THE MEANING OF

by

Brian H. Mayoh

DAIMI PB-126
September 1980

ISSN 0105-8517

LOGICAL PROGRAMS

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 56

TH]

THE MEANING OF LOGICAL PROGRAMS

Brian H. Mayoh
Computer Science Department
Aarhus University, Aarhus
Denmark

Abstract

The semantics of a programming language are given by a function
m from Programs to Meanings. In this paper we bring some uniformity into
the definition of logical programming languages like LUCID and PROL OG
by specifying I in Logic = (Control + Meanings). We describe how a
context—free grammar can be assigned to each logical program and we
identify Control with the language generated by the grammar. After this
reduction there is no difference between the semantics of logical and con-

ventional programming languages.

THE MEANING OF LOGICAL PROGRAMS

In a recent paper Kowalski (4) has advocated replacing the slogan
"Algorithm = Program + Data Structure!! by the slogan "Algorithm =
Logic + Control''. If the semantics of a language are to give us a
function n from Algorithms to Meanings, the second slogan suggests

defining this function as a member of
Logic =+ (Control =+ Meanings)

In this paper we use this factorization of m to bring some uniformity

in the definition of logical programming languages like LUCID and
PROLOG. We describe how a context-free grammar can be assigned

to each logical program and we identify Control with the language
generated by the grammar. This reduces the problem of defining the
function M to the problem of defining the semantics of a traditional
programming language, because the syntax of such a language is given

by a grammar and the semantics gives a meaning to each of the "programs!'

generated by the grammar.

In the sections on AND/OR, PROLOG, LUCID and extended
attribute grammar logical programming languages we show that our
approach can give the !"official' denotational semantics of these lan-
guages, In the last section we use data flow machines to give an opera-
tional semantics of a logical program and we prove the correctness of a
data flow interpretation. The connection between data flow machines
and logical programs should come as no surprise because both of them

abandon assignment and VVon Neumann stores.

1. AND/OR logical programming

In (3) Harel introduced a precise logical programming language
based on the AND/OR trees so common in work in artificial intelli-
gence. There are three kinds of nodes in an AND /OR logical program:

(1) leaves,

u
(2) AND nodes [g/"\[g”]
u

u! 1"

(3) OR nodes u
[e!]/ YV [9"]
u' gt

where g' and g'' are conditional guards. Sequencing and concurrency are
expressed by AND nodes; conditionals, non-determinism, repetition and
recursion are expressed by OR nodes. Since AND /OR logical programs
are designed for decomposing complicated problems into simpler problems,

it is unfair of us to choose so simple an example as

]

Root (n)

iterate (i,]j,n) = if j> n then i else Iterate (i+1, j+2i+3,n)

Iterate (0, 1,n)

The AND /OR program for this way of finding the square root of a positive

number n is

r = Root (n)

A
(1)

(i,j) = (0, 1) r = Iterate (i,],n)
[i>n (2) [i<n]

o= r = Step (i, j,n)

A
(3)

(next i,next j) = (i+1,j+21+3) r = Iterate (next i, next j)

We notice (1) the variable lists for inputs and outputs, (2) the omission

of guards that are always true, (3) all non-leaves are of the form a = F(b)

The rules for AND/OR programs require all non-leaves to have different
F. If a leaf shares an F with a non-leaf, it is said to be a call leaf; if

it does not, it is said to be a primitive leaf; in our square root program

we have one call leaf and three primitive leaves.

In the official semantics the meaning of our AND/OR program is

the relation M in the least solution of
Root

m (n,r) o=, 3 1,j (M (i,5) A (i, 4,n,r)

Root Iterate

(1,r))

zeroone

mlter‘ate(l’J’n’P) = i>nA mident]ty

V{j<n /\mStep)i,j,n,r))

mStep(l,J,h,i") .=. Inext i, next | (mincpement(l,J,next i,next j)

A mlterate(neXt i, next j, nr)

imitive relations i i i
where the primitive relation mzeroone’ midentlty and rhmcremem RS

defined by

zer‘oone("J) By I=™@ A I=1
midentity(l'P) Ee P r
increment(i’j’nGXt iynext j) .=. (nexti=1i+ 1)A (nextj=j+2i+3)

We shall give an equivalent definition of the official semantics of an
AND /OR program.

First we describe how an AND /OR program can be transformed
into a context-free grammar. The productions of the grammar are given

by the non-leaf nodes of the program; an AND node gives one production

u=~F(v)

V/\\g“] = F = [91] |:||:9II] =1

ul = Fl(vl) u” _ F”(V”)
and ah OR node gives a production with alternatives

u=F(v)
v
[9'] [g"]
/ > Fus[g]F' | [g"]F
u! = FI(VI) ult = |:u(vll)
For our square root program we get the grammar

nonterminals Root, lterate, Step

terminals zeroone, identity, increment, [j> n], [j<n]
productions (1) Root ::= zeroone lterate

(2) Iterate ::= [j > n] identity | [j< n] Step

(3) Step ::= increment | Iterate

Note how the numbering of the productions shows the corresponding non-
leaf node in the program, and the convenience of using an initial capital

to sighal that a symbol is non-terminal.

Once we have a grammar for a logical program, we can use
denotational semantics to give it a meaning. By the conventions in (2)
a non-terminal symbol names the syntactic domain of derivation trees,
its first letter printed normally names an arbitrary iree in this

domain, and its first letter strangely names a semantic function

R : Root = Meanings R : Root
d ¢ Iteration - Meanings I : Iteration
8 : Step =+ Meanings S Step

We get the official meaning of our program from the denotation semantics

(1) R [zeroone 1] (n,r) .=. I, jli=0Aj=1Ad[1](,in,r)

(2) S8 [[ji>n] identity] (i,j,n,r) .=. j>n A i=r

(2") 9[[i=sn]s] G,iynr) .= j<n A 8[s] G,5,n,r)

(3) 8 [increment 1] (i, j,n, r) .=.Tnext i, next j (next i = i+1 A next j = j+2i+3

A3 [1] (next i,next j,n,r))

We have deliberately left this semantics in a crude form that shows how

the conversion from an AND/OR program to such a denotational semantics
is a mechanical non-creative process. The resulting semantics is
equivalent to the official semantics because there is a bijection between the
successful computations of an AND/OR program and the language generated

by the corresponding context-free grammar.

One of the ideas behind our approach is that unofficial semantics
based on the underlying grammar may be valuable and informative. Our
example is typical of a functional AND/OR logical program because the

primitive relations I are functional. This

. m,
zeroone? m|ter~ate’ increment
suggests the denotational semantics

(1) R [zerooneI] (n) .=. & [1] (0,1,n)
(2') & [[i>n] identity] (i,j,n) .=. j>n =+ i, L
(2") o [[i<n] S](i,j,n) .= j<n 4+48(S)(i,i,n), |

(3) 8 [increment 1] (i,j,n) .=. &[1] (i+1, j+2i+3,n)
where we use the symbol] for undefined function values.

Let us look at a more complicated example — an AND /OR program

for testing if a number n is prime:

r = Prime (n)
/\
=2 r = Test (i,n)
j = Square (ﬂ(jmrna"\ = Quter (d,i,n)
\%
[—ld A iazh]
r =FALSE r=TRUE
[—d A i?<n]
r = Global (i, n)
= succ (i) r = Test (k,n)
d = Inner (i,j,n)
v
. [i>n]
< :
d = Local (i,]j,n) d = TRUE d = FALSE
A

®

k = sum (i,]) d = Inner (i, k,n)

The grammar for this AND /OR program is

non terminals Prime, Test, Outer, Global, Inner, Local

terminals two, square, [d], FALSE, TRUE, succ, sum,
[FdAi®<n], [RdAT®2n], [j<n], [i=n], [i>n]

productions

(4) Prime = two Test

(5) Test ::= square Inner Outer

(6) Outer = [d] FALSE | [~d Ai®<n] Global |[dAi®2n] TRUE
(7) Global i:= succ Test

(8) Inner 2= [j<n] Local | [[=n] TRUE | [j> n] FALSE

(9) Local = sum lhner

The official semantics is given by

(4) P[two T] (n,r) .=. Ji(i=2A3[T] (i,n,r))

(58) S [square 1 O] (i,n,r) .=.3j,d (j=1i% AS[1] (i, j,n,d)
A6[O] (d,i,n,r))

(6') @[[d] FALSE] (d,i,n,r) .=. (d A=r)

(6") 6[[~dAiP<n] G] (d,i,n,r) .=. (;dAiF<nAG[G] (i,n,r))

(6"1) 6[[~d Ai®=n] G] (d,i,n,r).=. ((dAiP=2nAr)

(7) G[succ T] (i,n,r) .=. Ak (k= i+1 A T[T] (k,n,r))

(8 S[[i<n] L] (i,j,n,d).=. (j<nA&[L] (i,i,n,d))

(8") S[[j=n] TRUE] (i,j,n,d).=. d

(8") 8 [[j> n] FALSE] (i,j,n,d) .=. —d

(9) &£[sumi] (i,j,n,d) .=. 3 k(k=i+jAd[1] (i,k,n,d))

i

I

As this AND/OR program is functional we also have the more natural

semantics

(4) P[two T] (n) .=. 7[T] (2,n,r)

(5) 7 [square O] (i,n) .=. letd =d[1] (i,i?,n)
in & [0] (d,i,n)

(6') 6[[d] FALSE] (d,i,n) .=. d +» FALSE, |

(6M) 6[[~dAi®<n] G] (d,i,n) .=, («dAi®<n)+G[G] (i,n), L
(") 6[[~d Ai®=2n] TRUE] (d,1,n) .=. (;kdAi®=n) » TRUE, |
(7) G[succ T] (i,n) .=. 8[T] (i+1,n)

(8") S[[i<n]lL] (i,j,n).= (j<n)=>&[L] (i,j,n), &

(8") S[[j=n] TRUE] (i,j,n) .=. (j =n) = TRUE, |

(8") 8 [[j> n] FALSE] (i,j,n) .=. (j> n) » FALSE, |

(9) £[sumi] (i,j,n) .=. 3[1] (i,i+j,n)

il

In spite of the fact that TRUE and FALSE are the only defined values
of these functions, the functions are not relations because they can

have undefined values. The domain specification for our functions is

P Prime = Number = Booclean
T Test = Number?® 4 Boolean
&: Outer = Boolean x Number® = Boolean
G: Global = Number® = Boolean
d: Inner = Number® -+ Boolean
£: Local = Number® = Boolean

and there is an undefined value 1 in the set Boolean.

2. PROLOG programming

In (5) Kowalski introduced the logical programming language
PROLOG. A PROLOG program consists of statements of the forms

A « assertions
B +« C.,..C definitions
1 m
« D goals

and the execution of the program is an attempt to refute its goals using
its assertions and definitions. The natural PROLOG solution of most
problems requires an infinite list of assertions, but each implementation
of the language adopts conventions for avoiding these infinite lists. Our

conventions can be seen in the program for finding square roots

(1) Root (n,r)
(2') 1terate (i,j,n,Ii)

Iterate (0, 1,n,r)

[i> n)

[i=<n] Step (i,j,n,r)
Iterate (i+1, j+2i+3,n,r)

(2") 1terate (i,j,n,r)
(3) Step(i,j,ﬂ, r)

1 S .

Let us follow the execution of this program with the goal
+ Root (7,r)

The pattern match on (1) gives the new goal
+ lterate (0,1,7,r)

This cannot be matched on (2') because the conditional (guard) [j > nj

fails so we match on (2") to get
+ Step (0,1,7,r)

Matching on (3), (2") and (3) gives the goals

10

« lterate (1,4,7,r)
+~ Step (1,4,7,r)
+ Iterate (2,9,7,r)

and the final match on (2') gives the solution r = 2.

Compare this computation with the way the semantics of the

grammar in the last section gives a meaning to the derivation tree

RO: Root

/ : lterate

zeroone \
S : Step

[i<n] / \
. lterate

increment \
S . Step
i< n] \
: lterate

increment \
identity

[i>n]

R [Ry1(7) $[1,)(0,1,7) = 8 [5,] (0,1,7)
K [:3] (1,4,7) =8 [54] (1,4,7)

K [:5] (2,9,7) =2

Our semantics mimics the computation of the PROLOG program; it is
defined for a grammar that is derived from the program by introducing
terminal symbols for !primitive!' operations. You have already seen the

semantics and the grammar for the PROL.OG program.

(4) Prime (n,r) « Test(2,n,r)

(8) Test(i,n,r) « Inner (i,i®,n,d) Outer (d,i,n,r)
(6') Outer (d,i,n,FALSE) « [d]

(6") Outer (d,i,n,r) « [—d Ai® <n] Global (i,n,r)
(6"1) Outer (d,i,n, TRUE) « [=dAi® 2n]

(7) Global)i,n,r) « Test (i+1,n,r)

(8') Inner (i,j,n,d) « [j<n] Local (i,j,n,d)

(8") Inner (i,j,n, TRUE) « [j=n]

(8"} Inner (i,j,n,FALSE) « []j> n]

(9) Local (i,j,n,d}) « Inner (i,i+j,n,d)

As before the computations of this PROLOG program are mimicked by

the semantics for the corresponding grammar in the last section.

11

12

3. LUCID programming

In (1) Ashcroft and Wadge introduced the logical programming
language LUCID. A LUCID program is a set of equations specifying
a set of variables. A variable may be specified directly by an equation

like V = E or indirectly by two equations
first V = E. next V = E
every variable except "input!" must be specified and no variable may

be specified more than once. Our first LUCID program for finding

a square root might be

n = first input

first1 = 0

nexti = i+ 1

first j = 1

nextj = j+2i+3

output = | as soonas j> n

In the official semantics each of the program variables acquires an
infinite sequence of values when "input!' is given an infinite sequence
of values. Suppose the first value given to "input!" is 7. The first
line of the program ensures that the sequence for n is (7,7,7,7,...);
the next two lines ensure that the sequence for i is (0,1,2,3,...).
Because functions work pointwise, the next two lines ensure that the -

sequence for j is (1,4,9,16,...) so the sequence for j> n is
(FALSE, FALSE, TRUE, TRUE ...)

and the rule for as soon as ensures that the sequence for '"output! is

(242,204)s

13

Another LUCID program for finding square roots is

n = first input
(1) first (i,j) = (0,1)
(2) output = ias soonas j—n

(3) next (i,j) = (i+1, j+2i+3)

This is so similar to the grammar

(1) Root = zeroone lterate
(2) Iterate = [j> n] identity | [j< n] Step
(3) Step = increment [terate

that the semantics of this grammar in section 1 give the essential part
of the official LUCID meaning of the program - given an input they

determine an output.

Now compare the LUCID program for testing if a number is prime

with the grammar in section 1

| [i>n] FALSE

n = first input
(4) firsti = 2 Prime = two Test
begin
(5) first j = i® Test = square Inner Outer
(8) d=jeqnassoonas jzn Inner::=[j<n] Local|[j=n] TRUE
(9) next j=1+] Local = sum Inner
end

(6) output =—d as soonasdV i® = n Outer = [d] FALSE

| [FdAi®<n] Global
| [FdAiP=n] TRUE

(7) nexti = i+ 1 Global = succ Test

14

Again there is a production for every LUCID equation, and the natural
semantics for the grammar gives the essential part of the official LUCID
meaning of the program. However the process of devising a grammar

for a LUCID program sometimes requires imagination - for bizarre programs

that !"reach into the future'' there may not be an equivalent grammar.

15

4. Extended attribute programming

Attribute grammars are not usually thought of as logical programs,
but this impression is misleading for extended attribute grammars (6).

Compare the PROL.OG program for finding square roots with

(1) Root(intr) = lterate (101 1lntr)

(2') Iterate (Li 4jinti) = greater than (I ¢ n t TRUE)

(2") Iterate (1i 4jint]j) = greater than (l] i n 1 FALSE) Step (Li 1j In tr)
(3) sStep(lidtjintr) Iterate (L i+1 | j+2i+3 1 n t r)

I

Those with access to atiribute grammar based compiler systems should
be able to execute this grammar as a logical program. Strictly speaking
the underlying context free grammar for our square root attribute grammar

is

Root = Iterate
terate = greater than | greater than .| greater than Step
Step 0= Iterate

but the semantics in section 1 gives the same meaning to the program as

the semantics for the underlying grammar

R[1] (n) = 3[1] (0,1,n)

d [greaterthan] (i,j,n)=j>n = i, |

d [greaterthan S] (i,j,n) = j<n = 8[s] {8l L
8 [1] (i,j,n) = S[1] (i+1, j+2i+3,n)

Notice that this semantics is essentially functional; AND /OR and PROLOG
are more powerful logical, programming languages than extended attribute
grammars because they allow relations as primitives; LUCID is more
powerful because it allows value sequences. This extra power is not
needed for the problem of testing primality, so we have an attribute

grammar solution

16

(4) Prime (I ntr) ::= Test (I 2L nt r)

(5) Test(liltnir):ii=Inner (Lili®!ntd) Outer (Ldiilntr)

(6') Outer (I TRUE ! il nt FALSE) ::=

(6") Outer ({FALSE! ilntr) :i= less than (1i® | nt TRUE) Global (i i} ntr)

(6"'!) Outer (| FALSE | il nt TRUE) ::= less than (! i® | nt FALSE)
(7) Global (lilntr) i:=Test (L i+1!lntr)

(8') Inner (i} jintr) = less (| jlnt TRUE) Local ({iljintr)
(8") Inner (Liljlnt j=n) :=less (! jint TRUE)

(9) Local (Liljintr) ii=Inner (Lilj+1intr)

This attribute grammar is similar to the PROLOG solution, and its under-
lying context-free grammar is sufficiently similar to the grammar in section 1
that the semantics of both grammars give the same meaning to the program.
Note that this would not have been so if we had used !""less than!! instead of
"less!!' in (8') and (8"), because the underlying grammar would have been

ambiguous,

17

5. Data Flow Machines

Unlike von Neumann machines, data flow machines have no store;
data flows between processes and a process transmits its results as
soon as it has received its arguments., The data flow machine for our

square root problem might be

zeroone second = third

where one number is given to the zeroone machine, number triples flow
around the internal arrows until a triple reaches the identity machine, and
this machine then presents a single humber as its result. In a variant

of a notation being developed by R.F. Barton and his associates (7) this
machine would be specified by the expression

zeroone (increment idehtity)(z = 3)*

which is very similar to the regular expression for the square root

grammar in section 1
zeroone ([j < n] increment)* [j = n] identity

This similarity should come as no surprise because data flow machines,
like logical programs, do not have assignment. We can use data flow
machines to give an operational semantics of our grammar. We can

define three data flow machines by

18

@ i_s

@ i_s

We give these machines an operational semantics by

Root (n) Jterate (0, 1,n)

i>n=1i, 8tep (i, j,n)
Jterate (i+1, j+2i+3,n)

Jterate (i, j,n)

Step (i,j,n)
This operational semantics is correct because we can prove:

(1) Root (n) =R[R] n whereR is the function in section 1 and R

is the unique derivation tree determined by n;

(2) Jterate (i,j,n) =3[1] (i,j,n) whered is the function in section 1

and | is the unique derivation tree determined by i, j, n;

(3) 8tep (i,j,n) = 8[s] (i,j,n) where $ is the function in section 1

and S is the unique derivation tree determined by i, j, n.

We prove this by induction on the length of computations in the three data
flow machines. Suppose (1), (2), (3) are true for computations of length
= k. If the computation of the Root machine from n has k+1 steps then

the unique derivation tree R determined by n is

Root

7 O

zeroone |

19

the induction hypothesis gives Jterate (0, 1,n) =J[1] (0, 1,n) and we
have Root (n) =R [R] (n). Analogous argument give (3) for computations
of the Step machine of length k+1 and (2) for computations of the Iterate
machine of length k+1 when j < n. When j > n there is a one step compu-

tation of the Iterate machine and we have
dterate (i,j,n) = I([j> n] identity) =i

Since there are no other one step computations, (1), (2), (3) hold for

computations of length < 1, so they always hold.

A similar argument shows that the data flow machine

(Do e o@D (eI (iorer
D)

where Inner‘ @

is a correct solution of the primality problem. This machine can be

specified by the expression

-2
two square Inner ((succ square Inner, not d) (d Vi®=n)x
where Inner = (sum, equals)(J 2 n)x

which is very close to the regular expression for the primality grammar

in section 1

two square Inner ([dA 1 <n] succ square Inner) *([d] FALSE| [=dAi®=n] TRUE)

where Inner = ([j < n] sum)* ([j = n] TRUE|[j> n] FALSE)

20

References

(1)

(2)

(3)

(4)

(5)

(6)

(7)

E.A. Ashcroft, W.W. Wadge: Lucid: a non procedural language
with iteration. CACM 20 (1977) 519-526.

M. J.C. Gordon: The denotational description of programming lahnguages.

Springer Verlag, 1979.

D. Harel: And/or programs, a new approach to structured programming.
ACM Tr. Prog. Lang. 2 (1980) 1-17.

R. Kowalski: Algorithm = Logic + Control. CACM 22 (1979) 425-436,

R. Kowalski: Predicate logic as programming language. IFIP 74,
Amsterdam, pp. 569-574.

O. L. Madsen: On defining semantics by means of extended attribute

grammars. Springer Lecture Notes in Computer Science 94,
(1980).

F.M. Tonge, R.M. Cowan: Structured process description.

Univ. Calif. Irvine preprint (1980), submitted for publication.

