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0. Introduction

The proof of the completeness result presented in the report DAIMI PB-
220 (“A Modal Logic for a Subclass of Event Structures” by K. Lodaya
and P.S. Thiagarajan) contains a flaw. Our aim here is to rectify this flaw.
To save space, we shall assume that the reader has a copy of DAIMI PB-
220. The flaw occurs in the proof of Lemma 4.19. Hence the material we

present here is to replace the material in Section 4 starting with Lemma
4.19.

1. The Correction

Before proceeding to present a correct proof of Lemma 4.19, it will be
convenient to rework the definition of an n-agent event structure. Let
ES = (E, <, #)be an n-agent event structure. Then it is easy to observe
that # is a derived relation. Stated differently, once < and F4, Es, ..., E,
are fixed, then # can be extracted in a unique fashion provided the
property asserted below is satisfied. And this property is always satisfied
by an n-agent event structure.

Proposition 4.19

Let ES = (E, <, #)be an n-agent event structure. Then
(Ve € E)(Vi)(Ver,e3 € Bi)legy < eande; < e=-e; < eyore; < e

Proof: Suppose e € F and e;,e; € E; such that e; < e and e; < e.
If e7 £ e; and ey £ e; then ej#e; by the definition of an n-agent event
structure. But then e; < e and e; < e would together imply e#e which
is a contradiction because # is supposed to be irreflexive. O



Proposition 4.20

Let ES' = (Ey,E,,...,B,,<) be a structure such that the following
conditions are satisfied.

(i) i#j@EﬁﬂEjZ(B
(ii) (E,<) is a poset where F = U, E;
(iii) (Ve € E)(Vi)(Ver, ez € E;)[e1 < eandey < e=>e; < eyore; < e

Then ES = (Ey, E,, ..., E,, <,#) is an n-agent event structure where #
is the least subset of E x E given by

(1) (Vi)(Vei,es € E;)[e; £ es and e; £ €1 = e;#es]

(ii) e1,es € E; and e1#te; and e; < €] and e, < €}, implies e/ #eb.

Proof: # is symmetric by definition. # is irreflexive by part (iii) of
the conditions satisfied by the structure of ES’. Since < is reflexive and
transitive ey #es < es would at once imply that e;#es. It is now routine
to complete the proof. O

Due to Proposition 4.19 and Proposition 4.20 we can work with the fol-
lowing alternative definition of an n-agent event structure.

Definition 4.21

An n-agent event structure is a structure ES = (Ey, Es, ..., E,, <) such
that

) i£j=ENE;, =0
(ii) (E,<) is a poset where F = U™, E;

(iii) (Ve € E)(Vi)(Ver,e2 € E;)[e1 <eand ey < e=e; <eyore < e



The conflict relation # then becomes a derived notion as outlined in the
statement of Prop. 4.20. It is this alternative definition we will work
with from now on. Note that the material presented in DAIMI PB-220
concerning chronicles (i.e. starting from Def. 4.14) goes through without
any modifications w.r.t. the alternative formulation of an n-agent event
structure presented in Def. 4.21.

In what follows we will use a weakened notion of a chronicle structure,
hence Def. 4.17 in DAIMI PB-220 is to be read as follows.

Definition 4.17 (new)

A chronicle structure is a pair (ES,T'), where ES = (E, <) is an n-agent
event structure and T is a coherent chronicle on ES. O

As in the above definition we will often say that (E,<) is an n-agent
event structure instead of saying that (Ei, Es,...,E,, <
event structure.

,<) is an n-agent

We can now briefly explain the flaw in the proof of Lemma 4.19 in DAIMI
PB-220. For case 1 and case 2 in the proof the resulting structure ES’
will, in general not satisfy part (iii) of Def. 4.21! As a result, #' might
not be irreflexive.

First let us observe an elementary fact about posets.

Proposition 4.22

Let PO = (X,C) be a poset and z1,z3 € X such that z; £ z, and
zy Z ;. Then PO' = (X,C’) is also a poset where

C'= (C U{(x1,22)})"

Proof: Trivial. O



The following intermediate result will be useful for arriving at a correct
proof of Lemma 4.19 in DAIMI PB-220.

In what follows whenever we appeal to a result or definition which does
not appear here then it is taken to appear in DAIMI PB-220.

Lemma 4.23

Let ES = (Ey, By, ..., E,, <) be a structure such that (F, <) is a finite
poset (i.e. E is a finite set) where E = U™, F; and i # j implies that
E;NE; =0. Let T be a map which assigns an MCS to each e € F such
that Ve € E. [type(T'(e) = 1 iff e € E;] and Vej,e; € E. [e; < €3 =
T(El) j T(eg)]

Then there exists an n-agent event structure ES = (Ey, E,,...,E,, <)
such that the following conditions are satisfied.

(i) <c<

(11) Vel,eg = E.[el §’ €9 — T(el) < T(62)]

Proof: Let k= |(E x E)— < |. The proof is by induction on k.

k=0 Then (Ey,E,,...,FE,,<) is itself an n-agent event structure. In
other words we can set <=<' and be done.

k>0 Leteg€ Fandie€ {1,2,...,n} and e;,e3 € F; such that e; £ e,
and e; £ e; and e; < ey and e; < eg. If no such eg, 7, e; and e,
exist then we can once again set <=<' and be done.

Now T'(e1) < T'(eo) and T'(e3) <X T'(ep) and type(T'(e1)) = ¢ = type(T'(ez)).
Hence by Lemma 4.16 and Lemma 4.13 (in DAIMI PB-220!) T'(e;)
T'(eg) or T'(eg) = T'(e1). Assume without loss of generality that T'(e;)
T'(es). Now define <" as

=
=

<= (L U{(e1,e2)})"



Since e; £ e; and e; £ e; we have that (E <") is also a poset by
Prop. 4.22. Consider now the structure (E4, Es,...,E,,<"). As before
type(T'(e)) =i iff e € E;. Now suppose that e,e' € E such that e <" €.

zo and T, = € and (zj,2i41) € < or (x4, xi11) = (e1,ez) for each i €
{0,1,...,m —1}. This follows from the definition of <". But (z;,z;41) €
< implies that T'(x;) < T'(z;11) by hypothesis. If (z;, z;11) = (e1, e3) then
also T'(z;) % T'(xi4+1) because we have assumed T'(e;) < T'(e3). Moreover
= is transitive by Lemma 4.13. Hence T'(e) < T'(e'). Hence the structure
(Eq, By, ..., E,,<") with the map T satisfies the conditions laid out by
the statement of the lemma. Clearly |(E x E)— <" | < k — 1. The result
now follows from the induction hypothesis. a

Then there exists a sequence of elements zg,zq,...,2, such that e =

We can now proceed to present the correct version of Lemma 4.19 in
DAIMI PB-220.

Lemma 4.24

Let (ES,T) be a finite chronicle structure. In other words ES = (E, <)
is an n-agent event structure with E as a finite set. Let (e,3) be a live

communication requirement in (ES,T"). Then there exists a chronicle
structure (ES',T") with ES' = (E',<') such that

Proof: Assume — as it will turn out — without loss of generality that 3
is of the form ©;a. Then e ¢ E;. By Lemma 4.11 there exists an MCS
A such that type(A) =i and ©;a € A and A <. T'(e). Pick some é ¢ E



and set for 1 < j < n,
B E;u{ée} ,ifi=jy
J E; , otherwise
Set E' = U}_; E}. Now define

Pre(é) = {¢' | € € E; and €' < €}

Now define <" as follows.

<= (< U(Pre(?) x {&}) U {(&,e)})"

We shall prove that (E’,<") is a poset as follows. For convenience, first
set Ry = (Pre(é) x {é}) and Ry = {(¢é,¢€)}.

Claim 1

Let z € E such that z <" é. Then there exists y € Pre(é) such that
z<vy.

Proof of claim 1: Let z¢,z,...,2, be a finite sequence such that
© = z9 and =, = € and for each j € {0,1,...,m — 1}, (zj,z;41) € <
UR; U Ry. Such a sequence must exist by the definition of <". Now
€& E and x € E. Hence m > 1. We proceed by induction on m.

m =1 Then (x¢,21) € Ry and hence zy € Pre(é).

m >1 If (z,21) € R; then we are once again done. (zg,z;) € Ry
because this would imply that x = zq = é.
Now suppose that (zg,2;) €<. By the induction hypothesis
there exists y € Pre(é) such that z; < y. But then < is transitive
so that zy < y as well.




Claim 2

(e, &) ¢<".

Proof of claim 2: Weknow e € E. Hence e <" é would imply by claim
1 that there exists y € Pre(é) such that e < y. But by the definition of

Pre(é) we know that y < e. Since < is antisymmetric we can conclude
that (e, é) ¢<". O

Claim 3

Let x € E such that é <" z. Then e < z.

Proof of claim 3: Let zy,z1,...,2,, be a sequence such that é = z
and z,, = z and for each j = {0,1,...,m — 1}, (z;j,2;+1) € < UR; UR,.
Since é # z (because é ¢ F and x € F) we must have m > 1.

Now consider the pair (zg,z;). Then (z,z;) € Rs. We now have that
z1 = e. From claim 2 it follows that z; # é for each j € {2,...,m}.
Hence (z;,x;+1) € < for each j = {1,...,m — 1}. Hence e < =. 0

Claim 4

Let (z,y) € (<" — <). Then z <" é and é <" y.

Proof of claim 4: Let zg,21,...,2,, be a sequence such that = = z,
and ¢, = y and for each j € {0,1,...,m — 1}, (#;,2;41) € < UR; U R,.
Since (z,y) € (<" — <) it must be the case that z; = & for some j €
{0,1,...,m}. The claim now follows at once. O



Claim 5

E', <") is a poset.
b

Proof of claim 5: <" is reflexive and transitive by definition. So
consider z,y € E' so that z <" yand y <" z. If z < y and y < = we have
at once £ = y because < is anti-symmetric.

Suppose that (z,y) € (<" — <). Then by claim 4 we know that = <" é
and é <" y. We can now analyze four different possibilities.

If £ = é and é = y then we have at once z = y.

If x # é and & = y then by claim 1 we know that for some 2' € Pre(é),
z < z'. But then y <" z would imply by claim 3 that e < z. We now
have the contradiction e < z'.

If = € and é # y then from z <" y we can deduce — using claim 3 —
that e < y. But then y <" z implies that e <" & = é and this contradicts
claim 2.

If x # & and y # é then by claim 4 we know that z <" & and é <" y.
From é <" y it follows by claim 3 that e < y. From z <" ¢ it follows by
claim 1 that z < 2’ for some z € Pre(é). Now z <" y and y <" z together
lead to the contradiction e < z'.

So finally assume that (y,z) € (<" — <). The proof of the fact that

z <"y and y <" z implies £ = y is exactly the same as the case where

z,y) € (<" — <) (with the roles of z and y interchanged) and hence we
Y

omit it. O

At this stage we have the poset (E',<") with E' partitioned into
(B, By, ..., B)). Now extend T to E' as follows.

A ife=2¢8

! ! _
WEE, diE)= { T(z), otherwise

Unfortunately (E', <") might not be an n-agent event structure because
part (iii) of Def. 4.21 might not be fulfilled. We can however augment <"
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with additional pairs to arrive at <' so that (E', <') is indeed an event
structure. Lemma 4.23 will be used for this purpose.

Claim 6

Vz € E'. [type(T'(z)) = jiff z € E}].
Proof of claim 6: Trivial. O

Claim 7

Vz,ye E'. [z <" y=T'(z) X T'(v)].

Proof of claim 7: Let x,y € E' such that x <" y. Then there exists
T, 1, ..., Tm such that z = 2y and =, = y and (z;,2,;4;) E< UR; UR,
for each j € {0,1,...,m — 1}. We now proceed by induction on m.



3
Il
o

Then z = y and we know from Lemma 4.13 that < is reflexive.

=
V
o

Suppose (zo,z1) €<. Then T"(zq) = T'(zo) and Pn) =T lzi)s
Hence T"(z¢) = T"(2;) because T'(zo) < T'(z;) is implied by
xg < x1. Now T"(z1) < T'(x,,) by the induction hypothesis. By
Lemma 4.13, = is transitive. Hence T"(zo) < T"(zy,).

Next suppose that (z,#;1) € R;. Then z( € Pre(é) and z; = é.
Hence zy < e and this at once implies that T'(zq) < T'(e). By
the definition of A (= T"(é)) we know that A <, T(e). We
claim that this implies that T'(zg) = T"(zo) < T'(€). To see
this assume that v € T'(z9) = T"(®o). Since T'(zp) =< T'(e)
and type(T'(z¢)) = ¢ we then have that ©;v € T(e). But then
A X; T(e) and type(A) = i. Hence © € A. Thus T"(z;) <
A =T'(é) = T'(x1). Once again by the induction hypothesis,
T'(21) = T"(@). Henece T'{axg) £ T'zw)s

Finally assume that (xo, ;) € Ry. Then z; = é and z; = e. By
definition of A we know that T"(xo) <. T'(z;). But this implies
that T"(zo) < T"(z;) as well due to Lemma 4.13. Now once
again the required result follows from the induction hypothesis.

a

We now have that the poset (E', <") together with the map T" fulfills the
hypothesis of Lemma 4.23. Hence there exists <' such that the following
conditions are met.

e (E',<') is an n-agent event structure.

and 7T is T' restricted to E. O

10



Lemma 4.25

Let (ES,T) be a chronicle structure with ES = (E,<). Let (e,3) be
a live historic requirement in (ES,T). Then there exists a chronicle

structure (ES',T") with BS' = (E', <') such that:

Proof: Assume that e € FE; and that 3 is of the form ©;a. Then
by Lemma 4.7 (and Lemma 4.13) we can find an MCS A such that

type(A) = i and o € A and A < T'(e). Pick some é ¢ E and set for
1<j<n

E,.:{E,-U{é} ; =34

J E; , otherwise

Set E' = U}_,. Now define

Pre(é¢) = {z|z € E;and z < e and T'(z) < A}

Post(¢) = {z|z€ E;andx <eand T(z) A Aand 4 <X T(z)}
U{e}

Claim 1

(i) EiN | e = Pre(é) U Post(é).
(ii) Vz € Pre(é). Yy € Post(é). [z < y].

11



Proof of claim 1: Clearly Pre(é),Post(é) C E;N | e. So consider
x € BN | e. Since z < e, T(z) <X T(e). Since A < T'(e) by the choice
of A, we have that T(z) < A (in which case z € Pre(é)) or A < T'(z)
by Lemma 4.16. To establish the second part of the claim assume that
& € Pre(é) and y € Post(é). By the definitions of Pre(é) and Post(é), it
is clear that = # y.

Suppose that y = e. Then clearly * < y. So assume that y € Post(é) —
{e}. Nowz <eandy<eand z,y € E;. Hencez <yory<z Ify<z
then T'(y) <X T'(z). But =z € Pre(é) implies that T'(z) < A. Since < is
transitive this would imply that T'(y) < A. This contradicts the fact that
y € Post(é). Hence z < y. O

Now define <’ as follows.

<'= (< U(Pre(&) x {€}) U ({8} x Post(&)))*

As before, for convenience we set R; = Pre(é) x {é} and R, = {é} x
Post(é). Our first aim is to show that ES’' = (E',<') is an n-agent event
structure. (E7, E,...,E,) is clearly a partitioning of E'. Hence we need
to show first that (E', <') is a poset.

Claim 2

Let € E such that @ < é. Then there exists y € Pre(é) such that z < y.

Proof of claim 2: Let zp,24,...,%,, be a sequence such that z = =,
and x,, = é and for each j € {0,1,...,m — 1}, (zj,z;41) €< UR; U R,.
Since * € F and é € E we have that z £ é. Hence m > 1. We now
proceed by induction on m.

12
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3
v

(2o, 1) < because z; = é € E. (z9,71) € Ry because x; = z #
é. Hence (29,%;) € Ry which at once implies that =y € Pre(é).

Consider (zg,x1). As before (zg,z1) ¢ Ry because zyp = z # é.
If (xo,21) € R; then zy € Pre(é) and we are done. So suppose
that (zg,2;) €<. Then z; € F and z; <' &. Hence by the
induction hypothesis there exists y € Pre(é) such that z; < v.
This implies that = ¢ < y as well.

O
Claim 3
Let z,y € F such that z <'y. Then z < .
Proof of claim 3: Let zg,z1,...,2, be a sequence such that z = =

and z,, = y and for each j € {0,1,...,m — 1}, (zj,2;41) € < UR; U R;.
We now proceed by induction on m.

.= {)

m >0

Clearly z = y and = < y.

Consider (g, ;). If (zg,21) € < then z; < z,, by the induction
hypothesis and hence 9 < z,,. We know that (zo,z;) ¢ Ry
because o € F and é ¢ E.

So suppose that (zo,z1) € R;. Then xy € Pre(é). Since z; =
€ ¢ E we must have m > 1. So consider the pair (z1,z;).
Then (z1,z2) € R;. Hence z, € Post(é). Now z3 < ., by the
induction hypothesis. And 2y < 23 by claim 1.

Claim 4

Let z € F such that é <' z. Then there exists y € Post(é) such that

y < z.

13



Proof of claim 4: Let z,2,...,2,, be a sequence such that é = z,
and z,, = z and for each j € {0,1,...,m—1}, (zj,z;11) €< UR;UR,. As
before m > 1 because é # . Clearly (2o,%1) € Ry. Hence z; € Post(é).
This implies that z; <' 2, and by the previous claim we have that
Ty X By |

Claim 5

(E',<') is a poset.

Proof of claim 5: <'is reflexive and transitive by definition. So as-
sume that z,y € E' suchthat t <'"yandy <'z. If x € F and y € E then
we have from claim 3 that < yand y <z and hencez =y. f 2z ¢ E
and y € F then clearly ¢ = y = é. So assume that 2 € F and y ¢ E.
Then y = é. From z <' y it follows from claim 2 that there exists some
z' € Pre(é) such that « <' #'. Since y <' z and y = € and = € FE it follows
from claim 4 that for some y' € Post(€é) it is the case that ¥’ < z. But
this would imply that 3 < ' which contradicts claim 1. The argument
for the case * = é and y € F is entirely symmetric and hence we omit
it. |

Claim 6

(E',<') is an n-agent event structure.

Proof of claim 6: As observed before (Ef, Ej, ..., E! ) is a partitioning
of E'. By claim 5, (E',<') is a poset. Hence it suffices to check that part
(iii) of Def. 4.21 holds.

So assume that e;,e; € E and ¢y € E' such that e; <' ¢y and e; <' e.
We must show that e; <' e5 or e <' €.

14



Casel e;€ Fande, € E.
Suppose that e € E as well. Then e; < ¢y and e; < e
by claim 3. Hence e; < e; or e; < e because (E, <) is an

n-agent event structure. The required result now follows
from the fact <C<',

So suppose that eg € E. Then ey = é. But then é <’ e.
Hence by the transitivity <' we have e; <' e and e; <' e
with e € E. We now have the situation considered above.

Case 2 ey € Fand ey ¢ E.

Then e; = éand e; € E;. Supposeeg & E. Theney = é = ey
so that e; <' e,.

So assume that ey € E. Since e; = é <' ¢g we have from
claim 4 that there exists y € Post(é) such that y < e;. Now
e; <' ey implies that e; < ey by claim 3. We now have
e,y € B; and e; < ep and y < eg. Hence e; <y or y < e;.
Suppose that e; < y. Then e; € E;N | e. Hence by claim
1 we have that e; € Pre(é) U Post(é). This at once implies
that e; <' € or é <' e;. If on the other hand, we have y < e;
then from é <’ y we at once have é <' e;.

Case 3 e; ¢ F and e; € E.
The argument for this case is the same as the one for the
previous case with the roles of e; and e; interchanged.

Case4 e; ¢ F and e; ¢ E.

Then e; = ey = é.

We now extend T to E' as follows:

A ife=¢

i ! —
Ve € E'.T'(z) = { T(x), otherwise

15



Claim 7

Let z,y € E' such that « <'y. Then T'(z) < T"(y).

Proof of claim T7:

Case 1

Case 2

Case 3

Case 4

x € F and y € E.
Then z < y by claim 3. Moreover T"(z) = T'(z) and T"(y) =
T(y). But then T'(z) < T'(y) because z < v.

r€Fandy ¢ E.

Then y = é. By claim 2 we have that for some z' € Pre(é)
it is the case that z < z'. As before T'(z) = T'(z) and
T'(2') = T(2') and T(z) < T(z'). Hence T'(z) < T'(z').
But then z' € Pre(é) implies that T'(z') X A = T"(é). The
required result now follows from the transitivity of <.

z ¢ FE and y € E.

Then = é. By claim 4 we know that z' < y for some
z' € Post(é). But z' € Post(é) implies that 4 < T"(z'). On
the other hand, «' < y implies that T'(z') < T(y). Hence
T'(x) <X T"(y) by the transitivity of <.

r ¢ Eandy ¢ F.

Then # = y = € and the result follows from the reflexivity
of =,

O

It is now easy to conclude that (ES',T"), where BES' = (F',<'), is a

chronicle

structure with the required properties.

Lemma 4.26

a

Let (ES,T) be a chronicle structure with ES = (F,<). Let (e,3) be
a live prophetic requirement in (ES,T). Then there exists a chronicle

16



structure (ES',T") with ES' = (E', <') such that

Proof: Assume that e € E; and that 3 is of the form ;. By Lemma
4.7 (and Lemma 4.13) there exists an MCS A such that type(A4) = 7 and
a € A and T'(e) < A. Pick some é ¢ F and set for 1 < j < n,

[o E;u{e} ,ifi=j
P E; , otherwise

Set E' = U%_;. Now define <’ as follows.

<'= (< U{(e,8)})"
The following claims are easy to verify and hence we omit the proofs.

Claim 1

Let # € E. Then (é,z) ¢<'.

Claim 2

Let x € F such that z <' é. Then z < e.

Claim 3

Let z,y € E such that x <'y. Then z < y.

17



Claim 4

(E',<') is a poset.

Claim 5

(£',<') is an n-agent event structure with (B}, Ej,..., E!) as a partition
of E.

Now extend T to E' as follows.

A ife=2¢

1 ! —_—
Ve e E'.T'(z) = { T'(z), otherwise

It is now easy to verify that (ES',T") (with ES' = (E',<")) is a chronicle
structure which enjoys the required properties. a

Theorem 4.27 (Completeness)

If = « then F a.

Proof: We will show that every consistent formula is satisfiable. Let
E be a countably infinite set of events. Fix an enumeration e1,€3,. ..
of F. Fix an enumeration aq,Q3,... of F', the set of formulas. Fix an
injective function f : B x F — N. Since E x F is a countable set there
will be no trouble in finding such an injective function. In what follows,
for (e,a) € E x F, we will refer to f((e, a)) as the code number of (e, ).

Now assume that o is a consistent formula. Pick as MCS A which
contains a. Let CS' = (ES',T") where ES' = ({e1},{(e1,e1)}) and
T'(e;) = A. Define for each j € {1,...,n},

Bl { {e1}, if type(A4) = j

J (0, otherwise

18



Set B = {e1} and <'= {(ey, e1)}. Clearly (ES',T") is a chronicle struc-
ture. For m > 1 assume inductively that the chronicle structure CS™ =
(ES™,T™) is defined with ES™ = (E™, <™) where E™ = {ej, ey,...,en}.
Suppose C'S™ does not have any live requirements. Then set CS™! =
CS™. Otherwise consider a live requirement (e,3) in CS™ which has —
among all the live requirements in C'S™ — the least code number.

Now CS™ is clearly a finite chronicle structure. Hence by the previous
three lemmas C'S™ can be extended to the chronicle structure CS™+! =
(ES7L, Ty with BS® L = (EnH, <™t1) and E™*! = E™U{epn41} so
that (e, ) is no longer a live requirement in ES™t! and <™C<™+! and
T™ is T™*! restricted to E™.

Finally set CS = (ES,T) where ES = (E,<) and E = U®_, E™ and
<=Ug_; <™ and T is given by:

Ve € E.T(e) = T™(e) where e € E™,

It is routine to verify that T' is a perfect chronicle on ES. Hence by
Lemma 4.15 M = (ES, Vr) is a model in which e;, M |= a. O

3. Concluding Remarks

It turns out that the axiomatization of our logical system can be consider-
ably simplified. The completeness proof can also be more succinct. With
some additional axioms one can also obtain a sound and complete ax-
iomatization of finitary n-agent event structures, i.e. those n-agent event
structures in which | | e| < oo for every event. These details will appear
in a forthcoming paper.

The decidability of our logical system (i.e. the decidability of the question
whether or not an arbitrary formula is satisfiable) is still open. Lemma
4.23 has given us fresh hope that indeed our system is decidable.
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