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Foreword

This is a collection of papers, notes and copies of transparencies
representing the talks and discussions of the Third HOL Users
Meeting held at The Computer Science Department, Aarhus
University 1 - 2 October 1990.

Glynn Winskel
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AUTHOR: M.J.C. Gordon

TITLE: Current Research using HOL at Cambridge

SHORT ABSTRACT:

Discussion of some activities with HOL since the last meeting.

AUTHOR: Tom Melham

TITLE: A short overview of Version 1.12 of the system.

AUTHOR: Konrad Slind

TITLE: Details of a new HOL implementation in SML.

AUTHOR: R.D. Arthan

TITLE: A High-Assurance Implementation of HOL

SHORT ABSTRACT:

ICL are engaged in an IED sponsored project to develop af highly assured version of HOL
for use in industrial applications. The paper will report on this work.

AUTHOR: Elsa L. Gunter

TITLE: The Implementation and Use of Abstract Theories in HOL

SHORT ABSTRACT:

At the last HOL meeting, I proposed that a notion of abstract theories be added to HOL.
This year, I will discuss an implementation of that proposal which was implemented mostly
on top of the existing notion of theories in HOL. We will discuss what modification were
made to the underlying system, why they were made, why it is sound to have made
them, and in what sense are they upwards-compatible. We will discuss how abstract
theories are used in a variety of setting. Finally, time allowing we will discuss some of
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the ways in which this implementation falls short of giving the user the full functionality

that one might expect from abstract theories and what it would take to overcome these
shortcomings.

AUTHOR: Myla M. Archer

TITLE: A Tree-editor Interface to HOL

SHORT ABSTRACT:

We have developed a tree-editor interface (PM) to HOL, based on an Emacs-based pro-
grammable tree editor (Treemacs) developed at the Univ. of Illinois. PM (“proofman-
ager”) permits convenient access to subgoals and convenient proof display, and maintains
proof soundness. There are additional useful features, and plans for extending the tool.

AUTHOR: Malcolm Newey

TITLE: Another Iteration in Arithmetic.

SHORT ABSTRACT:

I have used Tom Melham’s axiomatisation of natural numbers (the one appearing in
HOLS88 1.11) but have changed the theory so much that I will (no doubt) incur the wrath
of many HOL users when I suggest we make a change to this important standard fragment
of the Basic HOL System. Nevertheless, I do intend to argue that the benefits of a major
change in this area, even at this late stage, are worth the inconvenience that will be caused
to users with a substantial investment in proofs using the current package.

AUTHOR: Tom Melham

TITLE: A Mechanized Theory of the pi-calculus in HOL.

SHORT ABSTRACT:

This talk will describe work in progress on the construction of a mechanized formal theory
in HOL of the pi-calculus, a process algebra developed by Milner and others for modelling
communicating systems in which processes can have changing structure. The aim is to

support reasoning in the pi-calculus about applications as well as proofs about the pi-
calculus itself.



AUTHOR: Flemming Andersen

TITLE: A Definitional Theory of UNITY in HOL

SHORT ABSTRACT:

Higher Order Logic is powerful enough to model the axiomatic definition of the UNITY
logic as defined in [Chandy, Misra: Parallel Program Design, A Foundation. Addison
Wesley 1988].

A method for defining relations in HOL using fixpoint equations is presented. It is shown
that the UNITY relation ‘leadsto’, which models the graph of a transitive and disjunctive
closure of binary relations, is a special case of these relations.

AUTHOR: Kim Dam Petersen

TITLE: Construction of the P w lambda calculus model in HOL

SHORT ABSTRACT:

The P omega model may be constructed in Higher Order Logic, using the description
given in [Barendregt: The Lambda Calculus, North-Holland 1984].

The construction of the model in HOL is presented, and an outline of solving selected
reflexive domain equations using the model is given.

The final goal is to make a type package that is able to solve general reflexive domain
equations.

AUTHOR: Wim Ploegaerts

TITLE: “HOL theory for finite word length arithmetic”

SHORT ABSTRACT:

The ultimate goal of the ongoing research in our group is the verification of a silicon
compiler for DSP (Digital Signal Processing) applications. As a first step, it has been
tried to built the libraries that are required for the definition of the behavior of hardware
components (such as adders, multipliers, ...) in terms of integer numbers. The work
includes e.g. an extgention of the library “zet” (definition of integer division and remain-
der, a normalization conversion for integer expressions and some related tactics) and the
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definition of the denotation and representation functions for both signed and unsigned
arithmetic.

AUTHOR: Jeff Joyce

TITLE: More Reasons Why Higher-Order Logic is a Good Formalism
for Specifying and Verifying Hardware

SHORT ABSTRACT:

The HOL community is often challenged to justify the choice of higher-order logic as a
specification language over conventional description languages such as VHDL or less ex-
pressive formalisms such as first-order logic. The question, “why higher-order logic?” was
partly answered by Gordon’s 1985 paper, “Why Higher-Order Logic is a Good Formalism
for Specifying and Verifying Hardware”. Our (proposed) presentation will discuss why
higher-order logic, in particular (as opposed to less expressive formalisms such as first-
order logic), is a very good formalism for specifying and verifying hardware. We focus on
two main reasons: (1) the ability to support generic specifications of hardware, (2) the
ability to embed special-purpose formalisms such as temporal logic.

AUTHOR: Catia Marcondes Angelo

TITLE: “The Verification of a Parameterized Mead & Conway
Alu Core in HOL”

SHORT ABSTRACT:

This work is concerned with the formal verification of the parameterized Mead & Conway
Alu module core implemented in the Cathedral II Silicon Compiler using the Proof Assis-
tant HOL from Cambridge University. The correctness proof is divided in two parts: the
structural and the behavioral reasoning. The structural verification consists of a formal
alu decomposition reflecting the basic design process knowledge to prove the hardware
implementation behaves like an ideal alu. The behavioral reasoning formally verifies the
ideal alu meets the specification.
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AUTHOR: Richard J. Boulton

TITLE: The HOL Verification of ELLA Designs

SHORT ABSTRACT:

ELLA is a hardware design language developed at the Royal Signals and Radar Estab-

lishment (RSRE) and marketed by Praxis. It supports simulation models at a variety of
different abstraction levels.

A preliminary methodology for reasoning about ELLA designs using HOL is described.
Our approach is to semantically embed a subset of the ELLA language in higher order
logic, and then to make this embedding convenient to use with parsers and pretty-printers.
There are a number of semantic issues that may impact on the ease of verification. We
discuss some of these briefly. We also give a simple example to illustrate the methodology.

AUTHOR: Ton Kalker

TITLE: HOL Semantics of SILAGE

SHORT ABSTRACT:

SILAGE is the input language for a prototype silicon compiler for DSP applications. An
exercise to endow SILAGE with a formal semantics in HOL logic revealed several weak

points of SILAGE. In the presentation I will argue that designing a language like SILAGE
will benefit from using mathematical methods.
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Overview of Current Activities
Hardware Verification Group
University of Cambridge

October 1990

ELE Unieiuity of Cambeidge

Comeuter Laboralory Adhuis0

Developments of HOL

¢ HOLB88.1.12 to be released in November (de-
tails in talk by Tom Melham)

¢ New edition of documentation in progress
— REFERENCE to be completed

— DESCRIPTION and TUTORIAL revised and
extended

— Quick reference cards in preparation
— Compatible with Calgary HOL

— Slides for HOL courses to be distributed
with the system

¢ X-windows based demo tool (John Van Tas-

sel) and theorem retrieval system (Richard
Boulton) available

PR uneariny of Combriage
Yy Compulsr Laboislory Adrhui®d (1)
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Kinds of Project

e Small projects

— Typically a PhD student or individual re-
searcher

— Not supported by an external grant

e Large Projects
— Several researchers, at least one full-time

— Some external support

TH Untearsity of Compeiage
Computer Lavoratlory Aprhndo (2)

Small Projects

Protocol verification

®

Architecture specification

e w—Calculus

L

Compositional proof systems

o

Formalisation of real-time systems

VHDL semantics

Unkrarslly of Cambiipe
3 Comauter Laboralory Asrhut$0 (1)



Large Projects
Protocol Verification

s I/O hardware verification
¢ Research Goal:

Verification of code implementing protocols
e Viper UART & VISTA translator verification

¢ Research Methods:

Specifications and real-time programs are
modelled in HOL

¢ Proof analysis and accounts

o Verified proof-checker

e Status:
o SAFEMOS . In progress for 2 years with a preliminary case

| study available as part of the HOL documen-

h : tation
e Processor verification

! » Researcher:
Rachel Cardell-Oliver — PhD Student at
Cambridge, Cadet in Australian pDsTO

¢ CHECPS

e HOL verification of ELLA designs !

3 e s - B -
Computer Architecture Specification ! rw—Calculus in HOL
Research Goal: 2 ¢ Research Goals:
e -

Provide proof support for the w—calculus
(higher—order successor to Milner's ccs) in

Augment informal architecture specs.with
formal ones to reduce problems of ambigu- .
. HOL, check proofs of existing meta—
Ous speCc meaning, and to allow the use of : .
. g theorems, and investigate the calculus for
theorem provers for testing those meanings .
modelling systems

¢ Research Methods: |
To formalise industrial-style specs, express
them In HOL, and prove properties of them

¢ Research Methods:
Define the calculus syntax as a recursive con-
Crete type and specify its semantics via struc-
tured operational semantics. Existing infor-

s Status: mal proofs will then be replicated in HoL
Going for 1.5 years with some simple exam-
ples completed Annotated bibliography on - o Status: Just started (syntax defined in HOL,

architecture specification has been produced some simple lemmas proved)

* Researcher: Tim Leonard — PhD student, ¢ Researchers:
VAX architect with DecC Tom Melham and Mike Gordon
P e —— & s s



Compositional Proof Systems

Research Goals:

To build tools to support inductive defini-
tions of compositional proof systems and au-
tomatic generation of induction tactics

Research Methodology:

Driven by the need to define structured op-
erational semantics based on minimal rela-
tions. The w—calculus and other process al-
gebras will be used as examples

Status:
Some examples already done interactively.
Automatic tools about to be written

Researchers:

Tom Melham and Juanito Camilleri

Uassarsny of Camtrwage
Compwrar Lasoratory Arthus®d (8)

Formalisation Of Real-Time Systems

¢ Research Goals:
Define a small language containing explicit
timing constructs as defined by a determin-
istic scheduler. This environment should be
seen as implementing some of the ideas from
the world of process algebras, but with ex-
plicit real—time characteristics

e Research Methods: .
Specify a scheduler in HOL and verify its
safety and liveness properties. An evaluation
of the constructs based cn this approach will
be done along with a final definition of the
syntax and a formalisation of the semantics

e Status: Early days

e Researcher: Neil Viljoen — PhD student

FLH unorersity of Camanmage
gy Computer Laboratoy Aarhus®0 (9)

VHDL Semantics

Research Goal: .

To define a subset of VHDL tractable for for-
mal methods, to specify its semantics in HOL
and hence to develop a set of proof tools

Research Methods:

Bulld on the results and lessons of the HOL—-
ELLA project with the understanding that
VHDL is a much more complex language

Status:
To start on 1 October 1990

Researcher:
John Van Tassel — PhD Student

Ussvoraity of Camipridge
@C—-&-m Anrnus®d (10)

1/0O Hardware Verification

¢ Research Goal:
To design and verify a UART whose initial
target is the VIPER, and will serve as a proto-
type of Transputer link verification (SAFEMOS)

¢ Research Methods:
Specification and verification to be as gen-
eral as possible so that the proofs can hope-
fully be reused. Fabrication will take place
with XILINX user—programmable gate arrays

e Status:
Design and verification complete; fabrication
to be conducted as part of the HOL—ELLA
project

¢ Researcher:
John Herbert

Univarshty of Caminidge

Computer Laboralory Apchus®d (11)



VISTA Translator Verification

¢ Research Goal:
Define the semantics of VISTA in HOL. Défine
and verify a translator from VISTA to VIPER
machine code written in the HOL logic

¢ Research Method:
Define the syntax and a direct denotational
semantics of both source and target lan-
guage in HOL with the translator as a prim-
itive recursive function

e Funding
MOD (RSRE)

¢ Researcher:
Paul Curzon

:::q Unmsiuity of Cambedge
qp Comouter Laboratory

Aarnus9o (12}

Proof Analysis

Research Goal:

Better understanding of the relationship be-
tween proofs and tactics. Implementation of
prototype tools to generate proof summaries
from tactics

Research Methods:

Detailed study of “naturally occurring"
proofs and replicating them in HoL. Exper-
imental programs to generate proof narra-
tives from tactics have be written

Status:
Funded by SERC

Researcher:
Avra Cohn

ﬁnﬂ Unresssay of Cambridge

9 p Compuler Laboratory

Adrnesso (13)

Proof Certification

* Research Goal:
Understand the structure and parameteri-
sation of large proofs; deveiop and test a
technology for producing 'proof deliverables’
(idea proposed by Newey, Hanna)

¢« Research Method:
— Modify HOL to produce proof texts

— Code a checker for them in a program-
ming language supported by HOL

— Verify the checker

e Status: serc/moOD funding promised. Tar-
get start date is 1.4.91

e Researcher: Avra Cohn

Univarsity of Cambnidge
Computer Laboratory Asrhusa (14)

BB

SAFEMOS 1

Research Goal:

— Demonstrate the possiblilty of totally ver-
ified systems by creating a verified appli-
cation program running on a verified pro-
cessor by means of a verified compiler

— Develop a methodolgy for building veri-
fied real—time systems

Research Method:

Example driven with a programming language
based on a subset of occam, and the pro-
cessor based on the Transputér, The proof
will build on existing work such as the CLINC
stack (Austin, Texas) and Joyce's work on
Tamarack (Cambridge)

University of Cambridge
Compul

Ler Laborstary Asrhusd (18)



SAFEMOS II

Partners:

INMOS, SRI International Cambridge Research
Centre, Oxford Programming Research Group,
Cambridge Computer Laboratory

Funding
SERC/DTI (IED)

Status: i
Started 1.1.90

Researchers:

— INMOS: David Shepard 4+ 2

— SRI: Roger Hale, % John Herbert

PRG: Jonathan Bowen, Paritosh Pandya
CL: Mike Gordon, Juanito Camilleri

of Cambridge

Unevraity
b Computer Laboratory Adrhut 90 (18)

HOL-ELLA II

e Funding:
Initially SERC/DT! project with Praxis. Now
a pure SERC project

Status:

Running since 1.10.89, with a simple case
study completed. Subset of eLLa chosen
and HOL semantics defined and implemented

Researchers:
Richard Boulton (until 30.9.90), John Har-
rison (from 1.10.90), % John Herbert

University of Cambridge

Compvte Laborstoy AsrhARe (18)

£R
<F

g;.g

HOL-ELLAI

Research Goal:

— Specification of the formal semantics of a
subset of the ELLA hardware description
language in HOL with theorem-—proving
support for reasoning about ELLA

designs

— Development of a methodology for adding
formal methods to conventional CaD

Research Method:

Translate ELLA to HOL via explicit seman-
tics and test the methodology by designing
XILINX chips

Univertity of Cambidge

Computer Laboratory Aarhut90 (17)

Processor Verification

Research Goal:

To design and verify a processor for real-timé
control applications as part of the SAFEMOS
and HOL-ELLA projects

Research Methods:

Develop standard techniques which will trans-
fer to the verification of the main Transputer~-
like SAFEMOS processor

Status:
Early days

Researcher:
John Herbert

University of Cambridge

Compuis Laboralory Asrhuaso (1)



CHEOPS 1

¢ Research Goal:

— Interface HOL to CATHEDRAL for the ver-
ification of synthesis functions (IMEC)

— Improve the HOL environment through new
libraries, and a better user interface (Cam-
bridge)

o Research Methods at Cambridge:
General—purpose parsers and pretty-printers
driven from declarative inputs. Interface tools
implemented in X-windows

¢ Partners:

IMEC (Belgium), Philips ERL (Netherlands),
Cambridge Computer Laboratory

BT Uneveriny of Cambrage
Q‘*y Computer Laborsiony Aarhu$d (20)

CHEOPS II

¢ Funding:
Esprit BRA

e Status:
Running since 1.8.89 with the syntax tools
complete. X—windows interface started with

a prototype developed in an enhanced GNU
emacs

¢ Researchers:

— IMEC: Luc Claesen, Wim Ploegaerts, Ca-
tia Angelo

— Philips: Ton Kalker

— Cambridge: John Van Tassel (until 30.9.90),
Sara Kalvala, Andy Gordon (from 1.1.91)

] Univermty of Camenage

“ p Computer Luborslary Asrnu®S (21)

Summary

e HOLBB system is ndw stable

¢ New improved Standard ML implementations
are almost ready (Viz HoOL9o from Calgary
and ICL HOL)

» Polished documentation (for both HOLeas and
HOL90) coming soon

e Increased automation and improved inter-
faces are on the horizon

o Many projects announced at first HOL Users
Meeting are now up and running

e Lots of new projects, many unrelated to hard-
ware verification, are starting up

Unieeriity of Cambiidge
Computar Labotatory Asrhueso (72)




HOLS88: Version 12 overview

e Summary of changes already made.

® Some proposed changes.

T F Melham, 28 September 1988




Current state of version 12

e Summary of changes already made:

o preterms, and user-definable typechecking

e revised ‘resolution’ tools

e paired beta-conversion
e new tactics, rules, etc.
e revision/optimization of some tactics, rules, etc.

e natural number MOD and DIV theorems added

.. o total rewrite of type definition package

revised set theory library

i}

e new ‘contrib’ directory

e many internal ML functions deleted /hidden



New ML type of raw terms

e A new ML type of untyped terms:

preterm =  var of
| const of
| comb of
| abs of
| typed of
|

antiquot of

string

string

preterm # preterm
preterm # preterm
preterm # type
term

has been added, together with:

preterm_to_term : preterm -> term

which invokes the standard HOL typechecker.




User-definable typechecking

e To enable user-defined typechecking:

set_flag(‘preterm,true);;

© To install user-defined typechecking:

let preterm_handler p = (function)
where (function) has type:

: preterm -> term

e Note: this has not been used much yet.
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Revised ‘resolution’ tools

In version 11, RES_CANON does:

.

t1 /\ t2
Ce1/\E2)==3%
(t1\/t2)==>t
tl1 = t2

t ==> F (at outermost level)
t1.2

tl==>(t2==>t)

ti==>t, t2==>t

t1=t2, t1==>t2 t2==>t1

48y

In version 12, RES_CANON also does:

Ix. t1==>t2 = t1==>!x.t2 (x not freein t1)

For example:
|- 'mnp. m<n/\n<p=>mn<p
in version 11 gets transformed to:
|- !mnp. m<n==>(@<p-==>nc<p)
but in version 12 it gets transformed to:

|- 'Inm. m<n==>(lp. n<p==>m< p)

11




Effect of this change

e Given the assumptions:
[a < b] and [b < c]

the tactic:
IMP_ RES_TAC |- Imnp. m<n/\n<p==>n<p

will produce the assumptions:
[ 'p. b<p==>ac<p] [ 'p. c<p==>b<p]
instead of freezing the variable p:

[ b<p==>a<p] [ c<p==>Db<p]
e (Consequence:

e more new consequences generated, so
e more assumptions to work with,

e e.g. RES_TAC will solve the goal more often;

BUT: your existing proofs may not work.

12



Paired beta-conversion

© New function for paired beta-conversion:

PAIRED_BETA_CONV : conv

e For example, given the term:

n(\(xi, con oX0).8Y (£l, ... JEROM

the new conversion proves that:

|- (\(x1, ... ,xn).t) (t1, ... ,tn)

ElEl, <6 sER/XL,ows XN

e It also works on arbitrarily-nested tuples.

Relud covmtvoion

OLET' Zaadd

- coriing S oo

13




Natural number division

e In version 11:
|- 0<n==>((rq. (k=(*n) +r) /\r<n)

|- MOD k n = @r. ?7q. (k= (@ *n) +r) /\r<n
|- DIVkn=0q. (k=1( *n)+ (k MOD n))

e In version 12:
|- 0<n==>(rq. (k=(q*n) +r) /\r<n)

|- 0 < n ==>
(k = ((k DIV n)*n)+(k MOD n)) /\ (k MOD n) < n)

e Plus built-in theorems, for example:

|- 'k. k MOD (SUC 0) = 0

|- 'n. 0 < n ==> ('k. (k DIV n) <= k)

|- 'nr. r<n==>(lq. ((g*n) +r) DIVn = q)
|- 'n k. k < n ==> (k MOD n = k)

|- 'n. 0 <n ==> ('k. (k * n) MOD n = 0)

|- 'n. 0 < n ==> (0 MOD n = 0)

e Other arithmetic theorems have also been
added.

14



Type definition package

e Has been totally rewritten.

e The code is now:

e Cleaner and better organized,
o faster (sometimes much faster),

e much better documented.

e The main changes visible are:

e modifications to low-level tools,
e define type now has a proper parser,

e different variable names/priming behaviour.

¢ Coming soon:

e more general function definitions

15



Revised set theory library

e Reorganization:

Old name | New name | Description

sets finite_sets | finite sets

all_sets | sets finite and infinite sets
set pred_sets predicates-as-sets

e The library sets now supports the syntax:

B . e BB
ufe | Bl
"{t[x1,...,xn]] | P[x1,...,xn]"

e Proof support for this notation (for example):

SET_SPEC_CONV "t in {x | P[x]}"

returns:

|-t in {x | P[x]} = P[t/x]

e The parser/prettyprinter support is general.

16



The contrib directory

e (Contents: user contributions
e Purpose:

for easy distribution of items such as code, theories,
and documentation which are useful but not suitable

for the library

e (Current contents:

e CPO: complete partial orders (jacl)

PNF': prenex normal form (cj)

batch-hol-tool: simulate interactive session (rjb)

franz-cl-th: translate theories to common lisp (jac)

knuth-bendix: equational reasoning (slind)

o select: how to deal with epsilon (grahamb)
e temporal: temporal logic in HOL (jasuja)
o tooltool: suntools interface (des)

e Further contributions very welcome!

17



Hiding/Deleting Internal Functions

e The goal is:

bound N — manual
ML id’s B entries

Y

correspondence

e Many identifiers already deleted/hidden.

e For example:

Redundant | Old versions Unused
AND_CLAUSE1 | HOL_IMP_RES_THEN | form_class
AND_CLAUSE2 | HOL_MATCH_MP form_frees

AND_CLAUSES3 | HOL_PART_MATCH form_tyvars
AND_CLAUSE4 | HOL_RESOLVE_THEN | form_vars

AND_CLAUSES | HOL_RES_THEN
OLD_RES_TAC (ete)
(etc)

(etc)

18



Proposed changes/developments

e

e Future developments and proposed changes:

e rationalize resolution

o faster rewriting

e automatie abstract type definitions

new type-definition primitive
e library revision

e new version of the manuals

19
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iCL

The FST Project

(DTI Supported Project IED/1563)

Cambridge University
o foundational research
ICL Secure Systems

* lead partner

« HOL technology and applications

Kent University
» VERITAS+

Program Validation Limited.

« SPARK
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iICL

Background

Business is high-assurance secure systems.

HOL used in applications for about 4 years

Proof deliverables produced on several
real secure system developments

Piecemeal work to tailor the system to
our needs:

 Tied off loop-holes (e.g. mk_thm)

e Metalanguage and theory support
(Z, hardware DA links, methods support)
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iCL

Directions

Want to improve capability to produce
formal proofs of critical properties in
real applications.

HOL offers a tried and trusted basis.
We would like:

 Greater integrity (possibility of
accidental or malicious proof of F)

e Better support for the languages our
customers want (Z, Ada)

e Improved ease of use (proof work is
currently very costly)
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iICL

High Assurance HOL

Basic idea (i.e. long term goal):

(a) formally specify logic

(b) formally specify critical properties
of the proof development system in
terms of (a)

(c) verify implementation (or at least
design against (b).

Result is a proof development system with
assurance level analogous to that of
a US Al+ (= UK level 6) secure system.

Want to take sensible and useful steps
towards this.
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iICL

State of Play

« Have formal specifications of
 language and inference rules
o theory hierarchy

e semantics

(= chapters 9&10 of the manual)

e Have a prototype system in Standard ML

» Logical primitives based on
formal spec

« Theorem proving superstructure
based on Cambridge documentation
and implementation

» Basis for experiments with proof
automation etc.
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ICL

Current Work

designing a system to be implemented
to product standards

e rationalising logic spec and planning
out integrity proof

e modest steps in proof automation

e support for Z

» user interface issues (e.g. subgoal
package improvements)

compatibility and interchange
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iICL

Logic Specification
e Specified HOL as a deductive system.

o language

e rules of inference

e theories with theorems defined
via derivability

« PDS as a machine with a theory
hierarchy in its state, making
“derivable” transitions on the
theories in it

e Treatment is quite long (30 pages
of theory listing without consistency
proofs)

« Now looking at incorporating semantics
and reorganising to ease proof task

42




ICL

TOP LEVEL SPEC OF THE PDS

_HUL_STATE

parent : string—string—bool
theory : string—THEORY

(antisymmetric(ancestral parent)) A
(rooted parent) A
(Vinit+root parent init = theory init = INIT)

(order_preserving theory parent extends)

HOL_SYSTEN = (*INPUT x HOL_STATE) —
(HOL_STATE x *OUTPUT)

safe : (*INPUT, *QUTPUT) HOL_SYSTEM — bool

Vhol_system-safe hol_system &=
Vinput hol_state:-

consistent_state hol_state =
consistent_state(FST(
hol_state(input, hol_state)))

Similarly for conservative extensions etc.
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ICL

Proof Automation

 Many useful modest steps to be made

» Incorporate useful techniques from
research on other theorem provers

 Have prototyped:

o Several tautology proving algorithms
 Divide-and-conquer techniques for
finding normal forms (e.g. polynomials

over a commutative ring)

e Tools for justifying various forms
of definition

e Future work

e Decision procedures etc.

e Improved support for recursive types

10
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iICL

User Interface

« Main concerns are ‘“deep” interface issues
rather than “surface” ones

e Want a consistent and comprehensive
collection of tools within HOL.

« Have made some small experiments

o Subgoal package using a theorem to
represent the state (gives automatic
validation of tactics safely, and other
useful features).

e Term surgery-style tools

o Cross-referencing tools

o Future work
« User interfaces for other languages
(e.g. Z)

o Better support for programming
tactics and conversions

11
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e Reflexive Domain Equations

o Me£hods for sdlvinglreﬂexive domain equations
o D,

e Type free A calculus

o P¥

e What has been done

e What needs to be done .
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Reflexive Domain Equations

o Reflexive domain equations has the form: D = &(D),
where & is composed from basic domains Bottom, Boolean
Number by Point, Pair, Union and [Function contructions

e A solution of a domain equation is a domain D, which is
isomorphic to (D)

e Example: C =% — C — *x
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Method for solving reflexive domain
equations

o Use the D, domain constructions [Schinidt]
e Construct type free A calculus [Barendregt]
e Construct P* [Barendregt]
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D, construction [Schmidt]

e A domain is a (pointed) cpo
e All domains are contained in a universe D of domains

e A valid Domain Scheme € : D — D maps pointed cpos to
pointed cpos

e Construct a sequence of domains D,, by:
Do = {_L} and Dn+1 = E(Dn), n Z 0

e A limit Dy, of the domain sequence exists

e A pair of contiunous functions (¢, V) : Do, +* E(Deo).
exists, such that: ¥ o &= rip_ and ® o ¥ = 1agp,_

e Hence D, is isomorphic to £(Dy)
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HOL ifnplementat_ion problems

e Constructing an object Domain that represents the
universe of all domains

e Domain should contain the basic domains
Bottom, Number and Boolean

e Domain should be closed wrt. domain constructions
Point, Pair, Union and (continuous) Function
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Type free A calculus

e Numbers, Booleans and Bottom are representable as
closed A expressions.

e Pairs, Unions and Functions may be represented as
closed A expression, if their components are

e Hence Domain may be represented
as subsets of closed (type free) A\ expressions
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| Coﬂstructing type free )\ calculus [Barendregt]

e A reflexive cpo may be used to construct a model of
type free A calculus

e A cpo (D,C) is reflexive if there exists two functions
f:D—[D— D]and g:[D — D] — D such that:
f 0g= id[D——»D] |
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The P¥ model of X calculus [Barendregt]

o P¥ = ({alz S0}, C)

o [n,m] & %(n+m)(n+m+q1) +m

o {ko, ..oy km_1} > Ticm 25

o graph(f) = {[n, mllm € £(en)}

e graph : [P¥ — P*] — P is continuous

e fun(u)(z) = {m|3Je, C x, [n,m] € u}

o fun : P¥ — [P¥ — P*] is continuous

e fun(graph(f)) = f for any continuous function f
e Hence P¥ is a reflexive cpo |

e Hence P“ may be used to construct Domain

e Hence P¥ may be used to solve reflexive domain equations

J
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What needs to be done

e Completion of the A model

e Mapping basic domain values (Bottom, Booleans and
Numbers) into A expressions

e Mapping constructed domain values (Pairs, Unions and
Functions) into A expressions

e Solve reflexive domain equations using A expressions

e Make a type package for reflexive domains
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What has been done in HOL

e Theories for: cpo, topology etc. has been defined
e Properties concerning P¥, fun and graph has been proved

e A ) model based on P“ is being constructed
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~ More Reasons
Why Higher—Ordér Logic is a Good Formalism
for Specifying and Verifying Hardware

P

Jeff Joyce
University of British Columbia

October 1990
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“Why higher-order logic T
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Mike Gordon (September 1985) ...

“Why Higher-Order Logic is a
Good Formalism for Specifying and Verifying Hardware”

(Cambridge Tech. Report No. 77)

~...the opening paragraph reads:

The purpose of this paper is to show, via examples, that:

1. Many kinds of digital systems can be formally specified using the notation
of formal logic; specialized hardware descriptions are not needed:

2. The inference rules of logic provide a practical means of proving systems
correct; specialized deductive systems are not needed.
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Two Reasons “Why Higher-Order Logic ?”

In this talk, I propose two reasons why. higher-order logic is a good
formallsm for specifying and verifying hardware:

1. generic specification

2. embedded formalisms
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Outline of this Talk ...

1. Uses of Higher-Order Functions

@ SOme cominon uses

e some more sophisticated uses
9. Alternatives to h.o.l ’
3. Arguments against h.o.l.
4. Generic Specification

e simple example

e microprocessor specification
5 Embedding Other Formalisms
e temporal logic

6. Conclusions
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Some Common Uses of Higher-Order Functions ...

... when specifyilig hardware with predicates,

1. signals as functions of time

12 = |
: ' % outp
1] ==

AndGate (e{,b:,oilt)

a,b,out : time—bool
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2. signals as functions of position

a(0)

a(n-1) b(n-1)

F——— 0 0 0 —

b(0) a(1) b(1)
cin—— FullAdder FﬁllAdder
.sum(0)

sum(1)

FullAdder

—cout

|

sum(nfi)

RippleCarry n (a,b,éin,sumcout)

a,b,sum
cin,cout

: posttion —bool
: bool
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More Sophisticated Uses of Higher-Order Functions . ..

abstract time: ®

) - 0

N 1 1
concrete time: —o—o¢——re@ D ‘

ngF@FFFq:jF]:SF

.. . defining parameterized timing relationships,

. TimeOf (g:time->bool)

#

ra

Define (
"(TimeOf g O = gt. First g t) A
(TimeOf g (SUC u) = et. Next g (TimeOf g u,t))");;

Define ("First g t = (Vp. p <t == (g p)) A (g t)");;

Define ( }
- "Next g (t1,t2) = t1 < t2 A (Vt. t1 < t A t < t2 = =(g t)) A (g t2)™);;

...and deriving generalized theorems,
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For example, ...

the generalized theorem,

|- Vg r. ;
(3t. g t) A (Vt. g t => 3m. Next g (t,t+m) A T (t,t+m)) ==
Vu. r (TimeOf g u,TimeOf g (u+i))

~can be used to reduce the problem of proving,

—_

N , )
Vu. r (TimeOf g u,TimeOf g (ut+1))

to a pair of simpler problems:

Jt. gt
Vt. g t = Im. Next g (t,t+m) A r (t,t+m)

This generalized result provides the basis for a HOL tactic:

Vu. r [TimeOf g u,TimeOf g (u+1)]

-+ L f + 1+ ¢+ 1 = == ===Z=s=ssosmm=

gL, 2%, Vt. gt = Im. Next g (t,t+m) A r [t,t+m]
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Arguments Against the Higher-Order Approach ...

e notation is difficult

o un&ecidability CONCEInS

e proofs are much harder

o expreseibility not needed

o speciﬁcatibns not executable =

e the “straw man” attack v
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To give you an idea of their flavour ...

.. with respect to higher-order programming, one author writes:

“Unfortunately,. the logic of higher-order functions

is difficult, and in particular, higher order unification

45 undecidable. Moreover (and closely related), higher

order eTpressions are notoriously difficult for humans
+o read and write correctly.”

.. and then, the same author goes on to say:

“Although higher-order logic cannot always be avoided
in specification and verification, it should be avoided
whenever possible, for the same reasons as in program-
ming.”

Quotations from:

Josepth Goguen, “Higher Order Functions Considered Unnecessary for Higher
Order Programming”, 1988 April 20.
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- Generic Specification

In 1'989-, under contract to NASA, CLI sub-contracted the, task of
writing a review of the HOL system to David Musser of Rensselaer

Polytechnic.

In his repoft, Musser wrote:

“The major weakness of HOL appears to be the lack
of effective support for constructing specifications and
proofs at a high level of abstraction, ... ”

and more specifically,

“HOL is also lacking in packaging features that would
help in structuring large spectfications, such as those of
VIPER or more complex microprocessors”
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Musser éompai*ed HOL to SRI’s EHDM system which,

“ ..provides a parameterized module capability that per-

mits structuring specifications as modules that can be

instantiated in many different ways (similarly to Ada
~ generic packages and subprograms).”

- In this part of my talk, I will argue that:

1. generic specification does indeed offer many benefits
2. HOL logic can directly express genericity

... without additional constructs !
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Advantages of Generic Specification ...

In addition to mbdula.rity, abstraction and re-usability, generic de-
scription can be used to filter out non-essential detail in the context
of formal proof.

Filtering out non-essential details, ...

e sharpens the distinction between what has and what has not
been formally considered in a correctness proof.

e supports a truely hierarchical approach to the formal verification
of digital circuits where each level in a hierarchical specification
is isolated from details only relevant to other levels.

e reduces the amount of special-purpose infrastructure needed to
reason about particular application areas, e.g., hardware-oriented
data types.
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For example, ...

The formal specification of the 32-bit ‘Viper major-state machine
made extensive use of special-purpose data types and constants:

=y

e.g., :word4 :word32, VAL4, WORD32

e

Consequently, these correctness results:

e were not as general as possible
e.g. what about a 64-bit version 7

e needed clarification about what aspects of the computational
model were formally considered:

“There was no computation of values at the major state level - that is,
additions, comparisons, shifts, and so on - so the essential correctness of
Viper was not really addressed; the proof did not require any analysis of the
function representing the arithmetic-logic unit, at either level”.

o could not be easily re-produced in other verification systems lack-
ing special support for reasoning about hardware
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External View of the Resettable Counter,

reset

COUNT

k.
out

Internal View of the Resettable Counter,

reset

pl

p2

REG

INC

out
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A First Attempt, ...

Faey MUX (reset,i,out) = Yt. out t = (reset t = 0] (1L t))
bgoy REG (1,0ut) = V. out (t+41) = i t
4oy INC.(i,0ut) = Vt. out b= ((it) + 1)

Fdes COUNT_IMP (reset,out) =
© 3Jpl p2.
MUX (reset,pl,p?) A
REG (p2,0ut) A
INC (out,pl)

- Fges COUNT (reset,out) . — N
Vt. out (t+1) = (reset t = O | ((out t) + 1))

b m COUNT_IMP (reset,out) = COUNT (reset,out)

The More Detailed, The Better 7 ~

Fdes MUX (n) (reset,i,out) = Vt. out t = (reset t = 0| (1t)

[~

des REG (33 (i,out) = Vt. out (t+1) = 1 ¢t

Fdey INC (n) (i,out) = vt. out t = (((1 ) + 1) Q{]} 2n)
v ~ :j:ssﬁl"'—
bdet COUNT_IMP (n) (reset,out) = ,
Jp1 p2. '
MUX (n) (reset,pi,pZ) A
REG (n) (p2,o0ut) A
INC (n) (out,pl)

bg4es COUNT (n) (reset,out) =

| - COUNT_IMP_£22 (reset,out) = COUNT 2 (reset,out)
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Parameterizing with Function Variables, .-

I-d; MUX (inCS‘ (reset,i,out) = Yg. out t = (reset t =>‘Ei/l (i t)

}‘d s REG (inc) (i,out) = Vt. out (t+1) =1t

ey INC (mc) (i,0ut) = yt. out t = inc Gt
,._,/

e - ‘\JVA
b gy COUNT_IMP (ind) (zeset,out) = : pa
_3pi p2. . ‘\)\f"
MUX (inc) (reset, pi.p2) A \Y\L &

REG (inc) (P2, out) A
INC (inc) (out, pi)

4.y COUNT (in%) (zeset,out) = _—
Yt. out (¢+1) = (reset © =>)q-1 (inc (out £)))

—

« Fim COUNT_IMP (inc) (reset,ou‘c) —3 COUNT (inc) (reset,out)

Parameterizing with Type Variables, . .-

N\
Faes M'UX mo) (reset i,out) = Vt. out t = (reset t = goro | (1 %))

b4es REG (Mo) (i,out) = Vt. out (¢+1) =1 ¢ “K
Fdef INC (:‘Lﬁ?,’zaro) (i,out) = Yt. out t = inc (i ©) \K //Z

e

Fdef COUNT_IMP (1@0) (reset,out) = &
Jpi p2. '
MUX (inc,zero) (reset,Pl, p2) A
REG (inc,zero) (p2,0ut) A
iNC (inc, zero) (out,pi)

Fdef COUNT (i@o) (reset, out) =
yt. out (t+1) = (reset t = 2OIO | (inc (out t)))

binm COUNT_IMP (inc,zero) (reset,out) — COUNT (inc,zero) (reset;out)
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Using “Representation Variables”, ...

Fdes inc rep = FST rep
F4.s zero rep = SND rep
Fdey MUX (xep) (reset,i,out) = Vt. out t = (reset t => (zero rep) | (i t))

Vt. out (t+1) = i t.

F4ey REG (rep) (i,out)
Faey INC (zep) (i,0ut) = Vt. out t = (inc rep) (i t)

Fdey COUNT_IMP (rep) (reset,out) =
3pi p2. '
MUX (rep) (reset,pl,p2) A
REG (rep) (p2,out) A
INC (rep) (out,pl)

Faes COUNT (rep) (reset,out) =
Vt. out (t+1) = (reset t = (zero rep) | ((@5 (out t)))

"

rep: ((*word—*word) X *word)
' 0
w v

(inc rep) - “the increment operation”
(zero rep) - “the representation of zero”

' /N
Fim COUNT_IMP (rep) (reset,out) == COUNT (rep) (reset,out)
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This correctness theorem is fully generic:

Fipm COUNT_IMP (rep) (reset,out) = COUNT (rep) (reset,out)

Recall Musser’s remark that SRI’s EHDM system,

“ ..provides a parameterized module capability that per-
mits structuring specifications as modules that can be

instantiated in many different ways.”

This is quite straightforward with representation variables,

... here are two simple examples,
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Example 1: Idealized Counter
Here again is the 'idealized counter:

 EP\\§m Oz, x + 1, 0)

Fihm COUNT_IMP (REP_num) (reset, out) => COUNT (REP num) (reset,ou

.. which can be expa,nde)cm

l—thm COUNT_IMP (REP_num) (reset,out) =
Vt. out (t+1) = (reset t = 0| ((out t) + 1))

Example 2: 8-bit Counter

Another instance could be an 8-bit version based on built-in HOL
types:

» REP8 )= WORDS ((VAL8 x) + 1), WORD8 0)
g NT_IMP (REP8) (reset,out) == COUNT (REP8) (reset,out)

.. which can'ke expanded to:

binm COUNT_IMP P8) (reset,out) =—>
Vt. out (t+1) = (reset t = WORD8 O | (WORD8 ((VAL8 x) + 1)))
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Generic Specification of a Simple Microprocessor . ..

wmem

I datain J

dack

dataout

i ]

TAMARACK-3 [
idle '
teag iack
datain - data from memory wmem - read/write select
dack - data acknowledge dataout - data to memory
~idle - extended cycle mode dreq - data request
ireq - interrupt request addr - address to memory

iack - interrupt acknowledge



Instruction | Opcode Value | Effect

JZR 0 jump if zero ]
JMP 1 jump

ADD 2 add accumulator

SUB 3 subtract accumulator
LDA 4 load accumulator
STA 5 store accumulator
RFI 6 return from interrupt
NOP 7 no operation

JZR - jump if zero

JMP - jump

ADD - add accumulator
SUB - subtract accumulator
LDA - loa,dl accumulator

STA - store accumulator

RFI - return from interrupt

NOP - no operation

Interrupt

pc « if iszero acc then inst else inc pc

pc + inst

acc + add (acc,opera_nd)'

pc + inc pc

acc + sub (acc,operand)

pc + inc pc

acc + operand
pc + inc pc

mem « store (mem,address inst,acc)

pc + inc pc
pc + rtn
iack «— F

pc + inc pc

if iack.= F then
pc « 0 A
rtn + pc

iack + T
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wmem

datain
interface dataout
e | |
dreq
Tmem | dreq
wmar
mar
dd
addr e
wpc
rpc Pc
wacc
racc acc
rom 1 system
bus
zeroflag
wir
rir i
mpc l
i opc
next -
wrtn
rrtn | rtn
dack
iack
jack i
idle
war
bl arg
ireq
alul l
alui alu
rbuf
buf
L]
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Data Types:

.bool - Boolean values {T,F}

:num _ natural numbers {0,1,2,...}
.swordn - full-size machine words
.#word3 - instruction op codes

: ¥word4 - 4-bit words
. xaddress - memory addresses
s *memory . - INEmory states

Generic Functions:

(iszero rep) “test if zero”

(inc rep) - “iIncrement”

(add rep) - - “addition”

(sub rep) - “subtraction” .
(wordn rep) - “full-size word representation of a number”
(valn rep) _ “yalue of a full-size word”

(opcode Tep) - “extract opcode field”

(val3 rep) - “yalue of an opcode”

“oxtract address field”

“read memory”

(address rep)
(fetch rep)
(store rep) - “write memory” |

(word4 rep) “yalue of a 4-bit word”

(vald rep) “4_bit word representation of a number”

1
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Iep_ty =

: (*wordn—bool) X % iszero Y
(*wordn—*wordn) X ' % inc ¥%
(*wordnx*wordn—#*wordn) X 4 add ¥
(*wordnX *wordn—*wordn) X 4 sub %
(num—*wordn) X 4 wordn
(*wordn—num) X 4 valn ¥
(*wordn—#word3) x . . % opcode ¥
(*word3—num) x : 4 val3
(*wordn—x*address) x % address
(*memoryx*address— *wordn) X % fetch ¥
(*memoryXx*address X *wordn—*memory) X % store
(num—*word4) x % word4 ¥
(*word4—num) h val4d ¥
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i
Fdes TamarackImp @
(datain,dack,idleyireq,mpc,mar,pc,

acc,ir,rtn,arg,b ,iack,dataout,vwmem,dreq,addr) =
Jzeroflag opc cnt}s.
CntlUnit Tep ack,idle,ireq,iack,zeroflag,opc,mpc,cntls) A
DataPath ¢ i
fan NS
; cntls,dat in,mar,pc,acc,ir,rtn,iack,
{ arg,buf, taout,wgem,dreq,addr,zeroflag,opc)
k
Fdes RataPath irep.ty)
(cntlsTdataiy mar,pc,acc,ir,rtn,iack,
arg,buf,data ut,wmem,dreq,addr,zeroflag,opc) =
Jbus busokay alu pwr gnd rmem Wmar WpC IPC
wace racc wirlrir wrtn rrtn warg aluO alul rbuf.
DecodeCntls :
cntls, 1
wmem, rmem, whar,¥pc,Ipc,Wacc,race,
wir,rir,vrt ,rr{n,warg,aluo,alui,rbuf) A
BusOkay (rme ,rpc,racc,rir,rrtn,rbuf,busokay) A
Interface Te (busokay.wmem,rmem,bus,datain,dataout) A
OR (wmem,rmefn,dreq) A
‘okay,wwar,gnd,bus,bus,mar) A
AddrField zep (mar,addr) A
Register (pusokay,wupc,rpc,bus,bus,pc) A
Register usokay,wacc,racc,bus,bus,acc) A
TestZero rep (acc,zeroflag) A
Register (busokay,wir,rir,bus,bus,ir) A
OpcField/rep (ir,opc) A
Registe (busokay,wrtn,rrtn,bus,bus,rtn) A
JKFF (wttn,rrtn,iack) A
Registér (busokay,warg,gnd,bus,bus,arg) A
(alu0,alul,arg,bus,alu) A
(busokay,pwr,rbuf.alu,bus,buf) A

Fdes ALU &(:g;ffﬁ)ty) (£0,f1,inpl,inp2,0ut) =
Vt:time - '

out t = (((£0 t,£1 t) = (T,T)) — ((inc rep) (inp2 t)) |
((£0 t,f1 t) = (T,F)) — ((add rep) (impl t,inp2 t)) |
((£0 t,f1 t) = (F,T)) — ((sub rep) (inpi t,inp2 t)) |
((wordn rep) 0))
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Fdef TamarackBeh {
Yu:time. | -

(mem (u+1),Pp (u+1) ,acc (u+l),rtn (u+t) ,iack (u+l)) =
Np:xStazs TP (ireq u,mem u,pc u,acc u,rtn u,iack u)

rep_ty) (ireq,mem,pq,acc,rtn,iack) =

ey NextState (gfg)rep_ty) (ireq,mam,pc,acc,rtn,iack) =
et opcvar’= OpcVal rep (mem,pc) in

((ireq A —~iack) . = IRQ.SEM rep tmem,pc,acc,rtn,iack) |

- (opcval = JZR_OPC) = I R_SEM ke (mem,pc,acc,rtn,iack) |

(opcval = JMP_0PC) P_SEM rep (mem,pc,acc,rtn,iack) |
(opcval = ADD 0P¢)” = ADDSEM Tep (mem,pc,acc,rtn,iack) |
(opcval = sup_0fC) = S _SEM rTe (mem,pc,acc,rtn,iack) |

1}
r

(opcval _OPC) => LPA_SEM 1¢ (mem,pc,acc,rtn,iack) |
(opeval 77 TA_OPC) => BTA_SEM xep (mem,pc.acc,rtn.iack) |
(opecval’ = RFI_OPC) ./ RFI_SEM rep (mem,pc,acc,rtn,iack) |
\ NOPZSEM rep (mem,pc,acc,rtn,iack))

baoy JZRSEM (fopjrep-ty)/ |
f"(mém:*m:»ory,pc:* ordn,acc:*wordn,rtn:*wordn,iack:bool) =
‘let inst = (fetc rep)f(mem,(address rep) pc) in
1et mextpc = (( szero Tep) acc) = inst | ((inc rep) pc) in
(mem,nextpc, cc,rtn,iack)

Fdey JMP_SEM (rep:r _ty)
(mem: *memoT ,pc:*wordn,acc:*wordn,rtn:*wordn,iack:bool) =
let inst =/(fetch rep) (mem,(address rep) pc) in B
(mem, in; t,acc,rtn,iack)

~

Fdes ADD?SEM (rep:rep_%j) :
mam:*memory,pc:*wordn,acc:*wordn,rtn:*vordn,iack:bool) =

let inst = (fetch rep) (mem,(address rep) pc) in
 let operand = (fetch rep) (mem, (address rep) inst) in
(mem, (inc Tep) pc, (add rep) (acc,operand),rtn,iack)
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Re-usable Correctness Results, ...

|- VYdatain pwr dataout wmem dreq addr.
Val3_CASES_ASM (rep:rep_ty) A
ValdWord4_ASM rep A
TamarackImp rep (
datain,pwr,pwr,ireq,mpc,mar,pc,
acc,ir,rtn,arg,buf,iack,dataout,wmem;dreq,addr) A
SynMemory rep (wmem, addr,dataout ,mem,datain) A
PWR pwr A
(((val4 rep) o mpc) 0 = 0)
b 7 :
let £ = TimeOfCycle rep (ireq,mem,pc,acc,rtn,iack) in
TamarackBeh rep (ireq o f,mem o f,pc o f,acc 0 f,rtn o f,iack o £)

e independent of any fixed word size.
e independent of elaborate proof infrastructure

e could be linked into a verified stack
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Here is a representation for a 16-bit version,

Define ("ISZERD16 w = ((VAL16 w) = 0)");;
Define ("INC16 w = WORD16 ((VAL16 w) + 1)")::
Define ("ADDi6 (wi,w2) = WORD16 ((VAL16 wi1) + (VAL16 w2))");;
Define ("SUB16 (wi,w2) = WORD16 ((VAL16 wi) - (VAL16 w2))");;
Define ("OPCODE w = WORD3 (V (SEG (0,2) (BITS16 w)))");;
Define ("ADDRESS w = WORD13 (V (SEG (3,15). (BITS16 w)))");;
Define (
"REP16 =
ISZERO16, % iszero Y%
- INC16, _ % dne Y
ADD16, _ % add Y%
SUBiS6, % sub Y
WORD16, % wordn Y
VAL1S6, % wvaln Y
OPCODE, % opcode ¥
VAL3, % valld Y
ADDRESS, % address Y
(A(x,y). FETCH13 x y), - | % fetch Y
(A(x,y,z). STORE13 y z x), % store U,
. WORD4, % word4 Y
VAL4");; h vals }

... which is just “plugged into” the generic correctness theorem:

|- Vdatain pwr dataout wmem dreq addr.
Val3_CASES_ASM REP_16 A
Val4Word4_ASM REP_16 A
TamarackImp REP_16 (
~ datain,pwr,pwr,ireq,mpc,mar,pc,
acc,ir,rtn,arg,buf,iack,dataout,vmem,dreq,addr) A
SynMemory REP_16 (wmem,addr,dataout,mem,datain) A
PWR pwr A
(((val4 rep) o mpc) 0 = 0)
B
let f = TimeOfCycle rep (ireq,mem,pc,acc,rtn,iack) in
TamarackBeh REP_16 (ireq o f,mem o f,pc o f,acc o f,rtn o f,iack o f)




Fully generic description of hardware in VHDL,

packége TYPES is

subtype word_3 is bit_vector (2 downto 0);
subtype word_4 is bit_vector (3 downto 0);
subtype word._n is bit_vector (15 downto 0);
subtype num is natural; .
subtype bool is boolean;

end TYPES;

library tamarack;
use tamarack.types.all;

package TAM3 is

function iszero (inp:word_n) return bool;
function inc (inp:word.n) return word.n;
function add (inpi,inp?:word_n) return word._n;
function sub (inpi,inp2:word_n) return word.m;
function wordn (inp:num) return word._n;
function valn (inp:word_n) return num;
function opcode (inp:word.n) return word_3;
function val3 (inp:word_3) return num;
function word4 (inp:num) return word_4;
function val4d (inp:word_4) return num;

end TAM3;

function iszero (inp:word_n) return bool is
variable result :bool := TRUE;
begin
for i in inp’low to inp’high loop
if inp(i) = ’1’ then
result := FALSE;
end if;
end loop;
return(result);
end iszero;
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A typical formalism involves a set of operators,

e.g., the temporal logic operators

O - “henceforth”
<& - “eventually”
O - “pext”
U - “until”

...and a set of transformation rules:

P and (not Q) — OP

e.g., P 0 U Q)

To embed a formalism in HOL:

1. definitions are given for the operators based on a semantic theory for

the formalism; /

OP = At. Vn. P (t+n)

2. standard transformation rules are derived from operator definitions as /
theorems of higher-order logic

VP Q. VALID((P A (-Q)) — ( O P)) = VALID(P — (P U Q))
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Contrast with ‘Syntax-Based’ Approaches

This approach differs fundamentally from ‘syntax-based’ approaches of de-
veloping support tools for formalisms:

' for instance, tools such as the Cornell Synthesizer Generator (CSG)
have been used to develop support tools for the protocol specifi-
cation language LOTOS. '

In the ‘syntax-based’ approach, transformation rules are simply ‘programmed’
(prehaps inconsistently !) -into the system.

___but in a HOL approach,

Transformation rules are be formally dervied as logical consequences of the
semantic theory (i.e. definitions of primitive operators).

While the HOL system is principally concerned the semantic aspects of
representing an embedding formalism, it is often possible to also represent
syntactic aspects of the formalism.
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An Example
Here’s an example of when an embedded notations makes a big difference !

- ———— . . i B T ... S

/ .

Y
data
'“-—3x=, : dd
CPU ader Memory
acknowledge ' request ‘ﬂ*
e S - -..____'_'J
addr

dat (write)

reqiest i 7\\\
/

data (read) \< ) \
| /L
ackgg&lgﬂge Visy C%\l

Synchronizing Data Transfer with Handshaking Signals
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The timing diagram is the standard way to describe constraints on the
relative order of events in a handshaking sequence.

Some of these constraints, along with additional constraints, are expressed

below in natual language.

“whenever the Tequeét signal becomes true, it must remain true
until it is acknowledged”

“eyery request must eventually be acknowledged”

“whenever the acknowledgement signal becomes true, 1t must remain true
until the request signal returns to false”

“the request signal will eventually return to false after
the request is acknowledged”

“whenever the request signal is false, it will remain false until
the acknowledgement signal is also false”

“the acknowledgement signal will eventually return to false after
the request signal returns to false”

“once false, the acknowledgement signal will remain false until
there is a request”

“whenever the acknowledgement signal is false,
there will eventually be a request”

For handshaking to work correctly, these constraints must hold.
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8 June 1990, ©CardelI—Oh've
ge could be translated

uage descriptions are the previous pa
g set of eight assertions:

UBC HOL Course, 4-

The natural 1ang
into the followin

ack(t + m)) =7 req(t + n))

(Ym. m <€ 0 = req(t * n)) = ack(t * n))

_ ~req(t * n))

% & n =P ack(t + m)) = req(t + 1))

Yt. reqt = (Yn. (Vm.

Yt. “req t = (3n. ~ack(t ¥ n))

yt. ack t = (vn. (Vm. m <D = req(t + m)) = ack(t N n))

Yt. “ack t = (3n. reqlt * n))

But this is not very easy to read !
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For instance, the assertion,

Vt. req t => (Vn. (¥m. m < n => ack(t + m)) = req(t + n))

...1s supposed to say:

“whenever the request signal becomes true, it must remain true
until it is acknowledged”

... but it is difficult to translate between this natural language description
- and the above description in higher-order logic.
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A Better Idea !

A much easier notation for expressing constraints of this form is the notation

of temporal logic: “ 4
U* —~ i\

(req — (req U ack))

“whenever the request signal becomes true, it must remain true
until it is acknowledged”

where ‘U’ can informally be understood to mean “until”.

Similarly, instead of,
Vt. req t => (In. ack(t + n))

. we can use the notation offtemporal logic to express this same condition,

| ;
(req — (<ack)) b £

“every request must eventually be acknowledged”

... where ‘O’ means “eventually”.

(Note: there are no explicit time variables t in the temporal logic specifi-
cations.)
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Here is the complete translations into temporal logic notation:

(req — (req U ack))

“whenever the request signal becomes true, it must remain true
until it is acknowledged”

(req — (<Qack))

“every request must eventually be acknowledged”

(ack — (ack U (-req)))

“whenever the acknowledgement signal becomes true, it must remain true
until the request signal returns to false”

(ack — (O(—req)))

“the request signal will eventually return to false after
the request is acknowledged”

((-req) — ((-req) U (—-ack)))

“whenever the request signal is false, it will remain false until
the acknowledgement signal is also false”
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((—req) — (O(jack) ))

“the acknowledgement signal will eventually return to false after
the request signal returns to false”

((—ack) — ((—ack) U req))

“once false, the acknowledgement signal will remain false until
there is a request”

((—ack) — (Creq))

“whenever the acknowledgement signal is false,
there will eventually be a request”
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To take advantage of this concise notation, the notation of temporal can be
embedded in higher-order logic: '

We first define the primitive operators,

"At. Vn. P (t+n)

Faes O P
Fp O P = At. In. P (t+n)

Faef O P = At. ((P (t+1)):bool)

Feef PUQ = At. Vo. (Vm. m < n = —(Q (t+m))) => P (t+n)
biep P = /\t:’ (P t)

Fgef P— Q=At. Pt = Q¢

Faef PAQ=At. Pt AQt

ges VALID P = Vt. P ¢

... and derive rules of temporal logic as theorems of higher-order logic:

o,

¥P Q. VALID((? A (-@)) — (O P)) => VALID(Z — (P U Q) )
which corresponds to:

P and (not Q) — QP
P — (P URQR) \
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Exercises:

1. Create a theory for the above temporal logic operators (based on the
definitions given). You will have to use some machine-readable symbols

instead of O, <, U, etc.

2. Derive some rules of temporal logic, namely:

VP Q S. VALID (P — Q) A VALID (Q — S) = VALID (P — 3)

expandf (PURE_REWRITE.TAC [ ... ] THEN
BETA_TAC THEN
REPEAT STRIP_TAC THEN
RES_TAC THEN
RES_TAC);;

YP Q S. ]
VALID (P — (© Q)) A VALID (Q — S) =

VALID (P — (O S))

expandf (PURE_REWRITE_TAC [ ... ] THEN
BETA_TAC THEN
REPEAT STRIP_TAC THEN
RES_THEN (X_CHOOSE_TAC "n:num") THEN
EXISTS_TAC "n:num" THEN
RES_TAC) ;;
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A low-level circuit
model in HOL

by

Brian Andersen
and

Carsten Rickers
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Outline of our talk

- Introduction
-Presentation of the model
-implementation
-Performing proofs

-Future developments

HOL Meeting 90
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Introduction

/

We need a model that:

-introduce new voltage values

-captures some of the informal
arguments used by designers

-introduce resistances and
capacitances

-deduce the flow of signals rather
than imposing a flow

-is compositional

HOL Meeting 90
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A compositional model

ﬂVhat is a circuit?

/ Environment \

sort:
the set of connection points

Composition:
cloc2

Hiding:
c\a

HOL Meeting 90
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A compositional model

Ge voltage values:

X
o

Q 4
Z

The strength order:

HOL Meeting 90

237



A compositional model

/ Attributes describing a circuit.
/ Environment \

a

\ /

V: A->V (the value function)

I: A->V (the internal value function)

S: A->S (the strength function)

—: A -> A ->bool (the flow relation)

HOL Meeting 90
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A compositional model

/ A static configuration.

Definition:

A static configuration of sort A is a
structure

S, V, 1, —-)

which satisfy

S(a) =0 V(o) =Z

() < V(a)

o— B = S(a) =2 S(P)

o — B= (o) <i(B) A V(a) < V(B)
a—>BASEP)eK u{O}—>S( ) = S(B)
o0—->BAS()=SPB)=p -«

HOL Meeting 90
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A compositional model

/ Composition of two circuits.

(S0, VO, 10, =»0) and o1 =(S1, V1, 11, =1)
are static configurations of sort A0 and A1 respectively.

60oocl=(S,V, I, —)

fSOI'Al1=SITA0andVOT A1 =VIT A0
and undefined otherwise

S=S0uSlandV=V0uVland - = (—=0uU —1)* and
(o)) = ={10(B) | Be AOand B — a} +
{11(B) | Be Aland B — o}

forany a € AO U Al.

Hiding a point in a circuit.
= (S, V, |, -) is a static configuration of sort A.

c\a=(S\o, Vg, I\a, o>\a)

if g AorV(o)=I(c) +Z{V(P) | Be A\aand B — o},
and to be undefined otherwise.

HOL Meeting 90
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A compositional model

/ A language to describe circuits.

Syntax:

c ::= Pow(a) | Gnd(a) |
capkH(a) | capkL(a) |
pt(c) | wre() | resg(o,B) |

ntran(o.,B,y) | ptran(a.B.y) |
Coc|c\a

Semantics:

[[ntran(o,B,)]] = { 6 € Sta(o,B,y) | lay=Z A IB) =Z A
IM=ZAryll aayll Ba(all Bvoae B)a
Vn=Hos oo ArNVyp=Laall B

[codl]={cop | ce[lcland p e [[d]] and 60 p I}
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A compositional model

/ An assertion language.

Syntax:
Valueterms: tu=H|L|Z| X |V(1t) | |(c)

Strength terms: e :=s | S(n) | ece | e+e
Assertions for static configurations:

¢ 1= 70 = 7l | 70 = =l |
t0=1t1 | to<t1]
el =el | e0<el |

TIFloanolovel-ol
.0 | Vx.0

Semantics:

[[t0 = t1]] = { o € Sta | [[t0]]o! and [[t1]]o! and
[[t0]]o = [[t1]]o}
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242



A Proof System in HOL

/ We will concentrate on goals as: [c] c [A]

compositional model:

[c1] < [A] [c2] c [B]
proof

[c10c2] c [C]

Requirements to the implementation:

Basic Concepts
Static Configurations
Basic Circuits

Hide, Comp
Assertion Language
Tactics

HOL Meeting 90
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Basic concepts

/ points — num in HOL

voltage, strength — new types with operations:

let mosvalue = define_new_type (‘mosvalue’,
"mosvalue=2Z|L |H|2Z");;

let strength = define_new_type (‘strength’,
strength = Zero_str | Cap num | Res num | Inf_str");;

let vit = new_definition(vit’,
BVitxy=~(x=y)A(x=2)V(y=X)");

assertion language — build-in operations in HOL +
expressions over the new types

fx.: (vin=H) ==> (iout=1L1)

HOL Meeting 90
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Static configurations

@ is described by a point function (indirect sort)

static (n:num->bool) (s:num->strength)
(vinum->mosvalue) (i:num->mosvalue)
(r:num->num->bool) =
(la.na==>raa)A
(abc.naAnbAnc==>rabArbc==>rac)/
(la.na==>(sa=2ero_str)=(va=2) A\
(!a. na ==>(i a) vle (va)) A\
(lab.naAnb==>rab ==> (s a)sle (s b)) A
(lab.naAnb==>rab==>(ia)vle (i b) \
(v a)vle (v b)) A
(lab.naAnb==>rab==>
(?m.sb=Capm)V(sb==Zero_str)==>(sa=s b)) \
(lab.naAnb==>rab/A(sa=sb)==>rb a)

HOL Meeting 90

245



Basic circuits

/.

he basic circuits are defined as predicates:

chsvir

let ntrans = new_definition('ntrans’,
"ntransabc =
\nsvir. staticnsvirA
(!(k.nk==>(k=a)V(k=b)V(k=c)A
~@a=b)A~(b=c)AN~(@a=c)A
~(b=a)A~(c=b)AN~(c=2a)A
(ifa=Z2)A(ib=2Z)AN(ic=2) N\
~(rac)A~(rca)A~(rbc) A ~(rcb)A
((rab) A(rba)V(~(rab)\~(rba))A
((ve=H)==>(rab)A(rba))A
((ve=L)==>~(rab)\A~(rba))");;
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Composition

/ compcic2 = \nsvir.
9

’n1 s1v1il1rn2s2v2i2r2.
(c1 n1s1v1i1r1) A(static n1s1v1itri)A
(c2 n2 s2 v2 i2 r2) /\ (static n2 s2 v2i2 r2) A
(staticn1 s1v1itl ri) A
((k. nTkAN2k ==>(s1k=s2k)A (vl k=v2k))A
((k.nk=n1kVn2k)A
(!k.nk==>(sk=(n1k=>s1k|s2k)) A
((k. nk==>(Vk=(n1k=>v1k]|v2k)) A
(fab.nfaAnitbArfab=n1aAnibArab)A
(fab.n2aAn2bAr2ab=n2aAn2bArab)A
(labc.ntfaA~n2aAnibAn2bA~n1icAn2cAh
rMabAr2bc=n1aAn2cArac)/
(lfabc.n2aN~nfaAntbAn2bA~n2c/AnicA
rAabAribc=n2aAnicArac)A
('!k.nk ==> (i k = vjoinset (\z. 2j.njArjk /N
(M jA(z=11])V(n2jA(z=i2]))))
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Tactics

gexample:

Insvir:comp (inv in x) (inv x out) ==>
(vin = H) ==> (i out = H)

can be shown by the properties of inv (+ comp)

proving methodology:

Rewrite with the definition of comp
Tranfer to the assumption list

Add Facts to the assumption list
until enough to show the goal

HOL Meeting 90
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A proving step

/"i out = H" B a "i out = H"

['k.nk ==>(vk=
(n1 k=>v1k|v2k)"]

['vin =H"]

['n1in"]
["n in"] :
Y ["v1lin =H"]
A

|-"nin ==>(vin=
(n1in=>v1in|vin))"

HOL Meeting 90
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A Dynamic Model

K)ynamic model as sequence of steady states

cl » 02 - 63 - 064 — o5

T T T T T
t1 t2 t3 t4 t5

time parameter:

t.(vtin=H) == (i t out = L)

let cap = new_definition (‘cap’,
"capka=\nsvir. (staticnsvir)/\
((k.nk=(k=2a))A

(t. (Cap k) sle (s ta)) A

(It. (s (t+1)a=Cap k) ==> (i (t+1) a=v t a)) A
(t. ((Cap k) sle(sta) ==> (ita=2)");;

HOL Meeting 90
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Future developments

-

We have implemented a hardware model in HOL that
works reasonable

Still some work to do

Better transistor description can be obtained

Extensions to other types of proves as: [c1] = [c2]

Can easily be extended to a dynamic model

HOL Meeting 90
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THE VERIFICATION OF A

PARAMETERIZED MEAD&CONWAY

ALY CORE IN HOL

CATIA ANGELO
LUC CLAESEN

HUGO DE MAN

U
imec vzw

MAY 90
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OUTLINE

- PRELIMINARY CONSIDERATIONS

- INTRODUCTION

- THE DESIGN PROCESS
1- LOGICAL FUNCTIONS
2- ARITHMETIC FUNCTIONS

- THE PROOF
1- USING T
2- STRATEGY AND PROOF FLEXIBILITY
GOING FROM A IRREGULAR STRUCTURE
TO A REGULAR STRUCTURE

HE KNOWLEDGE OF THE DESIGN PROCESS

3-

- CONCLUSIONS
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PRELIMINARY Q!NﬁD@E@&TDQD\‘]ﬁ

1- GLOBAL GOALS:

- LEARN HOL;

- DEVELOP A METHODOLOGY FOR HARDWARE VERIFICATION

USING HOL;

- IDENTIFY THE BOTTLENECKS OF THE METHODOLOGY AND HOL;

- LIBRARY OF PRE-PROVEN MODULES;

- LIBRARY OF USEFUL STRATEGIES TO PROVE HARDWARE

CORRECTNESS (TACTICS AND TACTICALS).

2. LOCAL GOAL: ALU VERIFICATION IN HOL

HE' ALU CORE IS A GOOD EXAMPLE BECAUSE THE BEHAVIOR

E DATA FLOW AND IT IS NOT

T
IS SPREAD ALL OVER TH

COMPLETELY STRUCTURED IN SUB-BEHAVIORS.
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PRELIMINARY CONSIDERATIONS

1- GLOBAL GOAL:
- DEVELOP A METHODOLOGY FOR HARDWARE VERIFICATION

USING HOL AND BOYER MOORE IN SUITABLE LEVELS

- IDENTIFY THE BOTTLENECKS OF:
- THE METHODOLOGY
- HOL
- BOYER MOORE

- HOL:

- LIBRARY OF PRE-PROVEN MODULES
- LIBRARY OF USEFUL STRATEGIES TO PROVE HARDWARE
CORRECTNESS (TACTICS AND TACTICALS)

2. LOCAL GOAL: ALU VERIFICATION IN HOL
THE ALU CORE IS A GOOD EXAMPLE BECAUSE THE BEHAVIOR

IS SPREAD ALL OVER THE DATA FLOW AND IT IS NOT

COMPLETELY STRUCTURED IN SUB-BEHAVIORS
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INTRODUCTION
- THE GOAL IS TO PROVE THAT:
ALU IMPLEMENTATION = ALU SPECIFICATION

- THE ALU IS PARAMETERIZED ON THE WORD

SIZE N
CONTROL[11...0] =—p =g OUT[(N-1)...0]
CIN —> ALU = COUT
(N BITS)
B[(N-1)...0] = =3 (QVERFLOW

- THE ALU SOULD PERFORM LOGICAL OR ARITHMETIC OPERATIONS
ON THE VECTORS "A" AND "B" DEPENDING ON THE CONTROLS.

THE SPECIFICATION IS MADE IN A PROGRAMMING LANGUAGE
LIKE.

- THE VERIFICATION LEVELS:

BEHAVIORAL
SPECIFICATION

,

STRUCTURAL
REPRESENTATION

{

TRANSISTOR
LEVEL
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THE DESIGN PROCESS

1- LOGICAL FUNCTIONS:

cT3 CT2 CT1 CTO

P b4

A o GENERAL ———
FUNCTION BLOCK
B — (GFB)
BINARY CODE
DECIMAL CODE OUT
CT3 CT2 CT1 CTO
0 0o o0 o0 0 1
1 0o 0 o0 1 (A N\ B)'
2 0o 0 1 © (A' V B)
3 o 0 1 1 A'
4 0o 1 0 0 (A V B)
5 0o 1 o0 1 (A@B)
6 0o 1 1 0 B
9 o 1 1 1 (A' \ B)
8 1 0 0 0 (A VB)
9 i 0 o0 1 B'
10 i 0 1 0 A@®B)'
11 i 0 1 1 (A V B)
12 1 1 0 0 A
13 1 1 0 1 (A \ B
14 1 1 1 0 (A \B)
15 1 1 1 1 0
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GFB CIRCUIT

CT3 CT2 CT1 CTO

! VDD

ouT
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THE GFB BAR

CT3 CT2 CT1 CTO

AD —p — OUTO

A1
B1—>

G|F|B & OUTH1

A2—>p — OUT2
F|B
ga—s |©

An-1—p —p OUThn-1
Bn-1—> G|F|B

\/

CT3 CT2 CT1 CTO

A[(n-1)...0] _, G
B[(n-1)...01 —> |B|A|R

-
oo

_—» OUT[(n-1)...0]

THE GFB BAR PERFORMS ALL LOGICAL OPERATIONS

WITH TWO VECTORS A AND B.
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2- ARITHMETIC FUNCTIONS

THEY ARE ALL A KIND OF ADDITION

Cc A B
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

K=A

P

EXOR (A,B)

K
0
0
1
1
0
0
1

1

CARRY = (P A C) V (P' A\ K)

SUM = EXOR(P,C)

FOR N BITS:
Kj = Aj
Pj = EXOR (Aj, Bj)

Cj = (Pj N\ Cj-1) V

sj = EXOR (Pj, Cj-1)

Kv, Pv, Sv

Cv

(Pj" N Kj)

261

P

O O = = 0O

==>

SUM CARRY

0 0
1 0
1 0
0 1
1 0
0 1
0 1
1 1
GFB (Aj, Bj)

GFB (Aj, Bj)
CARRY (Pj, Kj, Cj-1)

GFB (Pj, Cj-1)

3 GFB BARS

MUX CHAIN



IDEAL CARRY CHAIN

PO

cin cO

K

P2

P1
KO K1 K2
Lo Lo L
cin
U
ci

0

P3

K3
0

Kn-1

HOW TO CASCADE?
POSSIBLE SOLUTIONS:

)

PO P1
KO K1 K2
Lo 0 L.
cin
_[-1 1
cin cO ci

K3
L

V]

c2

BAD SOLUTION !

c3

BUT...

"CORRECT" INPUTS

INVERTED OUTPUTS

c3

WASTE OF TIME AND AREA !

262
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Kn-1

Pn-1

cout



cn-2" cout
eeeo 1

cin co' c1 c2' c3 WHERE Kj = Aj;

IF INSTEAD OF Kj = Aj ONE GENERATES Kj = A}’
IN THE K GFB BAR:

Pn-1
KO Kn-1
LDo—o Ll
. cn-2 cout
cin —1—1 (YY) 1
cin co' c1 c2' c3 WHERE K] = Aj' -

SINCE BUFFERING CIN AND COUT IS DESIRED THE CHAIN IS SHIFTED

Pogi1 P1k2 P2g3 P3 Kn-1 Pn-1

120

- - e em o

P3 P4 Pn-1

| I | | CR[3...0]

GFB GFB GFB GFB | eee | GFB

]
]
1
§
i
1
I
]
I
]
1
1
|
1
!
1
1

'GFBB' 10UT lOUT1 IOUT2 IOUT3 IOUT4 IOUTn-1

WHERE Kj = Aj'
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'GFBB' BEHAVES LIKE GFBB BUT IT HAS A

DIFFERENT HARDWARE

Pj ¢l
'GFBB'
re==f3-=="=q-=-=-=-=- 1
] ]
] 1
! : Pji CJj
] 1 j
L !
1 1
] ]
CR[3...0] ! :
E . : _ GFBB
| :
OUT]j OUTj
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CT3 CT2 CT1 CTO

I I

A iy — QUT
GFBB
B —.H
BINARY CODE
DECIMAL CODE o
CT3 CT2 CT1 CTO

0 0O 0 0 O 1

1 0 0 o 1 (A" V B)
2 0 0 1 0 (A A B
3 0o 0 1 1 A

4 0 1 0 0 (A VB
5 0 1 0 1 (A@B)'
6 0 1 1 0 B'

7 0 1 1 1 (A V B)
8 1 0 0 0 A VE)
9 1 0 0 1 B

10 1 0 1 0 (A@B)
11 1 0 1 1 (A' \ B)
12 1 1 0 0 A
13 1 1 o0 1 (A N B)
14 1 1 1 0 (A NBY)
15 1 1 1 1 0
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GFBB CIRCUIT

CT3 CT2 CT1 CTO

r

VDD

OUT
D- >

GFB CIRCUIT

CT3 CT2 CT1 CTO

| E—

VDD

OUT
D- >
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THE CARRY CHAIN CELLS

|
K_ _|>c._?L ‘

N

Cj+1'

1

L

—=h

LV

Cj+1

o——t

ODD CELL

L VDD

4 L
4 L°

T T-
|7<

Cj+1'
K
> Cj
=
B P fci P

‘ GND

267

EVEN CELL

‘ VDD

Cj+1

¥ GND

7 T-

P fc;"




CP[3..0] CK[3..0] CR[3...0]
AD, —P-? I:g- ‘Cin'lii >
so | |GFB Bo | | GFB ™| |aFBB| OUTO
AT AL e
B1| |GFB B1"| |GFB —_ >| |GFB | OUT1
A2 | P2 A2 P2
B2 | |GFB . B2 | | GFB ——— [oree ouT2
A3 P3 A3 P3
BE: are | = |ars °2 " |are [outa
© @ o
: ‘ °
An-1 Pn-1An-1 ‘cn-z Pn-1
Bn;F GFB _.' Bn.] GFB en-2 3 GFB ;;T'M
LOGICAL OPERATIONS: EO

- THE OPERATION IS PERFORMED IN THE P BAR
- CR IS SUCH THAT OUTj = Pj

- WHAT HAPPENS IN THE K BAR AND IN THE CARRY
CHAIN DOES NOT MATTER

- THE DATA FLOW IS HORIZONTAL

ARITHMETIC OPERATIONS:

- THEY CAN BE SEEN AS A KIND OF ADDITION

- THE DATA FLOW IS BOTH HORIZONTAL AND VERTICAL
- HORIZONTAL FLOW: PARALLEL

- VERTICAL FLOW: SERIAL (SPEED BOTTLENECK)
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IMPROVING THE CARRY CHAIN SPEED

PO P3

P1 P2
ORIGINAL
L e 0 —0 CHAIN
1 1 i 1 eeeo

P = 1 MEANS: CARRY INFORMATION IS PROPAGATED

(Pi=1) A (Pi+1 = 1) N (Pi+2 = 1) A (Pi+3 = 1)
==> Ci+3 = ci-1
R O e s ]
i BYPASS |
Pi g CELL l
Pis+1 !
NEW Pi+2 | |
CHAIN Pi+3 | |
s e e e e :
1
1
1
1
1
1
1
RN S 1
es—— S [}
E o) E |
ci-1' ci-|}3
Pi Pi+1 Pi+2 Pi+3

E: EVEN CELL; O: ODD CELL; B: BYPASS CELL
E OE O BEOTEOUBEOTE O B..
REMARK: THE CHAIN COULD BE FASTER ELIMINATING THE

OUTPUT INVERSION OF THE BYPASS CELL AND CHANGING
ITS STRUCTURE TO:

E O E OB OEOTEWBTE OE O B..
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Pi

Pi+1
Pi+2
Pi+3

vDD

THE BYPASS CELL

ci+3'

ci-1’

Pi_alp

Lede

F

Pi_-b’q

Pi

Pi+1

Pi+2

Pi+3

GND

| —|S'>s

ci-1'

270

Fmw

4 L

| 7

ci+3 better’

ci+3
better'

¢VDD

ci+3'

‘ GND



THE PROOF

1 - USING THE KNOWLEDGE OF THE DESIGN PROCESS WE

HAVE A HINT ABOUT WHAT TO PROVE OR CONSIDER
LIKE:

THE GFB PERFORMS THE LOGICAL OPERATIONS
GFBB (CT, A, B) = GFB (CT, A, B")

CARRY CHAIN WITH BYPASS =

CARRY CHAIN WITHOUT BYPASS CELLS

CARRY CHAIN + RESULT BAR PERFORM SOME
IDEAL OPERATIONS

WHEN EXECUTING A LOGICAL FUNCTION:

ALU BEHAVIOR = P BAR BEHAVIOR

THE ARITHMETIC OPERATIONS ARE A KIND
OF ADDITION

2- STRATEGY AND PROOF FLEXIBILITY

SPECIFICATION

BEHAVIORAL L

STRUCTURAL| LEVEL

IRREGULAR
STRUCTURE

REGULAR

IMPLEMENTATION STRUCTURE

IMP’ IMP"' IMP™
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CONSIDER IN THE ALU THAT:

- SOMEONE USES A BYPASS OF SIZE DIFFERENT
OF FOUR AND/OR

- SOMEONE CHANGES THE START POSITION OF
THE BYPASS CELL AND/OR

- SOMEONE OMITS THE OUTPUT INVERTER IN THE

BYPASS CELL AND CHANGES THE STRUCTURE OF
\\ THE CARRY CHAIN

GOING FROM IMPLEMENTATION TO IMPLEMENTATION' WOULD

- REQUIRE AN ADDITIONAL STEP

- NOT REQUIRE REDOING ALL THE VERIFICATION
PROCESS

3- GOING FROM A IRREGULAR STRUCTURE TO A REGULAR
STRUCTURE:

- THE BYPASS CELL ELIMINATION

- THE CARRY CHAIN AND THE RESULT BAR TRANSFORMATIONS

- THE FOUR BAR TRANSFORMATIONS
s
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EOEO BLOCK

PO KO P1 P2 K2 P3 K3
S S A b
o ! 1
cin', c0 el c2 . cout'
——i» EVEN oDD EVEN i

P[3...0] K[3...0]

4 1

cin' cout'
- EOEO =t

IR

o_cin'o_c0o_ci1'o_c2

BYPASS BLOCK
P[3...0] K][3...0]

1
]
]
I
]
]
]
]
]
|
1

———
|
]
|
1
I
==
|

|

]
|

1

]

1

1

!

I

I

]

]

]

]

|

|
|

1

1

]

1

1

I

1

]

' P[3...0] '
; IR .
— EOEO BYP bt
cin_bet’ ) cout cout_bet'
N X copt’
cin' — —
e {
o_cin'o_c0o_c1'0_c2
P[3...0] K[3...0]
in_bet' ;
cin_bet " —s  pypass BLock [ Soui-bet
cin' —b — cout’

vy vy

o_cin‘o_c0 o_c1'0_c2
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BYPASS CELL ELIMINATION

cin' = cin_bet' ==>

P[3...0] K]3...0]

L

cm__t?et = BYPASS BLOCK —p> Ccout_bet
cin' =—p = cout'

IR

o_cin'o_c0o_c1'0o_c2

P[3...0] K[3...0]

¢ |

cin_bet' cout’

— EOEO _E: |
‘ * ‘ ‘ cout_bet

o_cin'o_c0o_ci1'0o_c2
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CARRY CHAIN TRANSFORMATIONS

A {4 ‘4
> koo [ plock [+ slock [+ aiock =

: v v ;

S S I '

lelels) —p1 BYPASS BYPASS
=# BLOCK BLOCK

! ! v

by X bl
—{>»—1 Eoeo [ EOEO [—> oo0 — eoeo H>—

; v !

'y by H K. |
—D"_E—Fo E = 0 [—> eee o H>—
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CARRY CHAIN AND RESULT BAR TRANSFORMATIONS

PO KO P1 K1 P2 K2 P3 K3 Pn-1 Kn-1
:'"‘"H“: red-----o-f-b-s e-q-f--- g ik
: E ) : 0] c1" E :c2: 0 c3' cn-2 1 | O :
cin| D L] : o 1 chut
) PO : , P1 P2| ! 1 p3 : '
: I B | Ll 0y v |
i ! I . 1 1 1
' v v 1 B :
CR[3..01|BB | | B BB|, !| B . :
femmens 1---' SR E— {__: L___{_..__ TR G i
ouTo OUT1 ouUT2 OUT3 OUTn-1
PO KO P1 K1 P2 K2 P3 K3 P4 K4 Pn-1 Kn.1
cin c0 c2 _ c4 cn-2 cout
= START EATNEG EATNEG [—... = END [—
CR | | | CR| |
ouTo OUT1 O0UT2 OUT3 0OUT4 OUTn-1
P0 KO Pl K1 P2 K2 P3 K3 P4 K4 Pn-1 Kn-1
Cin I I Co :""-I"‘I"'c'l"'l"l":cz:“'I"I-'EE'-—I"”I"E:4 cn 2 I I cout
— I H I I 1 1 I [T... 71 1 |
CRI3..0] | :___I_ ________ =" :___| ________ T i
ouTo ouT1 0ouT2 OouT3 ouT4 OUTn-1
P0 KO P1 K1 P2 K2 P3 K3 P4 K4 Pn-1 Kn-1
cin | | c0 L cl L] c2 | | | | c4 cn-2 || cout
| I | | ! |
ouTo OUT1 ouT2 OUT3 ouUT4 OUTn-1
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IDEAL CELL

Pi Pi Ki
: ' Ci-1 l ‘ Ci
Y : cnso_. IDEAL (>
tP1y ! [3:-0]—s cELL
! 1
CR[3...0]: | GFB : I
T : OUTi
OUTi
; : PO KO
i ]
' =D . R
i : > cin cO
: : : —»! START |>
T° : o PY : = CELL
CRI[3...0]! I  CRIB01: ! CR[3...0]
p— — | I ]
F ' . GFBB|
] GFBR : ; : ou1'oi
I i : ] :
B o i AN, | S
ouTo 'OUTO
END CELL
Kn-1 Pn-1 Kn-1

{ c
=

1)

=
]

N
L—
g

o

o

| =

Ll

(1)
=
]
Y
P .
m
=
O
v
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EAT NEGATION CELL

Ki+1 Pis+1

ci-1

CR[3..0]

Pi Ki Pi+1 Ki+1

ci+1

Pi KiPi+1 Ki+1

RRR

ci-1 ‘ Ci+1
o EATNEG —

CR[3..0]
, ==

CELL

v

OUTi OUTIi+1
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CELL TRANSFORMATIONS

jo KO F‘L Kf
cin co cin °0
= START === - IDEAL =
—sl —»  CELL
cris..o]| °CFtt CR[3..0]
Pn-1 Kn-1 Pn-1 Kn-1
il =2 cout cn-2 cout
— END —> — IDEAL —>
—p CELL CELL
—
CR[3...0] CR[3...0]
Ki Pi+1 Pi Ki Pi+1 Ki+1
Pill “Kin
e
]
ci-1 ci+1 ci-11 ci L ci+1
]
™ EaTNeG [ —™| IDEAL [ |peaL [
SELL | CELL CELL '
CR[3:0.1 CR[3...0];
L} 1
1

OUTi l l OUTi+1
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FOUR BAR TRANSFORMATION

CP[3..0] CKJ[3..0] CR[3..0]
A0 PO A0 KO PO
_: B _'. > —>| lIDEAL >
BO GFB BO GFB KO. OouTo
cl
Al P1 Al K1 P1 ‘
> > ! =#4 |IDEAL [—>
511 |GFB 81”1 |GFB e B ouT1
cl
A2 P2 A2 K2 P2 L
! > — > =& |IDEAL j—p
B2 GFB B2 | |GFB K21 ouUT2
c2
A3 P3 A3 K3 P3; ‘
= - = — j IDEAL =&
B? GFB B? GFB K3 oOUT3
‘cS
@ @ ®
@ @ [ ]
@ ® [ ]
| Lcn-z
An-1 Pn-1 An-1 Kn-1 Pn-1
—n e e —» DEAL >
—> OUTn-1
Bn.1>| GFB Bm.1| GFB o ‘
cout
ALU SLICE
CP[3..0] CK[3..0] CR[3..0] ci-1
Al Pi Al Ki
— - — >
—r e
Bi' | GFB Bi | GFP
:
]
CpP CK CR ci-1
R R b
—r — OUTi
Bi
— ALU SLICE L i
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REGULAR ALU

CP CKCR cin

AQ ;

s

BO ALU SLICE

co

All...(n-1)] 4 j y
—> —p OUTI[1...(n-1)]
) N-1 BITS ALU

B[l...(n-1)]
‘cout

IRREGULAR ALU = REGULAR ALU

REGULAR ALU = SPECIFICATION
IRREGULAR ALU = SPECIFICATION

REGULAR ALU = SPECIFICATION ==>

SLICE REASONING AND INDUCTION
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1- THE REASONING USED IN THE HARDWARE DESIGN
SHOULD BE USED IN THE VERIFICATION

2- REMOVING IRREGULARITIES FROM THE IMPLEMENTATION

BEFORE GOING TO THE SPECIFICATION LEVEL IS A
POWERFUL STRATEGY TO STRUCTURE THE CORRECTNESS
PROOF
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The HOL Verification of ELLA Designs

Richard Boulton, Mike Gordon, John Herbert,
John Van Tassel

University of Cambridge Computer Laboratory
New Museums Site
Pembroke Street
Cambridge CB2 3QG
England

ribecl.cam.ac.uk
Phone: +44 223 334729
Fax: +44 223 334678
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Motivation

Two methods used to specify hardware:

e Hardware description languages, €.g. ELLA,
VHDL

e Formal systems, e.g. HOL, Boyer-Moore logic

There is currently a gap between these two meth-
ods.
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Our Aims

To build a bridge between the two methods for
ELLA and the HOL proof assistant.

e Make formal specification and proof available
within a conventional design process

e Provide access to the engineering tools in a
theorem proving environment

Our Approach

To semantically embed a subset of ELLA in higher
order logic.
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Semantic Embedding

Each construct in the chosen subset of ELLA is
represented by a logical constant.

The constants are defined to have the behaviour
of the corresponding language construct.

The use of ‘semantic constants’ gives us:
e A simple translation from ELLA to HOL terms

e The ability to pretty-print the HOL terms as
the original ELLA constructs

The semantic constants can be expanded and sim-
plified to yield a more conventional logical specifi-
cation of the hardware.

The behavioural specification can be given as high-
level ELLA or in pure logic.
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The System

[ Pretty-Printer ]

Parse Tree

Compute

error

Semantics

J: Program
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An Example

A simple circuit:

in INV out

The ELLA for the circuit:

BEGIN
MAKE INV: out.
JOIN in -> out.
OUTPUT out
END

The HOL representation of the ELLA:

e0UTPUT.
Jdout out_£fn.
SERIES
[MAKE [ [MAKEITEM INV out_fnll;
JOIN

[JOINITEM in out out_fn(Ax’. ef1’. Vt’.

QUTPUT
out

288
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Eliminating Semantic Constants

Expanding

e0UTPUT.
Jout out_fn.
SERIES
[MAKE[[MAKEITEM INV out_fn]];
JOIN
[JOINITEM in out out_fn(Ax’. efi’. Vt’. f1’ t’ = x’ t?)]]
QUTPUT
out

with the definitions
MAKEITEM (dev:*) fun = (fun = dev)

JOINITEM in (out:**x) fun (g:*x—x*) = ((fun (g in)) = out)

and simplifying the type-casting function, yields

e0UTPUT.
Jout out_=In.
SERIES
[MAKE[[out_fn = INV]];
JOIN[Cout_fn ((Ax’. x’) in)) = out]]
OUTPUT
out
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Eliminating Semantic Constants

Expanding

e0UTPUT.
Jout out_=In.
SERIES
[MAKE[[out_fn = INV]];
JOIN[(out_fn ((Ax’. x’) in)) = out]]
OUTPUT
out

with the definitions

MAKE 1 (ITLIST $A (MAP (Ax. ITLIST $A x T) 1) T)

(ITLIST $A 1 T)

JOIN 1

(SERIES [] output (unit:*) = (output = unit)) A
(SERIES (CONS x 1) output unit =
(x A (SERIES 1 output unit)))

and simplifying, vields

e0UTPUT.

dout out_£n.
(out_fn = INV) A
(out_fn in = out) A
(OUTPUT = out)
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Simplification

e0UTPUT.
Jout out_fn.
(out_fn = INV) A
(out_fn in = out) A
(OUTPUT = out)

simplifies to

e0QUTPUT.

Jout.
(INV in = out) A
(QUTPUT = out)

which simplifies to

€0UTPUT. OUTPUT = INV in

which simplifies to

INV in
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ELLA constants

ELLA constants are used in two ways:
e As initial values for devices with state
e As ‘patterns’ in the CASE statement

There is only one syntactic category for constants.
A given constant may make sense in only one of
the two roles above.

Context-free translation of constants.

Constants are modelled as predicates. This is con-
sistent with their use as patterns.

For initial values, Hilbert's e-operator is used.

There is a problem with the semantics of constants
when used as patterns ...

10
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The ELLA unspecified value and constants
ELLA features an unspecified value denoted by 7.

2 may be generated:

e by arithmetic operations producing a result out
of range

e by CASE statements with choosers which are
not exhaustive

e explicitly

2 represents one of the possible values of the ap-
propriate type, but it is not known which.

iy 4
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The ELLA unspecified value and constants

An unknown value of some type can readily be rep-
resented in higher order logic.

However, there is one place in the semantics of
ELLA where ? behaves as an additional value of
the type. Thisis not so readily represented in HOL.

For an ELLA type bit with the two possible values
hi and lo

hi | lo
is a constant which ‘matches’ hi or lo, but not 7.
bit

is a constant which ‘matches’ hi or lo or 7.

12
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Lifting

We represent an additional value of an ELLA type
by using a lifted HOL type.

The ELLA type bit is represented by the HOL type
(bit)1lifted.

The type constructor 1ifted is defined by the HOL
type definition

define_type ‘lifted_Axiom‘ ‘lifted = UU | LIFT x*¢
So, the ELLA value hi is represented by "LIFT hi".
lo is represented by "LIFT lo".

The unspecified value of type bit is represented by
"IuU: Chit ) liftted™.

Uniform approach.

Lifted Boolean values are also used.

13
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Conclusions and Future Work

A semantics has been given for a substantial
subset of the ELLA language, and a translator
produced for the subset.

The translation is simple. There is a straight-
forward relationship between ELLA syntax and
its semantics in HOL.

Parser and pretty-printer support has been pro-
vided.

Lifting causes difficulties. New version of se-
mantics without lifting and not quite conform-
ing to the semantics of ELLA?

Subset chosen is large. Discard lightly used
parts?

Research is required to decide whether we have
a useful subset.

Tools for simplification. Could be improved.

Design and verification case studies: UART,
small microprocessor.

Develop a methodology for using the com-

bined HOL/ELLA system.

14
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Introduction

e Silicon compiler = (Program — Silicon)

e SILAGE : input language for CATHEDRAL
(PIRAMID) silicon compiler for DSP ap-
plications

compilation

e SILAGE program P — architecture:
1. EXU'’s (ALU, RAM, ROM),
2. busses connecting the EXU’s and a

3. controller
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Introduction

SILAGE = linear representation of finite
set S = {G1,...,Gn} Of signal flow graphs

SILAGE programs denote stream trans-
formers

stream = infinite vector in time (~ N)

Compiler determines absolute time-scale

behavior = abstraction from absolute time-
SCale
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Introduction

e \Wanted:

— method to reason about behavior ( =
semantics)

— method to compare SILAGE programs
with mathematical formulae

e Solution:
— mathematics «—— HOL-logic

— express semantics in HOL-logic

e Spin-off:
— discovery of bad language design

— proposals for improvement of SILAGE
5
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SILAGE

Sample SILAGE program:

FUNC main (in:NUM<3,0>) out:NUM<3,0> =
NUM<3,0> : tmp;

BEGIN

out = help(tmp).out;

tmp = 1in@1;

END;

FUNC help (in:NUM<3,0>) out:NUM<3,0> =
BEGIN |
out = in + 1in@i1;

END;
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Semantics : basics

def

e Time=TTT N

e Stream = (a)str ¥ sa
e Delay (@) : A : (a)str — (a)str

Vnat.
(t>n)=>
Anat=a(t—n)

A na (semantically) initially undefined!!!!
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Semantics : types

e SILAGE type: |
basic type & array structure

~J

NUM<w,d> [mi1] [m2] ... [mn]

e Basic type : NUM<w,d> :
array of w booleans with d < w booleans
after the decimal point.

e HOL-logic lacks parametrized types
—1
SILAGE types ~» predicates on a fixed
HOL-type
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Semantics : basic types

Possibility 1

a:NUM<w,d> is translated to

e aterm a of HOL type (Bx(B)listx (B)list)str
accompanied by

e the predicate
vt.let (s,1, f) = (at) in

(LENGTH i=w—-d—-1) A
(LENGTH f = d)

Suited for shift and bitwise operations!!
o
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Semantics : basic types

Possibility 2

a:NUM<w,d> is translated to

e a term a of HOL type (Q)str accompa-
nied by

e the predicate
Vtletb = (at)x2%Lin
letc = (2¥) in
(—c<b) N (b<c)

Suited for arithmetic operations!!

10
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Semantics : basic types

e if-then-else construct

IF b:NUM<1,0> -> el || e2 FI

NUM<1,0> serves as the type B!!

e THE SILAGE TYPE SYSTEM DOES
NOT MAKE EXPLICIT THE
DIFFERENCE BETWEEN LOGICALLY
DISTINCT TYPESH!

e Recommendation: Introduction of a more
complex type system in SILAGE.

11
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Semantics : array types

Array types

a: baty[N7] is most easily interpreted

e a term a of HOL type ((baty)list)str ac-
companied by

e the predicates

Vt.LENGTH(at) = Ny

Vin.(n < N1) = (P(EL n(at)))

12
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Semantics : array types

Evaluation scheme of array types in SILAGE
conflicts with with evaluation scheme of list
types in HOL

#define SYMB NUM<1>[8] % abbreviation %
SYMB[16] : tmp % declaration %

tmp[12] = .... % indexing A

Highest index allowed in tmp is 7!!

13
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Semantics : proposals

e Initialization:

1. compiler independence

2. no default values available (types)

BOOL[4] : tmp % decalaration %

(5 § @ .. B)
(k 2 0 .. 2) 2
tmp[j1{k} = j*k;

14
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Semantics : proposals

e Basic types :
1. BOOL ~ B
2. NUM<w,d> ~ Q-+
3. INT<w,d> ~ Q

4. COMPLEX<Kw,d> ~» C@

e Functions with empty parameter list.

1. a CONST construct : streams constant
in time

2. the possibility of defining functions with
empty parameter list

15
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Example

CONST sinus : INT<13,12>[12] =

sinus = [0;..... 1

FUNC wobble() : INT<13,12> =
NUM<4,0> : count;
BEGIN |
count{0} = 4;
count = IF (count < 11) -> count@l + 1
| 0
FI;
return = sinus[count];

END;

16
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Simultaneous induction

tmpl = tmp2 + tmplel
tmpl + tmp201

|

tmp2

translates to

(tmp2 (n + 1)) + (tmpln)
(tmpl (n+ 1)) + (tmp2n)

tmpl (n+ 1)
tmp2 (n+ 1)

HOL needs induction mechanism which:

e fails on this example and

e succeeds on acyclic induction schemes

1T
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Conclusions

e Language design can benefit from math-
ematical methods

e Extension SILAGE+ suited for compila-
tion as well as verification

e Automatic translation of SILAGE+ into
HOL-logic necessitates a better natural
induction scheme

18
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