21 B @ () A oD U =
='S A A RA 20) A) A
-
A () A » ROF OLC - ~
®
O o Q)
— ae dlle Fede &
DA =
Decembe 9

Institute of Mathematicz University of Aarhus

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

PREFACE

The work reported in this paper is a part of the DELTA Project
(see ref. (1) and (2)). The DEL.TA Project has as one of its objec-
tives to develop language tools for description of complex, interac-
ting and dynamic systems. The first DELTA language proposal will
appear as a publication from the Norwegian Computing Center this

autumn.

For a short introduction to the basic concepts of the DELTA lan-

guage we refer to the appendix.

In this report the authors use the DELTA language (as of Sep-
tember 1974) to describe a biological system in interaction with

an experimental set—up. The system selected consists of a single
brain neuron of Helix Pomatia (the edible snail) and a neurophysio-

logical experi mental egquipment.

The description comprises the knowledge available and relevant
to the hypotheses to be tested in the experiment, some hypotheses
as to the nature of feedback mechanisms present in this type of
neuron and the aspects of the instrumental set-up which directly

interact with the neuron during the experiment.

The description is to be used for three purposes:

1. as a tool for communicating to other neurcphysio=-
logists the nature of the model and the results

gained by the experiment.

2. as a precise formul ation of the neuron model and
the experiment, to be used by a computer specia—
list in the formulation of a computer simulation

modeil.

3. as a case study in testing the usefulness of the first
DEL. TA language proposal as a tool for the descrip-
tion of this type of biophysical models.

The experiments have been designed and conducted by Helge Rasmuss =
under the direction of professor |. Engberg, both of them from Institute

of Physiology, University of Aarhus.

The computer simulation program is to be programmed by Mogens
Nielsen, lecturer at Department of Computer Science, University of

Aarhus.

The report is the result of a close cooperation between Helge Ras-
mussen, Mogens Nielsen and the authors, with Kristen Nygaard

(one of the authors of the DEL TA |anguage) as a consultant.

The DEL TA reports being issued from various institutions are
provided with a common, consecutive DEL TA Project Report (or
Working Note) numbering. This report is published as DELTA ro-
ject eport No. 3 and as DAIMI publication No. 42.

Aarhus, December 1974

Morten Kyng &
Birger Mgller Pedersen

CONTENTS
IR ARE & ww § swe » ove won w b § B0 3 00 390 @ om0 v v n il 8 WIE B WS BUE ¥ B
1. The system and its main COMPONENtS .. c.ceeerereneeees e 1
1.1. SYN IN SYS - synaptic input systemo0.-n 2
1.2. NEURON ...cversusoraanasessasansesssecssscesse 10
1.3. FEEDBACK SYS - feedback systemccce00een 1
1.4, EX SYS - experimental system........coeoeencces 29
i Complete system description....ccoeeecscesaosesreonans 35
et g T TEE ST TTE T SEL TS A 49
References . .cq.-- .. O 63

1 The system and its main components

The presentation in this chapter is aimed at giving the reader an un-—
derstanding of the main properties of the system. Details are post-

poned till Chapter 2.

The system described covers the whole physical experiment exami-
ning one single neuron. We confine our model to one neuron and its
immediate environment, and do not describe this envircnment in
terms of neurons. Firstly because the experiment is designed to
investigate the behavior of one single neuron. Secondly because
otherwise we would be forced either to use an extremely simple
model for the single lenvironment neurons!' or to restrict the descrip-
tion of the environment to cover two or three neurons and their con-
nections. The system consists of the following main components

(figure 1.1):

SYN IN SYS NEURON = EX SYN

FEEDBACK SYS

Figure 1.1

The main components of the system

SYN IN SYS:

The synaptic input system. This system represents the

input which the neuron, independent of its own activity,

gets from other neurons in the brain of the snail.

NEURON:

The single neuron under examination. It works on input
from the synaptic input system and the feedback system,
and dependent on these and properties of the neuron it-

self, it emits impulses at intervals -~ these impulses are

called firings.

FEEDBACK SYS:

The feedback system, which comprises the feedback the

neuron receives as a result of its firings.

EX SYS:

The _géper‘imental system, which comprises the system

connected to the neuron during the experiment.

It should be remarked that if the neuron receives synaptic input as a
result of its firings, through loops of other neurons, these loops are

represented by FEEDBACK SYS.

The transmission of impulses from the neuron under investigation to
other neurons is without significance in the experiment, unless the-
se neurons are part of the feedback system. If this is the case the
interaction is described by the interaction between the NEURON
and the FEEDBACK SYS objects, otherwise the impulse transmis-

sion is not covered by the system description.

1.1 SYN IN SYS - synaptic input system

When a neuron fires, an impulse travels along a narrow (possibly
branched) extension of the cell, named an axon. The end points of

the axon are the regions known as the synapses. Each synapse

impinges onto a single neuron. The impulse is transmitted to the

neuron throuch the synapse (fig. 1.2.).

SYNAPSE » NEURON
NEURON
SYNAPSE NEURON
SYNAPSE
SYNAPSE
NEURON
SYNAPSE » NEURON
Figure 1.2

Connections between NEURONSs through SYNAPSES

upophySioiogy the standard way of drawing diagrams of neuron

In ne

networks is illustrated by figure 1.3, where the neuron on the left

iransmits to the one on the right.

synapses

neuran axon neuron

Figure 1.3

Standard diagram of neuron network

In this report connections are drawn by directed lines (indicated by
an arrowhead). Synapses (indicated by the symbol —<£ in figure
1.3) are considered as system components and represented by rect-

angels.

The next step in the model development consists of the splitting up
of SYN IN SYS into subsystems (figure 1. 4). Since we confine our
model to one neuron and its immediate environment, we have decided

to represent the input part of the environment by a set of input drivers

(represented in the model by INDRIVER objects) firing impulses into

the neuron through synapses (represented in the model by SYNAPSE

objects):

FEEDBACK SYS

Figure 1.4
Splitting in SYN IN SYS

INDRIVER:

The INDRIVER objects of our model describes the behavior of the
neurons of the total snail-brain system which are producing input

to our limited single-neuron experiment system.

The purpose of introducing the INDRIVER objects thus is to feed
the SYNAPSE objects with streams of impulses, simulating the

environment of the single-neuron system.

| impulses to one synapse are similar in their characteristics,

since al

each stream may be characterized by a time series representing the

times of arrival of impulses

01, T2, T3, ceeves

h may be transformed to a series consisting of a starting time

whic

and a series of intervals
T1, 11, 12, 13, ...t
where
T2="T1+I1,
T3=T2+12,
etc.

The intervals 11, 12, may be regarded as a sequence of values

of a stochastic variable which we may name
INTERVAL.

Since we do not know the distribution functions of the INTERVAL va-
riables (one for each INDRIVER), they will be introduced as VIRTUAL.
REAL FUNCTION s. (REAL FUNCTION implies that the function,

when applied, produces a real number and VIRTUAL implies that

the exact nature of the function is not known or not decided upon on

the level of generality used in this description).

' In the following description of the INDRIVER objects:

- SYN is a name (reference) used to denote the SYNAPSE
to which THIS INDRIVER object is connected.

- T NEXT is a variable whose current value always is
the scheduled time of arrival of the next impulse

taking on successively the values T1, T2, T3,

- RECEIVE IMPUL SE (the actions performed when re-

ceiving an impulse) is a task procedure which is a part

of the action repertoire of a SYNAPSE object.

EIVE IMPULSE implies that the RECEIVE
procedure of the SYNAPSE object named
(SYN's RECEIVE IMPULSE

the genitive notation ''s"

SYN.REC

IMPUL.SE
SYMN shall be executed.

task is to be executed,

being substituted by . ",

CLASS INDRIVER:
CLASS
OBJECT BEGIN
OBJECT BEGIN
REF(SYNAPSE) SYN;

REAL T NEXT;
VIRTUAL REAL FUNCTION INTERVAL;

TASK BEGIN

REPEAT
(* ENFORCE SYN. RECEIVE IMPULSE UPON SYN;

T NEXT:=TIME + INTERVAL;
WHILE TIME < T NEXT IMPOSE {REST} *);

END TASK;
END OBJECT

ts named INDRIVER. Each

This declaration describes a class of objec
SYN, a real variable

object in this class has a reference variable

T NEXT, a function named INTERVAL and an action pattern consisting

(* *)) of three actions. An

of a working cycle (REPEAT
INDRIVER object

- interrupts its SYNAPSE object by enforcing the
SYNAPSE object to execute the procedure RECEIVE

IMPUL SE

- determines the next time at which the SYNAPSE ob-

ject shall be interrupted and
- rests until then.

The actions of the working cycle are then repeated.

SYNAPSE:

A SYNAPSE object rests until it receives an impulse from its

INDRIVER.

The SYNAPSE then starts to transmit to the NE:URON. The decay caused
by the transmission is for two reasons without any significance in the
experiment, and is therefore omitted in the model. Firstly, the delay

ie so small that it is impossible to measure it with the equipment used.
Secondly, its effect is only the addition of a constant increment to

each impulse arrival time, and the time interval pattern is not changed.

The strength of an impulse is constant for a given SYNAPSE and may
be characterized by the value of a real variable, STRENGTH. Each
SYNAPSE has its own individual value of STRENGTH.

When the interrupt RECEIVE IMPUL SE has been carried out, the
SYNAPSE object resumes its ongoing time~consuming ''rest action',

being in the state of inactivity:

CONTINUE {REST}

CLASS SYNAPSE:
CLAS=
OBJECT BEGIN
BEBJEC ! D=2
REF(NEURON) NEU;

REAL STRENGTH;
VIRTUAL TASK(NEURON) PROCEDURE IMPUL SE;

COMMENT The task procedure IMPULSE changes the

NEURON!'s ability to fire. The size of the
change depends upon the value of the
STRENGTH of THIS SYNAPSE and the
internal state of the NEURON;

TASK PROCEDURE RECEIVE IMPULSE:

TASK BEGIN
ENFORCE IMPULSE PUT IMPACT:=STRENGTH

UPON NEU;

END TASK;
TASK BEGIN
CONTINUE {REST};
END TASK;
END OBJECT

I " A formal description of the procedure IMPULSE will be given when
~ the NEURON has been described in detail.

‘The IMPUL SE task, described by the procedure, is executed by the
:NEURON named NEU and has to make use of the value of STRENGTH
 of the SYNAPSE. This is achieved by the SYNAPSE's assigning the

.Value of STRENGTH to another real variable, IMPACT, available
" Within the IMPUL SE task (the description element PUT IMPACT =
."STRENGTH). :

.
While a SYNAPSE object rests, i.e. executing

p's
CONTINUE {REST]}
!r
SRECEIVE IMPUL SE tasks from its INDRIVER may interrupt the
SYNAPSE. \We do not associate any resistance priority to this time-

L consuming ''rest action'. It has then the lowest priority value, NO,

will be interrupted by all interrupting tasks independent of their

or (priority value). Then we need not explicitly give the interrupt
ENFORCE SYN. RECEIVE IMPUL.SE UPON SYN

he INDRIVER object a power to make sure that it will interrupt the

e-consuming ''rest action. That is, the interrupting task also has

The state of excitability of a neuron is characterized by the membrane

ential (i.e. the potential difference between the inside and the out-

ide of the membrane) and the firing threshold. The membrane potentia!

usually negative.
The neuron is activated when the membrane potential becomes larger

n the firing threshold. The activation results in a firing, which

‘consist of the sending of a short impulse along its axon, which connecis

to other neurons through synapses. Since the experimental record-
ihg equipment records the impulse as a sharp peak (a "spike') on the

play used, a firing is usually referred to as a spike.

The internal state of a neuron immediately after a spike is not well

understood. However, no new firing will take place during a time

terval which is named the absolute refractory period. The absolute

refractory period gradually develops into the relative refractory

riod. In the beginning of this period a very large input may initiate
spike. As time passes by, the input required is diminished, until

normal processes within the neuron eventually initiate a new firing,

even without any external input.
ince the potential outside the neuron is constant during the experiment
membrane potential, POT, may be considered as a sum of two

bPonents,

'POT = increasing value of the background potential (BP)

+ effects of external inputs.

11

-~ external inputs may come from either the SYN IN SYS, the

-EDBACK SYS or the EX SYS,

¥

The background potential, BP will be increasing towards a constant

al limit (BP LIMIT). (The background

the background potenti
a combination of the results of two

value,

stential may be considered as

an after‘hyperpolar'ization and a pacemaker or prepotential

processes:
process- These two processes will not be discussed further).
ik

 The firing threshold, FT, will be decaying towards a constant value,

"the firing threshold limit (FT LIMIT).
i

‘fhe ongoing internal processes may be illustrated by figure 1. 5.,

“where the value of the real variable T LAST is the time of the last

."#iring:

.

volt +

firing threshold FT

. .-————-.——.-.-—-——.-—.——-——____.

"BPLIMIT -

CETLIMIT -

T I

- e e am om - —— — e o = o — m am A = e e ST

N

backgr'dund potential BP

lll
Pl

|

(]
E B '
) T LAST/*Q firing Aﬁme
~last firing absolute refractory period

Figure 1.5
Ongoing internal processes of the NEURON

U = = RN SN g vsa D ST R

lows that if a NEURON does not receive any external stimuli and

LIMIT>FT LIMIT, the result will be that the NEURON fires at a

|ar rate.

'\.

external synaptic input may be split up in two components:

effects of external synaptic input =

postsynaptic potential = effects of impulses from excitatory

s!nagses
- effects of impulses from inhibitory

sznagses.

. 1

p‘ostsynaptic potential will be named PSP, the contribution of

excitatory synapses will be named excitatory postsynaptic poten-

tial (EPSP) and the contribution of the inhibitory synapses will be
ed inhibitory postsynaptic potential (IPSP). EPSP and PSP

the total sums of the excitatory and inhibitory impulse contribu-

ons, respectively.

SP and IPSP will, when no additional inputs are received, decay

rards zero.

To conclude, the following equations are valid:

POT = BP + PSP
PSP = EPSP - IPSP.

e build up process of BP is described by letting the value of BP be
rmined by a function, BP BUILDUP whose value is dependent

On the time elapsed since the last firing:

BP = BP BUILDUP(TIME - T LAST).

decay process of FT is described by letting the value of FT be
Fmined by a function, FT DECAY whose value also depends on

& time elapsed since the last firing:

FT = FT DECAY(TIME - T LAST).

. decay process of FT and the build up process of BP are only
rupted by the firing of the NEURON. ThevaluesofFT andBP
- firing and the values of FT LIMIT and BP LIMIT are parts

| e definitions of the functions.

ongoing decay processes of EPSP arj‘d IPSP are interrupted by
firing of the NEURON and by the reception of exicitatory and
ibitory impulses, respectively. The decay process of EPSP is

scribed by the function EPSP DECAY and that of IPSP by
5P DECAY.

. value of EPSP (IPSP) is determined by the value of EPSP DECAY
P DECAY) whose value depends upon

_ the time elapsed since the last firing, TIME = T LAST

— the time elapsed since the last reception of an excitatory
(inhibitory) impulse, TIME - T LAST EXC (TIME -
T LAST INH)

-~ the value of EPSP (IPSP) at the time of the last reception
of an excitatory (inhibitory) impulse, EPSP LAST
(IPSP LAST):

RSP EPSP DECAY(TIME - T LAST,
TIME - T LAST EXC, EPSP LAST)

IPSP DECAY(TIME - T LAST,
1 TIME - T LAST INH, PSP LAST).

‘The decay of EPSP and IPSP is towards zero and the decay func-
Mions are both exponential, as illustrated by figure 1. 6. (It should
remembered that the IPSP DECAY, which is given positive values

0 figure 1.6, contributes negatively to PSP).

&

PSP DECAY:

i’

PSP LAST

PSP

T LAST INH

Figure 1.6

Decay of postsynaptic potential

I constants for EPSP DECAY and IPSP DECAY are, in the

ons under investigation, different.

s of the time constants during both

actory period. This causes a faster

ere is an increase of the value

'..ab-solute and the relative refr

ay of impulses when they are received shortly after a firing.

15

constants of IPSP DECAY. One

ssibly two kindsoftime
t for the EPSP DECAY,

e are po
gnitude as the time constan

he same ma
characterizing the decay of an

rably larger,

her is conside
tion (i1d).

tion of lond dura
| unsettled whether an ild is due toone large elementary

il
ynaptic impul se or due to

itory S a summation of several normal

itory syna

volt ?

ptic impulses (figure 1.7):

—ip
time

one large impulse

vo!tT

summaticn of impulses time

Figure 1.7

Inhihition of long duration

‘the exact nature of ild is without direct significance in the expe=

lent we choose for simplicity the latter mechanism: Summation of

It will thus be a property of the input

ibitory synaptic impul ses.
ynaptic impulses

ers that they may produce series of inhibitory s

lar in effect to an ild.

L the following description of the neuron the decay functions are

dduced as virtual quantities. This is done because the exact
i~ . . -
e of the functions is not known and because we want the descrip-

10 be valid regardless of which of the various possibilities that

Fe selected for mination later on.

16

NEURON:
OBJECT BEGIN
REAL POT, PSP, T LAST, T LAST EXC, T LAST INH,
EPSP LAST, IPSP LAST;
VIRTUAL REAL FUNCTION FT DECAY, BR BUILDUP,
EPSP DECAY, IPSP DECAY;

PROCEDURE FIRE:
BEGIN

An impulse is generated. This enforces interrupts
upon the FEEDBACK SYS and the ELECTRODE of
the EX SYS (see later). T LAST (the time of the

last previous firing) is given the value of the time
of this firing (the current value of TIME);
END;
COMMENT Thedeclarations of the variables and proce=
dures of the NEURON are given above. Below follows a
description of its ongoing internal processes by means
of an object descriptor. Throughout the existence of the
NEURON the relations described by the property descrip-
tor of INT PROCESS are imposed upon the NEURON;
INT PROCESS:
OBJECT BEGIN
TASK BEGIN
CONTINUE {PSP=EPSP DECAY - IPSP DECAY,
POT=PSP + BP BUILDUP};

END TASK;
END OBJECT;

COMMENT The total activity of the neuron thus consists of
the ongoing internal processes modul ated by the additional
actions of the working cycle and the actions enforced by

the interrupts stemming from the reception of impulses;

TASK BEGIN
REPEAT

(* WHILE POT <FT DECAY IMPOSE (REST};
FIRE;

WHILE absolute refraction obtains
IMPOSE {restoration of spike initiation mechanism}®

END TASK;
END OBJECT

17

when POT = FT DECAY the NEURON fires, and this is done by exe-
cuting the procedure FIRE. Since both BP BUILDUP, FT DECAY,
gPSP DECAY and IPSP DECAY are functions of TIME - T LAST,
the execution of the procedure FIRE implies that these functions are

forced into a new cycle, starting from TIME = T LAST = 0.

it should be stressed that the duration of a firing is so small that we

have described it as an instantantaneous action in our model.
The two time consuming actions in the NEURON object both have re-

sistance priority value NO. When executing these actions it will thus

be interrupted by every interrupting task.

Excitatory and Inhibitory Synapses

As mentioned above the neuron may receive two kinds of input from
synapses, called excitatory and inhibitory impulses. A synapse is
either excitatory or inhibitory, and this will be described by introdu-
cing two subclasses of SYNAPSE with two different IMPULSE proce-
dures. (Only these procedures are declared and no further properties
are added to those already described in CLASS SYNAPSE).

In the excitatory synapses IMPULSE affects EPSP by changing the
value of the real variable EPSP LAST, and in the inhibitory syn-—
apses IMPULSE affects IPSP by changing the value of IPSP LAST.
In both cases the size of the change depends on the value of IMPACT
and of the value of POT. This dependency is described by the func-
tions EXC and INH. These functions are declared as VIRTUAL s as
were the decay functions of the NEURON.

IMPULSE also has to reset the value of T LAST EXC (T LAST INH)
to the value of TIME at the moment the exitatory (Inhibitory) impulse

arrives.

18

CLASS EXC SYNAPSE:
SYNAPSE OBJECT BEGIN
VIRTUAL REAL FUNCTION EXC;
TASK (NEURON) PROCEDURE IMPULSE:
TASK BEGIN
REAL IMPACT;
NEU. EPSP LAST:=NEU. EPSP DECAY +
EXC(IMPACT, NEU. POT);
NEU. T LAST EXC:=TIME;
END TASK;
END OBJECT

CLASS INH SYNAPSE:
SYNAPSE OBJECT BEGIN
VIRTUAL REAL FUNCTION INH;
TASK(NEURON) PROCEDURE IMPUL SE:
TASK BEGIN
REAL IMPACT;
NEU. IPSP LAST:=NEU. IPSP DECAY +
INH(IMPACT, NEU. POT);
NEU. T LAST INH:=TIME;
END TASK;
END OBJECT

3.3 FEEDBACK SYS - the feedback system

The feedback system consists of those mechanisms which make the

output of the neuron dependent on previous firings.

The nature of feedback effects intheneurons under investigation is not
well understood. The effects may be given various interpretations

as e. g. the input to the neuron through a loop of other neurons or

the result of processes within the neuron itself.

19

One purpose of the computer simulation program to be developed is
to observe the effects of the various assumptions on the feedback-
mechanism and compare these effects with those observed in the

neurophysiological experiment.

In our description no definite choice is made, except that the effects
upon the NEURON are introduced by the actions of a FEEDBACK SYS
object. It is left open to the reader to regard the neuron as a union
of a NEURON and a FEEDBACK SYS object, or as a NEURON object
interacting with outside system components (e. g. neuron loops)

represented by a FEEDBACK SYS object.

NEURON il

— REF (FEEDBACK SYS) FB SYS

L— FEEDBACK SYS
REF (NEURON) NEU |
|
Figure 1.8

NEURON and FEEDBACK SYS

possibly representing a single neuron

The feedback effects are dependent upon earlier firings. This implies
that the FEEDBACK SYS object must contain mechanisms which may

reproduce these effects, regardless of which physical interpretation

is chosen.

20

The FEEDBACK SYS object thus has to contain some information about
the streams of impulses from the NEURON,

Since all impulses from the neuron are similar in their characteristics,
the stream of impulses may be characterized by the time of the last im-
pulse and the series of intervals between earlier firings (the interspike

intervals). °

FEEDBACK SYS is only capable of holding a limited amount of infor-
mation about the impulse stream of the NEURON. This information is

held in what we may call the feedback memory.

The effects of FEEDBACK SYS are obtained by enforcing the task
procedure FEEDBACK upon the NEURON. The exact nature of this
procedure will not be discussed in this report. The FEEDBACK pro-
cedures effects on the NEURON are |left open by introducing the pro-
cedure as a virtual quantity. It should be remarked that if we interpret
the feedback effect as the result of processes within the neuron itself
the task procedure FEEDBACK will possibly affect FT DECAY and
BP BUILDUP.

The next time at which the NEURON will be interrupted by FEEDBACK
is denoted T NEXT FB. T NEXT FB is determined by the contents of
feedback memory. It is adjusted whenever the contents are changed

or when a FEEDBACK interrupt has been enforced upon the NEURON.

21

FEEDBACK SYS:
OBJECT BEGIN
COMMENT Feedback memory is a data structure capable

of holding a limited set of real values repre-
senting times of arrival of impulses from the
NEURON;

REF (NEURON) NEU;

REAL T NEXT FB;

TASK PROCEDURE RECEIVE IMPULSE:

TASK BEGIN
adjust feedback memory and T NEXT FB;
END TASK;

COMMENT The procedure RECEIVE IMPULSE is
executed when receiving an impulse from
the NEUIRON;

VIRTUAL TASK (NEURON) PROCEDURE FEEDBACK;

TASK BEGIN

REPEAT
(*WHILE TIME < T NEXT FB IMPOSE {REST};
ENFORCE FEEDBACK UPON NEU;
adjust T NEXT FB¥*);
END TASK;
END OBJECT

The time consuming action in FEEDBACK SYS has resistance priority
NO. This implies that the FEEDBACK SYS object will be interrupted
by an impulse from the NEURON when it is executing

WHILE TIME < T NEXT FB IMPOSE {REST}

22

1.4 EX SYS - the experimental system

The next step in the model development is the decomposition of EX SYS

into the experimenter and the experimental equipment consisting of an

electrode and recording instruments collecting results (figure 1.9):

RESULTS

ELECTRODE

«+—— REF (NEURON) NEU

REF (RESULTS) RES —

¥

EXPERIMENTER

REF (ELECTRODE) ELEC

Figure 1.9
Splitting of EX SYS

At the beginning of an experiment the electrode (represented in the
model by an ELECTRODE object) is impaled into the neuron by the
experimenter (represented in the model by an EXPERIMENTER
object). During the experiment the electrode both transmits the
spikes of the neuron to the result collecting equipment and is used

by the experimenter to change the potential of the neuron.

23

When the electrode is not acting upon the neuron it rests until it is
interrupted by a firing of the neuron. It then transmits an impulse

to the result-collecting recording instruments (represented in the
model by a RESULTS object). The times of the firings are recorded,
and statistics of the firing pattern are prepared (e. g. serial correla-

tion coefficients).

in the following description of the ELECTRODE, RECEIVE FIRING
is a task procedure enforced upon the ELECTRODE object by the

NEURON when it fires.

When the ELECTRODE executes that procedure, this in turn enforces
the task procedure RECEIVE FIRING of the RESUL TS object to be
executed by RESULTS.

(1t should be remarked that in this first description of the ELECTRODE
we do not include the possibility of the ELECTRODE to act upon the
NEURON).

ELECTRODE:
OBJECT BEGIN
REF(RESULTS) RES;
REF(NEURON) NEU;
TASK PROCEDURE RECEIVE FIRING:

TASK BEGIN
ENFORCE RES. RECEIVE FIRING UPON RES;
END TASK;
TASK BEGIN
CONTINUE {REST};
END TASK;
END OBJECT;

24

RESUL TS:
OBJECT BEGIN
TASK PROCEDURE RECEIVE FIRING:
TASK BEGIN
update statistics;
END TASK;
TASK BEGIN
CONTINUE {REST};
END TASK;
END OBJECT

The time consuming "rest actions' in the ELECTRODE object and
the RESUL TS object both have resistance priority NO and will thus

be interrupted by every interrupting task.

During the experiment the main task of the experimenter is to mani-
pulate the potential of the neuron through the electrode. He has two

possibilities:

1. To change the level of the potential for a longer period
of time (and then reset it to the former level again); this

is called to polarize the neuron, (hyperpolarize if the

level of the potential is lowered - depolarize if the level

is raised).

By hyperpolarizing the neuron it is hoped to obtain infor-
mation about the nature of the feedback mechanisms. This
is possible due to certain properties of the neuron and the

feedback system:

— if the lowering of the potential is sufficiently large the

neuron will not fire during the hyperpolarization

— the feedback at a given moment only depends upon the
firing pattern of the neuron in a preceding limited

period of time.

- ——E

25

This implies that if the hyperpolarization is sufficiently
large and is held for a sufficiently long period, the feed-
back effect on the neuron immediately after a hyperpolari-
sation is a result of a period of time with no firings. The
change in the firing pattern, as firings again affect the
feedback to the neuron after a hyperpolarization, will thus
possibly give valuable information about the feedback

mechanisms.

2. To send impulses very similar in effect to excitatory and

inhibitory synaptic impulses.

In the model we describe the fact that the EXPERIMENTER through the
ELECTRODE is able to manipul ate the potential, POT, of the NEURON
by adding an electrode contribution, ELEC CONTRIBUTION, to POT:

POT=BP + BP BUILDUP + ELEC CONTRIBUTION

The size of the electrode contribution to the potential depends upon the

strength with which the electrode is made to act upon the neuron,

ELEC STRENGTH. The EXPERIMENTER controls the size of

ELEC CONTRIBUTION by changing the value of ELEC STRENGTH of the
ELECTRODE. The effects of the EXPERIMENTER'S instantaneous, dis-
continous changes of the value of ELEC STRENGTH are continous changes
of the value of ELEC CONTRIBUTION (Figure 1. 10):

26

ﬂk volt

e V= gm0 =

..-...—._-.-—.-o—.—'—-—l—.

time
ELEC STRENGTH
ELEC CONTRIBUTION

& omn § o =

Figure 1. 10
The effect of change of ELEC STRENGTH
upon ELEC CONTRIBUTION

ELEC CONTRIBUTION is besides ELEC STRENGTH, a function
of the value of ELEC CONTRIBUTION ‘mmediately before the last
change of ELEC STRENGTH, called ELEC CON LAST, and of
the time elapsed since the last change of ELEC STRENGTH,
TIME - T LAST CHANGE. This implies that

the electrode contribution to the potential
= ELEC CONTRIBUTION(ELEC. ELEC STRENGTH,
ELEC CON LAST,
TIME - T LAST CHANGE).

We have in the ELECTRODE object introduced a real variable,
ELEC STRENGTH, representing the strength with which the electro-

de may act upon the neuron, and we have suppiemented the description

I R ——e e

of the NEURON by ELEC CONTRIBUTION. The following description

l
|
of the NEURON contains only the modifications caused by the introduction l

of ELEC CONTRIBUTION: ‘

NEURON: _
OBJECT BEGIN

VIRTUAL REAL FUNCTION ELEC CONTRIBUTION;

OBJECT BEGIN :!
TASK BEGIN ';
CONTINUE {PSP=EPSP DECAY - IPSP DECAY, |
POT=PSP + BP BUILDUP |

+ ELEC CONTRIBUTION}; It

INT PROCESS:

END TASK;
END OBJECT; |

END OBJECT

ELEC CONTRIBUTION and ELEC STRENGTH are usually both
equal to zero, (that is when the NEURON is not effected by the i
EXPERIMENTER through the ELECTRODE).

A polarization is obtained by changing the value of ELEC STRENGTH |
of the ELECTRODE. The EXPERIMENTER may do this by enforcing ‘
the task procedure ELEC STRENGTH CHANGE upon the ELECTRODE I
object. ELEC STRENGTH CHANGE is a task procedure of the ELEC- i
TRODE and it

- assigns the current value of ELEC CONTRIBUTION of
the NEURON to ELEC CON LAST

- assigns the current value of TIME to T LAST CHANGE

(the variable holding the time of the last change of

ELEC STRENGTH)

28

- changes the value of ELEC STRENGTH to the value of
S1ZE (the value of SIZE is set by the EXPERIMENTER
when enforcing ELEC STRENGTH CHANGE upon the
ELECTRODE).

ELECTRODE:
OBJECT BEGIN
REF(NEURON) NEU;
REAL ELEC STRENGTH;

TASK PROCEDURE ELEC STRENGTH CHANGE:
TASK BEGIN
REAL SIZE;
NEU. ELEC CON LAST:=NEU. ELEC CONTRIBUTION;
NEU. T LAST CHANGE:=TIME;
ELEC STRENGTH:=SIZE;
END TASK;

END OBJECT

The experimenter determines the strength and the duration of a polari-
~ation. When determining the strength he may take into account expe-
rience from earlier polarizations (e. g. if there have been firings during
a hyperpolarization the experimenter probably wants to enlarge the
strength of the next hyperpolarizations). This implies that the EXPE-
RIMENTER object must be able to access information in the RESULTS

object. In our description this is reflected by declaring a reference

variable, RES, in the EXPERIMENTER object, referring to the
RESUL TS object.

In the following description of the EXPERIMENTER

- POLAR STRENGTH is a function which determines the
strength of the polarizations. Since it Is without direct
significance in our model how the EXPERIMENTER
determines the quantity POLAR STRENGTH it is intro-
duced as a VIRTUAL FUNCTION.

L___——

29

- POLARIZE is a procedure which when executed inter-
rupts the ELECTRODE object by an ELEC STRENGTH
CHANGE task with SIZE (of the procedure ELEC STRENGTH

CHANGE) equal to the value of POLAR STRENGTH.
That is, the value of ELEC STRENGTH of the
ELECTRODE is changed to the value of POL AR
STRENGTH.

EXPERIMENTER:
OBJECT BEGIN

REF(ELECTRODE) ELEC;

REF(RESULTS) RES;

VIRTUAL REAL FUNCTION POLAR STRENGTH;

PROCEDURE POLARIZE:

BEGIN
ENFORCE ELEC.ELEC STRENGTH CHANGE

PUT SIZE:=POLAR STRENGTH
UPON ELEC;

END;
TASK BEGIN
WHILE experiment going on DO
(* interact with the NEURON through the
ELECTRODE by using the procedure
POLARIZE and observe the effects on
the RESUL TS object®);
END TASK;
END OBJECT

The EXPERIMENTER initiates a polarization by executing the procedure
POLARIZE. It is terminated by an execution of POLARIZE with a value
of POLAR STRENGTH which resets the potential to the former level.
The duration of the polarization is determined by the working cycle of

the EXPERIMENTER. Figure 1.11 shows a hyperpolarization.

30

Tvoit

e L Gm Gom S B § = & =

—.—.—..—.-—._—.-—.—t—--—- g— O =0 =g

time

ems—e—e—e ELEC STRENGTH
——— ELEC CONTRIBUTION

Figure 1. 11

A hyper*polar'ization

The sending of an impulse resembling an exitatory or an inhibitory
synaptic impulse to the neuron through the electrode is obtained by
changing the value of ELEC STRENGTH for a very short period of
time. The effect on ELEC CONTRIBUTION when changing the value
of ELEC STRENGTH for a very short period is shown in figur 1. 12.

An impulse is characterized by

- SIZE, the size of the impulse, i.e. of the change
of the value of ELEC STREN GTH

- T IMP, the time at which the impulse is initiated

- DURATION, the duration of the impul se.

; T
] 1]
§]
] 1
1 [}
])
\ 1
! 1
1]
l ' |
]]
| 1
1]

‘ 2 .-‘b.-‘.—l

P —-—l-—-—o—-.—.-—.-—-; :—o—o—--—o-—..—-.-—.-.-

; :

; : —

time
T (MP -)
DURATION

v—ems=—2-+ ELEC STRENGTH

ELEC CONTRIBUTION

Figure 1.12
The effect of a short change of ELEC STRENGTH
upon ELEC CONTRIBUTION. (In this case resemb-

ling the effect of an excitatory synaptic impulse).

31

The following statements describe the main actions of the ELECTRODE

when sending impulses as mentioned above.

ELEC STRENGTH:=ELEC STRENGTH + SIZE;
WHILE TIME < T IMP + DURATION IMPOSE [REST};
ELEC STRENGTH:=ELEC STRENGTH - SIZE

For positive values of SIZE the effect will resemble that of an excitatory

synaptic impulse and for negative values that of an inhibitory synaptic

impulse.

If the NEURON fires while the ELECTRODE is executing the time con=
suming action stated above it shall be possible for the NEURON to
interrupt the ELECTRODE.

32

On the other hand the sending of an impulse to the NEURON through the
ELECTRODE is an indivisible action from the point of view of the
EXPERIMENTER. This implies that he is not allowed to act upon ELEC
STRENGTH during the ELECTRODE!'s execution of the time consuming
action in question. This is prevented by declaring the priority HIGH

in the ELECTRODE and then use it as resistance of the time consuming

action:

WHILE TIME < T IMP + DURATION IMPOSE {REST]}
RESISTANCE HIGH

The interrupts from the EXPERIMENTER, having power NO, is then

unable to penetrate.

We declare the priority HIGH as RANKED; this implies that HIGH as
power will penetrate HIGH as resistance. We thus enable the interrupts

from the NEURON to penetrate by giving them the power HIGH.

The ELECTRODE sends an impulse resembling a synaptic impulse by
executing the task procedure ELEC IMPULSE. In addition to the changing
of the value of ELEC STRENGTH and the time consuming action it handles
the necessary assignments to T IMP, T LAST CHANGE and ELEC CON
LAST (as in the case of the task procedure ELEC STRENGTH CHANGE).

The EXPERIMENTER makes the ELECTRODE send an impulse by exe=
cuting the procedure EXP IMPULSE, which enforces the task procedure
ELEC IMPULSE upon the ELECTRODE object. The EXPERIMENTER
determines the size of the impulse by the VIRTUAL REAL FUNCTION
IMP SIZE and the duration of the impulse by the VIRTUAL REAL FUNC -

TION IMP DURATION. For positive values of IMP SI1ZE the impulses
resemble excitatery synaptic impul ses and for negative values of IMP
SIZE they resemble inhibitory impulses. The functions IMP SIZE
and IMP DURATION will not be discussed further.

The EXPERIMENTER‘S ability to send impulses through the ELECTRODE

implies the following addition to the description of

- the ELECTRODE:

L e s SR

33

PRIORITY HIGH RANKED;
TASK PROCEDURE ELEC IMPULSE:
TASK BEGIN
REAL SIZE, T IMP, DURATION;
NEU. ELEC CON LAST:=NEU. ELEC CONTRIBUTION;
NEU. T LAST CHANGE:=TIME;
T IMP:=TIME;
ELEC STRENGTH:=ELEC STRENGTH + SIZE;
WHILE TIME < T IMP + DURATION IMPOSE {REST]
RESISTANCE HIGH;
NEU. ELEC CON LAST:=NEU.ELEC CONTRIBUTION;
NEU. T LAST CHANGE:=TIME;
ELEC STRENGTH:=ELEC STRENGTH - S1ZE;
END TASK

— the EXPERIMENTER:

VIRTUAL REAL FUNCTION IMP SIZE,
IMP DURATION;
PROCEDURE EXP IMPULSE:
BEGIN
ENFORCE ELEC. ELEC IMPULSE
PUT (* SIZE:=IMP SIZE;
DURATION:=IMP DURATION™)

UPON ELEC;

END

It should be observed that the procedures EXP IMPULSE and ELEC
IMPULSE are redundant in the system description, in the sense that
their effects could be obtained by use of the procedures POL ARIZE.
and ELEC STRENGTH CHANGE. In the physical experiment, however
the experimenter has the possibility of pressing two different buttons:

one for switchiing on and off a continous injection of a current (the

sign and strength of which is determined by the exper-imenter'), an-

T

other

and du

respo

for injection of a current of very sho

nd to the procedures POL ARIZE and E

ration determined by the experimenter).

34

~t duration (the sign, strength

Those two buttons cor-

xP IMPULSE respectively.

35

2. Complete System Description

In the preceding chapters we have described the single components of

the system and their ‘nteraction (figure 2. 1):

s i e e Rt R

Figure 2.1

The components of the total systiem

|
I
l (Again directed lines represent reference variables and not necessa-
t rily information flow.)

|

|

In the following the complete system is described by the system object.

' The system object contains

- objects describing the single components of the system

and

— the actions required to establish the initial state of the

experiment; these actions will appear as initializations

in the system object.

36

SYSTEM BEGIN
CLASS INDRIVER:

EXPERIMENTER:

TASK BEGIN
initializations;
WHILE experiment going on IMPOSE {REST};
END TASK;
END SYSTEM

By the declarations of the objects NEURON, FEEDBACK sSYS,
ELECTRODE, RESULTS and EXPERIMENTER, these are introduced
in the system. The initializations establish the environment of the
NEURON by introducing a number of SYNAPSE and INDRIVER objects.
When the initializ ~*ions are made the system object begins executing

the "rest action'™

WHILE experiment going on IMPOSE (REST}.

37

SYSTEM BEGIN
CLASS INDRIVER:

OBJECT BEGIN
COMMENT An indriver object feeds the SYNAPSE

object SYN to which it is connected with
a stream of impulses simulating part of the
environment of the single neuron systemn;
REF (SYNAPSE) SYN;
REAL T NEXT;
VIRTUAL REAL EUNCTION INTERVAL;
COMMENT The function INTERVAL determines

the intervals between the sending of im-
pulses to the SYNAPSE object denoted
SYN;

TASK BEGIN

REPEAT
(* ENFORCE SYN. RECEIVE IMPULSE

UPON SYN;
T NEXT:=TIME + INTERVAL;
WHILE TIME < T NEXT IMPOSE (REST! *
END TASK;
END OBJECT INDRIVER;

38

CLASS SYNAPSE:
OBJECT BEGIN
COMMENT A SYNAPSE object rests until it receives

an impulse from its INDRIVER. It then
transmits to the NEURON by means of the
procedure IMPULSE and resumes resting;
REF (NEURON) NEU;
REAL STRENGTH;
VIRTUAL TASK (NEURON) PROCEDURE IMPUL SE;
COMMENT The task procedure IMPULSE changes the
NEURON!s ability to fire. The size of the

change depends upon the value of the
STRENGTH of THIS SYNAPSE and the
internal state of the NEURON;
TASK PROCEDURE RECEIVE IMPULSE:
TASK BEGIN
ENFORCE IMPULSE
PLUT IMPACT:=STRENGTH
UPON NEU;
END TASK;
COMMENT The procedure RECEIVE IMPULSE is

executed when receiving an impulse from
the INDRIVER object;
TASK BEGIN
CONTINUE {REST};
END TASK;
END OBJECT SYNAPSE]

39

CLASS EXC SYNAPSE:
SYNAPSE OBJECT BEGIN
COMMENT In this subclass of the class
SYNAPSE we define the procedure

IMPULSE to have an excitatory
effect on the NEURON. The size

of the effect is determined by the
REAL FUNCTION EXC. The function
is declared VIRTUAL and not speci-

fied further;
VIRTUAL REAL FUNCTION EXC;
TASK (NEURON) PROCEDURE IMPLLSE:
TASK BEGIN
REAL IMPACT;
NEU. EPSP LAST:=NEU. EPSP DECAY +
EXC(IMPACT, NEU. POT);
NEU. T LAST EXC:=TIME;
END TASK;
END OBJECT EXC SYNAPSE;

40

_C_L___A__§§_ INH SYNAPSE:
SYNAPSE OBJECT BEGIN
COMMENT In this subclass of the class
SYNAPSE the procedure IMPULSE

is defined to have an inhibitory
effect on the NEURON. The size
of the effect is described by the
VIRTUAL REAL FUNCTION INH

and not specified further;
VIRTUAL REAL FUNCTION INH;
TASK (NEURON) PROCEDURE IMPUL SE:
TASK BEGIN
REAL IMPACT;
NEU. IPSP LAST:=NEU. PSP DECAY +
INHIMPACT , NEU. POT);
NEU. T LAST INH:=TIME;
END TASK;
END OBJECT INH SYNAPSE;

41

NEURON:
OBJECT BEGIN
COMMENT The NEURON object describes a single

neuron. It receives impulses from
INDRIVERSs (through SYNAPSES), its
FEEDBACK SYS and the ELECTRODE.
When firing it emits impulses to the
FEEDBACK SYS object and the
ELECTRODE;
REAL POT, PSP, T LAST, T LAST EXC, T LAST INH,
EPSP LAST, IPSP LAST;
BEFE (FEEDBACK sSYS) FB SYS;
REF (ELECTRODE) ELEGC;
VIRTUAL REAL FUNCTION FT DECAY, BP BUILDUP,
EPSP DECAY, IPSP DECAY,
ELEC CONTRIBUTION;

PROCEDURE FIRE:
BEGIN
ENFORCE FB SYS. RECEIVE IMPULSE
UPON FB SYS;
ENFORCE ELEC. RECEIVE FIRING
UPON ELEC POWER HIGH;
T LAST:=TIME;
END;
COMMENT Below follows a description of the NEURON!s

ongoing internal processes by means of an

object descriptor. Throughout the existence
of the NEURON the relations described by
the proberty descriptor of INT PROCESS
are imposed upon the NEURON;

42

INT PROCESS:
OBJECT BEGIN
TASK BEGIN
CONTINUE
(PSP = EPSP DECAY
- IPSP DECAY,
pOT = PSP + BP BUILDUP
+ ELEC CONTRIBUTION};

END TASK;
END OBJECT INT PROCESS;
COMMENT The total activity of the neuron thus consists

of the ongoing internal processes modul ated
by the additional actions of the working cycle
and the actions enforced by the interrupts

stemming from the reception of impulses;

TASK BEGIN

REPEAT
(* WHILE POT < ET DECAY IMPOSE (REST};
FIRE;

WHILE absclute refraction obtains

hanism}

. IMPOSE {restoration of spike initiation mec

END TASK;
END OBJECT NEURON;

43

FEEDBACK SYS:
OBJECT BEGIN
COMMENT The feedback system consists of those mechanisms

which make the output of the neuron dependent upon
previous firings. Feedback memory is a data
structure capable of holding a limited set of real
values representing times of arrival of impulses
from the NEURON;
REF (NEURON) NEU;
REAL T NEXT FB;
TASK PROCEDURE RECEIVE IMPULSE:
TASK BEGIN
adjust feedback memory and T NEXT FB;
END TASK;
COMMENT The procedure RECEIVE IMPULSE is executed

when receiving an impulse from the NEURON;
VIRTUAL TASK (NEURON) PROCEDURE FEEDBACK;
COMMENT The task procedure FEEDBACK represents

the effects of FEEDBACK SYS on the NEURON.

It is not described further. In the working cycle
below, the FEEDBACK SYS object rests until
the next time at which to affect the NEURON
(T NEXT FB), then it enforces the task procedure
FEEDBACK upon the NEURON;
TASK BEGIN
REPEAT
(* WHILE TIME < T NEXT FB IMPOSE {(REST]};
ENFORCE FEEDBACK UPON NEU;
adjust T NEXT FB *);
END TASK;
END OBJECT FEEDBACK SYS;

44

RESULTS:

OBJECT BEGIN
COMMENT The RESUL TS object represents the result

collecting equipment connected to the
ELECTRODE during the experiment. 1t rests
until the ELECTRODE object transmits a
firing of the NEURON to it;
TASK PROCEDURE RECEIVE FIRING:
TASK BEGIN
update statistics;
END TASK;
TASK BEGIN
CONTINUE {REST];
END TASK;
END OBJECT RESULTS;

45

ELECTRODE:
OBJECT BEGIN
COMMENT The ELECTRODE object represents the electrode

impaled into the neuron during the experiment. It
rests until it is interrupted either by a firing of
the NEURON or by the EXPERIMENTER;

PRIORITY HIGH RANKED;

REF (RESULTS) RES;

REF (NEURON) NEU;

REAL ELEC STRENGTH,;

TASK PROCEDURE RECEIVE FIRING:

TASK BEGIN
ENFORCE RES. RECEIVE FIRING UPON RES;
END TASK;

COMMENT The task procedure RECEIVE FIRING is enforced
upon the ELECTRODE by the NEURON when fi-
ring. When executed by the ELECTRODE it trans-
mits the firing of the NEURON to the RESULTS

object;
TASK PROCEDURE ELEC STRENGTH CHANGE:
TASK BEGIN
REAL SIZE;
NEU. ELEC CON LAST:=NEU. ELEC CONTRIBUTION;
NEU. T LAST CHANGE:=TIME;
ELEC STRENGTH:=SIZE;
END TASK;
COMMENT The task procedure ELEC STRENGTH CHANGE
is enforced upon the ELECTRODE by the

EXPERIMENTER to change the effect of the
ELECTRODE on the potential of the NEURON;

46

TASK PROCEDURE ELEC IMPUL SE:
TASK BEGIN
REAL SIZE, T IMP, DURATION;
NEU. ELEC CON LAST:=NEU. ELEC CONTRIBUTION;
NEU. T LAST CHANGE:=TIME;
T IMP:=TIME;
ELEC STRENGTH:=ELEC STRENGTH + SIZE;
WHILE TIME < T IMP + DURATION IMPOSE {(REST]
RESISTANCE HIGH;
NEU. ELEC CON LAST:=NEU. ELEC CONTRIBUTION;
NEU. T LAST CHANGE:=TIME;
ELEC STRENGTH:=ELEC STRENGTH - SIZE;
END TASK;
COMMENT The procedure ELEC IMPUL SE is executed when
the ELEC TRODE by the EXPERIMENTER is made

to send an impulse to the NEURON similar in effect
to a synaptic impulse;
TASK BEGIN
CONTINUE {REST};
END TASK;
END OBJECT ELECTRODE;

47

EXPERIMENTER:
OBJECT BEGIN

REF (ELECTRODE) ELEC;

REF (RESULTS) RES;

VIRTUAL REAL FUNCTION POLAR STRENGTH;

PROCEDURE POLARIZE:

BEGIN
ENFORCE ELEC. ELEC STRENGTH CHANGE

PUT SIZE:=POLAR STRENGTH
UPON ELEC;

END;
COMMENT POLARIZE (and POLAR STRENGTH) is used
to polarize the NEURON.
EXP IMPUL SE (and IMP SIZE, IMP DURATION)
is used to send short impulses to the NEURON
similar in effect to synaptic impulses;
VIRTUAL REAL FUNCTION IMP SIZE, IMP DURATION;
PROCEDURE EXP IMPULSE:
BEGIN
ENFORCE ELEC. ELEC IMPULSE
PUT (* SIZE:=IMP SIZE;
DURATION:=IMP DURATION *)

UPON ELEC;
END;
TASK BEGIN
impale the ELECTRODE into the NEURON;

WHILE experioment going on DO
(* interact with the NEURON through the ELECTRODE
by using the procedures POLARIZE and
EXP IMPULSE and observe the effects on the
RESULTS object *);
END TASK;
END OBJECT EXPERIMENTER;

COMMENT Below follows the

object consisting of initializations and a

"rest action';

TASK BEGIN

Set up the environmen
a number of INDRIVER and SYNAPSE objects;
g on IMPOSE {REST};

WHILE experiment goin
END TASK;
END SYSTEM

48

inherent task of the system

t of the NEURON by introducing

49

Appendix: Basic Concepts of the DELTA Language

A description in the DELTA language consists of formal and informal

elements. Formal elements are written in upper case (capital) letters

while informal elements are written in lower case letters.

A set of reserved words having predefined meanings, the keywords,
are written in underlined upper case letters. The keyword VIRTUAL
used in the specification of a DELTA entity implies that the final defi-
nition of the entity belongs to a deeper level of description containing

more details about the entity under consideration.

Objects
Systems are described in terms of components named objects interac-

ting within the enclosing system object. The system object represents

the system as a whole.

Objects are described by

-+ their data characteristics, in terms of variables, described

by variable declarations,

- quantities being functions of other quantities, described

by function declarations,

_ their action repertoire, in terms of action rules, described

by procedure declarations,

_ their structure of internal cbjects, described by

object descriptors,

_ entities whose final definitions are not given, virtuals

— their inherent actions, described by a sequence of either

instantaneous changes of state (e.g. of the values of some of

the variables) or time consuming actions, representing con-=

tinuous changes of state during time intervals. The inherent
actions, regarded as awhole, are referred to as the in-

herent task of the object.

The underlined words above are described in the following.

The structural properties of an object are discribed by an ovbject block
enclosed by the brackets OBJECT BEGIN and END OBJECT:

—*———¥

50

OBJECT BEGIN

variables;
functions;
procedures;
object descriptors;
virtuals;
TASK BEGIN
inherent task;

END TASK;

END OBJECT

The various language elements appearing in the description (e.g. de-

clarations, sctions) are separated by semicolons ;"

A singular object is described by an object label, giving the title of the

object, followed by an object block, €.g.

A : OBJECT BEGIN END OBJECT

describes an object with the title A.

Since a number of objects may be of the same kind, i.e€. having the same
structural properties, descriptions of objects may be given as class

declarations:

CLASS MAN : OBJECT BEGIN END OBJECT

By this class declaration a class of objects is introduced, each having

the title MAN.

Objects belonging to the same class (described by a common class decla-

ration) share structural properties,
- number, types and names of variables
- virtuals
- functions

- action repertoire, described by procedure declarations

- inherent task

51
but differ by
each being an individual entity
and
at a certain moment usually
— having different values assigned
to their variables (i.e. being in different states)

- being in different stages of execution of their inherent task

If two or more classes have common features, these features may be
described in a separate class and then used as prefix upon declaration
of the classes. Classes declared with a prefix are called subclasses

of the prefix class.

Suppose that we want to declare the classes TRUCK and BUS. A
common feature of trucks and busses is that both are provided with a
license number. This is due to the fact that they are vehicles. But in
addition a truck is characterized by its load and a bus by its seatings.
This may be described by declaring the classes TRUCK and BUS as
subclasses of the class VEHICLE:

CLASS VEHICLE : OBJECT BEGIN
INTEGER LICENCE NO.;

END OBJECT;

CLASS TRUCK : VEHICLE OBJECT BEGIN
REAL LOAD ;

END OBJECT 3

CLASS BUS : VEHICLE OBJECT BEGIN
INTEGER SEATINGS ;

.

.

END OBJECT

The structural properties of the objects of a subclass are those of the
objects of the prefix class extended with those of the object block. That
is an object cf the class TRUCK contains the variables LICENCE NO
and LOAD, an object of the class BUS has the variables LICENCE NO

and SEATINGS (fig. A.1.).

[P——— T]

D

52

VEHICLE

INTEGER
LICENCE NO

TRUCK BUS
INTEGER INTEGER
LICENCE NO

LICENCE NO

REAL LOAD INTEGER
SEATINGS
Figure A.1

Three objects, belonging to a class and two subclasses

A quantity introduced as VIRTUAL in the class VEHICLE may in
TRUCK get its final definition. The same quantity may in BUS get

another definition, €.9. a quantity describing the task of emptying

a vehicle.

: In the following each of the components of an object block is described

in detail (except virtuals and object descriptors).

\Variables

A variable is a quantity which consists of
- a name
_ a value, e.g. 5. 2 or -7
- a type, which defines the set of possible values of

' the variable, e.g. integer or real.

L - ——

513

\Variables are used to characterize objects and the values of the

variables of an object describes the state of the object.

The type and name of a variable is fixed in the variable declaration,

e.dg.
REAL A, B, C

whereas the value may be changed by assignment statements. The

effect of an execution of the assignment statement

C:=A+B

is that the value of C is changed to the sum of the current values

(the values at the time of execution of the statement) of A and B. The

language element '':=!" reads "becomes''.

An important type of variables are the reference variables. Reference

variables may have objects as values and thus denote objects. The set
of possible values of a reference variable is restricted to a given class
of objects or to a singular object. The class or the singular object is

specified by the qualification part of the declaration of the variable. By

REF (MAN) ADAM

a reference variable ADAM is declared, qualified by the class MAN.

ADAM may have as value objects belonging to the class MAN. The ob-

ject which is the value of ADAM at a given moment is said to be referred

to by ADAM. Phrased in another way: ADAM denotes the object. In

fig. A.2 the reference is contained in an object of class A!

54

MAN

REAL AGE

Figure A.2
The use of a directed line to
indicate the value of a reference variable
Access to ADAM!'s AGE is within the A object obtained by
nADAM. AGE" (the genitive notation "'s!"" being substituted by a dot,
nw 1), An object may reference itself by use of the keyword THIS
followed by its title (usually its class name). In the object which

ADAM refers to, THIS MAN denotes the same object as ADAM.

In the DELTA language it is possible to reference a singular object
simply by means of its title. When this report was written the use of
singular objects was not quite settled and therefore we reference singular

objects only by the use of reference variables.

Functions
A function is a quantity whose value depends upon the values of other
quantities. The running speed of a man may depend upon several quan-

tities, e.g. his condition, and this may be described by the function

REAL FUNCTION RUNNING SPEED : BEGIN END

By this declaration a function of type REAL with the title RUNNING

P——,e]

SPEED is described. The function block enclosed by BEGIN and END

gives the definition of the function, that is gives a rule for determining

the value of RUNNING SPEED from the values of other quantities (e.q.

55

CONDITION). If a function is declared as VIRTUAL the function block

is omitted and the actual dependence on other quantities not specified:

VIRTUAL REAL FUNCTION RUNNING SPEED

By both of the above declarations the function is specified to be of type
REAL. This means that RUNNING SPEED, when applied, yields a real
number as result. A function may be applied whenever a variable of the

same type could have been used, e.9.:
DISTANCE COVERED := RUNNING SPEED X (TIME-START TIME)

The guantities upon which the value of RUNNING SPEED depends may be

given as parameters, €.g.

DISTANCE COVERED :=
RUNNING SPEED (CONDITION, LENGTH OF LEGS,
REASON FOR RUNNING) x (TIME - START TIME)

Procedures

A procedure declaration defines an action rule (patter'n) which can be

used within the system. The action rule may be executed by the object

in which it is declared or by other objects according to rules specified

below.

Procedures are of two kinds, instance procedures and task procedures.

An instance procedure declaration has the format:

PROCEDURE P :
BEGIN

Declaration of local quantities;

Instantaneous actions;

END

———

56

The procedure block defining the action rule is enclosed by the key-
words BEGIN and END, and P is the title of the procedure. The pro-
cedure block contains declarations of quantities to be used in the

procedure block and the sequence of instantaneous actions defining the

action rule.

An object performs the actions of an instance procedure by a Neall! of

the procedure:
_ in the object in which it is declared by

cesey P 3o

— in an object referring to that object (by a reference variable
or the title of the object if it is a singular object) by e.g.
ceeay AB.P 5.0
where AB is a reference variable denoting the object in
which P is declared (Fig. A. 3).

The procedure may be executed by no other objects.

A \ =!
REF (A) AB ;

PROCEDURE P: ...}

. e
3 .

P; AB. P;

° e
® .
L]

Figure A, 3
A local call" (left) and a
npremote call! (right) of a procedure

All action rules containing time consuming actions are declared as task

procedures. The set of objects which may perform the action rule spée-
cified by a task procedure is either
- one class of objects,
- one singular object

or
- the object in which it is declared.

f |

57

In the first two cases the declaration of the task procedure contains

the title of the class or the title of the singular object; the task pro-

cedure is said to be qualified by the class or the singular object. In

the last of the th

The action rule is described by a task block which is enclosed by

TASK BEGIN and END TASK, €.9.

TASK (MAN) PROCEDURE P :

TASK BEGIN
Declarations of local quantities;

Actions;
END TASK

This declaration describes an action rule which may be performed only

by objects of the class MAN.

An object performs the actions of a task procedure by a Hcall" of the

procedure:
— in the object in which it is declared by

. ENFORCE P j....

- in objects by which the task procedure is qualified by e.g.

. ENFORCE ADAM.P ;....

s s 0y

where ADAM is a reference variable denoting the object in which

P is declared.

In the call of a procedure it is possible to specify the values of one or

more of the local variables. If the task procedure P has a local va-

riable declared by REAL A, we may write
ENFORCE P PUT A:=1.5....

This implies that when the execution of the action rule beg

v ok}

ins the value

of A will be 1.5,

The Inherent Task
n of the object is described by a task block.

The task

The action patter

block is enclosed by TASK BEGIN and END TASK. The task block

s of the object in terms of a sequence of st

describes the action

ree cases the qualification is omitted from the declaration.

atements.

58

When the actions are exhausted the object will remain inactive. It

is then said to be terminated.

Statements

Instantaneous actions may be described by algorithmic statements,

e.g. A:= A+ 1, the effect of an execution of this statement is that
the value of A is increased by one. Time consuming actions are de—

scribed by means of property descriptors. A property descriptor is

a list of relations between quantities of the system, separated by com-

mas (",") and inclosed by braces { {ois e
Time consuming actions are described by statements of the form
WHILE logical expression IMPOSE property descriptor

where the logical expression states the duration of the action. The

statement
WHILE TIME < NEXT TIME IMPOSE {A =B+ TIME, B = c}

has the effect that the fulfilment of the relations A =8B + TIME and B = C
is imposed upon the system as long as the value of TIME is less than
the value of NEXT TIME. That is, as long as the logical expression is
nipue! the relations of the property descriptor are imposed upon the
system. TIME is a variable available allthrough the system, at any mo-=
ment giving the current time. TIME is continuously increasing and is

the basis for description of dynamics in the system.

An object upon which a property descriptor is to be imposed as long

as it exists, except for the periods when it executes interrupting tasks

enforced upon it by other objects, is described by the inherent task
CONTINUE property descriptor

The statement is equivalent to the statement

WHILE TRUE IMPOSE property descriptor

| B

59

When {REST} is used as a property descriptor this implies that the
object remains passive as long as the property descriptor is imposed
upon the object. An object which is to be passive as long as it exists,

except when it executes interrupting tasks, is thus described by the

inherent task
CONTINUE {REST }

Statements may be grouped together to compound statements by use

of the statement parentheses (¥ ... *), and a statement may be exe-

cuted repeatedly by writing
WHILE logical expression DO statement

The statement is executed repeatedly as long as the logical expression

has the value "true'.

The following example illustrates the use of statement parentheses and

NWHILE ... DO ...":

An inherent task describing the performance of a symphony in five

movements could be written

ENFORCE PLAY MOVEMENT PUT MOVEMENT NO:= 1,

WHILE pause IMPOSE {REST};
ENFORCE PLAY MOVEMENT PUT MOVEMENT NO:= 23

CRCIE I

WHILE pause IMPOSE {REST};
ENFORCE PLAY MOVEMENT PUT MOVEMENT NO:= 5; |
WHIL E pause IMPOSE {REST};

WHILE audience not too tired IMPOSE {applause}

where PLAY MOVEMENT is a task procedure (time consuming) .

describing the performance of movement number MOVEMENT NO. '

("pause!", "audience not too tired" and "applause' are used as .

informal languages elements, and are consequently written in .

lower case letters.) |

60

The task could also be written

NO:= 1,
WHILE NO = 5DO
(* ENFORCE PLAY MOVEMENT PUT MOVEMENT NO:= NO;
WHILE pause IMPOSE {REST}
NO:=NO +1 ¥*);
WHILE audience not too tired IMPOSE { applause}

The description could be made more general by using a variable,
NUMBER OF MOVEMENTS instead of the constant 5, that is

NO:= 1,
WHILE NO < NUMBER OF MOVEMENTS DO
P gaewswn TJ8

WHILE audience not too tired IMPOSE {applause}

An object performing the same action repeatedly is described by the

inherent task
REPEAT statement
This statement is equivalent to

WHILE TRUE DO statement

Interrupts
An object may enforce the execution of an action rule upon another

object, i.e. interrupt the other object. An action rule (instantaneous or
time consuming) enforced upon another object is declared as a task pro-
cedure, and the qualification of the task procedure (see section on
procedures) defines the set of objects upon which the action rule may be

enforced. An interrupt is generated by an interrupt statement, €.9.

ENFORCE P UPON A

where A is a reference variable denoting the object to be interrupted

and P is the name of a task procedure.

61

Only time consuming actions may be interrupted. When an object tries
to interrupt another object then
- either the interrupt penetrates immediately, that is the
time consuming action is discontinued, and the object
begins the execution of the task enforced by the interrupt,
When the task 'gs concluded the object resumes the inter-
rupted time coﬁsuming action.
- or the time consuming action resists the interrupt and continues.

The interrupt is placed in an interrupt queue. It may then later

possibly penetrate and be executed (i.e. when the object embarks

upon another time consuming action).

Whether an interrupt penetrates or not is decided upon by comparing
the importance of the ongoing time consuming action with the impor-
tance of the interrupt. The comparison is made on the basis of priori-
ties associated with the ongoing action and the interrupt. The priority
value of the ongoing action is called its resistance (priority value). The

priority value of the interrupt is called its power (priority value).

Time consuming actions and interrupts which are not explictly given
priority values are regarded as having the priority value NO. Other

priority values (than NO) may be introduced by a priority declaration,

e.g.
PRIORITY P1, P2
which introduces the priority values P1 and P2.

An interrupt with power P1 or P2 penetrates a time consuming action
with resistance NO, while a time consuming action with resistance

P1 or P2 resists an interrupt with power NO. When declared as above
P1 resists P1 and P2
and P2 resists P1 and P2.

Other relations between priorities than the above may be stated expli-

citly in the declaration. This may be done in two ways:

- by use of the keyword PRECEDENCE followed by a list of

one or more precedence relation pairs

- by use of the keyword RANKED.

62

In the declaration

PRIORITY P1 PRECEDENCE P1 < P1

the precedence relation pair P1 < P1 states that a time consuming
action with resistance P1 will be interrupted by an interrupt with

power P1.

The use of the keyword RANKED, e.g. in
PRIORITY P1, P2 RANKED

is equivalent to stating the precedence relation pairs
P1 < P1, PI < P2, P2<P2

The priority value of a statement is specified by the use of the key-

words

RESISTANCE for time consuming actions, e.g.

CONTINUE {REST} RESISTANCE P1

and POWER for interrupt calls, e.gd.

ENFORCE P UPON A POWER P2.

___ T N

REFERENCES

1] Nygaard, K. (1973):
HOR the Use of an Extended SIMULA in System Description!.

NCC-publication S-59.

[2] Fjellheim, Handlykken, Nygaard (1974): |
"Report from a Seminar on System Description at 'Skogen!,

R¢ros!', NCC-publication S-65.

[3] Wallée, Jansen, Nygaard (1969):
"A Computer Simulated Mode! of a Second Order Sensory
Neurone", Kybernetik 6, 130-140 (1 969).

