ISSN 0105-8517

Proceedings of the 1978 Aarhus Workshop on Software Engineering

Software Engineering:
Tools and Methods

Edited by:
Nigel Derrett
Karen Maller
Mike Spier
J. Michael Bennett
Daimi PB-125

August 1980

This work has been supported by the Danish Natural Science Research Council Grant No. 511-8508.

Computer Science Department Tr'
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

g:fl‘ﬁgT

T
il

This is the record of a meeting held at the University of Aarhus in
Denmark, 23-26 May 1978. The meeting was a workshop concerned
with Software Engineering. A mixed group of Computer Scientists
met for 4 days with the intention of exchanging knowledge and the

hope of becoming wiser. Herein is a small glint of their wisdom.

The workshop was organised as a mixture of formal presentations
and discussions. The organisers had given titles to the various
sessions but these were only used as guidelines, and the discussions
in particular ranged far and wide, sometimes heated, and sometimes

rather undisciplined.

| have reorganised the order of the presentations and the discussions

in an attempt to introduce a more logical structure.

The workshop was held under the auspices of the Computer Science
Department, Mathematics Institute, Aarhus University, with financial
support from the University and from the Danish Natural Science

Research Council, grant no. 511-8508.

Nigel Derrett

The 1978 Aarhus Workshop on Software Engineering

Software Engineering: Tools & Methods
Aarhus, 23-26 May, 1978

List of Participants

Robert S. Barton
Burroughs Corporation
USA

E. Henry Beitz
Computer Consultant
USA

J. Michael Bennett

Department of Computer Science
University of Western Ontario
Canada

Dr. Klaus Berkling

Institute for Infosysiems Research
GMD, Bonn

West Germany

Becky J. Clark
Burroughs Corporation
UsA

Nigel Derrett

Computer Science Department
Aarhus University

Denmark

Robert J. Flynn

Department of Mathematics
Polytechnic Institute of New York
USA

Janusz Gérski

Institute of Informatics
Technical University of Gdansk
Poland

Chr. Gram

Department of Computer Science
Technical University of Denmark
Denmark

Herbert R. J. Grosch
President, ACM
USA

Séren Lauesen

Computer Science Department
University of Copenhagen
Denmark

John A.N. Lee

Department of Computer Science
Virginia Polytechnic Institute
USA

Peter Marks
Digital Equipment Corporation
USA

Peter Mgller-Nielsen
Computer Science Department
Aarhus University

Denmark

Elliott I. Organick
University of Utah
USA

Graham Pratten
International Computers Ltd.
England

Nick Shelness

Department of Computer Science
University of Edinburgh
Scotland

Mike Spier

Computer Science Department
Aarhus University

Denmark

Joy Stoy

Oxford University Computing Laboratory
Programming Research Group

England

Ib Holm S¢rensen

Computer Science Department
Aarhus University

Denmark

SESSION A

Al
A2

SESSION B

SESSION C

SESSION D

SESSION E

E:1

Contents

PROGRAM GOODNESS

M. dJ. Spier
P. Marks

Defensive Programming

Program Goodness

PROGRAM DESIGN

N.P. Derrett Program Correctness

J.E. Stoy Writing Programs which may be
seen to be correct
E.H. Beitz A Disciplined Approach to Solving

Problems

STRUCTURING PROGRAMS

S. Lauesen User Defined Modifications in

Dedicated Systems

J. Gbrski Some Remarks on Software
Systems Modifications
N. Shelness An Experiment in doing it again, but

very well this time

TOOLS AND LANGUAGES

J.A.N. Lee Considerations for Future Programming
Language Standards Activities
C. Gram A Comparison of Description Tools

I.H. S@drensen A Language for System Description

SOF TWARE ENGINEERING ACTIVITIES

J. M. Bennett On the Performance Measurement

of Production Software

SESSION F

F.1
F.2

SESSION G

SESSION H

H. 1

SOF TWARE MANAGEMENT AND ECONOMICS

G. Pratten
R.J. Flynn

Developing Large Systems

Goal-Driven Software Engineer ing

HARDWARE FOR SOF TWARE

R.S. Barton
K. Berkling

A System Based on Functional Programming
Computer Architecture for Correct

Programming

WHAT HAVE WE LEARNED SINCE ...

M.dJ. Spier A Personal Peek into the Future

The 1978 Aarhus Workshop on Software Engineering

Some Food for Thought

Mike Spier
Nigel Derrett

The title of this workshop is “Software Engineering: Tools & Methods'. The workshop is a forum for
discussing the state of software engineering today: experiences gained, insights gleaned, measurements
made. We hope that the presentations and discussions will demonstrate where we are, and where we are
headed, professionally.

As the title of the workshop indicates, we want to focus attention on /ndustrial programming: the Tools and
Methods employed in producing software products, the effects of using these techniques, and
recommendations for future technology.

This document sketches certain topics which we consider to be important, and which we would like to hear
discussed. There are, of course, many others.

7 November, 1977
Aarhus University

1. Concerning Classification

"Software Engineering” is the antithesis of “The Art of Programming”. Given the importance of computers and
computer programs in our society today, it is desirable that we understand the practice of industrial
programming. Making programs professionally should be an engineering discipline whose practicality is
equivalent to that of other engineering disciplines.

An important feature of other engineering disciplines is that they use general scientific knowledge to devise
specific technical solutions to known practical problems (cooking recipes). We need to acquire similar
techniques in our branch of engineering — by identifying classes of problems, and developing tools to deal
with them.

Essential to this goal is the identification and enumeration of things as they are, and of their importance and
their possible inter—dependencies. The realities of the programming industry are a far cry from the elegant
models promulgated by our savants; indeed much of reality was never admitted into the models because of its
vulgarity. Perhaps, instead of ignoring uncouth subjects we should treat them as classifiable "natural
phenomena”. Then, having taken stock of the situation, we may manage to deal with it.

Classification of Virtues

We should be able to specify what the properties of "good” software are. A discussion on this topic should
take place on a less trivial level than that of whether or not GOTO statements should be allowed in programs.
Here are some features of software “goodness”:

® Being maintainable — Writing a clean program is one thing. Keeping it clean throughout a long
lifetime, during which it is continually being modified, is another.

® Being fault tolerant — Software products should not crash upon the slightest provocation. They
should not crash at alll They should produce sensible diagnostic or error messages, and they
should contain procedures for meaningful continuation after failure.

® Being friendly to users — It is not easy to make software products which interact with people in a
sensible way. For example it may be necessary to propagate response signals up through
successive levels of interpretation, and then to present them to the user in terms which are
meaningful to him.

® Being host system independent — The useful life of a commercial application program typically is
longer than the useful (or cost effective) life of the computer on which it was first implemented.
The cost of transferring the program to a new machine may be so great that it outweighs that
savings which using the new machine could give.

® Being documented — There may be documentation specifying what the program should do;
documentation specifying what the program does, how it works, how to use it, how to modify it;
documentation of the program’s history, and of its planned future. There may be user manuals,
system manuals, training manuals; and more. On the other hand, there may be none of these.

® Being complete and self consistent — How do we incorporate all of the relevant functions into the

product? More importantly, how do we restrain ourselves from incorporating miscellaneous
"features” or "options’?

Software Engineering Tools & Methods

® Being correct and reliable — How do we write programs so that we can be sure that they do what
they were intended to do? How do we modify extant programs so that we can be sure that they
have the new intended behavior?

® Being cheap — Making software products is extremely expensive. Maintaining present products is
even more expensive.

We would like to see a list containing further features of software ‘goodness”. More important, we would like
to see each virtue given a precise context, and a set of criteria for the evaluation of its "goodness”.

Classification of Activities

There are many branches of engineering — civil, electronic, nautical, and so on. Their practitioners often use
common techniques to solve their problems, using the same slide rules and drawing boards. Nevertheless, the
differences between these engineering branches is obvious.

We have tended to regard "Software Engineering” as a monolithic subject, because its practitioners go through
the motions of programming. Upon closer inspection it is doubtful whether the professional who makes a
high—precision floating point library, and the one who makes an inventory control system, have much in
common.

It is important to recognise and clearly identify the various branches of software engineering, and to consider
the distinct requirements of each of them.

Here is a list of some programming activities which get very little attention in the literature.

® Program Maintenance — lLarge numbers of programmers spend all of their time maintaining and
modifying programs. They may not be able to rewrite these programs; often they are explicitly
forbidden from doing so. Out of sheer need to survive, these programmers have developed some
very sophisticated tools and procedures.

® Product Customisation — Commercial programs are often designed to be used by many customers,
no two of whom have identical systems or requirements. The problems of tailoring systems for
the individual users are considerable.

e Diagnostic Programming — This is the production of test programs for hardware or software
systems. The hardware test procedures themselves are firmly rooted in known combinatory logic,
but the arrangement of sequences of tests into larger test packages is an obscure art. The art of
making test procedures for software systems appears to be closely related to Astrology.

® Customer support — When the system is obviously jinxed during production run, and the Field
Service Engineer insists that the hardware functions perfectly, we urgently summon our friendly
Software Support Specialist.

e Quality Assurance — Also known as "Release Engineering”, quality assurance is the profession of
certifying that programs work properly, before they are released. It involves looking for bugs, and
checking whether programs do what their authors claim they do. In the case of a modified
program, “regression testing” is called for: checking whether the (supposedly) untouched parts of
the program still work in the way that they used to.

Software Engineering Tools & Methods

We have listed some branches of software engineering which are important because they have to do with
real—life problems. The list is far from complete. These branches comprise a large percentage of all the
programming being done. By treating them as respectable disciplines we may help to develope the techniques
required by each.

Classification of Tools

Most engineering tools are well designed precision instruments. The programmer’s toolkit is a pitiful collection
of odds—and—ends. Inadequate to the task, unmatched with one another, of doubtful origin, and lacking most
of the above enumerated virtues, these are the means with which quality programs are supposed to be crafted.
Here is a mixed bag of some of the tools available to software engineers:

® Language Processor — It is one thing to define a glorious new language. It is another thing to write
a decent compiler.

e Text Editor — Interactive programming is becoming increasingly common. The interactive
programmer spends half of his time talking to his text editor. Do you know of a decent text
editing language?

® Debugger — The debugger should be thought of as an “un—compiler’. We would like our debugger
to talk back to us in the language we wrote our program in; the rascal typically talks back in octal
or hexadecimal.

® Macro Processor — Macro processing and conditional compilation are among the system
programmer’s most potent tools. Not enough thought is given to their design.

e Job Control Processor — The job control processor is the means by which we instruct (or request)
the computer to do work for us. Job control languages are usually illogical and incomprehensible.

® Command Processor — This is the on—line version of the job control processor. It does not need to
have the fancy flow—of—control facilities of its brother, but it needs to be user—friendly.

° System Generator — Those of us who have ever had the misfortune of performing a SYSGEN,
know! Let them who are innocent of such deeds, be spared the knowledge.

® Interactive Interpreter — The interactive programming language interpreter, viz. BASIC or APL, has
great appeal as the compleat programmer’s tool. But the service features (editing, filing,
debugging etc.) in existing interpreters are impossible to use, and the problem of efficiency during
production runs cannot be dismissed.

Software Engineering Tools & Methods

2. Concerning Languages

Tools have to be wielded. In our profession this is done by talking to them in some language. The most
universal tools available to us are the general—purpose computing machines, with which we converse in
“programming languages” (high level languages, assembly language, machine code). It is an important feature
of these tools that the languages are first designed in the abstract; and these are (in the opinions of their
designers, at least) clean and coherent in syntax and semantics. The tools themselves (compilers, assemblers,
interpreters, hardware) are then built in order to implement these languages; and the design of the tools is
subsidiary to, and entirely dependent on, the design of the languages.

However in the case of more specialised tools (such as the text editor, debugger, macro processor, job control
program, etc.) the order of events is reversed: A tool is designed for a specific purpose; it needs to be talked
to in some language, but little thought is given to the design of that language. Indeed it is remarkable how
little of the research done on "high level languages” is applied to these specialised languages. As the tool
acquires extra features, the language becomes more and more complicated and muddled. The tool is essential;
it can only be wielded by using the language; and the language is a mess. How can we expect the tool to be
wielded in a workmanlike manner?

Cases are known where only a chosen few wizards can safely negotiate some linguistic maze. In time, they
acquire the stature of thaumaturgists whose job security is made invulnerable by the sinister Voodoo that they
practice.

3. Concerning Measurement

Assuming that we have observed and identified various facts and practices, it is not unreasonable to inquire
into their relative importance. Software engingering is a multi—billion dollar industry, and money could be a
very convincing measure of such importance. “Performance’ or “efficiency” are other measures, although
recent technological and economical developments have substantially unbalanced traditional standards. Yet

other known measures are “man—month’, “lines of code per day”, “installed customer base’, "number of bugs
reported’, etc.

It may prove invaluable to have a classification of identified subjects (a measure of goodness, a technique, a
tool, a professional branch), properly quantified by measured facts. For example, we suspect that program
modification is a more prevalent programming activity than original program coding. If we knew for a fact
what the importance of modification is, and the reason for that importance, we would then be in a better
position to improve upon the state of the art.

Also, we may solve the wrong problems and not know it, or else solve the right problem in an unpracticable
manner. We may be constructing elegant jeweller's tools, when the man in the field is using his improvised
sledge hammer for lack of the sophisticated power—assisted contraption that we should have provided in the
first place. Or else we may be overhauling the entire engine when a judiciously administered drop of oil would
have sufficed.

And talking of facts: these must be obtained; the art of measurement is rather infantile, and further confused
by the difficulty of identifying the thing that is to be measured.

Software Engineering Tools & Methods

4. The Problem Revisited

We all agree that there needs be a methodology for the predictable, efficient production of good software.
Considering how little we know about the discipline and the tools, it is not surprising that we cannot make
sensible pronouncements about the methods.

Software engineering — as distinct from the art of making elegant little algorithms — is the discipline of coping
with massive, chaotic and irrational complexity. When we program the computer to emulate an elegant
mathematical relation, we can easily demonstrate the superiority of DO WHILE over GOTO. When we
program our computer to emulate our income tax laws, it is unclear what, if anything, could be demonstrated
about the code.

Another interesting point is that mathematical relations, being invariant, can be reprogrammed and refined for
increased elegance or coherence or efficiency. The tax laws, on the other hand, are not at all invariant. They
are guaranteed to change from year to year, and the changes are not necessarily insular but quite possibly have
subtle consequences. And the reprogrammed system will not acquire elegance or coherence or efficiency; we
consider ourselves lucky if it simply fails to acquire too many bugs.

For certain classes of problems, it is thus doubtful whether there should be any programming language at all, in
the sense of ALGOL, BASIC, COBOL or FORTRAN. Alternative ways of specification, ranging from RPG
through various pidgin—English application generators to the filling out of pre—printed forms, are in widespread
commercial use. These approaches are little understood, and almost universally ignored by the more “serious”
practitioners.

We are thus suggesting that there exist ample opportunities for exhaustive field work, in recognising and
identifying real—life problems; and for devising honest workable solutions. We can see three important
outcomes to such work:

® Formalisms — The cleanup and formalisation of those non—languages which today comprise the
programmer’s toolkit; or possibly the elimination of them by substituting a new, well conceived
toolkit.

® Methodologies — Clear, unambiguous and foolproof “cooking recipes’ custom tailored for specific
situations.

* Legitimacy — Incorporation of Software Engineering into the body of “respectable’ computer
science. Possibly one reason for our difficulty is that when the creative young student is doing his
studies he is learning to solve one class of problems; by the time he encounters the other classes
of problems on the job, he may not have the time, or resources, or intellectual environment for a
proper solution.

Software Engineering Tools & Methods

SESSION A

Program Goodness

What is program ''goodness" ? Is there a real distinction between
"goodness' as perceived by the programmer, and "goodness!' as
perceived by the user ? Is goodness a fixed quality, or does it de-
teriorate in time with the product's evolution, or does it increase
as the product stabilises ? How do we measure goodness ? How do

we establish its presence or absence?

Defensive Programming

Mike Spier

DEFENSIVE PROGRAMMING *

Mike Spier
Aarhus University

This paper addresses the subject of program robustness, which | see

to be antithetic to the mathematician-inspired notion of program elegance.
Too often is such elegance achieved through excessive reliance on un—
realistic assumptions. Experience has shown program robustness to be
directly proportionate to the amount of suspicious verification of
assumptions coded into it. Whether or not we are doing ourselves a
favour in fostering and encouraging the present fashion of elegance,

and in condemning robust programs for vulgarity, is an interesting

subject for contemplation.

* The text of this paper is directly copied from the notes for a course
in software engineering, given during the fall '77-178 semester. |t is,
however, reasonably independent of all other course notes. | hope
that the reader will excuse the paper's somewhat loose style.

10

DEFENSIVE PROGRAMMING

There is a school of thought, according to which the elegance and clarity
and goodness of code are - among others - evidenced by its lack of re-
dundancy. It is thought that to write terse (or, colloquially, !tight") code
is the mark of the expert programmer; that there is no elegance to code

containing logical or algorithmic redundancy.

I dispute this. | believe that solid and reliable code has a different kind of
beauty and elegance; by analogy, a passenger-bus or a truck can be as elegant
in their way as a sports-car is in its. To make a truck that lives up to cri-
teria of sports-car asthetics is not elegant - merely foolish. As software
engineers we are more often called upon to make a reliable "tryuck! than we

are to make a fast "sports-car!,

If we analyse samples of code proclaimed to be elegant, we will often find
that this terse elegance was achieved through too heavy a reliance on as-
sumptions. But such assumptions - appealing as they may be on paper - may
not at all be so reliable in reality; or else they may be so complex or subtle
that some other programmer, modifying the code in the future, will not be
aware of them and failing to recognise and understand the assumptions will

innocently violate them and thus destroy the code.

This tendency to rely on assumptions is something that we (that is, we
programmers) have inherited from the mathematician, In mathematics, if
there is a boolean variable whose value is known not to be true, then its
value is known absolutely, to be false. And in programming, we naturally

follow similar reasoning

if boolvar then <condition is true>

else <condition is false>

But there is a fundamental difference between the mathematician's boolean
variable, and the programmer's. The programmer's boolean variable has
a material existence and is boolean only under suitable interpretation.

Typically it is a computer memory word, under an interpretation such as

11

Il
—

integer(true)

]
o

integer(false)
Now consider the following code

if boolvar then <condition is true>
else If not boolvar then <condition is false>

else abort(boolvar)

where directive abort is defined to display the value of its argument in some
universally meaningful representation (e. g. , octal), after which it displays

the program's state and stops the program's execution.

The above sequence of code is obviously jllogical, mathematically. It may
none the less be perfectly realistic, possibly resulting in an abort printout

of boolvar
005203717002

[Whether‘ or not such a condition may ever arise is very much dependent on
onels compller*'s implementation. The proper generated code should test
for boolvar's truth value by testing the single lowest significant bit. Under

this arrangement the value of boolvar could never be paradoxical, i.e.,
boolvar # true N boolvar # false

But on some machines the only means of testing that bit may be by (1) copying
the value elsewhere, (2) masking off all other bits in the word containing the
copied value, and (3) testing the word for integer values 0 or 1 (or some other
circuitous method). Under such circumstances, the efficiency-motivated com-
piler writer may choose to test for integers 0 or 1 directly, or to test for

a zero/non-zero distinction, and then paradoxes of the kind just mentioned

are possible.]

12

There are, of course, other well known examples of such potential problems:
o using an unchecked index value when accessing an element of an
array, risking an out-of-bounds reference.
® using an unchecked index value in a case statement with out having
provided a default case.
e assuming the value of a character to be something that can always
be input, or output, safely (where the possibility exists for a spe-
cial character to be interpreted by some device as a function code

that turns the device on or off, etc.)*

Obviously all these potential problems could be eliminated with additional
code that verifies (and in the process of verifying, explicitly documents!)

our assumption. For example:

manifest size = 100,

let table = vec size;

if(ige 0N ilesize) then access (table! i)

else abort // index i out of bounds

Just as obviously, to do so systematically for all assumptions would result
in unnecessarily tedious and meaningless code. Still, not to do it at all is
a very bad programming practice, for to build one's program upon unveri-
fied assumptions is a very foolish thing to do. In other areas of our life,
the thing analogous to writing terse code based on agreeable assumptions
would be, for examplle: having houses without a fire escape, having cars
without seat belts and with a single brake system only, having ships with-

out lifeboats, or having an electric circuit without a fuse.

This last analogy deserves closer attention. Complementary to our pro-
fession of software engineering is the profession of hardware engineering.

There the identification of ""system!", "module" and ""value" is naturally

* For a local example, inputing a control-P jnto RECAU!'s terminal system
causes the line to be disconnected.

13

obvious, whereas in our case we need an extensive body of abstract
reasoning plus analogies and examples (see part 1, principles) to obtain

a corresponding identification. The hardware engineer has varijous physi-
cal modules (e.g., IC's , resistors, capacitors, switches, wires, etc.)
which he puts together into a hardware system. The system!'s behaviour

is the pattern of electrical impulses going through the component devices,
The hardware engineer makes two major assumptions, (1) that the physical
components behave as specified, and (2) that the electrical current used is
within very narrow bounds of voltage, rectitude and amperage. There is
little he can do about the first assumption: if the devices do not work, he
has to get others. But the second assumption is controllable and verifiable:
using transformers, rectifiers, voltage regulators and fuses, he makes
certain of having his system operating under the proper electrical condi-

tions, or else of not operating at all.

| propose that we make it an elementary discipline to apply similar common

sense at the software level,

Let us draw the distinction separating the inside of the system we are
realising, from its outside. Let us also suitably indicate the points of

interaction between our system and the rest of the universe,

The system .
= which we are —
realising

point of
interaction

point of
interaction

—l —

We only have to worry about those points of interaction where our system's
behaviour is being influenced from the outside, because according to

the principle of localisation of knowledge it is perfectly reasonable to let

14

the rest of the universe worry about the ways it is influenced by the out-

put from our system.

So as we consider the state of the world from the local perspective of
our system, we recognise that even though all external assumptions are
beyond our control, they need not be beyond our ability of verification.

Let us construct filters (or "firewalls') to stop all undesirable influences:

input ~_ The system
—= filter , —=—e which we are output —
= realising

What is such a filter? It is code to verify as many as possible of the

assumptions that we are making about the influences coming from the outside,

For example:

o that an actual call made to a gate of our system contains the proper
number of input and output arguments (see section 1. 1X: Usefulness

of the independent module, for further technical details).

® that data items supplied from the outside are of the proper data

type: i.e., that a boolean is indeed a true or false value; or that

the floating point number, or the array of pointers, or the
character string, etc., indeed are just that.

5 that a data item of the proper type also has the proper value, if there
are further restrictions on value: e.g. » that an integer variable
can assume values {0. .6, 27, 9999} ; or that a character string variable
must contain a legal file name, etc.

e that a pointer variable supplied from the outside for the purpose of
indirect reference from inside our system indeed points to some

reasonable place.

15

How do we code such a filter? \Very carefully! Two aspects have to be

considered, .
° the logic of the filter algorithm, and

@ its existential conditions.

The logic of the filter algorithm may or may not be obvious, and there may
be serious restrictions on what is or is not possible. These depend very
much on the language used, and on the specific language processor imple-
mentation technicalities. There are languages and runtime systems where
it is possible to obtain specifics about the variable type, but in many cases
it is not possible. It may be easijer to check the value range of a boolean
variable than it is to check the validity of the value of a file-name string
variable. However, we should check as best we can. To apply circuitous
reasoning, by knowing that assumptions should be checked, we could pre-
ventively design our system or module to have an interface that is more
easily verifiable. If we have any influence upon our language processor, it
could be modified - if necessary - to provide a run-time reflection of the
type of variables; the information is easily enough obtainable from the symbol

table.

The existential conditions for the filter code are twofold. First, the file
code must be properly segregated and identified, textually, so that the
reader of the code is not led into confusion when trying to understand what
the program is really supposed to do. The filter code may well be thought

of as "logical noise!'. | strongly advocate putting it into the program to give
the program the robustness necessary to resist various potential error con-
ditions; however, | also strongly advocate the removal or segregation of

all gratuitous code, for the sake of lucidity. Some compromise must be found
to accomodate these conflicting goals. | suggest to use the procedure me-
chanism. You define a procedure to do the argument validation, and you

clearly invoke it before entering the program's essential logic., For example:

16

SYSTEM

ha_tva”date([:ll,lz,...,Ii,li+1,...,li+0],[1) be
{ < argument validation logic > }

modname: GATE([l1, 2,. "’li] [01,02,...,00__])
valtdate([l lgsee313,04,05,...,0_7,[])*

<Essential logic of program >

ENDSYSTEM

The second existential condition of the filter code is that it must absolutely
not influence the program's essential logic. The filter code must be completely
neutral, behaviourally. This means that the filter code (1) must not write
into any of the argument variables, and (2) must not write into any local va-
riable that is used by the system. The filter code must behave as an abso-
lutely neutral and independent memoryless module that can be put in or taken
out arbitrarily without affecting the system's behaviour other than in the
following two aspects: (1) the system may execute faster in the absence of

the filter code, and (2) the system will be more vulnerable to unexpected in-
fluences in the absence of the filter code. There must be no other behavioural

effects associated with the insertion or removal of such filter code.

The example above clearly satisfies both conditions.

Where do we install such a filter? The filter should be placed between the

code of the system that we are realisin