Res({i},{2}) by @(i). W

“(1,2) = [pla(3,2) v [ala(i,u)u [ela(3,8) uT€]  by(2.18) - |

a(3,2) = [ala(1,2) |

ke by (2.22 L

0 , B ) q(1) = [a]a(z)u[bla(3,4) by (2.17) a‘

H1,4) = [ela(z,2) by (2.22)

{9, L) = ; \ q(z) = [€&] by (2.18) [§

U3,4) = [alal1,4) by (2.22) ]
q(3,4) = [cla(s,4) by (2.22)

|

lience a(5,4) = [a]a(5,6) by (2.22) {

i

a(5,6) = [e]a(1) by (2.22) ﬁ

G(1,2) = [bak/deL)cae?Q(l,Z)L)[ej w

% Hence w

QR(1,2) = [(bagzdeg;cae)%1_ ﬁ

(1) = [bede]q(l)v([a] #

Independent symbols: (a,d},(a,e},(b,d),(b,e). Lxample of a trace: H

q(1) = [(bede)*a].

Independent symbols: (c,d). Example of a trace:
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(f) (Parallel factorial scheme)

Denote Res({i,j,x},{2,5,8}) by Q(i,4,x).

Q(1,5,7) = [£la(1,5,8) by (2.22)
@(1,5,8) = [ala(z,5,8)v [b]Q(3,s5,8) by (2,17)
al2,5,8) = [g] by (2.17)
Q(3,5,8) = [ela(s,6,8) ' by (2.22)
Q(u,6,8) = [dla(1,6,8) by (2.22)
Q(1,6,8) = [e]a(1,5,8) by (2.22)

Hence

Q(l’5:8) G [dee ]Q(1’518)U [aJ

q(1,5,8)

[(bede )*a], ana Q(1,5,7) = [f(bede )*a].

In e -- 3 1] ’ ?
dep ndent symbols: (a 9)'{a,f},(csf),(b G),(b,f) (d f)’

Example of a trace:

35

i CONCURRENT SYSTEMS AND INTERPRETATIONS

In this section concurrent systems will be considered. DBy
a concurrent system we shall mean here a concurrent scheme
together with an interpretation of its action symbels in a domain

of actions, so first we define an action system which will serve

as a domain of interpretations.

By an action system , fixed for the rest of this section,

we shall mean a pair
(r,U) (5.1)

where R is a set (of resources), U is a set (of resource state

values). Dy a state of R we shall mean any mapping

s: R => Us

the set of all states of R will be denoted by’ZL. Let A denotes

the action system (3.1).

By an action in A we mean any pair

{Xyr>,
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where XCR is a set of resources called the scope of <X,r>, '

and r is a binary relation over 2::

rSZxZ!

called the transformation of <X,r>, such that

(s',s")€Er => ¥V xé€R-Xx: s'(x) = s"(x). (3.2)
The intended meaning of the above condition is that an action
does not change any state of resource outside its scope; hence

its transformation can be defined only for its scope.

The set of all actions of A will be denoted by F. The

set F is partially ordered in the obvious way:

KX',r'>E (X",r"> (=> X'C X", r'c r". (3.3)
The action <@,P> is the least element of F. All actions with
empty transformation: <X,@>, are called "impossible" actions.
Actions can be composed; the composition operation in F is
denoted by o and defined by the equality:

X', r'YodX",r"> = <X'uX",r'or"> (3.4)

where r'or" denotes the usual composition of binary relations:

(s'ys")E€xtort <=> ds: (s',s)€r',(s,s")€r" (3.5)

~—v___—$
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It is clear that the composition of any two actions is an action

agail’l .

Let e be the identity relation in,ZL, i.e. (a',s")g e <¢=>
s' = s"¢g Z. Then the action
g <p,e> (3'6)

is called the "empty" or "do nothing" acticon. Observe that in
accordance to our intuition "do nothing" action needs no resources

to be performed.,

Actions can be independent; the independency relation Ind

is a binary relation in F defined by the equivalence:

(€XT,2">,<X",r">) € Ind <=3 X'nX" = §. (3.7)

The intended meaning of independency of two actions is that they
can be performed concurrently; therefore, two actions can be
performed concurrently if and only if they use no common re-

source.

The notion of independency is basic for the concept of
interpretation, as we shall see in the sequel; namely, we shall
require that any interpretation preserves independency: inde-

pendent actions will correspond to independent action symbols.

The following theorem gives properties of action systems.
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THEORIEM 3.1. Let A be an action system as defined above, Then: By a concurrent system we understand a pair

(1) (F, €) is a complete lattice; (Z,‘P) (1.9)
(1) (F,o,_g) is a monoid;
(iii) o R G where Z is a concurrent scheme (the scheme of the system), as

defined in Section 2, and l{/ is a mapping of the set of action

fo( UG) = U(fo(}), symbols of Z into the set of actions of an action system (the
( UG)Of - U (ot )i jnterpretation). It is assumed that
where UG is the l.u.b. of G, (a,p)€1 => (da,}p)€ Ind (3.10)

oG = {fog|g€c}, Gof = {gor|gca);
for each action symbols a, b, where Ind is the independence
(iV) TR e ek relation of the action system defined by the interpretation.
We shall assume in the sequel that this action system is such

(f,g)élnd =2 (g,f‘)€ tady - as defined above, with F as the set of actions.
(f,e) € Ina,

(fie) End w5 fog = gof (but not conversely), (3.8) In Example 3.1 we give some concurrent systems with schemes
(f’G)é tnd <= (f' UG)G oy defined in previous examples.
where (f£,G)€ Ind means that for each g€ G (f,g)€ Ind. Let C be the set of all configurations of Z, V the set of

all action symbols of Z. Let w be a path from S' to S" in Z,

Proof is obvious, | w = a.a a_, n>0. We say that f is the effect of the path w
n —

d 2
in the system (Z,q/)s if
The mentioned above Properties of action systems could be
taken as axioms characterizing such a systemsy in fact, to '(Wal)o(q)az)o"'o(df’an}’ it n>0,

construct interpretations we need only these pProperties. £ = (3.11)
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Let Ey(S',5") denotes the set of effects of all paths from S'

to S" in (z,q;).

The result of a system (Z,() is defined as a function

Resw from CXC into P defined by the equality:

Res,(s',s") = U{fifEE,_],(S‘,S“)}. (3.12)

The value of Resw(S',S“) is the total action which is performed
during all possible runs of the system from the configuration

S' to the configuration s".

Let us extend the interpretation w to the mapping ?*: VESE

putting

Q’*E = 8,
.Lp*a. = q,la, for agVv, (3.13)
Y ¥wiwn = (q;*w')o(tk*w“), for w',w" in V¥

In the sequel we shall denote QJ and its extension by the same

letter ¢/ .
LEMMA 3.1. Tor any strings W', w" over Vi

'] = [v] o pwr = g (3.14)

Proof follows from (1.1),(3.8), and (3.10).]
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Extend now ¢ to the set of all traces over V putting
qJ[WJ = 4/W, for each w in V¥; (3.15)

this definition is correct since by Lemma 3.1 the value of LP
does not depend on the choice of "representant" w of [w].

Extend now q} to the set of all trace languages over V defining

q/'r = U{L}/tl t €T}, (3.16)
for each T C [V¥],

THEOREM 3.2, For any configurations S',S" of the system {Z,q)):
L}:Res{s',s") = Resy(s',s"). (3.17)

Proof follows from (3.11), (3.12), and from the construction

of the extension of %’. g

The above theorem states that there is no difference
between the result of an interpreted scheme, i.e. of a system,
and the interpretation of the result of the scheme; in both
cases the effect is the same. Due to this theorem we have a
quick method for finding results of concurrent systems; having
once determined the result of a scheme, one can easily find

the results of any of its interpretations.

Applications of Theorem 3.2 are given in Example o % M
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Let us recapitulate in a graphical form the results of this

section,

(0l T () 5 (5,2

[w]lule wu > fog
N V%
(wu]

Connections between strings, traces and actions.

W

N a3 Z————————> Res

N Y

(Z’LP)—-_}?RESQP

J Theorem 3.2,

Extensions of interpre-

tations.

All diagrams above commute.
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EXAMPLE 3.1. First of all, we introduce a convention to shorten
definitions of actions. Let A = (R,U) be an action system with
zi as the set of all states of R. TFor any binary predicate p

let
r: p(s',s")
denote
= {(s',s")]s",s" € 2i y pls',s")}.
Now, we consider interpretations of schemes (£), (e), and (e).

(£) (Parallel factorial scheme). Let A = (R,U) be an action

system with
R = {x,y,z,u}, U = {...,—1,0,1,2,...}.
Define the following actions:

x<0 = ({x},rl>, T s'(x)<0,s"(x) = s'(x);
x>0 = ({x},r2>, r,s s'(x)>0, s"(x) = s'(x);

vi=x = {x,¥},7,>, ra1 s (x) = 8"(x) = s"(y)s

ximx-1 = <{x},r4), ro: s"(x) = s'(x) - 1;

Iy
zi=z¥y = {z,7},7>, T2 8"(2) = s'(x)¥s'(2), s"(y) = s'(¥);

zi=l = <{z},r6>, re: s"(z) = 1.

The mapping
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vt st (x)>0, s"(x) = s"(y)=1 = O, s"(z) = factorial(s'(x))

Ya = x40
qb = R s'(x)<0, st (x) = s'(x), s"(y) = s'(y), s"(z) = 1;
e = yi=x

In more familiar form we can write

Res?({l)5!7}’{2’5!8}) =
(x,v,2z) := if x>0 then (0,1,factorial(x))
is then an interpretation, since it preserves independency

else (x,y,l)-
relation: independent acticons correspond to independént action

symbols. The system (2 can be represented graphically: )
yim Y ( ,q’) p grap ¥ (e)(Parallel addition scheme). We take the same action system as

in the previous case, and adopt the same definitions of x>0,

%<0, x:=x-1, but we add one action more:

yi=ysl = <{yl,rgd, Tgr s'(y) = s'(y) + 1.
>0 1=
x 5 zi=1
L ]
Then the mapping
Xt=x=1 yvi=x zZi=z%y 8
4 6 L{.’a = x_gO
l{;b = x>0
Since Res({1,5,7},{2,5,8}) = [f(bcde)*a], by Theorem 3.2 we get *C = xi=x-1
Wd = yi=y+l
Resw{{l,5,7},{2,5,8}) (pe = "do nothing"

z:=1lo(x>00y:i=xex:=x~lozt=z%y)¥* 0 .
( y zi=zy) S is an interpretation of the considered scheme, since (‘PC’{Pd)'

%
Ax,v,2}, r6o(r20r3orhor5) or > are independent; such an interpreted scheme can be represented

1}

% z .
{ £ }’ s by the graph:

where




46 G

(c) (producer — consumer scheme). Let now the action system be

defined as A = (R,U) with

R = {input, output, queue, X, ¥}, {

U = V¥, yhere V is an arbitrary alphabet.

Define the following actions:

read x = <{input,x},rl),
Ty 3 s'(input) = ajay...a , n>0,
i s"(input) = aj...a_,
Since Res({l},{Q}) = {(bcde)*a], we have 2 n
s"(x) = a;;
Res+({1},{2}) = (x>0 0 x:x=10 yi=y+1)¥ 5 x<0
x to queue = {{queue,xX},r,>
= <{X’Y}! I'9> { sx}y PR
T, s'{queue) = aj---a, s'(x) = a,
n = % a:*
| where Ty = (r2°ru°r8)*°r1 i.e. s"(queue) 21 b
Tyt s'(x)< 0, s"(x) = s'(x), s"(y) = s'(y) ¥ R guehE = <{queue,y},r3>,
_— T4t s'(queue) = aja,...a_, n>0,
" = LI )
s'(x)>0, s"(x) = 0, s"(y) = s'(x) + s'(y): s"(queue) BgmraBy
s"(y) = a;;
| in more readable form:
; write v = <{output,y},rh>,
H t tput) = o st = a
| Resq({l},{Q}) = (x,y) 3= if x>0 then (0,x+y) else (x,v). Tyt s (output) &y &n 0 (v) ’
{ s"(output) = ay...a, a;

for arbitrary symbols 8859859002 in V.
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b

f is as follows. First, check
hen the mapping: ‘ The PTroo

Wa = read x (1) rierer, T,
c
kyb = X to queue (2} rBura‘_r,
* =
qc = ¥ from queue (3) r o

b3

: write y

Next, we have

is an interpretation of the considered scheme, since (Ya, ye),
s
( 4%, %ﬁ); (\Pb, qﬂ) are independent. lence (u) (T3°Th) cr T,
(5) rln(r3'rk)*°r22 r by (1) and (&),
* Fea¥ = by (2), (5).
RESW({1:2s3}a{11293}) = <{input,x,queue,y,output},r5> (6) (rl°(r3°r4 e Tyu anrh) < ’

or, )¥ Therefore, ReSy({l,2.3},{l,2,3}) cr.f
3747 "

where Ty = (rle(r39r4 *°r2k’r

We shall not lock for an explicit form of r5 (it is not a fun-

ction); instead, we prove that

H
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i.e. that the concatenation of output state, queue state,

and input state is not changed while passing from the configu-

ration {1,2,3} to {1,2,3} in the considered system. In other

i words, this concatenation is an invariant for the configuration

i {1,2,3} in the system.
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