SYSTEM MODELLING

C J
A methodology for describing the structure of complex Software,

Firmware, and Hardware systems consisting of independent process
components.

by
Ib Holm S¢rensen

DAIMI PB-87
March 1978

Institute of Mathematics University of Aarhus [T

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

—1— |
] |
-

system modelling

Table of Contents
1. Introduction
1.1 The Outline of the Thesis
2, The System Modelling Language
2.1 The Process Declaration
2.2 The HMailbox Declaration
2.3 Indivisibility
3. The Pictorial KRepresentation
3.1 The Properties of the Representation
3.2 The Elements of the Representation
3.3 Elementary Behaviour Statements
3.4 Sharing and Communication
3.5 Parallelism and Concurrency
3.6 Combined Constructs
3.7 Remarks on Design Tools
4., An Analysis of a Disk Controller
4.1, The Conflguration.
4,2, Disk Characteristics.,
4.3, The Levels of the Disc=Controller.
4.4, Relevance
5. The Hardware Level
5.1 The Elerments of the Supporting Hardware,

5.2 The HMemory Bus Control Process

11

11

13

15

23

28

29

38

41

41

45

45

49

o1

51

60

system modelling

Breface
This is the author®s master’s degree dissertation.

It is felt that a short outline ot its history will prove
useful to the reader.

Initially, the author chose to conduct a research project
consisting of the design of a disk channel prcsessor for the
RIKKE experimental computer systen. The actual 1implemen=
tation of the device was to be the subject of a different
project. He subsequently realised that =-shert ot implemen-
ting his design=- there was nc¢ obkvious way tor him to
document his design in sufticient cowgrehensikle detall. He
studied various known technigues, but found them unsatisfac~
tory.

Additional researcih on his part resulted in the development
of the Pictorial Representation presented hereby. Because ot
the newness of his notation, it itself needed extensive
description. Thus the report turned out to ke dominated by
the notation which initially was <considered as only
peripheral to the documentation of the autor’s disk channel
prosessor design.

As sometimes happens in scientific research, what was first
seen 4as 4 peripheral aspect was later recognised to be of
dominating importance. Therefore the author chose to shift
this dissertation’s point of emphasis to the description
tool, presenting the disk channel processcr as a mere exam-
ple in the wuse of the notaticn, wnere any other example
could have done just as well. Thus his technical con-
tribution in developing an original disk channel prosessor
could have gone unncoticed, and needs to be pointed out 1in
this preface.

Peter Kornerup
Mike Spier

system modelling

Acknouledyenents

1 would 1like to thank my thesis supervisers Peter Kornerup
and Michael J. Spier for their guidance in research, their
editing, proofreading and general assistance during the
preparation of this thesis.

It should also be mentioned, that this work is a conseqguence
of Peter Kornerup‘s, Kurt Andersen’s and Bruce Shriver’s
pioneering research leading to the RIKKE/MATHILDA system.

Thanks are due to HNigel Derrett for nis constructive
criticisms, to Svend=Erik Clausen for typing part of this
paper, and to the inembers of the Technical Staff, who have
introduced me to the world of Hardware,

Ib Holm S¢grensen

table of contents

5.3 The Disk Read/wWrite Control Process 63
5.4 The Memory Read/write Control Process 65
5.5 Disk and Memory Channel Administrators., b6
5.6 The Disk and Memory Tlransfer Processes 69
5.7 Arm Positioninyg Process. 69
5.8 Disk Status Monitor Process, 70
6. The Firmware Level 73
6.1 The Channel Traffic Coordinater 75
6.2 The Drive Arm=positioning Handler 82
6.3 The Disk Read/Write Controcller 83
6.4 The flemory Read/write Controller 86
6.5 The Channel Traffic Governor 87
.6 The i#odel of The Supporting Firmware 89
6.7 lmplementation in Firmware 92
7. Conclusion 97
7.1 Future work 98
References 101
Glossary 103
Appendix A

Appendix B

introduction

L IUTRAUDUCIION

This dissertation presents a wmethocologQy for describing a
complex system composed of processes wxith iIndependent exe-=
cution capabilities, The system to which the methodology is
applied is a Disk Channel Processcr for Rarhus University’s
experimental computer system, RIKKL/MATHILDA.

The present design 1s expected to he lmplewented in the
future, and to be used as part of future research projects,
It is impossible, indeed undesirable, at present to f£ix too
strongly many implementation details which might have adver-
se effects upon future projects.

For example, a future project may be a design of a data pase
machine where the disk channel prccessor must know of data
base details; or future Tresearch may ccnsist of +the
measurement, evaluation and analysis cof this disk c¢hannel
processor, and of the coptimisation of its performance, for
example by moving certaln services to hardware level or
miCro=-processors.

In any case, there are elements of this design which will
always be needed (e.g., the hardware double putfering device
functions as the physical cennection between disk drives and
memory, or the coordination of read, write and seek), and
others which may or may not ke changed. The problem the
author came up against while attempting to document the
present design was how to present it with sufficient clarity
so that the key concepts are specifiea with tthe greatest
possible precision, while not overspecifying it in areas
where technicalities would best be left tc the actual im=
plementors.

The solution <chosen was to develop & System Modelling
Language, and the Pictorial Representation. 1The former 1is
used to describe important algorithmic components of the
processor, the latter is used to describe hew the various
components interact with one ancother.

system modelling

One of the first problems encountered when looking for a
description tool was that by describing certain hardware-
oriented pieces in terms ot wiring diagrams, cne practically
eXxcluded the possibility ot implementing those pieces in
microcode or software, because it was not clear whether the
software structure presently in the author’s mind would be
recreatable in the future from such wiring diagrams.
Similiarly, to use only a software notation would have made
it unclear how to implement some parts in hardware.

Dut of these considerations resulted the development of the
Pictorial Representation, which 1lies somewhere on the
borderline between wiring diagrar and algorithm. EXxperience
has shown it to be reasonably cocmprehensible to both
programmer and hardware engineer, and experiments in trans=-
lating it in either the hardware or the firm= software
directions have until now proven to be relatively straight=-
forward.,.

The description methodology that 1s beiny derconstrated makes
use of the two notations, and has the etfect that decisions
concerning the implementation technology can be deferred
without any essential loss of functional specificity.,

1.1, Qutline of Ihesis.

Chapter 2 presents the language used tor the description ot
various software, firmware and hardware nmechanisms. The
language - named the System Modelling Language =~ is a
slightly extended version ot the high level languayge BCPL
(fel,L7]). Only three new concepts are added to the language
definition; these provide facilities for the description of
processes, mailboxes and indivisible operations.

The langyuage 1s used for a c¢etailed description ot
mechanisms in a system (mechanisms local to processes as
well as mechanisms for process interaction). The Pictorial
Representation, presented in chapter 3 , is used to describe
inter=process relations in a system consisting of several
independent process components,

With regard to interactions amcnyg component processes the
two description tools are compatikle; a description in the
Pictorial Representation can be mapped into a description of
the same system in the System HModelling Language and the

introduction

same description c¢an bke mapped back, This will be demon-
strated through the example used to illustrate the proper-
ties and feasibility of the modelling tools. This example 1is
a design for a Disk Channel Processor. The relevance of the
Disk Channel Processor as an exarmple 1s discussea in section
4'4'

Chapter 4 provides a introduction to the design of the Disk
Channel Processor, which eventually will bte a part of the
Experimental Computer System (RIKKE/MATHILDRDA [(27) at the
Computer Science Department of Aarhus University. The Disk
Channel Processor is organised as a4 set o¢of interacting
processes each implementable in hardware, firmware or
software.

The Disk Channel Processor design is divided into levels -~
Hardware, Firmware, Software.

The Hardware level = 1.e., the ©part of the Disk Channel
Processor to be implemented in hardware, 1s described in
chapter 5 , using the Pictorial Representation and the
System Hodelling languayge (the Systenr jfodelling Language al-
gorithms are given in Appendix A).

Chapter 6 provides a descripticn of the microcoded part of
the Disk Channel Processor. Additionally, this chapter
gives a detailed prodramming schere for an implementation
(the algorithms for this part of the ©[Disk Processor are
given in appendix B).

Chapter 7 presents some conclusicns and progcses topics for
further study.

system modelling

system languaye

2. IHE SYSTEN MODELLING LANGUAGE,

This paper uses BCPL ((6],[7]) algorithrms fcr the descrip-
tion of various software, firmware anc¢ hardware functions.
The System HModelling Language 1s an extented version of
BCPL. The extensions make it pocssiktle to describe syn-
chronisation mechanisms for independent processes.

The language is used for descriptive purposes only, and the
extensions were made informally. No clairs are made concer=
ning the formal properties of these additional constructs.
BCPL 1is <chosen as the foundation for the System Modelling
Language for the following reasons:

a) It is used as the system programming language for the ex-
perimental computer system at Aarhus Uriversity, with
which the author is guite familiar.

b) 1t provides a wide set of control constructs,

c) 1t achieves simplicity and generality = by providing a
single data type = the word.

d) The 1language does not enmploy facilities such as
‘events’,’wait’, ‘cause’® (B6700 algol (81) or ‘on con-
dition’ (PL/1). Thus defining such facilities within the
present text, presents no risk of confusicn.

e) It has been used for description purposes in (9] and
(12].

The extensions to the definition of BCPL, necessary to
describe interprocess comrunication, are very limited.

For description of static properties of a system consisting
of independent, interacting processes, the declarations
process and maillbox are introduced to describe processes and
shared variables, respectively. For description of inter-
process communication an Jdindivdisikility ccncept 1s in=-
troduced.

The three extensions, which are described in the following,
are based on ideas in [9] and [12].

(O

system modelling

2.1. Ihe Brocess Declaration,

The description in the System Modelling Language of the non-
segquential properties in & system which consists of indepen-
dent or concurrent activities, 1s provided through the
process declaration.

A process declaration binds & nare t¢ an algcecrithm. The al=
gorithm is a BCPL command ([71).

example:

1}

manifest { X
static {yv=31

mailbox { CELL 1}

process P 1is
{
let llo = 0

Within P it is possible to reference the static, manifest
and mailbox varlable declared 1in the block where the
declaration of P itself arpears. (the mailbox declaration is
described in the following sec¢tion).

An independent process 1s by nature not a callable routine
or function, 1.e. 1t 1s not sequentially related to any
statements in other algorithms. Mentlioning the name of a
process in other alJjorithms 1s therefore meaningless.

2.2. Ihe Mailbhox Declaraiion,

In order that two processes be capable of 1interacting, at
least one shared memory component must exist and be acces~
sible from both processes,

A named memory component which participates in the execution
of more than one independent process, is called a mailbox .

system language

In the system HModellinyg Language a mallbcXx 1s declared in a
declaration list preceding the declaration of those proces=-
ses which access the mailbox (2.1.).

It is obvious that the processes which share a mailbox must
perform their operations upon the mailbox according to some
prearranged conventions.

These (the conventions) are only described in the algorithms
for the set of processes ‘'knowing’ (through declaration) the
mailbox and using it.

The minimum reguirement for such conventions is, that simul-
taneous attempts to either read the value from, or write a
value into a mailbox will cause the actual accesses to take
place seguentially, one after another. All read=- or write
operations upon mailboxes are defined to satisfy this
property ([9]1).

Mailboxes are normally implemented as memory locations or
communication wires used 1in process ccmmunication, or as
state variables for the control ¢f sharakle resources,

2.3. Indivisibility.

Communication or sharing arrangerents are set up either for
a single named mailbox or for a set of 1logically connected
mailboxes, For example signal, contreol inforration and data
normaly go together when used in inter=-process com=
munication.

The description of the agreements according to which the
processes In a computer system communicate, 1s independent
of the implementation level (hardware, microprogram,
software). Two emulated activities could share a memory
location, or a hardware function could share a button on a
printer device with the operator.

In order to describe these agreements the indixisibility
concept 1is introduced,

A description of an operation or a set of operations either
is encloced within indivisibility brackets (<<’ , ’>>*), or
is not.

Execution of operations within 1indivisibility brackets,
behaves as 1f it 1s instantaneous, o¢r uninterruptable,

For a single processor system the use of indivisibility
brackets reflects the ’mode’ of execution, which may be in-
terruptable or uninterruptable. In such a system the
bracketing can be implemented by using interrupt=disable and

system modelling

interrupt~enaple functions.
Example 1:

The following plece of code illustrates tnhe behaviour of a
‘walt® function using a mailbox EV as an ‘event’ variaple.

L

until valotf
{w
<< if EV = nothappened resultis false
EV (= nothappened >>
resultis true
rw loop
. //continuation here means that event EV happened.

The value of the *valof block’® (an expression) is determined
by executing the ‘block’ until a xesultis comwrmand is exe-
cuted, which causes the execution of the klock to cease. The
value of the expression is the value of the expression part
of the <zresultis command. In the exemplified case, one of
the resuliis commands branches frcm an instruction enclosed
within indivisibility brackets to an instruction not en-
closed in indivisibility krackets,.

A translation of this program into RIKKE ‘machine=code”’
(hand compiled and optimized), illustrates the use of inter=-
rupt disable and interrupt enable instructions as a possible
practical implementation ot indivisibility. It is still as=
sumed to be a single processor system,

The "machine=-code’ program is given in the following:

system language

tl: INTON //t1l names an instruction not enclosed
//7in indivisibility brackets; therefore
//interruptability 1s restored,

INTOFF //interrupt disable

LM EV //1oad mailbox EV c¢cnto stack

EQ nothap //top of stack gets true if EV=nothap
//else false

JUMPt t1 //1f top of stack is true, control is
//transferred to ti.

LN nothap //1load the constant ‘nothap’

SM EV //store top of stack in EV

IdTON //restore interruptabilitity

Example 2:

With the System Modelling Language any conplex communication
can be described.,

Let CON, LIWNEl, LINEZ be mallboxes.

Consider a conditional wait function, where a process P
either waits for ‘LINEl=free’ or ‘LINE2=free’ depending on
the contents of CON, whose value is changable, independently
of P’s execution, by another process., In cther words P will
wait for one of the conditions ‘CON=read /\ LIliEl=free® ana
*CON=write /N LINEZ2=free’ to be satisfied. P is designed to
act on which ever of the two compcund concditions happens
first.

Con is a local variable, which 1s used to remember the state
of COMN,

In the System Modelling Language the description would be:

system modelling

mailbox { CUOH; LINELl; LIHEZ }

manitest { free=l; read=1; write=2;

process P 1is

{

10

let Con = 0

until valof
{cond
<<switchon CON into
{
case read: if LIWEl=free dc
{ Con := read
CON := busy
resultis true

endcase
case write: i1f LINEZ=free dc
{ Con := write
CON ;= busy
resultis true
endcase
Y>>
resultis false
}cond loop

-

busy=3

the pictorial representation

3. IHE BICICRIAL BEERESENIATION,

During the desidn of & systenr constructed from a set of in-
dependent cooperating processes it is convenient to have g
plctorial tool with which these component processes and
their interactions can be described,

The pictorial representation serves as a model of the
system; each elenent of the real system which controls syn=-
chronization, sharing etc., has a pictorial counterpart in

the model. If such a representation is to be of use in
modelling or analvyzing systems, it shculd be as simple as
possible: it should represent only those components and

connections which are essential to the understanding of the
system. lt should be complete. And, importantly, the
notation must not add complexity or confusion to the systen
that 1is modelled.

3.1. Ihe Broperties of Ihe RBepresentation,

The pictorial representation should have the following
propertiess:

3.1.1 Local mechanics should be left cut.

Local variables = variables that are retferenced only
by a single process = do not influence the interac=
tion between the processes, and have nc etfect upon
the internal behaviour of any process other than the
one to which they kelong. Such variakbles, and all
local mechanics related to thew, should be eliminated
from a description which only pictures inter-process
relations.

3.1.2 All relevant mechanics should ke described,
In a description of large, corplex systems it is
often tempting to simplify the gescription by

eliminating some of the corponents or combining
groups of components into single compcnents in the

14

system modelling

diagram. Some components are so integral to the
whole systems behaviour that they cannot be removed
from the description, as too many assumptions would
have to be made about the abstracted pleces 1f the
description were still tec reflect the system’s true
behaviour. Such components have to remain 1in the
description.

3.1.3 Independent groups of compcnents should be isolated.

It 1is often impossible to model even a small system
50 compactly that the model clearly illustrates the
total control-flow., A plctorial representation tends
to grow in size. If a part of the system (e.g. a set
of processes) 1is influenced by, or influences tne
remainder of the system according tc simple com~-
munication arrangements, that part of the system can
be isolated and temporarily rercved, without
elimination of relevant inforrmation. For example, in
the case where a set of processes acts as a single
subroutine or function, and only references resources
shared with other processes during initialization ana
termination this technique is advantageous.

3.1.4 Strongly dependent components should be combined.

351D

12

To further minimize the pictorial schema, a group of
components in which the interaction between the com=
ponents follows well=-defined and ccmprehensible rules
should be represented by a single construct, which
contains the same information as the original
separate components.

o redundancy should be introduced,

Single <components Iin the real system should be
represented by single ccmponents in the model. ILf
this requirement is not met (for example, single
real components are represented by a rumbher of model
components, each of which having no obvious counter=
part in reality) the model will contain unnecessary
information, and may becowne functionally misleadinag,

the pictorial representation

3.1l.0 The Representation should ke balanced,

To give a true overview of the real system, the
relative complexity (or importance) cf a component
should be reflected by its pictorial representation.
For example, 1f a very sirple part mwisleadingly
dominates the schema, then the representation is un-=
balanced.

3.2 Ihe Elenenis of Lhe Bepresentation.

The schematic representation is a neiwork describing proces-
ses, shared xariables and the conneclions between the
processes and the shared variables.

In a real system a shared variable can be a wemory location,
a communication wire, or any resocurce which can he accessed
by more than one process. A process 1s an activity which may
be realized bv functions irplemented in hardware,
microprogram, software, or by direct operator action.

In the model neither the shared variables nor the processes
are bound to a specific realization (i.€ memcry or proces-
SO).

3.2.1 Shared Variables.

A shared varlable 1s represented by a line or a ser
of connected lines. As a memory location can have a
specific content, a line or a set of lines can have a
single xalue, The value of a line is determined by
the processes which reference the shared variable
which the line represents.

3.2.2 Processes and Connections.

A haox represents a process. The process references
shared variables only during activation and ter=
mination., Such processes are referred to as component
Rrocesses or just as processes,

A component process = which reads a value trom, or
writes a value into a shared variable - is represen-
ted by a bpox connected to a line, which represents
the shared variable.

1.3

system modelling

14

Example:

let P1, P2, P3 be 3 independent processes; and
let 41, M2, M3 be 3 shared variables.

M1 1s a shared comnponent for Pl and P2.

M2 1s shared by all processes.

43 1s shared by processes F2 and P3.

Schematic rTepresentations for this system are given
in Fig. 3.1 and 3.2. The way of arranging 1lines and
poxes, which 1s 1llustrated in Fig. 3.2 is to be
preferred in more complex situations; it is wused 1in
all subsedguent chapters.

M1 M3

P1 F3

Fig. 3,1: A Schematic Representation.

the pictorial representation

M2
11
Ei
M3
F2
]
P3

Fig. 3.2: An improved FRepresentation.

50 far the pictorial representation only contains a
limited amount of information about the behaviour ot
the real system.

Essential properties, such as how sharing is control-
led, how protection 1is guaranteed, and how com=
munication protocols are arranged, have vet to be ad=
ded to the description,

3.3 Elementfary Behaviour Statements.

An important aspect of the behaviour of a system is how and
when a process will inspect or influence cther processes.

A process inspectis another process by reading the value of a
variable shared by the two processes.

A process influences another process by assigning a value to
a variable shared by the two processes ([9]).

A connection point between & line and a process represents a
potential for an inspection or an intluence. The exact ef=-

15

system modelling

tect of such an inspection or influence is cescriped by an
Elementfary Benaviour Stafement (EBS). an EES is an ex=
pression adjacent to the point where the linre is connected
to the box, specifving the action undertaken bty the module
(box), based on the value of the variable (lire).

Example:
let M1 and M2 be shared variables anc P be a process.

M1
M2

EBs1
EBSZ

The statements (EBS1 and ERS2) specify upen which conditions
process P will be enabled to execute and what changes it
will make to the values of the shared variakles during ex-
ecution,
3.3.1 The Syntax of an EBS.

<EBS> t1= <C=list> <A> : <A>

<C=1ist>::= <relop><E>{,<relop><E>Y | empty

<A> i1z € <E> | empty
<E> :1= <P>{<binop><P>}
<p> :1= <shared variable name> |

<local variable nare> |
<constant name> | <integer> |
(<KE>») | <unop><pP>»
<plinop> ::= <relop> | <logop> | <arop>
<relop>» ::= <1 =121 %

<
<logop> 152 AN I NV i 2 1 %

1o

the pictorial representation

H

<arop> 1= + | =
<unop> :1:= NOT | =

Alternative representations of the operators may be
used.

An example of the syntax of EBRBS’s 1is given in
Flag.3.3.

REQUEST

STATE &

l‘*l'--'-read,:‘w\arite: € terminated
: € Mystate

=free <€ busy: € free

BUSSTATE

Fig 3.3: Elementary Behaviour Statements.

The following spelling conventions for names are
used:

Hames of shared variables are 1in upper case,

Names ot constants are in lower case, and

names of local variables have an initial upper case
letter, ftollowed by lower case letters,

To further add intorwmation to the mccel the lines
representing shared variables have been eqguipped with
arrows to indicate where the contents c¢f the shared
variables may be changed,

3.3.2 The Semantics of an EBS.
Consider the following example of an EBS:

relopl El1, relop2 E2 : € E3

which is associated with a conrection point between a
process P and a shared variable @, It is assumed

17

system modelling

18

that it is process P’ s only connection point.
I1f the condition
(M relopl E1) \/ (M relop2 E2)

i1s satisfied then process P is enabled, and P will
‘execute”’,

(If several EBS"s are associated with a process, the
process will be enabled only it he conditicns
descrived within all of these EBS's are sdtisfied,
simultaneouslvy.)

At the point in time when a preccess is activated,
local copies are taken of shared variables accessed
by the process.

The evaluation ot all logical expressions appearing
in a single box, and copying of shared variables into
local copilies is a single indivisible oreration,

The ‘:* represents the execution ot P*'s local
statements, using its lccal wvariakles and 1local
copies of the shared variacles (see 3.1.1).

At the termination ¢of P the assignment

M := E3

will take place.

All assignments appearing after a *:’ inside a box
are assumed to take place as a single indivisible
operation.

If expression E3 contains the name o0of a shared
variable, then the value of the shared variable 1is
the wvalue of a copy taeken when the process was
initiated.

If an EBS has the tormat,

<C=list> <« E :

the entire part to the lett of the colon, is executed

the pictorial representation

as an indivisible operation (test-and=modify=-if-
true).

If the condition is satisfied the prccess will ex-
ecute. The value of the local copy of the associated
shared varlable is tne (only extant) value of the
shared variable hefore modification.

It the condition list is empty the condition is al-
ways satisfied.

If no assignment is present in an EBS no change of
the snared variakle will take place. But a local
copy will still be taken when the process is ac=
tivated.

An EbBS does not specify how a process may use the
value of a shared variable once execution has begun.

3.3,.,3 dWotation rules for EBS's.

f£lementary Behaviour Statewents are usualy very sim=
ple expressionsa. Some notation conventions can be
used to turther simplify them,

a) 1f the relational operator in the condition 1list
(C=1list) is omitted the eguality cperator will be
assuined,

) 1n the schematic representation a condition list
may be pictured as a colump rather than a list.

These notation rules for condition lists are shown in
Fig.3.4, which illustrates a syster which is seman~

19

system modelling

20

tically eguivalent to that shown in Figc.3.3.

REQUEST
STATE
Lel | €A

write] : < terminated

. € Mystate

free € busy: <€ free

P

BUSSTATE

Fig 3.4: Notation Kules.
c) 1f the assignment part c¢f an ERS, associated
line M, has the form,
€< M binop E

and E does not contain the name [*, then the
is optional ~ i.e the notation

pinop E.
may be used,

d) A connection point between & boxXx and a 1line

with

may ,

for pictorial reasons, be on the right hand side

of the boxXx. A mirror notatiocn
ElL » : E2 » C

for the associated EBS is nmore informative,

and

may be used. The interpretation of a mirrored EBS

is obvious.

The notation rules for the assignment part of an ERS,
and an example of a mirrocred EBS, are illustrated in

the pictorial representation

Fige 3.5 .

BUTTUN
OLENGTH

done » :enablecd

Flimit: +1

Fig 3,5: Notation Rules (ccntinued),

3.3.4 Comparison of The Schematic Representation and the

System Modelling Language.

The pictorial description of a process or a system
can be directly mapped into the System Modelling
Language of chapter 2.

Consider the exanple given in Fig., 3.4.

21

system modelling

The Symbolic egquivalent would be

mailbox { REQUEST ; STATE ; BUSSTATE }

manifest { read=1 ; write=2 ; terninated=3
tree=0 ; busy=1 }

process P 1is
{
let Request =
and Busstate = 0
until valof
{Pcond
<< 1f (REQUEST=read \/ REQUEST=write) /\
BUSSTATE=free) dc
{ Busstate := BUSSTATE
Redquest REQUEST
BUSSTATE := busy
resultis true } >>
or resultis false
}Pcond loop

{Paction
let Mystate = ¢
51

if Reguest=read do . . // statements only
W // invelving local
switchon Busstate into // control flow

Sn
<< STATE := Mystate
REQUEST := terminated
BUSSTATE := free >>
}Paction
} repeat

22

the pictorial representation

3.4 Sharing and Compunicalion

In the previous section the epphasis was placed on the
description of system behaviour seen fron the point of view
of a single independent process,

The set of EBS’s inside a single tox specifies how a process
influences and inspects 1ts envircnment.

The set of ELS’s attached to a single line specifies the in-
teraction between processes, sharing the line. These EBS’s
illustrate how independent processes influence each other,
how sharing 1is controled, how comrunication protocols are
arranged and how the protection in a8 system is maintained,

Six kinds of pasic interactions can be descriked by means of
an Elementary Behaviour Statement:

1) Conditional Influence (EES = <C=-list>:€<k>)
2) Intluence (EBS = :4€<E>)

3) Inspection (EBS = @)

4) Conditional Inspection (EBS 2 <C~1list>;:)

5) S5ingular Conditlonal Inspection

~
™
e
n
11

<C=1list><€<E>:)

6) Singular Conditional Influence (ERS <C=1ist>o€<k> 1 €<E>)

1}

These are described in the following.

3.4.1 Conditional Influence.,
If the EBS has the form,
Cl : €« C2
and the relation between a process P and a shared
variable M 1is expressed py this EBS, then, if tne
condition M=C1 is satistiec P is capable of assigning

a value to M. All other processes which share ¥ with
P may be 1influenced. As the influence 1s con-

23

system

modelling

ditional, communication prctoccls may be arranged.
Example:

The following is assumed:

a producer process P,

a comsumer process C, and

a control=-line BUSSTATE, shared py P and C.

BUSSTATE 1s a state variable tor a bus along which
data transfer can proceed.

BUSSTATE has the values:

da = data avallakle on the Lus.

sa space 4available on the bus = i.e previous data
comsumed.

A model for this system is given in Fig. 3.6.

BUSSTATE

| T~—-
— ™53 <€da da:<€sa

P C

Fig., 3.6: B8 Producer=-Consumxer ¥odel,

3.4.2 Influence,

If tne connection between rrocess P and variable ¥ 1is
defined by an EBS of the form,

: € C

then all processes, which are capable of reading i,
are potential objects of process P"s interference. As
the 1influence 1s unconditional the sharing of M has
to be controlled using other variakles shared by the
set of processes,

3.4.3 Inspection.

24

It an EB8S (for a connection point hbetween P and M)
has the form,

-
*

the pictorial representation

then P 1s free to inspect all processes connected to
A, unhindered. 1In addition the inspection 1is un=-
traceable.

Example: (continued)

Consider the systemr illustrated in Fig. 3.7.

Let BUSSTATUS, BUSSTATE and BUS be lines shared by P
and C.

BUSSTATE is the same as in Fig 3.0

BUSSTATUS values:

byte = data available on the bus has format byte.
word = data available on the bus has format word.
error = hard-error occurred, which fcrces the system
to a halt.

The model of this system = given 1in Fig.3.7 il=
lustrates influence and inspection,

BUSSTATE

‘ 14-

s a; €da da:<sa
t€Format : F¥error:
1€lata —iy

P ¢
BUSSTATUS
BUS y 1

Fige. 3.7: A Producer~Consumer Mcdel (continued).

3.,4.4 Conditional Inspection.

Consider the consumer process in the previous exam=
ple. The EBS ‘ferrcor’ indicates that process € is
able to execute only it BUS contains valid infor=-
mation = i.e C is able to inspect F only 1if the con-
dition BUSSTATUSferror holds = concitional inspec=
tion.

25

system

32445

3:d:6

26

modelling

Singular Conditional Inspection.

[t the same condition=list appears in more than one
FFBS associated with a single shared variable, then
several processes are potentially able to execute
upon the same single event,

It the event is the release ¢f a rescurce shared by
the processes, then the activation of a single
process should prevent the remaining processes from
executing. In the pictorisal model this is described
by means of an EBS (inside all prcocesses) of the
form,

Ci1 € C2

which indicates that the value of the associated
variable is destroyed upon activation ¢t the process.

This form provides an arbitration function to exclude
all but one of a set of pectentially mutually conflic-
ting processes,
Singular Conditional Intluence.

I1f the EBRS has the format,

Cl1 € C2 : < C3

then the process can assign a value to) under con-
dition of mutual exclutione.

Example:

Consider a system with twec prcecducer processes Pl and
P2,

a comsumer process C, and

a control line BUSSTATE, which may have the values:

sda = §Space gvailable on the bus.

dal = data produced by Fl available cn the bus.
daZ2 = data produced by F2 availakle ¢on the bus.
busy = the bus 1s temporarly unavaeilakle,

The model for the system is given in Fig. 3.8.

the pilctorial representation

BUSSTATE
sa<busy:<€dal
r&—-———:énata
Fl
dal
) sa<€hbusy.<€da?z daZ| :1€sa
[&——:€Data :
P2 C
BUS

Fig. 3.8: Producer=Consumer Model (continued),

The previous examrples have illustrated how special
arrandements a set of EBS’s associated with a single
line guarantee proper sharing of resources (bus-
systems, communication wires, sharable nmemory, buf=-
fters etc.).

A more complex exXamrple is as follows.

Consider an interrupt mechanism tor a single proces=
sor system.

An interrupt, together «with the interrupt handling
routine, can be reqgarded as a process ‘stealing’ a
resource = the processor = from a running program.
The independent interrupt-system shoulé support in-
terrupt inhibition, according to a priority scheme,

For this the following is assumred:

INTL is a4 shared variable, which contains the value
of the current interrupt level.

P<n> 1s 4 process which takes care of interrupts on
level <n>,

P<n> monitors the signal line S<n>, which has the
values:

int = interrupt.

done = previous interrupt handled.

Fig. 3.9 gives a model of such a systemr (three inter~
rupt levels).,

The inhibition of interrupts accerding to the
priority rules 1s guaranteed by setting and restoring

27

system modelling

the interrupt level, o¢n process activation and
process termination, respectively. The ‘:° represents
the wutilization of the prccessor, which executes the
interrupt handler routine.

How the ©processor stores and restores the state of
interrupted prodrams is not specified.

INTL
[}
P < 3<€2 s € [NTL
S P e int:<€dcne
P2
<€) t€INTL
S = - int:<€deone
El
= ()
S (et —wint:<€done
EQ

Fig. 3.9: Interrupt Mecranisme,

3.5. Barallelison and Concurency.

A potential for parallelism in a system exists if the imodel
contains:

1) boxes which are not connected at all, cor

2) boxes, one or more oif which are relatec¢ by means of in-
fluence or inspection only, or

3) connected boxes, where the EBS's associated with a single
common line have the same condition list, or

4) two connected boxes, where the activation conditions for
a4 process, represented by one ot the boxes, will be
satisfied upon activation of the process, represented by
the other boXx.

1) and 4) will be illustrated in the following example:

Assume the following:
a) A Serial teoe Parallel Conversiopn Unit (StoP) which

28

the pictorial representation

receives serial formatted data, converts the data into
its parallel eguivalent and gates the convertea data
along a bus. Such a process may pe time=critical, when
it receives intormation from a synchronous device.

b) A transmitter process, which receives input trom StoP and
gates data alonyg a bus to,

c) A comsumer process C,.

d) Two state variables (STATE]1,STATEZ2), one <describing the
state of the bus between StoP and T, the other the bus
between T and C.

Fig. 3.1U glves a model of such a system. The communication
arrangements illustrated in the mrodel enakble StoP to execute
in parallel with C according to 1), and in parallel with T
according to 4).

STATE1
STATE2 [
\ L.
s 3 <€da da:€sa
StoP C
L——arda<sa:
dar:sd jm——-

P

Fige. 3.10: Concurrent Frocesses.

3.6 Combined Consirucis.

As mentioned in 3.1.4, strongly dependent components in a
model should be combined into a single construct.,

In a system, an example of a set of strcengly dependent com=
ponents 1is a set of interacting processes which are unable
to execute In parallel, and where the rmechanism which ad-
ministers the flow of control between these processes 1is
self-contained and provides a predictakle flow of control
(i.e, the set of processes may be influenced by its environ-
ment, kut this dees not disturb the lcgic ot the internal
control mechanism).

29

system modellingd

1t is obvious that a single ccmponent may participate in
several independent sequences of program execution (system
behaviour). 1t is the responsibility of the designer to
select the component processes to be wmapped into a single
construct in such a way that the model 1s aesthetically
pleasing and comprehensible,

(ince it is decided which components should be combined, the
construct can be regarded as, and referred tc as a single
process.

The four combined constructs described 1in the following,
form a sufficient set to describe the interaction between
strongly dependent ProcCesses.

3.6.1. Seqyuence,

If the statements of a set ¢of processes execute as a
sequential program the comkined construct (SEQ) will
be used to describe the interacticn between the
processes,

Fig. 3.11. illustrates,

a) An example of a sequential control mechanism for 4
processes, P0,P1,P2 and P3.

b) The combined construct.
The construct clarifties the behavior of the
system. The notation ‘17 indicates that the
enabling condition for the process to which *T" is
associated (in-the-same~box) has to be satistied
and the process terminated, Ltefcre control 1is
transfered to the subsegquent process. ‘Control’
flows top to bottom.

The component processes cannot be combined into «

single boX, as each process still is an independent

component (see Fig. 3.12).

30

trhe pictorial representation

a) b) SEQ
SEQCONTRUL
—a{0: <1
PO EQ
\I/
w12 P1
P1 R P
P2
213 e ey
P2 P3i
1
i 3 140
P3

Fig 3.11: Secuence Control.

R J BN

Fig. 3.12: HModel utilising SkL-constructs.

3,642 Prioritys,

Consider the systenm consisting of 2 producer proces-=
ses (P1,P2), and 1 consurmer process (C) illustrated
in Fig. 3.8.

Both of the producer processes use the same resource
during execution. The control wmechanism described
(laesy exclusion) for interacticn Letween the 2
producers does not provide a deterministic descrip~
tion o©f the behaviour c¢t the systewr., From a given
state of the system (e.qg. BUSSTATE=icle) it is un=
predictable which process (Pl or FZ) mray be activated
next.

31

system modelling

372

In a reallzation of such a system, a control
mechanism which provide determinisnr may be used. In
other words a contreol mechanism can ke added to the
producer=consumer system such that if koth P1 and P2
have decided to execute and BUSSTATE=idle, then Pi
will start; 1f Pl 1s not reacdy to excute and
BUSSTATE=idle then P2 will execute (Pl has priority).
If a set of strongly dependent processes are control=
led by a priority mechanism the combined construct
(PRI) will be wused to descrike the interaction
between the processes,

Fig.3.13 illustrates,

a) model of a priority control mechanism for 3
processes : PO,Pl and P2. E<n>» (n=0,1,2) is an
endpble inlet = tor P<n> =~ with the values:

t = P<n>» enabled;
f = P<n>» terminated.

The prlority mechanisms are controlled through the
use o©f the line PRICRITYCONTEOL, which can have
the values:

<n> = P<n> is allowed tTo start executing;
b = no processes are allovwed to start ex=-
ecuting.

In this and the following examples P<n> is assumed
to make its activation known to 1its environment
using an EBS of the format ’‘t<f:*. F<n> could also
be totally controlled by other processes (using
"t:’) or could make its terwination known by means
of an EBS in the format "t:<t’.

In general the enabling condition for P<n> (i.e.
the *t*) could be a combination of conditions as-
soclated with several inlets,

To model such systems dces not involve mechanisms
of types other than those explained here,

b) The combined construct (PRI) is used to illustrate
the priority~control mechanism. Corponent proces=
ses PO, Pl and P2 are illustrated separated by
horizontal lines. Processes are ordered top to
bottom with decreasing priority.

At any time only one process ca&n bke agactive, If
there 1is conflict between two or more processes
concurrently able to activate, the higest priority

the pictorial representation

process 1is chosen.

a) b) ERI
FRIORITYCONTROL
£0 ot €f;

—B ()€ 3 €() PO EC=t————mp L € f PO
+t: Fledt— @t <1 ; P1
0<1:

g L2 ————m t € £ p2

El—ye——at €1 ;
—=1€b ;€0 P1

¥tL:
e DL

E2 —=C €1 ;
=D €h €0 P2

g £ S
L) € () ¢

Fige. 3+13% Priority Control.

If a priority control wmechanism is used in a two=-
producer, one=consumer system (analogcus toc the one
illustrated in Flg. 3.8) then the model can utilize a
combined construct. (see Fig. 3.14).

Note, in comparing Fig 3.8 and Fig.3.,14 that the same
interference problem was solved, in the former
through a Singular Conditional Intluence, and in the
latter by use of priorityv.

33

system modelling

BUSSTATE

)

e sar€dal dal
CUNl——s=CcOn:
) caz]:<€sa

—e=sa:<€da’ G
CONZ——=®=iCcon;

P2

Fig. 3.14: Producer-Consurer #odel.

Both processes make its termination kncwn to process
Cs

Variables CUOK1 and CUNZ have been added, in order to
give the system a meaningful behaviour. Only in the
case where the values of both CChl and CON2 are
simultaneously equal to "con” will the priority
scheme be used,

An example of a PRL construct described in terms of
the system modelling 1language 1s given in Appendix
A.ll

3.6.3 Rotation.

bue to properties of processes 1t may not be ap-
propriate to use & priority scheduling mechanism,
where a process may suppress the execution of other
processes with lower priorities,

A control mechanism called Rotation Centrol may to be
a pbetter alternative for the contrcl of a specific
system, (i.e. round robin mechéanisn).

Fig. 3.15 illustrates,

a) A model of a system consisting of 3 processes,
where none o0of the processes are capable of sup=
pressing other processes.

b) The combined c¢onstruct (rROT), wused to describe
such a behaviour,

the pictorial representation

a) b) RUT

RUTATI?NCGNTRUL

Q—y=— s L<€f:
—o= 0€h:<€1 PO E
R 29N E

= (€] ;
E2

[Bl———w L€ f
-8 1 €h €2 F1

Ft;
ol 1 €7 ;

E2 & L€t
= V€ €0Q0 P2

—h*t:
2€0:

Figs 3«15 Retation Control.

The rotation control mechanism contains a priority
scheme = the involved processes take turn in having
priority. Futhermore it contains a rotation scheme,

3.6.4 sSuppression.

If any process in a syster consisting of a set of
strongly dependent processes is capacle of suppres-
siny all other processes, the control mechanism is
named -suppression (SuP).

Fig 3.16 illustrates,

a) a model of a system of 3 proceses, where any
process P<n> suppresses other preccesses, as long
its enabling condition ‘E<n>=t’ remains satisfied.

b) the combined construct for a suppression control
mechanism. The ‘F° inside & box = which represents
P<n> = indicates that transfer of control to
P<n+l1> 1s delayed as long as the enabling con-
dition for P<n> remalins satisfied.

35

system modelling

a) b) SUP

SUPPCONTRUL
EQ—r= + t<€t:
0<€L:<€0 PO

¥t
0<€1:

£ 1 t€rf:
’-. e 1€h1€]l D

Ft:
e]€2:

E2—m——ae{t €
2€b:€2 P2

*t:
L 17: <0

Fig, 3.,16: Suppression Control.

The suppression control ceontseins a priority scheme -
any executing process will vupon terwination still
have priority.

An example of a SUF construct describec¢ in terms of
the system modelling language is given in Appendix
A2,

Example:

To illustrate the use of combined constructs in a concurent
system consider an asynchronous pipeline process.

Such a process can be regarded as a set of winor processes,
each performing the operations required on a specific stage
on the pipeline,

All these processes should be able to proceed indepently and
should only reguire access to sharable rescgurces upon ac-
tivation and termination., Upon activation, a process per-
forming operations on stage n gets input frem a line whose
value 1s produced by the process performing operations on
stage n=-1.

3b

the pictorial representation

Assume that the pipelline consists of,

a) 3 independent processes: PO,P1 and P2.

pb) 3 1lines: LO,L1 and L2 (tnhese way be registers, memory
locations or communication wires), wnere L<n> contains
output produced by P<n=1>. P<n> takes ingput from L<n>.

c) 3 state variables: 50,81 and S22, where S<n> specifies the
current state of line L<n>, being
da = data available,.
sa = space avallable,

Fig. 3.17 gives a model for such a systerm.

LO :
S0] -l]3€54]
L—nhw PO
\(i/
sa:<€da
s <€Data
i I
L1]
Sl I e Ja€sa;
I———o-: P1
T
sa:€da
:€Data
‘ T
L2 ,
S2 L] = (jA€54a;
3 P3

.
j=y
Lo

3,17: A Pipeline Systen.

Each process in the pipeline consists of two component
processes, ordganized in a SEQ construct. lhe first component
starts processing data as soon as input is available, The
second component process gates the result to a communication
line as soon 4s the line is tree,

According to the rules mentioned in section 3.5 all proces-
ses represented in this model py single constructs, are able
to execute in parallel.

37

system modelling

3.1 Reknarks an Descripiion Iools.

Other pictorial tools for describing and analvsing system
behaviour, such as flowcharts or Petri Nets [10], are
availaple, Therefore the guestion could be raised why it
should be necessary to develop vet another representation.
The justification 1s that flowcharts are not adequate for
modelling non seguential systers, and that Petri kets are
syntactically unacceptable in that they viclate the re=
guirements described in section 3.1,

Given that Petri Hets nave been used for modelling of
systems, the following remarks may be of interest:

1) In terms of the semantics defined in this chapter, the

only primitive operation allowed by Petri liets is of The
Singular Conditional Inspection ERBS form.
The examples in this chapter have justified the existence
of other EBS forms, Their lack in Petri Hets forces a
deformation of the descriptilon: the desianer is forced to
add components to his model which have nc counterpart in
the system being modelled.

Example:

Assume

a) a shared variable M, which is represented by a "place’
in a Petri Wet, and by a 1line in the Pictorial
Representation,

b) a process P, which 1is represented by a ’bar’ in Petri
Nets, and by a boXx in the Pictorial Representation.
M has the values:
0 true (in Petri Hets M is ‘marked*®)
F false (in Petri dets ¥ is "unmarked”®)

FiE Wi

The following examples give 3 simple constructs, modelled
using both the Pilctorial Representation anc Petri iiets.

M
a) [——— T EF & O———oﬁl
P

38

the pictorial representation

M

b) e T Et-—w-u-—------
d TN
' P

i
c) Mt €T ! M
p P

The examples illustrate heow additicral components
(places,bars) have to be invented for the Petri BNet
model, leading to unnecessary syntactic ‘noise’. 1In
other words Petri et mwodels violate 3.1.5.

1t is interesting to notice that the simplest EBS form is
mapped into the most complex Fetri Net construct, and
vice versa.

The need for additional ‘primitive compcnents’ is more
than just for reasons of eliminating syntactic ‘noise’,

Consider a process which resets the state ¢t a subsystem.
In the Pictorial Representation this can kte expressed as
a pure influence. In Petri Nets it is certainly unclear
how such a concept ¢an be modelled, as & Kknowledge of the
state of the subsystem has to be built intc the model.

A simple example: Consider a process P, which upon a
certain event (e.g. a clock) arbkitrarily attemps to in-
fluence (EBS = "€ set’) two other processes Pl and P2 by
writing to @& line M. The influenced processes indepen=
dently decide whether or not to 4actually accept the sig-
nal and act on it,

39

system modelling

3)

49

The model in The Pictorial Representation might look
like:

1set» set€reset:

P M p1
—m{set:

P2

and the model in Petri et migrt be

=
(=

which certainly 1is unclear. The concatenation cf two sim=-
ple and well defined subsystems, forces the designer to
invent a complex “intertface’, just to describe a clean
communication.

As a consequence of this, Fetri let modelling does not
always to comply with 3.1.3: 1t 1is nct possible to
isolate and temporarily remove components from the model,

Pl

The Petri Hets model does not provide any reaningful com~-
hined constructs such as those described in section 3.6.
This forces Petri Nets Models fcr all but the most
trivial systems to become of unmanageable size and utter-
ly confusing,

c¢isk=controller

4. AN ANALYSIS QOE A DISK-CONIBOLLEER.

The usetulness of the new Pictorial FRepresentation,
presented in the previous chapter, is Justified on the
one hand by the inadequacy c¢f existing tcols for model-
ling concurrent systems and on the other bty 1its demon-
strated application to the description c¢f a particular
system, This system (chapter 4.- 5.) 1s rather extensive
consisting of many interconnected independent processes.,
Obviously other systems have to be considered = and
presumably further development of the Fictorial Represen-
tation is necessary, This is discussed in chapter 7.

The reason for developing the new picteorial represen=-
tation for concurrent systems, was the need for a model=-
ling tool, which could be used to describe, analyse and
design a Disk Channel Processcr for the Experimental Com=
puter System ({2]) at Aarhus University.

4.1, Ihe Copnfiguration.

The Disk Channel Processor (referred tc as tne Disk=Con=-
troller) 1is realized as a set of interacting processes,
each implemented by functions in hardware, microprogram
or software.

To fully understand the analysis and the design of the
disk controller a short introcduction to the Experimental
Computer System (RIKKE/MATHILLC2) may be necessaryv.,

The relevant system components are presented in the fol-
lowing sections.

4,1.1, The Physical Processor.
RIKKE = 1s a microprogranmirable processor, with 4K of
(64 bit) Control store.

The bus width is 16 bits.
The main data path architecture is a 16 bit 'version”

31

system modelling

4.1.2'

4ols3s

4.1.4.

42

of that of the MATHILDA prccessor ([{11,[(2]1). Instruc-
tion seguencing and control facilities for
microprograms are eguivalent tc those of MATHILDA,
RIKKE 1s equipped with an internal 1/0 Data Bus, by
means of which devices c¢an be multiplexed under
micoprogram control.

The microcoded part of the Corputer System is refer=
red to as the firmware ledel . The part of the Disk
Controller, implemented on firmware level, is refer=-
red to as Ihe Supporting Eirmware , ancd is discussed
in detail in chapter 6,

The Memory.

WIDESTORE = 1s a sharable wemory, which can be acces=
sed either as a 32Kk 64 bit wide memory, or as a 128K
16 bit wide memorye.

WIDESTORE 1s equipped with a memory address= and data
port multiplexer allowing for wup to four physical
processors to access the memory independently.

In addition, WIDESTORE provides Automatic Address In-
crementing, which wakes it possible for unintelligent
devices to utilize direct memory access ([111,([131]1).
WIDESTURE 1s considered to¢o be the Main Memory of the
Computer System ((5]), and will be referred to as
S5UCha

Virtual Processors.

The OCUDE stack=machine (described in [3]) and,

The I/0 Nucleus ([4]) are virtual processors realized
by means of microcoded functions (i.e. firmware
level).

The set of operations in the Cecmputer System, which
is executed by means of interpretaticn performed by
virtual processors is referred to as The Saffware
Leyel .

At the software level, lives the operating system.

The Operating System,

The RIKKE BCPL System ([5]) is an interactive single-
user operating system, which runs on the UCODE

4.1.6,

c¢isk=controller

machine and uses the 1/0-hucleus to pertorm I/0.

The comminucation between the software level and the

tirmware level is administered by a mwicrocoded Con=-

munication Module, which;

1) monitors a software level register, which contains
eventual calls for firmware level functions;

2) transfers control to firmware level;

3) forwards results and completion status of firmware
level functions to the «calling software level
routine, using nmicro-coded interrupt tacilities.

Tne Supporting Hardware,

A hardwired logical unit (in the follcwing referred
to as The sSupporting ilardware), the automatic address
increnenting facilities of WIDESTGRKE and the disk-
hardware, together form an unintelligent data channel
between disk system and WIDESTURE,

The functions irplemented in hardware will in the
tollowing be referred to as Ibhe Harduare Lexel .

The communication between the firnware level and the
Supporting llardware is established by means ot 2 out-
put data buas ports (32 bit), used by micro=coded
functions for contreolling the Supporting Hardware
logic, and 1 input data bus pecrt (16 bit) for status
feed~back.

The oSupporting Hardware 1s discussed in detail in
chapter 5,

The Disk Hardware,

The disk system consist of 2 wovable head disk units,
which are made up of 2 recording disks each ([14]).
llach disk has two surfaces divided into twelwe sec=-
tors.

Each surface has 407 tracks (of which 400 are used),
tach track=sector contains o¢ne single recording
plock.

The Disk Hardware signals the supperting hardware
when a sector mark or index mark is encountered,

The Disk Hardware acts on signels sent from The Sup-
porting Hardware to,

1) record serjially formatted data, sent from the sup-

43

system modelling

porting hardware, on a specific disk=surtface;
2) transmit serially formatted data, or
3) move the access arms to a specific cylinder.

In the model of the disk ccntrecller presented in this
paper (Chapter 5. and 6.) it 1s assumed that only 1
disk unit is connected to the system.

T'he configuration of the Corputer System is il=
lustrated in Fig, 4.1..

local RIKKE
store <::>PRUCESSGR

TIx PIFR PIF LRT HMATHILDA
32K 4K,64 bit
16 bit CS
I L
i:t J

[RIKKE INTERNAL [/C DATA LBUS

Uil

SUPPURTING K, >LWLEESTCRE INTERNAL DATA BUS]
HARDwARL |
Fain Memory
I (WIDESTCRE)
32K 64 bit
DISK 128K 1o kit
HARDWARE

Fig.4.1: The Conmputer System.

The components TTY,PIR,PIP,LPT, local store and the
MATHILDA microprogrammavle processor are irrelevant
Lo the modelling of the Disk Centrcller, and will be
ignored in the following.

disk~controller

4.2, Disk Characferistics.

As mentioned in section 4,.1.6 each track=sector contains on=
ly one recording block,

This track=sector organisation 1is actually established
through combined functions in disk hardware and supporting
hardware.

The recording block is not further divided into subblocCks,
Information normaly recorded in a header subklock such as
physical track/sector identification, logical identification
(fileid, pageid) is in this system stored in connexion with
data. The processing of header informagion, which 1s per=-
formed by functions implemented in soft = and firmware, does
not influence process synchronizaticn mechanisms, and will
therefore not be discussed in detail in this paper.

The logical sector numbering (i.e. the nurbering used by
software level programs) 1s equivalent to the physical sec-
tor numbering. This organisation enables the d¢isk controller
= 1f it 1s desiyned properly - to transfer physically con-
secutive track=sector blocks between disks and Main Memory,
and such requests can actually be specified from software
level programs.

4.3, Ihe Lexels of rthe Disk Controller.

As mentioned in section 4.1 the disk controller is realized
by functions implemented in soft= firw- or hardware.

The description in the following will f£iX the border-lines
between the three levels. However these fixed lines are only
assumed for description purposes. Tlhey can gradually move
upwards or downwards during develcpment and implementation
of the disk controller, This flexibility exists because of
the architecture and configuration of the experimental Com-
puter System (Fig.4.1.).

As an example it can be menticoned that all memory=side
transfers (la€s between Suppcrting Hardware and Main
Memory), which in the following are rmecdelled as if implemen=
ted as hardware functions, will actually, in the first ‘ver=
sion’ of the disk controller, be ’simulated’ in firmware.
This simulation is done by using the connexions between the
Supporting Hardware and the internal data bus of WIDESTORE
on one hand, and the internal 1/0 data kus of RIKKE on the
other.,

45

system modelling

d.3.1.,

46

The Software lLevel of the Lisk Controller.

Five types of reguests concerning data transfers can
be submitted by application pregrams (us
filemanager, DB manager, user programs etc.) to the
spoftware part of the Disk Controller,

a) READ RANDOM,
Transfer a single sector, which constitutes a
single klock of a randewly structured file, from
Disk to Main Memory.
All necessary control inforwation (sectorno., mem=-
mory address, cylinder, etc.) is stored in a re-
guest vector.

b) WRITE KANDOH,
Transfer a single block (sector) of a randomly or=
ganized file, from Main Memcry to Disk.

c) READ CONSEC,

Transfer several contiguous secters belonging to
the same file from Disk to Main Memcry. This re=
Jquest 1s used for multi=-files, where each subfile
is a consecutively structured file (i.e. data
blocks occupy contigucus sectors On secondary
storaqe). This allow for logical page sizes, which
is a multiple ot physical sector size.

d) WRITE COHNSEC,
Transfer several blocks, which occupy contiguous
memory positions, to contigucus sectors on disk
surface,

e) FORMAT TRACK.

A complete track will be overwritten and each sec=
tor initializeg to be <considered as ‘'not-oc-
cupied”’.

This request is not discussed in the succeding
chapters describing firmware level and hardware
level functions,., The main 1logic of the request
will be implemented as firmware level tunctions,
which obviously occupy the cisk resgurces in the
disk controller itor a corplete revolution of the
diskKs.

gdgisk=-controller

Disk Controller support for access wmethods for file
structures, other than those supportec by operations
a)=d) (i.e. random file and conrsecutive multi-files),
should pbe considered, and inteqrated in the disk con=
troller. For examrple chained and indexed structured
tiles, The present design does not prcvide tfor these
more sophisticated services, hut was made in an-
ticipation of the need; adcdina these at this level
should be a straighttorward operation.

The software level part of the disk controller will
‘unblock’® CUNSEC reguests intc simple requests, each
tor a single sector and stecre these new requests in a
gueue together with the RANDUOF requests.

The organization ot the (ueue (Request Queue) is
discussed In section b.1.1.

The Firmware level,

This level will be descrikbed In detail in Chapter o,
The tfirmware level functions process the Reguest
Queue,

If the next reqguest is for the current track, then a
firmware readsector- or writesector function will ©be
called; if not, a seek function will be called first.

The firmware level Read Sector tunction signals 2
supporting hardware functions: one to transtfer disk=
intormation to a local channel mercry buffer; another
to transfer data in a local channel memory buffer to
Maln Memory.

The firmware level Write secteor function signals two
hardware level functions: one to transter a Main
Memory butfer to a local channel bhuffer; another to
transter data in a local channel butfer to the disks.

The Hardware Level,
The Hardware Level tunctions of the disk controller
are discussed in detail in Chapter 5.

As mentioned 1In the previous section, four transtfer
functions are implemented In supporting hardware. Two

47

system modelling

of these control the disk=hardware andgd two others
control the functions of wWIDESTURE,

A complete picture of the levels in the Disk-Control=
ler is given in Fig.4.2..

FORMAT ARITE WRITE READ READ
TRACK CONSEC CONSEC

]

unblocking;
gqueulng Software
i : Level
Channel
Coordinator

Firmware
Level

- e e

- - - - o amfe v o e o w T W e W ™ W W e oam o

Buffer
to to
Butfer bisk

,/’/gzgﬁorting
/‘,///’/ Hardware

[ww o — en i\ e oy W we mw W w w

Disk Widestore
Hardware Hardware
Functions Functions
- Hardware
Level

Fig.4.2: Disk-Controller (cverview).

48

cisk=controller

The model 1s incomplete, Its virtue lies in that it
*slices® the Disk Contrecller design into levels,
making smaller and more rmanagaple parts, thus
providing a good functional overview,

In the next two chapters the Supportirg Hardware and
the Supporting Firmwrware are shewn in the true detail.

4.4, Belexance.

The 1idea of implementing device controllers or channel
pProcessors as a mix of software, firmware andé hardware func-
tions 1s <certainly not new., The strategy has been used ex=
tensively both for experimrental device contrecllers and for
production machines - among others IBM Systen 370
(f15]1,010l).

The design shown is original, although perhaps not entirely
novel. It represent an acceptable sclution to a set of
peculiar problems:

a) RIKKE’s need for a direct access mrass storage device,

k) Aarhus University’s need for a flexipble storage systen
(attached to RIKKE) that 1s conducive to future develop-
ment, research and experimentaticn (this is a reason for
precluding an all-hardware device).

The author chose to ‘kill two birds with one stonef’, and to
develop the desidgn needed for illustrative purposes (rather
than use an existing one), In order to help further the
RIKKE developinent process.

49

systen

50

nodelling

the hardware level

3. IHE HARDWAEKE LEXEL,

The Disk Controller is designec to provide various degrees
of service sophistication (i.e. it 1s not a fixed-purpose
device) as well as to allow for future funtional eveoclution
(beiny an experimental device). The mwain logic of tne
device 1s implemented 1n a cecmbination c¢f tirmware and
software, to gain this flexibility.

However, there are some sSpeciallzed tasks which are more
economically performed by supporting hardware.

In aadition, other tasks have to be performed by hardware
functions, because of timing reguirements.

5.1. Ihe Elements of the supporiing Hardware.

The supporting hardware c¢an logically ke divided into the
tollewing ¢groups.

5.1.1 Two buffers of 256 lo-bit wcrds each.

The butfers are connected to the wain data bus system
of the supporting hardware. The addressing latches
for selecting a specific word in these local memory
buffers will be incremented autcomatically during a
block=read or block=write process. The two buffers
will be refered to as Buf A and Buf B.

5.1.2 Input Data Bus System,

The input data bus syster has 2 possible input sour=-
ces, and two possible output destinaticns. The latter
dre local buffers, accesible through use of direct
memory access (DMA), A lo-bit cata word can be gated
froem any one source to one of the destinations.

51

system

5.1.3

modelling

UJutput Data Bus System.

Data words from one of the two local butfers can be
gated onto the ocutput data bus. Depending on the
state of the control signals the information on the
bus will be transfered to ¢ne c¢f the destinations.

5.1.4, Memory Bus Control Logic.
A unit, realized as a hardwired progran, which con-
trols the flow of data from a local buffer to an out=-
put destination, and from an input source to any of
the two local buffers,
NOTE 1:

52

S0 far the followling obijects for modelling have been
identified inside the suppcrting hardware:

a) A idemory Bus Control Process (MBCF), which ad=
ministers the usage of twe local memory buftfers,
and two local bus systens.

b) Two 1Input sources shared between the Memory Bus
Control Process and two unspecified producer
processes.

c) Two output destinations, which are shared between
the Memory Bus Contrecl Process and two consumer
processes,

The Pictorial Representaticn for this system is shown
in Fig.5.1. (it is intentionally incomplete, lacking
control logic).

—_—#; Datad:p—mmo

S e . bData»:ipb—— =

MBCE

Fig. 5,1 The Femory Bus control process.

the haraware level

The 1local wunits administered by the VFemory Bus Con-
trol Process are illustrated in Fig. 5.2., which
shows hos data may flow threudgh the MBRCP.

4 e

Input GCutput

Bus Bus

System - System -

b:i
o BRE -
e B o=

_ MBCP .

Fig. 5.2: Internal bus structures tor MBCP,

5.1.5 Parallel to Serial Conversion, and <Cyclic Redundancy
Code Generation units.

During a disk=-write operation the infcormation in one
ot tne local buffers 1s transfered using the output
data pus system and DMA cycles tc a parallel to
serial conversion unit. Serial data is sent from the
unit teo a specific disk and as data words are being
transtered a c¢cycli¢ redundancy coge (CRC) is
generated and appended tco the data stream to be
recorded on the disk,

5.1.6 Serial to Parallel conversion and CkC Check Units.

During a disk to buffer transfer the pit stream from
the disk 1s packed into 16 kit words and gated onto
the input bus. A cyclic redundancy code is compiled
and compared against the CEC check-worcé that was read
in after the data-vlock. A status flay indicates the
result of the comparison.

53

system modeiling

5.1.7.

Input Port.

A lo=bit-wide 1input port connects the supporting
hardware with the Main Memory of the computer system.

5.1.8 0Output Port.

Similar to the input port a le-bit=wide parallel out=
put port connects the supporting hardware to ilain
Hemorve.

5.1.9 Parallel Input and Qutput Pert lLogic.

54

The supporting hardware is directly connected to the
Jdain Mewory of the computer systeir by means of an in-
put, output and address port. The Main Memory is
equipped with a data- and address pcrt multiplexer
(f111,0131), which enables the supporting hardware to
be 1In charge of block transfers between one of its
own memory buffers and a buffer in the [ain Memorv of
the computer systen.

The Parallel Input Logic and the Farallel COutput
Logic control block transters, and ccmmunicate with
the multiplexer of the Main Mewory.

NOTE 23

The system modelled in Fig.5.1 can now be extended
with the following indepencent processes:

a) Serial to Parallel Conversion Frocess (StoP), sen-
ding data to the iMemory Bus Control Process, and
receiving serial data from the disk hardware.

b) Parallel to Serial Conversion FErocess (Ptaos),
receiving data from the Memwcry Bus Control
Process, and producing serial fermatted data to
the disk hardware.

c) Parallel Input Port Process (IF), sending data to
the Memory Hus Control Process, ancd receiving data
from Main Memorye.

d) Parallel Uutput Port Prccess (0OF), receiving data
trom the DMemory Bus Contrcl Process, and sending
data to Main Memorvy.

5.1.10

5.1.11-

the hardware level

The Pictorial Representation of these independent
processes and the Main Memory Bus Control Process 1is
given 1In Fig.5.3. (it 1s still incomplete), The
figure also indicates how the supporting hardware
communicates with 1ts envircnment. Data flow and
contreol flow not analysed cn this level of descrip-
tlion are pictured through wuse cf dotted lines and
heavy lines, respectively.

i A
?_mj_a Data»: =1 _T*_}?
g—| crap —ef; Data>: Ff 5 [me—
K K

: Dataz:
H——=—=>| Data»: e PO __T__>M
E > E
M IP MBCPR 0Op IH
e S

Fig. 5.3: The Memory Control and The 1/0 Units,

Sector Counter and Sector Match Units.

For each 1independent disk=~unit administered by the
supporting hardware there exists a sector address
counter which 1is set appropriately when index or sec=
tor pulses, sent by the physical disk-hardware, are
captured by the system, when requests for disk
Lranster are 1initiated, the actual disk=-to=-buffer
channel process will be delaved untll a8 match between
the requested sector address and the internal sector
counter for the specified cisk=-unit exists.

Upon the match all resources reguired for transfer of
data between a local buffer and disk are reset by
this unit. The disk 1/0 logic is signalled to start.

Parallel Port Control Unit.
Wwhen reguests for memory to buffer or for buffer to

memory transfers are initiated, all resources re=
guired to transfer data pbetween Kain Femory and local

55

system

5.1.12

modelling

pbuffer are reset bty this unit, which signals the [/0
processing units to start.

Direct Memory Access (DMA) Facilities,

A DHA tacility is provided to efifect whole block-
transfers between the lccal btuffers c¢cn one hand and
either disk or Nain #HMemory on the other. The
decision was made to equip the suppcrting nardware
logic with DMA facilities to relieve the disk=-chan-
nel~controller of the time-ceonsuring and monotonous
job of incrementing address=-pointers and monitoring
L/0 f£lags.

dhen a block transfer has kbeen initiated, a status
flag reflects the busy situation; It prevents the
disk-Channel=controller (if it is designed properly)
from interfering with the ‘uncompleted’ channel=-
process, The data transfer process will terminate
when an internal word=counter reaches its limit
(256), i.e, when the local buffer is full. Also, the
transter will be forced to a comrpletion if any new
process that conflicts with the current process is
initiated,

NOTE 33

S0

The system modelled in Filg.5.3 can now be extended
with:

a) Disk 1/0 Reguest Process (bisk Admin), which
receives contrel information from the Main Com=
puter and from the disk hardware. This process
signals on one hand either FtoS or StoP, and on
the other hand the disk hardware, tc start proces=
sinyg

L) Memory 1/0 Reguest Process (dem Admin), which also
receives control informaticn fror the conmputer
system. It signals the parallel I/0 processes as
well as the Main Memory multiplexer to start a
communication.,

In these pictorial representations there is no box
representing the DMA, It (i.e. the DMA) is an effect
achieved through the cocperative behaviour of WBCPE
and the 1/0 processes, thus the logic needed to im=

5-1.13

the hardware level

plement it 1s distributed among these components; to
show it in detail would destroy the modularity at the
present level of description.

Fig.5.4 d4ives an overview c¢f the channel=-control
systen, incrementally developecd through the previous
sections. The model does ncect 1llustrate all com=-
munication signals necessary to conftrol the system,
put gives an cverview of how the processes, realized
in the supporting hardware, are connected and how
they independently ccommunicate witr the environment.

R R A DISE [s i “>p
U r_____: Adirin e U

[|

! |

¥ ¥
D Datar» ib——w=: Datad:f———ma: D
| e |
S~——=—=-> StoP kK-—--— €= — — — 3 PtoS——-l~aS
K) K
el Data» ir——= : Data?>:if—w»: 1
b~ —E‘,
YA i SO T U)= I S

Y A

] 1

] I
4 Wi ntmnon Mem o < (

Prose-s ssecios s eie s mes R i et B AL PR B RaRSE o

Fig. 5.4: Channel 3ystern.

Arm Positioning Control Units.

The task of positioning the read/write heads is sim-
ple compared to the task of adrinistering data-trans-
fers, Built=~-in loglic inside the disk=hardware is
capable of moving arms to a specific cylinder on re=
aquest and of signalling tc the outside world that the
process has terwminated, Therefore, further hardware

57

systenm

S.l1.14

Bulelb

58

modelling

support 1is not needed because firxy= and software
mechanisms can easily take care of the arm
positioning. However, because the supporting hardware
has the additional purpose o¢of providing a single
unitorm interface to all of the disk functions, re=
quests to position arms as well as status information
tor terminaticn, are both gated through the suppor=
ting hardware.

At the supporting hardware level the Arm Positioning
Process is an independent process.

Disk=nardware Status Menitor Unit.

1t is the responsibility of the higher-level firm=
and software logic to drive the suppecrting hardware.
To do so meaningfully (e.g., to avolde interference
problems, and disable data transfers during seek
operations), the higher level logic <cgoordinates re-
guests with disk status information.

The Disk Hardware Status Monitor is the interface
unit, through which all feedback signals from the
disk unit are routed to the higher level logic,

Suppporting hardware services.

In the previous sections, an overview cf the collec-
tion of functions provided by the suppeorting hardware
was given. With those, the following services can bpe
performed:

1. Read a block ot data from disk to & local buffer,
invelving the component processes:
a) Disk I/0 Request Process (Disk Admin).
b) Serial to parallel conversion prccess (StoP).
¢) MYemory Bus Control process (MBCF).

2. Write a block of data from & local buffer to disk,
involving the component processes:
a) Disk Admin.
b) Parallel to serial conversion preccess (PtoS)
¢) MBCP.

3. Read a block of data from lMain Memory to a local
puffer, involving the ccmponent processes:

the hardware level

a) Memory I/0 Request process (Mem Admin).
b) Parallel input port process (IP),
c) MBCP,.

4, Wwrite a block of data from a local buffer to HMain
Memory, involving the component processes:
a) Mem Admin.
b) Parallel output port process (0UF),
c) MBCP

5. Arm Positioning.
Controlled entirely by the arm peositioning process
(APP).,

6, Status Feed=back.
Provided by the disk status meonitor process DSHMP,

In the next sections a complete model of the suppor=-
ting hardware 1is given.

For each component process the following are
specified:

a) The actions performed.
b) The enabling conditions,
¢) The global resocurces reguired,

At this level of description the functions of Disk~
nhardware and MHaln Memory Multiplexer are irrelevant,
since the mechanisms to control these functions are
local to each process.

In The Pictorial FERepresentaticn these mechanisms are
eliminated (3.1.1), and 1in The System Language
Description they are illustrated as function or
routine calls (3.1.1, 3.1.3).

The model of the disc controller presented in the
next chapters is for the special case where a sinygle
physical disk drive is connected to the system.

The model can easily be upgraded tc a more general
case - by duplicating all relevant disk=side
variakhles and adjusting logic trivially.

59

system modelling

5.2 Ihe Hemary Bus Conlirol Brocess.

The data path architecture of the MBCF (Fig. 5.2.) is inten-
ded to support a double puffering strategy in transfering a
sequence of physical consecliive sectors from the disk sur-
face to iMain Memory or vice versa, The strategy will
minimize the transfer time for multi-sector klock transfers.

To illustrate this consider:

A sector read operation, which involve the fcllowing steps:

a) transfer a sector to one of the two local buffers, and
check header information.

b) depending on the result of the previous aoperation, then
transfer the data in the buffer tc Main ienmory.

With a suitable design of the FMBCP, which 1s tne only

process participating in both disk=-side and memory=side

operations, step b) can proceed 1independently with a new

disk=side transfer, now invelving the remaining buffer,

This strategy can be used for a series of requests, assuming

that tranmission rates are higher for memory transfers than

for disk transfers.

This use of the supporting hardware 1is reflected in the

design of the bus gate and memory gate controcl of MBCP., As

the system is only edquipped with 2 local buffers, and as any

transfer alony a bus inveolves a buffer, only two data paths

can be active at any point in time.

Therefore, without losing flexibility, the following can be

assumed;

a) at any point in time one buffer (Bufa or Bufb) 1is
dedicated for disk transfers,

b) and the remaining buffer 1s decicated for memory trans-
fers.

These restrictions simplify the infcrmation needed to con=-
trol the MBCP.
5.2.1. The component processes of MBCP,

the following activities providec¢ by the MBCP can be
identified:

a) ngdy a buffer pointer for Bufa or Bufp. Upon
initialization ¢f a new disk=side transter the

60

the hardware level

BHMCP is signaled to clear a pointer (Bufaptr or
Bufbptr),

p) Transfer a sindgle word from any of the two sources
to a buffer location. whenever one of the two
"source’” processes signals ‘data available', the
MBCP will act.

¢) Transfer the contents c¢f a butfer location to any
of the two destinations. whenever one of the two
"destination’ processes signals ‘space available”
the MBCP will act,

To be able to wodel the MBCE the tollowing
definitions are necessary:

DEEINITIORS 1:

BUF ::= Control information, sent to the suppor-
ting hardware, stecifyving butfer al-
location for disk- and mwemorv-side data
transfers. The informaticn 1is,

3 = Bufa allocatecd for disk-side transfers,
and (5.2.) Bufb allocated for memory-side
transfers;

h = Bufb allocated for disk~side transters.

BTODPURT ::= Repository for a single werd produced by
HBCP, to be comsumed by the Parallel to
serial Conversion PFrocess.

BTODSTATE: = State variable tor BTCDPUKT, being

sa = space avallable, 1.e. signal to MBCP to
produce a new word;
da = data available, i.e. previous word not

consumed,

DTOBPOR1 ::= Repository tor a single word produced by
the Serial to Farallel Conversion Process
(l.e. from the disk).

DTOBSTATE :
da
sa

= State variable for DICBSTATE, being
data available;
previous word consumed,

1 HH e

BTOMPORT ::= Repository for a sindgle werd produced by
MBCE, to be comsumed by the Parallel Out=
put Process.

bl

system modelling

02

BTUMSTATE::= State variable tor BTUMPCEKT, being
54 = space available.
da = data available,
NTOBPORT ::= Repository fcor a single word produced by
the Parallel Input Process.

MTOBSTATE :
da
Sa

= State variable for MTCBPGCET, being
data available;
space avallable.

Hi N es

.

PTRCLEAR ::= Signal to clear local butter pointer,
heing

dclear = clear bufferpcinter for the buffer al-
located for disk=side transfers.,
mclear = clear kuffer pcinter for the bufter al-

located for memory=side transfers.

The internal logic of the Memory Bus Control Unit can
only handle a4 single activity 8t a time, i.e. it is
realized as a sequential program containing a central
condition polling and control dispatching tacilities.
A priority is enforced by the system, wnich gives the
synchronous disk=side operations priority,

As a consequence of this, the PRI corkined construct
of section 3.6.,2 is used tc model the VMBCP (see Fig,
e

The only relevant information to re illustrated in
the pictorial representation 1is the control infor-
mation (BUF) and the control sigrals (BTODSTATE
=8 W el S

The manifest-list on each line indicates which values
the environment is able to write to the variable,
represented py the line.

the hardware level

PTRCLEAR (mclear;dclear)

BTODSTATE (saj;da)
DTUBSTATE (saj;da) ‘
BTUOMSTATE (sa;da) |
MTUBSTATE (sa;da) ‘
_||dclear
wclear| :<€done
e~ Sa:€da
e
=~ ca<€sa:
B 53:€da
[3
e~ d3d€s5q:
BUEF (a;b)

Fig. 5.5: The Hemory Bus Control Process.

A complete description wusing the System Modelling
Language, 1s given in Appendix A.1..

2.3 Ihe Lisk EBead/drite Control Brocess,

The Serial to Parallel and The Parallel tc Serial Conversion
processes were described as two independent components in
section 5,2,

However, as the two processes share the same communication
wire for serial transfer and the same shift register for
conversion, they are not able to run in parallel. In the
model this is reflected by ccmbining the two component
praocesses into a single construct. In the tollowing this
construct 1s refered to as The Disk Read/Write Control

Process (DRWC}),

63

system modelling

5.3.1 The component processes of DRWC,

b4

In terms of the definitions in section $.2.1 the fol-
lowing activities are provided by the LDRWC process:

a) Consume a word in BTODPCRT, signal the MBCP that
BTUDPORT is emptied, write the word to the disk
surface and increment a word counter,

b) Write a single word (16 bit) from disk surface to
DTOBPURT, increrent a word counter and signal MBCP
that data 1s available,

c) Upon termination of a sector transfer (i.e. when
the word counter reaches its limit = 2%50) write
the completion status to a state variable (in the
case of a disk read operaticn the cyclic redundan-
cy code check may fail).

To be able to model the DRwWC process the following
detinitions are necessary (in addition to those of
section 5.2.1).

DEEINITION 23

Dap t+= State variable for the DRwC process,
heing
read =z disk read in progress;
write = disk write in progress;
done = previous operation terminated.
DWC 1:= Wword count feor current disk trapnsfer
operation.
DISKQOP ;3= Gtate wvariable for current disk re-
quest, being
read = A disk to buffer reguest initiated;
write = A buffer to disk request initiated;
ready = previous disk recuyests succesfully ter=
minated.
CLCerr = orc error occured during disk read

operation.

The dlstinction between DCP and DISKOP is essential,
as will become obvious in section 5.5.

A model picturing all relevant control and status in-
formation for the DKWC process is given in Fig 5.6.
As the DRWC is an integral part ¢f the supporting

the nardware level

nardware it 1s impossible to give the isolated con=
struct eny meaning. The interaction pbetween DRWC and
MBCP 1is shown in Fig.5.7.

DISKOP
DOP (read;write) A
DwC 4
O read: k
e—wmtlinits: +1
——— |——|—m S 3 s €da
. F

p—|—snyrite:
—emilinit: +1

—(a€545

F

Ll limits:
L.———:edone

e————————————:€5Tatus

L“\HL//’//

BTODSTATE (sa;da) §
DTUBSTATE (saj;da) ¥

Fig. 5.6: The Disk Read/write Control Process,

A detailed description in the System HModelling
Language of the process is given in Appendix A.2..

5.4. The Hemory Bead/driie Control EBrocess.

The logic of Main Memory is only capable of controlling a
single block transfer at a time ((13)). Therefore the paral=-
lel 1/0 processes (described in secticn 5,1.9) are unable to
execute simultanecuslye.

As the difference between serial and parallel data transfer
is irrelevant at this level of description (and therefore
abstracted away) the behaviour of the parallel 1/0 processes
and the serial I/0 processes are corparable., Referring to
the description in the previous section, the construct,
representing the MRWC, shown in Fig. 5.7 should be self-ex~
planatory.

05

system modelling

DISKOP
SECTUR 8

(read;write)

DCAP

.[?m
im) :<€done

LL\J/

—_— e [l

MARK(sm'; i)

read,write:
Sectorno:

:€s5a
1€sa

T €0
:<€DISKOP

(reacd;write)

AEHOP

)

[I

LEMADR

MCAFP

busyb{'rea
write

sa»;:

3

sa¥:

(Vg
VEMGE® :

sdclear»

DUP
DWC] ¥

]

DRaC
read:
Flimit:+]
sa:<da
&\\\izf,/
write:
¥limits+1
da<€sa:

P
limit:
1<€done
q:€5tatus

P

|
RTEET:

2R

i ! BTODSTATE
DTOBSTATE

<mclear:

18]

i

e

MRWC

ireadf
+1:1limit#
dar:sa

F
twrite
tlelimit#
:sa¥da

F
slimit
dcne>»:

EEEIIREL

F

BITUOMSTATE i

FTCBETATE

FTRCLEAR

MBCF

done>:[nclear

dclear]

2=S3a:<€da

— | mda<€sa:

da»: s arm———

BUF (a;b)

:5a»dap—7m-—

Fige Salt

68

Channel System,

the hardware level

2.6, Ihe Lisk and demary Iransfer Brocesses.

The Supporting hardware sevices described in section 5.1.15.
(Pt 1.-pt 4.) can now he reformulated in terms of the in-
troduced notation.

The channel system (picturedq in Fig.5.7.) can be described
as Lwo independent processes (Fig,5.8.) relieved of all
local control mechnisms Irrelevant for brccesses living out-
side the supporting hardware. Such Precesses cnly care about
the top of the hierarchy, i.e. the brocesses NDCAP and MCAP.

BUF

DISKOP VEMOP |

SECTOUR] T MEMADR] |

SN
‘__..[rec_ad fread
writeld: Lwrit 5

read read
write write
disk L _memory

Fig.5.8: Channel System (reduced),
Sl AL Boslitioning Process.

As described in section 5.1.13 the Arm Positioning Process
(APP) is an independent process.
To model the APP the following definitions are necessdary,

REEINITION a:

CYL ::= Disk cylinder address for next seek request,

SEEKOP ::= State variable for seek oreration, being
seek = seek request Initiated;

att head movement in pProgress, i.e, disk=hardware ac-
cepted seek command;

69

system modelling

ready £ drive not in the process c¢f executing a seek
operation;
illadr = illegal cylinder address;
incompl = malfunctioning of seek operation.

The single component process APP is shown in Fig.5.9.,, and a
description 1in The System Modellirg Lanquage is given in
Appendix A.6.

CYL
SEFKOP (seek) |

seek:i<€sStatus

App

Fig.5.9: The Arm Positioning Frocess.

5.8. IThe Disk Siarus Monitor Rrocess.

The higher level logic of the disk controller coordinates
request to seek, read/write disk and read/write memory with
the status of the suppporting haréware and status of the
disk hardware.

This higher level, which is realized in firmware in the com-
puter system, is not capable of reading tre value of the
state variables : SEEKOP, MEMOP and DISKOP ,since these
variables are realized as computer systemr output buffers.
The status of these variables together with the status of
the disk hardware are continuously monitored by The Disk
Status onitor Process (LUSMP), The DSMP assenbles all
relevant status information for the hardwired part of the
disk controller into a single woréd (each bit indicates a
state) and sends it to a bhuffer, readakle by the computer
system.

In the model of the DSMP in Appendix A.7. an incomplete set
0f avallable status informration is illustratec. The set is,
however, sufficient to fully understand the synchronization
aspects of tne disk controller,

70

DEFINITION 13

STATUS ::= Assemble
state of

bit 0 = (SEEKOGP

pit 1 = (DISKOP
pit 2 = (MEMOP
etc. see Apendix

In the higher level
be used to refer to

The component proce

the hardware level

d status inforwration, each bit retlects a
variapble, as

ready J);

ready J:

ready)i

‘7!

e TR T [o]

of the disk controller, STATUS(<n>) will
the nth bit of the status word,

ss DSMP 1s shown In Fig.5.10.

STATUS

SEEKOP M (seek;att;ready;illadr;inccmpl)
DISKUP I (read;swrite;ready;crcerr)

MEMOP | | (read;write;busy;ready)

€5tatus

s B4 we s

DSHUP

Fig.5.10:

The Disk Status Monitor Process.

71

system modelling

12

the firmware level

b. IHE EIBMEAEE LEMEL,

In the previous chapter a detailed descripticn was given of
an independent hardware processor, which provides a single
uniform interface bhetween the primitive disk-hardware and
the main conmputer,

The most important property of the supporting hardware is,
that it relieves the disk [/0 service routines (implemented
in firmware) of the monotonous and time cegnsuming jobs of
monitoring disk status ftlags and transtfering single words
between disk and malin memoly.

The supporting hardware provides:

a) Block transfer.
At any time there is a hardwsare «data bus connection
between the disk drive and a buffer; at any time there 1is
a hardware data bus connection between a4 bufter and main
memorye.
Data transfer alondyg the 2 busses can proceed independen-
tly and concurrently (section 5.2).
The disk-side buffer can be exchanged (flipped), essen-
tially instantaneously, with the rwremory=side buftfer (sec-
tion 5.2, and definiticn 1.).

b) Seek operationse.

c) Status feed-back,

The logical interfaces between firmware disk service
routines and the transter~- ’ seek=- and status processes
realized in hardware were lllustrated in Fig, 5.6., 2.7, and
5.8., Trespectively.,

The supporting hardware 1is potentially capakle c©f overlap-
ping independent data transfers. However, it 1s the respon-
sibility of intelligent firmware routines to coordinate
hardware functions in such a way that as imuch independent
data=transter activity as possible is actually overlapping,
thereby maximizing disk L/0 throughput.

73

system modelling

The design of the firmware level disk control mechanisms

should satisfy the following reguirerents:

a) As many system components as meaningfully possible should
be inplementable as independent processes.

h) These processes should be connected as loosly as pos=
sible, and each should synchronize itself knpowing 1little
or nothing about the other processes.

c) the combined behaviour of these processes should spon=
taneously take advantage of a8ll prossibilities for over=-
lapping 1/0, including pipelining cf disk-read seguences
and dilisk=write seguences.

The bhasic 1dea, behind the system=-nodel presented in this
chapter as a solution satisfying these requirements, 1s the
obvious exlstence of two independent asynchronous pipelines.
One tor dJdisk=read operations (utilizing a Lardware disk-
side function and a hardware remwmory=side function, in se=
quence); and one for disk-write cperations (wutilizing a
memory~side operation followed by a disk=-side operation).
Such asynchronous pilpelines will automatically = if they are
designed properly = overlap the execution cf seqguences of
disk=-read operations and seqguences of disk=write operations.
Additionally, the syster 1s designed to optimize the ex-=
ecution ot & sequence of rixed read= , write~- and seek re-
gquest.

In the following presentation, the model cf the system is
broken into modules, which are descriked in turn. However,
this does not reflect the actual process of the system’s
development.

First, the well defined modules in the pipeline system =
such as memory~to=-buffer, buffer-to=-gisk etc, = were
isolated, anadalyzed and modelled independently, and then in=-
terfaced together,

During the interfacing stage, the existence ot new component
processes d4dppeared and caused redefinition c¢f the inter=
tacing specification for other components.

The following sections present the final state, ot this
iterative design process.

14

the firmware level

6.1.The Chanhel Iraffic Coordinalor.

The Channel Tratfic Coordinator Process (CTC)
complex
disk=controller.

read

6.1.1-

is the most
the firmware part of the
It administers the initialization of the

and intellegent process in

and write pipeline processes to start Disk/Maln Memory
Lranster operations,
movements,
for new activities,
overlapped (while the security of the system

and the 1initializstion of disk arm
1t ceoordinates current operations with requests
in such a way that data transfers are
is maintained).

The Queue Structure.

Reguests for Disk to HMain IFemory transfers,
Memory to Disk transfers and for armg movenents, are
assumed to be gueued in a strucrure, 1initialized by
the Operating System in such a way that requests to
single tracks will be extracted by the CTC one after
another with increasing sector nunkers., The Disk
Drive Queue is the conglomerate g¢gf several Track
Jueues as 1llustrated in Fig.o6.1l..

Maln

1
SEEK] READ1
¥\\\h__,////
1/-\ J/\i_ { ;q
SEEK?2 READ?Z READ3 ARITE1L WRITE?Z
yd
SEEK3 ﬁEAD4
| 2
Fig.b,1: The Disk LCrive Queue,
Information about the current gphysical sector-num-
ber, sent to the CIC from the supporting hardware,

enables
most optimal polnt,

CTC to start emptying the Track~Queue at the
therekby reducing latency time

75

system modelling

(this function of the CIC iIs not considered in this
paper).

b.1,2 Timing for a seqguence of read reqguests,

76

The design of The Channel Traffic Coordinator mainly
rests on the timing Lroperties ot transfer
operations, which «etermine the pg¢ssibilities for
overlapping data transfers.

The following exXample 1llustrates the overlapping ot
the operations required to excute a seguence of Disk
Read Requests, for transfering a series of physical
consecutive sectors from disk to main remorv.

The tollowing is assumed:

a) The disk=arms are 1in pcsition, i.e. the sectors to
be transfered are all lccated on a track belonging
to current cylinder.

b) The asynchronous Fead Fipeline is empty.

c) The next 4 requests in the Request~Cueue are:

R1 = request to transfer secteor 1 tc memory.
R2 E i - - e 2 - - L]
Rj E = - - - 3 - - -

SEEK = regquest to move disk drive arms to a new
cylinder.

c) There exists a communication buffer RWORK = a line
for request information - whose value is produced
by the CTC and consumed by & precess executing the
first stage in the pipeline (l.e.the process of
transfering a sector fromr disk tc one of the two
memory buffers located 1In the supporting hard=
ware).

d) There exists a communicaticon interface, for now
referred to as FLIP, which, ¢on termination of a
disk=side operation, connects current disk=side
buffer to Main Memory and connects the remaining
bufter to the Disk. The FLIF prcocess initiates tne
next step 1in the Read pipeline = the memory=-side
operation.

Fig.6.2. gives a diagram cf the timing aspects in

the firmware level

processing the 4 requests,

1latency disk 1 rem ‘

R1 time operationy og.

‘ ‘ disk J me }

R2 rTequest in RWORK operationy op.

J l ‘ disk l menm ‘

R3 walt for RwWwURK ¥ in RWCRK operationy op.

SEEK4 reguest in Queue * walt for drive { seek ‘

Tlxki | i | i

1 £ 3 t4 £5
Fig.6,2:; Timing for seaquence of read requests,

NOTE :

a) R1 enters +tne pipeline at tl anc R2 at tl+(the
time CTC takes +to rermove a reguest from the
gueued.,.

b) R3 enters the pipeline at t2.

c) During t2=-t3 three requests are in the pipeline
and CTC is walting for disk rescurce to initiate a
seek.,

d) Under the asumption that nc seek operation is in

projress
new read 1s the line
The FLIP
€5,

Transmission

e)

£) rates
memory
1=-20 ratio).
necessarve.
However,
disk
4,.,) = and the
quetive sectors,
take place.

between
substantially lower than between
and bufter (in the real system,
(verlapping may

the header=-checking =
controller hefore memcry cperations (chapter
capability

the only resource reqguired to initiate a
RWCRK .,
interface is in operaticn at t2,

t4 and
disk and buffter are
high~-speed main
there is a
therefore seem un-

performed by the

¢f transfering conse=

together require overlapping to

77

system

6.1.3,

78

modelling

Timing for mixed read and write reguests.

The control mechanisms required for overlapping mixed
read- and write requests are wmore comrplex than the
overlapping mechanisms for a4 seguence of requests ot
the same type.

Tne control cannot be ©performed by the mechanisms
provided by any of the twec asynchronocus interacting
pipelines,

The overlapping has to be controlled by the Channel

Tratfic Ceoordinator, in the following way:

a) If a read=request (for sector <n+i») follows a
write-regquest (tor sector <n>), then the CTC must
delay the initializaticon of the read pipeline un-
til the disk=side operation process involved in
performing the write-request, has terminated,

If this protoceol is not followed, the new read~re=
quest may lock the disk-side resource which should
be used in the final stage for the write-request
pipeline, 158 the request for sector <n+i> will
be processed pefore the request for sector <n>,
which certainly was not the intention, as it
causes the write reguest to wait in the pipeline
until the read request releases the disk, and sec=
tor <n> actually has been passed once,

The CTC administers this situation by monitoring a
Jdisk=workload variable, which 1s incremented by
CTC when a4 new regquest is send tc any of the two
pipelines, and decremented upon terwmination of a
disk=side operation.

b) If a write-reguest fcllows a read=request the
initialization ot the write=regquest must be
delayed until the previous read=recuest has en=
tered the disk-side stage of the pipeline.

The CTC administers this situation by delaying the
new Wwrite-request until the RWCKK resource is
released by the previous read-request,

These situations are illustrated 1in detail in the
description of the CIC in Apendix B.1.

bll'4.

the firmware level

The #odel of The Cnannel Traftfic Ccordinator,

To understand the model of the CTC (Fig.6.3.) the
following definitions are necessary.

DEFINITION 13

QUEUKSTATE :
lock

unlock
DRIVE :

seeking
<n>

READSIGNAL :

start
free

RWORK :

ARITESIGNAL:

start
free

WWORK :

SEEKSIGNAL 3

®
.

we 1"l

ne

i

e

THEI

= State variable for the Cueue, which is
a shared resource of the CTC and the
Operating System. Values,

the Queue 1s locked.

the Queue 1s unlccked,

= State variable for chysical disk
drive, being

the disk 1s in progress cf moving arms.
count of Jjobs 1In the ripelines still
pending for, or in progress of a disk
transfer.

= Signal to begin a disk to main memory
transfer; the disk arms are positioned;
all necessary control information is in
RWORK. Values,

signal to start.

previous signal consured, and RWORK
free,

= Disk sector and memory destination ad-
dress tor next read operation.

= Signal to kegin a waln memory to disk
transfer; the disk armp 1is positioned;
all necessary information is in WwWORK,
Values,

signal to start.

previous signal consumred, and WWORK
buffer free.

= liemory source address and destination
disk sector for next write reguest,

= Signal to begin a disk drive arm
positioning. All data=transfers to disk
and all current disk=to=buffer
operations have been tinished (i.e.

system modelling

80

DRIVE=(), and n1no new cnes will be is=
sued (i.e. DRIVE set to seeking) until
seek 1s finished, All necessary con-
trol information is in SwURK. Values,

start =z signal to start.
free = previous signal cecnsuned and SWORK
free,
SWORK ::= Cylinder address for next sSeek re=-
quest.

In the symbolic description of the processes in the
firmware level disk controller in Appendix B., the
variables RWURK, wikUGRK and other variakles which are
used to contain transfer control information, are
pointers to request vectors containing disk=side con-
trol information, memory=side c¢ontrel information,
and both temporary and completion status information.

The model of The Channel 1raffic Centreller, which is
shown 1in Fig.6.3.,, 1s a PRI construct (section
5.6.,2), where each component describes the activities
performed by the CTC to start a specific job (read;
write; seek; newread; newwrite).

The signal, which selects a specific bex, is local to
the CTC; 1t is determined by the types of the next
and the previous reguest, onlv.

the firmware level

QUEUESTATE

=<F— UNnloCk<€1loCk:
r—— J€Unlock
—a=mfreet<€start
—|—sFseeking:+1
t€Readwork

READ

—— 1 €lnlock

—e frees€start
¥seeking:+1
t€writework

WwRITE

E— 1 €uUnlock

—a free:€start
| O:<€seeking
:€5Seekwork

SEEK

— 1 €Unlock
- - —- e~ free; NEWWKLTE
[_ - t€unlock
READSIGNALY] ¥ —|—at () 2 NEWREAD
RiulORK ¥ lg— : €Unlock
WRITESIGNAL
dwORK i
SEEKSLGNAL
SHlIRK

DRIVE \

Figs 6,32 The Asynchronous Channel Traffic Coordinator.

The local control logic of CTC is described in detail
in Appendix B.1l.

The behaviour of the CIC ip interacting with other
processes in the firwware part of the cisk=controller
is illustrated 1 Fig.6.9., and it gwight be advan=
tageous to consult this cowplete wodel in order to
see the functions of the CIC with their full meaning.

g1

system modelling

bL.2, Ihe Drive Arm-positicning Bapdlerxr.

The Drive Arm=-positioning Handler (DAEH) is a simple
process.

The guarantee that arm-positioning does not interfere with
other processes is held by the CIC process which on the one
hand delays signals to the DAPH urtil all pending disk-side
transfer operations have terminated, and on the other hand
delays new transfer operations until the DAPH signals its
termination (by changing LURIVE from "seeking’ to 0).

The shared variables accessed by DAPH are given in
Detinition 1.

Two models of the DAPH are given (Fig.6.4. and Fig.6,5).
in Fig,6.,4. the communication with the seek process realized

in hardware is illustrated (see section 5.7) in addition to
the communication with the CTC.

DRIVE
SEEKSIGHAL 4
SWORK | 1
start<€free;

SEEK)Pp== t€s5eek

T
STATUS(0) Biready:

l 1 €0

W
Fig. 6.,4: The Drive Arm=pcsitioning Handler.

The compbonents describing the communication with the hard-
ware do not add any information tc the total picture of the
combined behaviour of the firmware implemented part of the
disk controller. These components provide a description ot

82

the firmware level

local control mechanisms, only - l,e., no prccess, described
on this level, other than DAPH uses the resources (SEEKOP
and STATUS(0)).

S5uch components are best be eliminated frcm the rniodel,
thereby relieving the model of ‘noilse’.

Furthermore the DAPH SEQ-construct can be collapsed 1into a
single bhox (Fig.6.5.).

DRIVE
SEEKS1GHNAL]
SWORK] |

start<€:free

: €0

Figd. 6453 Ihe Drive Arm~-positiconing Handler (reduced).

£.3. Ihe Disk RBead/Write Controller.

The Disk Read/write Controller (DEWC) administers the
initialization and termination of disk sector transfers
between the disk and the leccal memory buffers of the suppor-
ting hardware,

The DRWC process 1s divided into two minor processes; one
which pertforms disk~to-buftfer activity as the operation on
the first stage of the Read pipeline; another which performs
puffer-to=disk activity Iin the Wwrite regquest gpipeline.

Due to the architecture of the supporting hardware, these
independent processes d4are not capable of executinyg sinmul-
taneously.

In addition to those of DEFINITICHN 1, the folleowing com-
ponents are referenced in the model of the Lisk Read/write
Controller (Fig.6.6.J).

DEFINITION 23

83

system modelling

DISKSTATE :(:i= State variable for cisk=-side channel, being
idle = ready for either disk=tc~-buffer operation or

buffer-to-disk operation.

lock to prevent more than one prccess trom ac-

ting on the condition DISKSTATE=idle. As two

independent processes = the kead pipeline and

the Write rpipeline = may simultaneously wait

tor this «c¢endition, the condition must be

singular (section 3.4.5).

dtom = Lisk=to buffer activity terrinated; waiting for
buffer=-to~derory activity. All necessary con-
trol information is in DEARAM, (Both the infor-
mation and the signal are used to control the
Read pipeline process).

ntod = demory=-to-butfer aclivity terminated; waiting
tor buffer~to=-Disk activity. All necessary con-
trol information Is in DPARAF. (Ihis signal and
the information enclcsed are used to control
the Write pipeline process),

i

busy

i

DPARAN ::= Disk=side repository of parareters and tem-
pordry status for either the Disk Read pipeline
process walting for ¥ain lMemory activity or the
Disk Write pipeline process waiting for Disk
actlvity,

= Signal to the Uperating System, that a Read or
WArite transtfer is completed. Values,

EOREQUEST

term = reguest terminated; completion status intor=
mation 1s in ECRSTATUS,

free = previous signal consuned.

husy = lock to prevent more than one of the pipeline

processes from termipating with the condition
"EQREQUEST=free”’,

Both the Read pipeline and the urite pipeline
signal their completion bty means of EOREYUEST
signals.

EORSTATUS :1:= Transter completion status infcrmation.

84

the firmware level

DRIVE ECREQUEST

READSIGNAL ! ECESTATUS L]

RWURK i

PDISKOP = jdle€husy:

wstart<€tree:

STATUS(1) i i€read

DISKSTATE \

I

eready:
bep—— | ——— s €ctonm

:€0param
] = |

emtcd:

=t :€write
;

Bready:
1€idle
ke, t=1

haxh\\\l//,/,/'

term»:busy>freecm—

compl¥>:
T

DPARAMN {

Fig. 6.6: The Asynchronous Disk Read/write Controller,

Additional remarks on the model of The Disk kead/wrlte con=
trol ler:a

a)

b)

ypon termination of a disk-to-buffer or a buffer-to-disk
operation the work-load counter (LCRIVE) 1s decremented.

As the two processes which perform disk-sicde operations,
exclude each other through arrangerments held by the
DISKSTATE variable, the components descriking the com-

85

system modelling

munication with the supporting hardware (DIBSKOP and
STATUS(A)) can be eliminated and regarded as internal
function calls. The reduced mocdel is illustrated as a
component in the model of the complete system in Fig,0.9.

c) The buffer-teo-disk process notifies the Crerating System
of the termination of a Main Femory to Disk request., Com-
pletion status is written intc EURETATIUS, which the write
pipeline shares with the Read plipeline. 1he sharing is
controlled by using an EBS ¢f the Singular Conditional
form for the EOREQUEST variable. The notification is the
final stage in the Disk write gpipeline.

6.4, lhe Hemory Read/usrite Controller.

The Memory Read/Write Controller (MEWC) resembles the Disk
Read/write Controller. Unly polints c¢f difference between
them are noted,

DEFINITION 3:

AEMSTATE ::= State varliable for memory=-side channel, being
idle = ready for either memcry-to=-buffer operation or
buffer=-to~memory operation,
lock to prevent more than one prccess from ac-
ting on the condition MENMSTATE=jidle. As two in-
dependent processes = the Read pipeline and tne
drite pipeline =~ mray simultaneously wait for
this conditicn, the conaition must be singular,
demory-to-butffer operation terwinated; waiting
for buffer-to-Risk operation. All necessary
control information is in [MPARAN,
Disk~-to=~buffer operation terminated; waiting
for buffer-to-Memory operation. All necessary
information is in MEARAM,

busy

i

]

mtod

dtom

1

"PARAM :i= Memwory-side repositcory of parareters and tem=
porary status for either Disk write pipeline
process waiting for disk=side, or Disk Read
pipeline process waiting fcr memory=-side
resource.

86

the firmware level

ECKEQUEST
ARITESIGNAL ECESTATUS §
HWORK A

e~start<€free: -

AEMOP ————m=idle<€busy:

STATUS(2) p— ;€read

T

=redady:
— t<értod
s — t€lparam
T

dtaom:

-
e

< {:<€write
1

B-ready:
f———; €idle
T

term»ibcusydfreeps
Status»:

T
A

MEMSTATE
MPARAM 1

Fig. 6.7: The Asynchronous Memcry kKead/write Controller.

b.5. Ihe Channel Iraffic Loxernor.

There is one point in the two pipelines, which 1s extremly
complex and c¢ritical, namely the conjunction point between
the pipelines,

This is the point where The Disk Read process potentially
waits for memory resources, and The Disk write process
potentially walts for disk resources.

A mutual interdependency may arise between the two pipeline

87

system modelling

processes at this point.

The intertace’ process between the «aisk=side transfer
process and the memory=-side transfer process should provide
Lhe following:

a) conventional communication Etetween a single process and
its successor for both the Read anc the Wwrite pipeline.
This <controls the situation, where the twc pipelines are
executing independently.

b) a “swap’® of resources if the pipelines are executing con=
currently, and have reached the point c¢f wutual in=-
terdependency.

This leaves 3 situations, for the interface Eprocess = The
Channel Trattic Governor (CIG) = to handle :
a) DISKSTATE=dtom and MEMSTATE=idle:
the Read pipeline is active only, in which case the sig-
nal DISKSTATE=dtom should be forwarded to the memory-side
process.
b) DISKSTATE=1dle and MEMSTATE=mtcd;
is the inverse situation, now for the krite pipeline.
c) DISKSTATE=dtom and HMEMSTATE=mtcd;
both pipelines are 1p operaticn and a swap of signals as
well as control information has to take place.

As illustrated in the pictorial representation (Fig.,0.8.)
the CTG is desiyned to consist of 2 comporent processes.,

The model of the CTG in Arpendix B.5 consists of a single
component process, which will act upon & corplex state sig-
nal.

88

the firmnware level

DISKSTATE MEMSTATE

DPARAY A i MPARAM

+—=dtom: €MENSTATE

7 idle "
dtom>»sbusy?»|mtoa
1€H0T BUF
1€IPARAM DEPAKAM® :

t

DISKSTATE® :iwt odpe—

idle
E&to%]f pusy:<€mtcd
$€U0T BUF

s €MPARAWM DEARANY @

BUF

Fig., 6.8: The Asynchroncous Channel Traffic Governor,

8,6, The daodel of Ihe Supperiing Elrmwmare.

A complete model o©of all components = processes and shared
variables = which is involved in the firmrware part of the
disk=controller is illustrated in Fig.6,9..

In addition to being 4 model for an 1implementation of the
system (not necessaryly a firnware inmplerentation) the com-
plete model can be used to ¥Merify the protectedness of tLhe
system.,

The set of EBS’s associated with & resource, should guaran-
tee that the resource is properly shared; 1.e. these EBRS’s
reflect the agreements amrong the set o0of prccesses sharing
ihe resource.

Several ways of sharing resources are illustrated in the

model, For example:

a) Sharing of the disk=resource 1is contrclled, since the
component processes using the cdisk do not act upon the
same event, The disk-to-butfter operation is enabled if
'DISKSTATE=1dle” and bufter-to~disk operation is enabkled

89

system modelling

if 'DISKSTATE=mtod’.

b) The ‘register’ for request completion information
(EDORSTATUS) 1is shared by twc component processes acting
upon the same event. As stated earlier, the sharing must
be controlled by using Singular conditions Statements. In
this case, the EBS’s associated with ECRECUEST have the
form: ‘free<busy:<€term’.

90

SEEKSIGHAL

the f£ir

free:<€start
Fseeking:+1
t€Readwork

startr;ftreclm—
Fseeking:+1
WI1Lework® sl

SWHRK

frees<start
O:<€seeking
1€Seekwork

RERE!

free:

0z

mware level

READSIGHAL WRITESIGNAL
RAORK 8] ¥ . WWURK
DRIVE | | |
—estart<€<free;
0¥
—s= start€free:; sftree>»star tp=-
:<€Dparam Mparam»:
—slidle<€busy:<€dtom mtoc»:ibusy?»idl el
-1
—i o el
= 1tod:€idle idle?:dtonja—s
T T
term»:busy?>free free<pusy:<€terin
] compl¥: :€5tatus
\T.'/‘ \1./
DPARAMY YMPARAM
DISKSTATEL &) Y MENSTATE
4
EUOREQUEST
EORSTATUS |
=l dtom: €MEMSTATE
idle -y
dtom®»:ibusy?| nted
—|— s €MPARAN CEARANV® ;——
DISKSTATE> :mt o e
Lol| 1d1E
dtomj<€busy:<€mtod
t€MPARAM DEARAWY» 1
Fige ©9: The Model of the Supporting Firmware.

91

system modelling

b.l. Inphlementallon in Eirmpuare,

The set of processes described in this chapter are realized
by functions implemented in firmware,

The

reasons for inplementing this set of processes at the

firmware level = instead of the hardware cr scftware level =
are as tollows.

a)

L)

92

Flexibility.

The Disk Controller is an experimental prccessor, which
should be left sufficiently malleable or plastic to allow
for future functional developnent.

The physical device configuration way change. By im-
plementing the “interface’ to external devices in flex-
ible firmware, no alterations in or additions to existing
applications (file-managers, user-progrars etc.) may be
necessary .

The users® requirements may change. By irplementing the
fintertace’ (seen from the physical configuration point
of view) to user applications, in flexible firmware, the
interface wmway be changed or be extended tec support these
new requirements without affecting hardwired components.
Une area where extended interface requirements may arise
1s that of large=scale on-line data FLases. "Low=-level’
retrieval facilities could profitably be implemented as
intelligent secondary storage interfaces.

A hardware I1nmnplementation wculd not provide this flex-
ibility, but it would be provicded by a software level
realization.

Timing Reguirements,

the Supporting Hardware provides an asynchronous inter-
face to the disk hardware; However, interrupts caused by
the Supporting hardware (disk=side=-operaticn terminated,
etc.,) can in practice not be inhibited, e.g. if requests
for transfers of consecutive sectors reside in the re=
guest queue or in the pipeline, the interrupt sent from
the Supporting Hardware upon termination of one disk-
side-operation should 1indirectly bring fcrward a signal
to start the next transfer, within a certain time frame.

the firmware level

The operations perforwred in this case, by various inter=-
rupt handlers and I/0 service routines, have to execute
within the time span of a sector-gap, in order to main-
tain a continuous flow of data tromr disk tc main memory,
i.e, 1f the service routines break the time frame the
disk will idle for at least one revolution.,

The software level, in the specific syster to which the
disk drives are connected ([2)), is based on a virtual
CPU (I5]), and all 1I/0 performed Ly software level
routines cause one or several context switches between
CPU environment and I/0 environment ([4]).

Due to high virtual CPU cycle-time (10us=401s) and time-
consuming context switches (40ps), interrupt=-handlers and
1/0 service routines realized Ly functicns in software
would not be able to satisfy the time reqguirements
described ahove (sector gap is 30Gps).

6.7.1. Polling and Control Dispatch PFodule,

Having declded to realize a set c¢f Iinteracting
processes by functions implemented on & single level,
where multiprosessing is not supported =(in this case
the firmware level), the fcllowing strategy is recom=
mended:

a) Use the process description (Fig.6.9. or Appendix
B) to design a single, central polling and control
dispatching niodule.

b) Realize the module by & highly efficient firmware
function.

¢) Realize the remaining part of the processes 4s
normal seguential firmware interrupt handlers,

The virtual machine, realized by a set of microcoded
functions, shares the ©physical prccessor with the
firmware part of the disk controller (and other
logical channel controllers). A central monitor ad-
ministers the sharing.,.

The Polling and Dispatch routine for the disk~con~
troller occupy the processcr resource for at least as
lony as it takes to execute the statements of the
routine once,

93

system

94

modelling

Therefore b)) is a vital regquirement,

A description of the Central Siagnal Folling and Con=
trol Dispatch Process is given in Fig.6.10, and a
description of the microccded interrupt handlers are
given in Apendix B.6..

Boeth the Polling/Lispatch process and the interrupt=-
handlers are normal, seqguential, and rather simple,
programs = their combined behaviour is however quite
incomprehensible,

In addition to the definitions given in the preceding
sections the following remarks on the descriptions
are necessary:

a) In addition to showing the interaction between the
processes on the firmware level, the description
also lllustrates the conrmunication with the sup=
porting hardware (see Fig.6.4., Flg 646 +=648) s
New states for CISKSTATE and MEMSIATE (reading,
writing) have been intrcduced to enable the system
to administer this cormunication. These states
tunction as enable=interrupt masks.

b) The variable NEXTREQUEST mirrors the internal con-
trol mechanism of The 1lraffic Channel Coordinator
{section 6+1id.)s
Its use should be self-exXxplanatery.

¢) TERMREAD/TERMWRITE indicates whether or not a re-
guest has terminated.

The handler for the interrupt-event
TERMREAD=pending /\ EOREQUEST=free

will notify the Operating Syster of the ter~-
mination.

d) DPARAM and MPARAM are repositories for current
disk=-side and mem=side operations, respectively.

e) The priority schema used in the polling and
dispatch process, gives the functions on the final
stages of any pipeline priority.

£) No indivisibility is described, the disk control=-
ler engages the processcr until none of the con=
ditions in the polling process are satisfied.

the tirmware level

process POLL 1is
{poll
goto valof
{
if TERMREAD=pending /\ EURECUESI=free
resultis eorreadcacticn
if TERMWRITE=pending /\ EOREQUEST=free
resultis eorwriteaction
i1f MEMSTATE=writing /\ STATUS(Z)=ready
resultis ternmemwrwrite
if DISKSTATE=writing /\ STATUS(1)=ready
resultis termdiskwrite
if MEMSTATE=dtom
resultis startmewwrite
if DISKSTATE=mtod
resultis startdiskwrite
if (DISKSTATFE=idle /\ MEMSTIATE=xtod) \/
(DISKSTATE=dtom /\ MEMSTATE=mtod)\/
(DISKSTATE=dtom /\ MEMSTATE=idle)
resultis flipaction
if MEMSTATE=reading /\ STATUS(Z)=ready
resultis termmenread
if DISKSTATE=reading /\ STATUS(1)=ready
resultis termdiskread
if MEMSTATE=1idle /\ WRITESIGHNAL=start
resultis startmenread
if DISKSTATE=idle /\ READSICNAL=start
resultis startdiskread
if NEXTREQUEST=read /\ KEADSIGNAL=free /\
DRIVE#seeking
resultis startbisktolMem
if NEXTREQUEST=write /N #RITESIGNAL=free /\
DRIVE¥seeking
resultls startMexptoDisk
if REXTREQUEST=seek /\ SEEKSIGhNAL=free /\
DRIVE=0
resultis startseek
i1t NEXTREQUESI=newwrite /\ KEADSIGNAL=free
resultis startHemtoDisk
1f NEXTREQUEST=newread /\ DRIVE=Q
resultis startDisktolMem
if DRIVE=seeking /\ STATUS((0)=ready
resultis termseek
}
tpoll

Fig. 6.,10: S5ilgnal Polling and Control Dispatch.

95

system

96

modelling

In mapping the descripticns into microcode the only
non=trivial algoritm is the algoritm for The Signal
Polling and Control Dispatching Frocess, which must
be coded as a highly efficient micro-cacded function.

It is, however, outside the scocpe of this paper to
present and explailn the micro=program for the polling
and dlspatch process (5 instructions : 1.5ps). L
can pe mentioned that the basic idea behind the
‘solution’ is to implement the sianal pelling as
priority encoding, in the follocwing way:

1) to represent each relevant condition in the firm=-
ware level | part of the disk ccertroller as a
single bit (positioned according to the schena
given in the symbolic description of the polling /
dispatching process).

2) use the bus masking facility preovided by the
mlcroprogrammakle processor to pertorm full=word
logical operaticns.

3) use bus bit-encoding facilities to select and
enaple the one ‘active’ interrupt~handler which
has priority.

the firmware level

4. CONCLUSION.

The goal of the work which nas been presented in this paper,
ls to develop a rodelling tool for analyzing, describing and
designing the structure of a scft~, firm=- and hardware
system consisting of independent process compcnents.

A Pictorial Representation has been proposed (Chapter 3) to
accomplish this goal, and the tool has been applied to an
example system to lllustrate its feasibility.

The description provided through The Pictorial Kepresen-
tation and The System [Modelling Language should be suf=-
ficient to allow for the describec syster to be implemented
as functions at any level - be it software, tfirmware, hard-
wdare or a mix of these levels,

To this end, the Pictorial Kepresentation is intentiocnally
designed to be comprehensible to both software = and hard-
ware engineers.

Additionally, all level” dependent recuirements are
eliminated from the model, For eXample a 1l1line in the
representation, mway be implemented as a communication wire,
register, memory location, variakle etc., depending opn the
level to which this part of the syster is ‘assigned’.

Design criteria or constraints, such as tiwring requirements,
existence of hardware, software tacilities available, re=-
gquired flexibility, cost, etc., which would influence the
decision of how to implerent a particular function, are ab-
stracted from the model representation.

Such design constraints are only considered at the final
stage of a development of a systemw - the implementation.

To illustrate this ‘implerentation’ flexibkility attention is
drawn to section 4,3 of this paper, where a firmware
solution’® to parts of the low level mermcry-side operation
was mentioned. Additionnally, & hardware design utilising
priority encoding logic and Read Cnly Memory for the part ot
the Disk~Controller, which was assigned to the firmware
level in this paper, is progosed in [13].

97

system

modelling

1.1, Eufure sork.

Due to

the short period of time The Fictorial Representation

has been under developrent, the modelling tool cannot be
declared complete.

The tool must be studied further.

7.1.1.

98

kExtentions to The Elementary Behaviour Stateinents.

Seen from a component process (box) point of view, an
EBS was associated with & single shared variabple
(line). In the condition-list of an EBS it was pos-
sible to specify relations between the value of the
line on one hand, and a constant or the value of a
local variable on the other,

It might be advantageous 1if it were possible to
speclfy relations between values ¢f two or several
lines,

For example:

consider the Channel ‘Tlraftfic Governcr described in
section 6.5.; the model was desiqgned to consist of
two component processes (Fig 6.8).

An alternative model = now allowing for a new ‘line-
to-line’ relation form of EBS could be,

DISKSTATE
MEMSTATE i

L“{idle}jmtcd}{ﬁtod}: € VEMSTATE
i H

dtomflidlef\dtomf: € LISKSTATE

Fig.7.1: The Channel Traffic Governor (moditfied),

The exact Interpretation is given in Appendix B.5.

7'1‘2.

conclusion

Verificatione.

Attempts to verify the design by using information
contained in the description have been made, for ex-
ample in section o,0..

Further investigations have to be made in this area,
and systematic rules for examinaticon of protected-
ness, sharing etc., should, if possible, be provided,
Existing theoretical tools (for example Petri Wets)
may prove to be usable for verificaticn in connexion
with the pictorial representation,

9.9

system modelling

100

references

List of References,

(1]

(2]

(3]

(4]

(51

[o]

(7]

(8]

(9]

(10])

P. Kornerup, B. Shriver:

"A Description of the MATHILLA Processor".,
DAIMI PB=52, Computer Science Department,
Aarhus University, Denmark, September 1975.

P. Kornerup, B. Shriver:
"An Uverview of the MATHILDA System",
SIGHMICRO, January 1975,

1. Holm Sorensen, kK, Kressel:

"A Proposal for a Multi-Programring BCPL System
(n RIKKE=1",

DAIAI #4D=19, Computer Sclence Department,
Aarhus University, Lenmark, Cctcber 1975,

E. Kressel, E. Lynning: "The 1/0 kucleus on RIKKE=1",
DALJL PL-=21, Computer Science Lepartwyent,
Aarhus University, Denmark, Cctoker 1975.

IF'e Kressel, I. Holm Sorensen:

"The First BCPL System on RIKKE=-i",

DAINT Pb=17, Computer Science Departrent,
barhus University, Denmark, August 1975,

M, Richards: "BCPL: A tool fcr compller writers
and system programming".
Spring Joint Computer Conference, 1989,

il Richards: "The BCPL Reference itanual",
Technical Memorandunr No.69/1-2,The Ccomputer Laboratory,
Corn Exchange Street, Cambridge, Endylanc.

E.l. Organick: "Computer System Cryanization",.
Lcademic Press 1973.

MeJ. Spier: "Lecture liotes on Uperating Systems".
Computer Science Department,
Aarhus University, Lenmark, LDecernber 1977,

Je.L. Peterson: "Petri hNets".
Computing Surveys, Vol.9, No.3, September 1977,

101

system modelling

[11)] P. Kornerup:
"The Wide Store on the RIKKE/MATHILLA Systen",
(DALKI internal document), Hcvemker 1974.

(12] M.J. Spier, I. Holm Sorensen:
"Advanced Process Synchronization',
Lecture notes, Computer Science Department,
Aarhus Universlty, Denmark, inovernber 1977.

(13] I. Holm Sorensen, P. Kornerug:
"wlDFESTORE, a4 sharable HMemory for RIKKE/FATHLILDA",
(DAIMIl 1nternal document), toc be published.

[14] "DLIABLO 4000, Data lanual".
bata Recording Instrument Corpany Limited, England.

[15] "Microprogramming in 1/0"
Infotech State of the Art Lectures,
Microproramming and System Architecture,
3=5 april, 1973, London.

[16] H. Katzan, Jr.:
"Computer Organization and the Syster/370"

102

glossary

glossary

asynchronous : characteristic of processes that operate at
arbitrary times, possibly cdetermined by the action ot
other processes,

bus : group of wires that carry informatiorn.

channel : complex process that performs input/output trans-
fers, usually for several peripheral cevices,

Gliock : device that qgenerates tiring signals.

cyclic redundancy code : a checksum compiled from a sequence
of data words,

direct memory access (DHMA) : transfer of a klock of infor-
mation directly between an external device and memory
without using a CFU service routine.

firmware : microprogram,

gate <control : control of a logic device with one or more
input and one output.

latency time : the time spent waiting for a specific disk
sector to arrive under the heads.

index mark : pulse indicating that the next sector acces=
sable on a disk device is sectocr 0,

multiplexor : a device thalt connects one of wany inputs to
an output.

parallel transfer : transfer of several bits of data at one
time; transfer of all bits of one word at once,

sector mark : pulse indicating that the read/write head for
a disk device 1s passing a sector gap.

serial transfer ! transfer cof data bits one at a time,
synchronous : characteristic of processes that operate at

fixed time Intervals, generally determined by a
clock,

103

system modelling

104

appendix a

ABBEUDIX A,

The appendix contains &a description o¢f the processes
realized in the Supporting Hardware, using the System bModel=-
ling Language,

A.l. Hemory Bus Conirol EBrocess
(MBCP)

mailbox { BUF; PTRCLEAR; BTCLDSIATE; BTODFURT;
DTOBSTATE; DTUBPORT; BTOMSTATE;
BTOMPORT; MIOBSTATE; MTOBFCRT }

nanifest { sa=0; da=1; dclear=0; mclear=1;
done=2; a=0; b=1 }

process MBCP is

{mbcp
let Buf = 0
let Ptrclear = 0
let bufa = vec 255
and Bufaptr = 0
let Bufb = vec 255
and bufbptr = 0
let Data = 0

priority:

it valof

{clearcond

<< 1f PTRCLEAR=dclear \/ PTRCLEAR=wmclear do
{ Buf := BUF
Ptrclear := PTRCLEAR
resultis true } >>
or resultis false

}Clearcond goto clearaction

if valof
{BtoDcond
<< 1if BTODSTATE=sa do
{ Buf := BUF
resultis true } >>
or resultis false
}Btollcond goto btodaction

Al

system modelling

if valof
{bDtoBcond
<< if DTUBSTATE=da do
{ But := BUF
DTOBSTATE := sa
Data := DTOBPORT
resultis true } >>
or resultis false
IBtobcond goto dtobaction
if valof
{Btolicond
<< 1f BTOMSTATE=sa do
{ Buf := BUF
resultis true } >>
or resultis false
}BtokMcond goto btomaction

if valot
{dMtobcond
<< it MTOBSTATE=dga do
{ Buf := BUF
Data := MTOBPORT
ATOBSTATE = sa
resultis true } >>
or resultis false
Pitobdcond gotoe mtokaction
Joto priority

clearaction:
switchon Ptrclear into
{
case mclears: (Buf=a =->» RBufbptr, Bufaptr)
case dclear: (Buf=za ~> EBufaptr, Bufkptr)
}
<< PTRCLEAR := done >>
goto priority
btodaction:
if Buf=a do
{ Data := Bufal!Bufaptr
Bufaptr := Bufaptr+l
} or
{ Data := BufblBufbptr
Bufbptr := Bufbptr+l
I3
<< BTUODPUKT := Data
BTODSTATE := da >>
goto priority

A2

appendix a

dtobaction:

if Buf=a do

{ Bufa!Bufdaptr := Data
Bufaptr := Bufaptr+1

} or

{ Bufb!Bufbptr := Data
Bufbptr := Buftbptr+l

¥

goto priority

btomaction:

if But=b do

{ Data := Bufa!Bufaptr
Bufaptr := Bufaptr+i

} oor

{ Data := Bufb!Bufbptr
Bufbptr := Butbptr+l

}

<< BTOMPORT := Data

BTOMSTATE := da >>
goto priority

mtobaction:
i1f buf=b do
{ Bufal!Bufaptr := Data
Bufaptr := bBufaptr+i
} or
{ Buftb!Bufbptr := Data
Bufbptr := Bufbptr+1
}
goto priority
}mbcp

A3

system modelling

A.2, Lisk Bead write Controller
(DRWC)

mailbox{ DOP; DWC; DISKOP; BTOUDSTATE;
BTUODPORT; DTOBSTATE; DTURSTATE }

manifest { sa=0; da=1; read=0; write=1; done=2
ready=2; crcerr=6; lirit=256 }

Process DRWC 1is
{drwc
let Dop = 0
let Data = 0
let Crcword = 0
let Crcygenerate(a,b)= { }
//local function generating a new
//cyclic redundancy werd
let dextiébit() = valof { }
//local function returning the next 16 bits
//trom disk surtace
let Qutilébit() be { }
//local routine to record 16 bits
//on disk surtace
let Checkcrc(a,b) = valof { }
//local function returning false if the cyclic
//redundancy ckeck failed else truye

while valof
{readcond
<< 1f (DOP=read /\ DwCFligit /\ DTOBSTATE=sa)
resultis true >>
or resultis false
treadcond do
{readaction
Data := Nextiéebit()
Crcword := Crcgenerate(fata,Crcword)
<< DTOBPORT := Lata
DTUBSTATE := da
DWC := DwC+1 >>
rreadaction

Al

appendix a

while valof
{writecond
<< if (DOP=write /N DwC#limit /\ BTULSTATE=da) do
{ Data := BTODPORT
BICDSTATE := sa
resultis true } >>
Oor resultis false
Iwritecond do
{writeaction
Uutléblit(Data)
Crcword := Crcgenerate(Crcword,Cata)
<< DWC 1= DRC+1 >>
twriteaction

while valof
{termcond
<<it DWC=limit /\ DOP#done do
Dop := DOP
resultis true } >>
or resultis false
}termcond do
{termaction
let status=ready

if DOP=write do Uutiebit(Crcword)

or
if CheckCrc(Crcword,Nextl6bit()) do

Status := ready

or Status :=crcerr

<< DOP := done
DISKOP := Status >>

}termaction

A3

system modelling

A.3, Hemory Read arite Control
(MRWC)

mallbox { MOP; HWC; MEMUOP; BIUMSTATE;
BTOMPORT; MTOULSTATE; MIOBPCRT }

manifest { sa=0; da=1; read=0; write=1i;
done=2; ready=3; limit=2%6 }

process MRWC is

{mrwc
let Jop=0
let Data=0

let Nextword() = valof {}
//local function returning next word
//7from main memory
let Qutword(w) be {}
//1local routine sending word
//7to maln memory

while valcf
{readcond
<< 1if (MOP=read /N MwC#limit /N MICESTATE=sa)
resultis true >>
or resultis false
lreadcond do
{readaction
Data := Nextword()
<< ATOBPORT := Data
MATOBSTATE :1= da
MAC = HMWC+1 >>
}readaction

Ab

dppendix a

while valof
{writecond
<< 1f (MOUP=write /N MuCFlimit /\ BTOMSTATE=da) do
{ Data := BTUMPURT
ATOBPORT := sa4
resultis true } >>
or resultis false
}wWwritecond do
{writeaction
Qutword(bata)
<< MWC 1= MWC+1 >>
}writeaction

while valof
{termcond
<< 1f MwC=limit /\ HMUP*done do
{ MOP := done
MEMUP 1= ready
resultis true } >>
or resultis false
}termcond
Imrwc repeat

A7

system modelling

A.4., Disk Chanpel Administration Erocess
(DCAP)

mailbox { DISKOP; SECTUR; MAKK; CLEARPTE;
DOP; DwC; BTCDSTATE; DTOBSTATE }

manifest { sectormark=0; indexmark=1; dore=2;
read=0; write=1; sa=0; dclear=0 }

process DIAD is
{diad
let ilark=0
let Sectorno=0Q
let Diskop=0

until valof
{markcond
<< if MARK=sectormark \/ MARK=-indexmark do
{ Mark := MARK
resultis true } >>
resultis false
}markcond loop
{markaction
1f Hark=sectormark do Sectorno := Sectorno+l
or sectorno := (
<< HMARK := done >>»
}markaction

it valof
{matchcond
<< 1f (DISKOP=read /\ SLCTICR=Sectorno) \/
DISKOP=write /\ SECTOR=Sectornc) do
{ CLEARPTR := dclear
Diskop 1= DISKOP
resultis true } >>
or resuyltis false
tmatchcond do
{matchaction
<< BTODSTATE
DTOBSTATE :
DWC := 0
DOP := Diskop >>
}matchaction
rdiad repeat

1

sa
5a

AB

appendix a

A.5, Hemory Channel Administration Brocess
(MCAP)

mailbox { MEMOP; MEMADR; CLEARPTR; MCP;
MwC; MTOBSTATE; BICMSTATE }

manifest { read=0; write=1; kusy=2; sa=(¢; mclear=1 }

process MEAD is
{mead
let Memop=0
let Memadr=0

if valof
{memcond
<< 1t MEFOP=read \/ MEMUP=write do
{ demop := MEMOP
Mlemadr := MEMADR
CLEARPTRE := mclear
resultis true } >>
or resultis false
tmemcond do
{memaction
let Startblockread(a) be { }
let Startblockwrite(a) be { }
//local routine which starts the block
//processing unit inside Main Memory

1f lFemop=read do Startblecckread(¥emadr)
or Startblockwrite(Memadr)
<< MTUBSTATE := sa
BTOMSTATE := sa
MaC = 0
MOP = HMemop >>
rmemaction
tmead repeat

A9

system modelling

A.b, Arm Bositioning Brocess
(APP)

mailkox { SEEKQOF; CYL }

nanifest{ seek=1; att=2; illadr=5;
incompl=4; reagy=3 }

process APP is
{app
let Cyl=0

if valof
{seekop
<< it SEEKOP=seek do
{ €yl o= CYL
SEEKUP := attention
resultis true } >>
or resultis false
}seekcond do
{seekaction
let Status=0
let Seek(c) = valof { }
//local routine to position arms.
//returns status for Disk=hardware
//0on termination

Status :1= Sek(Cyl)
<< SEEKOP := Status >»
}seekaction
rapp repeat

Al0D

appendix a

A.1l. Disk Status Moniior Erocess
(DSHP)

mailbox { STATUS; MEFOP; DISKOP; SELEKUP }

manifest { ready=3; incompl=4;
illadr=5; crcerr=6 }

process DSMP is
{dsmp
let Seekop,biemop,Diskop=0,0,0

<< Seekop := SERKOP
Memop 5= MEMUOP
Diskop := DISKOER >3
{statusaction
let status=0
let Diskstatus() = valof { }
//1local function returninrg Disk=-status
//ready or not ready
let Putcond(cond,word,pocs) be { }
//local routine to put cendition as
//a bit into word at positionr pos

Putcond(Seekop=ready,lv status,0)
Putcond(Diskop=ready,lv status,1)
Putcond(Femop=ready,lv status,2)
Putcond(Diskop=crcerr,lv status,3)
Putcond(Seekop=incompl,lv status,4)
Putcond(Seekop=illadr,1lv status,5)
Putcond(Diskstatus(),1lv status,&)
<< STATUS ;= Status >>
}statusaction
tdsmp repeat

Al

system modelling

appendix b

ABPENDIX E,

This appendix contains a description of the processes
realized on the firmware level in the Disk Centroller.

B

system modelling

B.1l. Channel Iraffic Coordipator
(CTC)

mailbox{ QUEUESTATE; DRIVE; KEADSIGKAL;

RwORK; WRITESIGNAL; wwCRK;
SEEKSIGNAL; SWORK }

manifest{ unlock=1; lock=0; seeking=-1;

read=0; write=1; seek=2;
nothing=3; free=y; start=l
newread=4; newwrite=5 3

process CTC is

{c

B2

te

let
let
let
let

ief

et

Readwork=0

Wwritework=0

Seekwork=0

ChoosefromQueue() = valof { }

//local function returning next kind ot

//job from gueue, being:

//read; write; seek; ncthing; newread; newwrite.
//Newread is returned if a new read request is
//following a write request; if a write comes
//after a read newwrite is returned.

ResetdFQ() be {}

// Resets Queue information preventing

// ChoosefromQueue fror returning the values
// newwrite or newread

RemovefromQueue() = valof { }

//1local function returning the pointer to
//the next reguest block (eguivalent to the
//block accesed Iin previous call of
//ChoosefromQueue; in addition the request
//block 1s removed fromr the gueue chain.

appendix o

<<QUEUESTATE := lock>>
switchon Choosefronrgueue() intc
{
case read: <<if READSIGNAL=free ./\
DRIVE$seeking do>>
{
Readwork :=
<< Rwork ==
CRIVE := DRIVE+1
QUEUESTA'L := unlock
ELADSIGNAL := start >> }
endcase

ercovefromQueue ()

R
Readwork
D
E

case write: <<if WRITESIGNAL=free /\
DRIVE+seeking do>>
{ writework := EKemovetromrQueue
<< wWlRK := Writework
Drive := DRIVE+1
CUEUESTATE := unlock
WRITESIGNAL := start >> 1}

case seek: <<if SEEKSIGNAL=free ./\ DFIVE=0 do>>»
{ Seekwork := RemovefromQueue()
<< SWORK := Seekwork
DRIVE ;= seeking
GUEUESTATE := unlock
SEEKSIGNAL := start »>> 1}
endcase

case newread:
<< 1f DRIVE=0 do >> ResetNFQ()
endcase
case newwrite:
<< if READSIGNAL=free do >> ResetiFQ()
endcase

case nothing:
}
<KQUEUESTATE := unlock>>
rctec repeat

B3

systen modelling

B4

appendix b

B.2, Ihe DRrive Arm-posilfioning Harcdler
(DAPH)

mailpox{ DRIVE; SEFKSIGNAL; SWORK }
manifest{ free=0; start=1 }

process DAPH 1is
{daph
let Swork=0
let hMoveheads(cyl) ke { }
//1local function realized
//in the supporting hardware; access is made
//to SEEKOP and STATUS(0)

if valof
{seekcond
<<if SEEKSIGNAL=start do
{ Swork := SuWORK
SEEKSIGHAL ;= free
resultis true>> }
Oor resultis false
}seekcond do
{seekaction
Noveheads (Swork)
<< DRIVE := 0 »>>
}seekaction
}daph repeat

system modelling

B.3. Ihe Disk Read/¥rite Coptroller
(DRwC)

mailbox{ DRIVE; READSIGNAL; KRWORK; ECRECUEST;
EQORSTATUS; DISKKSTATE; LPAKAM }

manifest{ free=0; start=1; term=i; icle=0;
busy=1; dtom=2; mtcd=3; diskpart=0;
statuspart=2; conpl=1 }

process DRwCl is
{drwcl
let Dparam=0
let DiskReadHandler(sector) = valof { }
//1local function which utilize the access
//possibilities (DISKCF; STATUS(1) and STATUS) to
//the supporting hardware to perform disk-
//operations, The result of a read (crcerr etc.)
//1s returned,

if valof
{readcond
<< if READSIGNAL=start /\ DISKSTATE=idle do
{ Dparam := RWORK
READSIGNAL := free
PDLISKSTATE := pusy
resultis true >> }
or resultis false
}readcond do
{readaction
Dparam!statuspart:=DiskReadHandler(Dparam!diskpart)
<< DRIVE := DRIVE~-1
DPARAM := Dparam
DISKSTATUS := dtom >>
}readaction
rdrwecl repeat

B6

appendix b

process DKwWC2 is
{drwc?2
let Dparam=0
let DiskwriteHandler(sector) be { }
//local function, which utilize the access
//possibilities (DISKCF; STATUS(1) and STATUS) to
//the supporting hardware to perform
//disk-operations,

until valof
{writecond
<< 1f DISKSTATE=1ntod do
{ Dparam := DPARAM
resultis true >> }
or resultis false
rwritecond loop
{writeaction
DiskWritelandler (Dparam!diskpart)
<< DRIVE :1= DRIVE~1
DISKSTATE := idle »>>
rwriteaction

until valof
{termcond
<< if EOREQUEST=free do
ECREQUEST := busy
resuyltis true »>>
Oor resultis talse
}termcond loop

{termaction
<< EQRSTATUS
EQREQUEST :
}termaction
rdrwc2 repeat

compl
term >>

RB7

system modelling

B.4, Ihe Hemory RBead/krite Controller
(HMRWC)

mailbox{ WRITESIGNAL; WwWORK; MPARAMN;
MEMSTATE; EOREQUEST; ECESTAIUS }

manifest{ free=0; start=1; term=1; idle=0;
busy=1; dtom=2; mtod=3; statuspart=2;
mempart=1 }

process MRWC1 is
{mrwc
let Mparam=0
let lifemReadilandler (addr) be { }

//1local function, utilizing access possibilities
7/ (MEMOP; STATUS(2)) to the supporting hardware,

if valof
{readcond
<< i1f WRITESIGHAL=start /\ MENSTATE=idle do
{ Mparam := WWORK
AEMSTATE := busy
ARITESIGNAL 3= free
resultis true >> }
or resultis false
}readcond do
{readaction
“demReadHandler (Mparam!merpart)
<< MPARAM := KMparam
MEMSTATE := mtod >>
treadaction
tmrwcl repeat

B8

appendix b

process MRWC2 is
{mrwc2z
let Mdparam=0
let MemWriteHandler(addr) = valof { }
//1local function, utilizing access possibilities
//(MEMOP; STATUS(2)) tc the supporting hadware.
//additionally MemWriteHancler performs
//header=check to ensure that the requested
//sector is the one received from
//disk= hardware,

until valof
{writecond
<< 1f VEMSTATE=dtom do
{ wparam := MPARAM
resultis true >> }
or resultis false
}writecond loop

{writeaction
Status = MemWriteHandler(Mparam!wemrpart)
<< DISKSTATE := idle >>

lwriteaction

until valof
{termcond
<< if EOREQUEST=free do
EQREQUEST := busy
resultis true >>
or resultis false
}termcond loop
{termaction
Status,Mparam := Status \/ Fpararl!statuspart
<< EURSTATUS Status
EOREQUEST term >>
}termaction
rnrwe2 repeat

B9

system modelliny

B10O

appendix b

B.5. Ihe Channel Iraffic Govenor.
(CTG)

mailbox{ DISKSTATE; MEMSTATE;
DPARAM; MPAKRAM }

manifest{ idle=0; busy=1; dtom=Z2; mtod=3 }

process CTG is
{ctyg
let HMparam,Dparam=0¢,0
let Memstat,Diskstat=0,0
let Flipbut() be { }
//local routine to "swap" the local
//buffers of the suppcrting hardware,
//i.e. the buffer allcocated for memory sidge
//operations will be allocated for the next
//disk side operation and vice versa,

if valot
{flipcond
1f << (DISKSTATE=idle /\ MEMEIDE=mted) \/
(DISKSTATE=dtom /N MEMSIDE=mtcc) \/
(DISKSTATE=dtom /\ MEMSIDE=idle) do
{ Mparam := MPARAM
Dparam := DPARAM
Diskstate := DISKSTATE
Memstate := MEMSTATE
DISKSTATE := busy
MEMSTATE := busy
resultis true >> }
or resultis false
}rflipcond do
{flipaction
Flipbuf()
<< MPARAM :
DPARAM
HEMSTATE := Diskstate
DISKSTATE := Memstate
}flipaction
}cty repeat

811

system modelling

B.6 Interrupthandlers.

eorreadaction:

EORSTATUS := STATUS!statuspart
EOREQUEST := term //Notify signal to user (08)
goto Poll

eorwriteaction
EORSTATUS := compl
EOREQUEST := term //Notity signal to user (0s)
goto Poll

termmenwrite:
AENSTATE := idle
STATUS := MPARAHN
TERMREAD := pendiny
goto Poll

termdiskwrite:
DISKSTATE := idle
TERMWRITE := pending
DRIVE := DRIVE=-1
goto Poll

startmemwrites:
Checkheader ()
MEMADR ;= MPARAM!wempart //signal the supporting

MEMUP 1= write //hardware,
MEMSTATE := writing
goto Poll

startdiskwrite:
SECTOR := DPARAM!diskpart //signal the supporting

DISKUP := write //hardware.,
DISKSTATE := writing
goto Poll

flipaction:

swap (DISKSTATE , MEMSTATE)
swap(DPARAM, MPARAM)
swapbuffer ()

termmemread:
MEMSTATE := mtod
Joto Poll

termdiskread:
DISKSTATE := dtom
DRIVE := DRIVE~-1
goto Poll

B12

appendix

startmemread:
MEMADR := WWORK!mempart //signal the supporting
MEMOP := read //hardware,
MPARANM := WWORK
WRITESIGNAL := free
MEMSTATE := reading
goto Poll

startdiskread:
SECTUR := RwORK!diskpart //siynal the supporting
DISKOP := read //hardware,
DPARAM := RWORK

READSIGNAL := free

DISKSTATE := reading

goto Poll

startDisktoMem:

RWORK 1= RemovefromQ()

NEXTREQUEST := Choosefron¢() //can also be set by
//means c¢f other
//functicns, e.qg.
//upstarts an empty
//Reguest Queue,

READSIGNAL := start

DRIVE := DRIVE+1]

dgoto Poll

startMemtoDisk:
AWork := RemovefromQ()
NEXTREQUEST := ChoosefronG()
WRITESIGNAL := start
DRIVE := DRIVE+!
goto Poll

startseek:

o

CYL := Removefromi() //signal the supporting

SEEKOP := seek //hardware,

DRIVE := seekiny

NEXTREQUEST := Choosefron¢() //first request in
//new Track-Queue,

termseek:
DRIVE := 0

B13

