ISSN 0105-8517

Unified Algebras and Institutions

Peter D. Mosses

DAIMI PB - 274
February 1989

AARHUS UNIVERSITY ’ h—|—| |
COMPUTER SCIENCE DEPARTMENT i

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK 1]
. ]
Telephone: + 4586 12 71 88 Telex: 64767 aausci dk ]
- —H




Abstract
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1 Introduction

The reader is assumed to be familiar with the basic notions of Cate-
gory Theory (category, functor, initiality, left adjoint [1,16]) and Lat-
tice Theory (distributive lattice, bottom, atom [13]). Familiarity with
the many-sorted and order-sorted frameworks for algebraic specification
[2,4,6,9,11,30], and with the notion of an institution [3,7,8] is advanta-
geous, but not essential.

A wunified algebra is a kind of total homogeneous algebra, i.e., a set
equipped with some total functions. Particular unified algebras represent
data types; classes of unified algebras represent abstract data types. This
paper establishes an institution, i.e., a logical specification framework,
for specifying abstract data types as classes of unified algebras.

The carrier of a unified algebra is a distributive lattice with a bottom.
The functions of the algebra always include the join and meet of the
lattice, and a constant denoting the bottom of the lattice. All functions
are required to be monotone with respect to the partial order of the
lattice.

The main idea is that the values in the carrier of a unified algebra
represent not only elements of data, but also classifications of elements
into sorts. For instance, a unified algebra representing a data type of
numbers and lists would have values not only for particular numbers and
particular lists, but also for the sort of all numbers and the sort of all
lists.

The lattice partial order of the carrier represents sort inclusion; the
join and meet operations represent sort union and intersection. The bot-
tom of the lattice represents the empty sort. The empty sort, shunned in
conventional algebraic frameworks, provides a particularly natural way
of representing the lack of result of partial operations—avoiding the need
to introduce special “error” elements. Operations need not preserve the
empty sort. Readers familiar with Scott’s Domain Theory [27] should
note that the lattice partial order does not correspond to computational
approximation, nor does the bottom of the lattice correspond to diver-
gence.

When the carrier of a unified algebra is a power set, the algebra is
called a power algebra. Thus the carrier of a power algebra is a complete
lattice, although in general the carriers of unified algebras need not be
even chain-complete. In a power algebra, there are values representing all
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possible classifications, and the values that represent the elements (the
singletons) are “atoms”, i.e., just above the bottom of the lattice. Note
that neither of these properties hold for unified algebras in general.

As sorts are values in unified algebras, they may be the arguments and
results of operations. Ordinary operations on elements extend monoton-
ically (“element-wise”) to sorts. For example, the operation of doubling
a number extends to map the sort of all integers to the sort of all even
integers—and to map the empty sort to itself.

The extension of operations to sorts allows many useful classifications
of elements to be expressed directly, without naming them by constants.
For example, applying the successor operation to the sort of natural num-
bers gives the sort of positive integers; applying negation to the positive
integers gives the negative integers; applying sort union to the natural
numbers and the negative integers gives all the integers; and so on.

Now consider operations that represent the sort constructors of “de-
pendent” and “generic” data types. A simple example is provided by the
operation that maps each integer (element) ¢ to the sort of all integers
up to ¢. More interesting is the operation that maps a natural number
n and a sort s to the sort of all lists of length » with components in
s: the sort of unbounded lists with components in s is given simply by
applying this operation to the entire sort of natural numbers, instead of
to a particular element n. The sort of lists of length n is a subsort of
the sort of unbounded lists, by monotonicity. “Polymorphic” operations
on arbitrary lists specialize to operations on lists with particular sorts of
components, just by the restriction of arguments to particular subsorts.

There is a further consequence of treating sorts as values: a sort that
classifies several elements may be regarded as a nondeterministic choice
between those elements. Sort union corresponds to (binary) choice; the
empty sort corresponds to the impossible choice; and single elements cor-
respond to “Hobson’s choices”. Notice that the monotonicity of opera-
tions is essential: adding further choices for an argument must not remove
choices for the result! (The development of unified algebras originated
from the observation that sorts correspond to nondeterministic values.
For further discussion of the origins of unified algebras, see [21,22].)

From the above discussion, it is evident that unified algebras should
provide a rather general framework for algebraic specification of abstract
data types—especially regarding the treatment of polymorphic operations
and generic data types. Also, it has been shown elsewhere [22] that uni-
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fied algebras can be provided with a particularly simple form of modular
specification, such that instantiation of generic data types is simply spe-
cialization, and mutually-dependent modules are allowed. Thus the de-
tailed study of the foundations of unified algebras seems well-motivated.

This paper proceeds as follows. Section 2 establishes notation, pro-
viding an institution for homogeneous structures with first-order speci-
fications. Section 3 defines an institution for power algebras with first-
order specifications. Power algebras do not support the “initial algebra
approach” to specification at all: in general, initial power algebras satis-
fying specifications do not exist—even when specifications are restricted
to Horn clauses. Section 4 defines an institution for unified algebras
with Horn clause specifications. This institution is shown to be “liberal”;
however, the homogeneity of unified algebras prevents the straightfor-
ward use of “data constraints” in specifications of generic data types.
It is necessary to introduce a novel kind of constraint, which simulates
heterogeneity by exploiting the structure of unified algebras. Section 5
provides some (very basic) examples of unified algebraic specifications.
Section 6 concludes by relating unified algebras to other frameworks, and
pointing out some unresolved questions about unified algebras.

2 Notation

Following Goguen and Burstall [7,8], a logical specification framework
may be formalized as an “institution”. An institution I consists of

e a category Sign; (of so-called signatures);

e a functor Mod; : Sign; — Cat® (giving a category of models for
each signature, and a functor between categories of models for each
signature morphism);

e a functor Sen; : Sign; — Set (giving a set of sentences for each
signature, and a translation function between sentences for each
signature morphism); and

e a relation = (of satisfaction between models and sentences)

such that the following Satisfaction Condition holds:
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e for any signature morphism ¢ : Q@ — Q' in Sign;, for any sentence
v in Sen;(Q) and model M’ in Mod;(Q?'),

M' |51 Sen;(¢)(v) <= Mod(¢)(M') 1 vy -

(Sometimes we write just ¢(y) for Senz(¢)(7v).)

An institution HFO for homogeneous first-order specifications (with-
out equality) is defined below. HFO could also be obtained (essentially)
by restricting the many-sorted first-order institution FO [8] to singleton
sort sets, but let us take the chance to simplify notation by eradicating
sort-indexed sets altogether.

First, let Symbol be the set of symbols used to name functions and
predicates, partitioned by rank into disjoint subsets Symbol,,,n > 0.
We refer to functions of rank 0 as constants, and to functions of posi-
tive rank as operations. It is convenient to use “mix-fix” notation for
operation symbols, indicating the number and positions of arguments
by occurrences of a place-holder written ‘’. Let Variable be a set of
variables, disjoint from Symbol.

A homogeneous first-order signature € is a pair (X,II) where & C
Symbol is a set of function symbols, and II C Symbol is a set of pred-
icate symbols. We write ¥, for ¥ N Symbol , for n > 0; similarly for
II,. A homogeneous first-order signature morphism ¢ : Q — ' is a pair
(0 : 2 = %X, m:II - II') of rank-preserving maps. The obvious category
of homogeneous first-order signatures gives Sighypg.

A homogeneous ()-structure A consists of a carrier set |A| together
with for each o € 2, a function o4 : |A|* — |A4|, and for each 7 € II,, a
predicate m4 C |A|". A homogeneous Q-homomorphism h: A — B is a
function from |A| to |B| such that for any n > 0 and ay,...,a, € |A],

e h(oca(ay,...,a,)) =op(h(a),...,h(ans))
for all o € X, and

o ma(ai,...,a,) implies wg(h(ai),...,h(an))
for all = € II,,.

This gives for each 2 a category Modpgrpo(£2) of homogeneous 2-structures,
i.e., models.

Henceforth, all signatures and structures are assumed to be homoge-
neous.



For any signature morphism ¢ : @ — Q' and '-structure A', the ¢-
reduct of A’, written A'{ ¢, is the Q-structure A defined by taking |A|
to be |A'|, o4 to be ¢(o)a for ¢ € T, and w4 to be ¢(w)y for m € II.
The ¢-reduct of a Q'-homomorphism h' : A’ — B’ is just h' regarded as
an {)-homomorphism from A’} ¢ to B' { ¢. Defining Modgro(¢) to be
the mapping _ 1 ¢ : Modguro(©)') — Modgro(f2) makes Modgrpo into a
functor, called the forgetful functor induced by ¢. Notice that it doesn’t
actually “forget” any values at all—only functions and predicates.

For any signature (2, the set of homogeneous first-order 2-sentences
Senpro(€2) is the set of closed first-order formulae with function and
predicate symbols from Q and variables from Variable. Signature mor-
phisms ¢ : Q@ — Q' extend naturally to maps Sengro(¢) : Sengro(Q) —
Sengro ('), leaving variables unchanged, which makes Sengpo into a
functor.

The satisfaction relation =gro between homogeneous first-order sen-
tences and structures is defined as usual. Verification of the Satisfaction
Condition is essentially just a special case of that for the many-sorted
first-order institution FO [8], since it corresponds to restricting attention
to one-sorted signatures.

Now recall the following notions concerning arbitrary institutions I.
An Q-theory presentation is a pair (2,I') where Q is in Sign; and T is
a set of sentences in Sen;(Q2). The closure of (Q,T') is (Q2,I') where I'
is the set of those {2-sentences that are satisfied by every Q-model that
happens to satisfy all the sentences in I'. An Q-theory T is an Q)-theory
presentation (€2,T') that is its own closure. When T is an Q-theory, let
Mod;(T') denote the full subcategory of Mod(Q) of all Q-models that
satisfy I'.

In practice we use (finite) theory presentations to specify theories,
and hence classes of models.

A theory morphism ¢ : T — T' (where T' = (Q,T') and T" = (', T"))
is a signature morphism ¢ : @ — Q' such that ¢(T') C I'. The forgetful
functor _t ¢ : Mod; (') — Mod;(2) cuts down to _t ¢ : Mod;(T") —
Mod;(T') (by the Satisfaction Condition).

An institution is called liberal when for every theory morphism ¢ :
T — T the forgetful functor -t ¢ : Mod;(T") — Mod(T') has a left
adjoint, which we denote by F,. Le., for every A in Mod;(T') there is
F4(A) in Mod;(T") with a morphism 74 : A — Fy(A4) t ¢ in Mod;(T)
having the property that for each B’ in Mod;(7") and morphism f :
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A — B' 1 ¢ in Mod(T), there is a unique morphism f# : Fy(4) — B’
in Mod(T") such that the left part of the following diagram commutes:

B't¢ B'
f f*t¢ *
A Fy(A)1¢ Fy(A)

N4

A model A’ of T" is called ¢-free if it is naturally isomorphic to F4(A't
), the free model of 7" generated by A'{¢. Le.,id u14* is an isomorphism:

A'to Al
id id* t ¢ id#
Atg —— Fy(4d'1d)1¢ Fy(A' 1 ¢)

N4t

An Q-data constraint is a pair (¢ : T" — 1", 6 : Q' — Q), where ¢
is a theory morphism, 8 is a signature morphism, and ' is the signature
of T'. An Q-structure A satisfies this constraint iff A 1 is a model of
T' and is ¢-free. Translation of such a constraint (¢,8) by a signature
morphism 1 : @ — ) is defined to be (p:T" =T, %hob:Q — Q).

3 Power Algebras

An institution POW of first-order power algebra specifications is defined
as follows.

A power signature is a homogeneous first-order signature (3, II°) where
¥ D ¥° = {nothing, _|_, &}, and II° = { =, _<_, :_}. Let Signpow be
the subcategory of Signypo whose objects are the power signatures, with
all the morphisms that preserve the given symbols. Henceforth, let ¥ be
a power signature (leaving the predicate symbols II° implicit).

A power X-algebra A is a homogeneous X-structure A such that:
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|A| = P(Uy), for some set Uy (called the universe of A).

nothing, = 0; _ | 4 - is set union; and _& 4 _ is set intersection.

e o4 preserves set inclusion, for each o € Z.

x =, y holds iff = is the same set as y.

x <4 y holds iff x is a subset of y.
e z :4 y holds iff = is a singleton subset of y.

Let Modpow(X) be the full subcategory of Modgro(X) whose objects
are the power X-algebras. Notice that a homomorphism between power
algebras maps singletons to singletons (since z is a singleton iff z : =
holds) and preserves subset inclusions.

For sentences, let Senpow(X) be Sengro(X), and let satisfaction
=pow be the restriction of |=gro to power algebras.

The singleton subsets in the carrier of a power algebra represent el-
ements of a data type; all subsets represent classifications of these ele-
ments. Thus with power algebras, operations may be applied to classifi-
cations as well as to elements.

It might seem that the institution POW of power algebras provides
an appropriate framework for specification of data types, and that fur-
ther generality would be superfluous. However, POW does not support
the “initial algebra” approach, which is advocated in [2,4,6,9,11,30] and
generalized to the use of data (or “initial”) constraints in [3,7,8,24,25].

According to the initial algebra approach, so-called “junk” (unneces-
sary values) and “confusion” (unnecessary identifications between values)
are prohibited by stipulating that models have to be initial among those
that satisfy the specified sentences.

An immediate reason why POW does not support initial algebras is
that the sentences are arbitrary first order sentences, whereas universal
Horn clauses are the most general sentences that allow initial models [17].
But even if the sentences in POW were restricted to be universal Horn
clauses, the resulting institution still would not provide initial algebras,
as the following Proposition shows.

Proposition 1 There are presentations (X,T"), where I’ is a set of ground
formulae, such that the class of power X-algebras satisfying I' does not
have an initial algebra.



Proof: Take ¥ = ¥° U {a,b,c} and T = {a:a,b:b,c:a|b}. Suppose 4
satisfies I'; then a4, by, and ¢4 must all be singletons, with ¢4 C a,Ub,.
This forces (at least one of) c4y =ay4 or ¢4 = bs. Suppose (w.l.o.g.) that
c4 = a4; then A cannot be initial, as there is no power -homomorphism
from A to any model B with cy # ay. I

By the way, notice that it is the mixture of the extensionality of sets with
the “no confusion” that gives the problem with initial power algebras:
the “no junk” part of initiality is all right.

The lack of initial power algebras satisfying even very basic specifica-
tions does not prevent the use of power algebras for specifying abstract
data types: instead of using initiality to eliminate “junk” and “confu-
sion”, one may use “reachability constraints” [26] to dispose of “junk”,
and then use first-order sentences (inequalities, etc.) to eliminate “confu-
sion”.

Instead, however, let us generalize the structure of power algebras
enough to ensure the existence of initial algebras, so as to support the
initial algebra approach. The appropriate generalization seems to be
unified algebras, as defined in the next section.

4 Unified Algebras

An institution UNI for specification of unified algebras is defined as fol-
lows.

A unified signature is just a power signature. So let Signyy; be
Signpow.

A unified ¥-algebra A is a homogeneous X-structure such that:

o |A| is a distributive lattice with _| 4. as join, &4_ as meet, and
nothing, as bottom.

e There is a distinguished set of values E4 C |A| (the elements of A).

e 04 1s monotone with respect to the partial order of the lattice, for
each o € %.

x =4 y holds iff x is identical to .

z <4 yholdsiff x |4y =4 y (i.e., <4 is the partial order of the
lattice).



e z:yyholdsiff x € B4 and z <, y.

Note that the elements E4 need not be the “atoms” of the lattice, i.e.,
“just above” the bottom. In practice E, is usually discrete (as in power
algebras); but there are cases (e.g., lists with nondeterministic compo-
nents) where elements may be included in other elements, so we leave the
structure of E4 open.

Let Modyni(X) be the full subcategory of Modgro(Z) whose objects
are the unified X-algebras.

For sentences, let Senyyi(X) be the restriction of Sengro(X) to uni-
versal Horn clauses. Letting F=yy: be the restriction of =uro to unified

algebras and universal Horn clauses completes the definition of the insti-
tution UNI.

Proposition 2 UNI is a liberal institution.

Proof: It is known that the institution HORN of many-sorted Horn
clause specifications with equality is liberal [8]. We may restrict HORN
specifications to one sort, giving a liberal institution of Horn clause spec-
ifications of (essentially) homogeneous structures, with _=_ interpreted
as identity. The liberality of this institution transfers to UNI by charac-
terizing the structure of unified algebras by Horn clauses, as follows.
Let X be a unified signature. Let I'° be the set of Horn clauses shown
in Table 1 (where conjunction is denoted by ‘;’, and the universal quan-
tifiers are left implicit, and conjunction of hypotheses is denoted by ;).
Then for any set I' of unified 2-sentences, the unified algebras satisfying
I’ correspond to the homogeneous (%, II°)-structures satisfying T UT°. |

Corollary 3 For any unified signature £ and set of unified L -sentences
L, the class of unified X-algebras that satisfy I' has an initial algebra.

Proof: Let T° be the theory given by the closure of the presentation
(¥°,0). Any one-point unified ¥°-algebra I is an initial algebra in the
class of models of T°. Now let T be the closure of the presentation
(X,T') and consider the inclusion ¢ : T° — T'. Clearly ¢ is a uni-
fied theory morphism. By the liberality of UNI, the forgetful functor
-t ¢ : Modyni(T') —» Modyni(T°) has a left adjoint, Fy. Let A be
F4(I). The initiality of A in Modyyi(T") follows from the initiality of I
in MOdUNI(TO). I



rSyys<z=—=z=y riyy<z=x<z

X nothing < z
elziy<z=z|y<z z<z|y y<zly
zimezly=>z2<acky eyl r&y<y

e&(ylz)=(z&y) | (z&z2) z|(y&2)=(z]ly)&(z]2)
ziz;xlYy=gzx:y

TiYy=—=>zwx: z:y=—=2x<Yy
for each 0 € ¥, n > 1, the n clauses:
By K By = OBy ws s Bigs 1 058n) 2 O(Biyons; By o 055)

Table 1: The structure of unified Z-algebras

Now reconsider the specification (X,T') from Proposition 1. With
unified algebras, the relation c:a|b between the elements does not force
any of the constants to be identified. (It is an instructive exercise to draw
the carrier of the initial unified algebra that satisfies the specification.)

But the liberality of UNI is not much help for data constraints, as
the ¢-reduct functor never forgets any values—only functions. Models
that are ¢-free (i.e., naturally isomorphic to the free model over their -
reduct) do not ezist, except in trivial cases. Next we consider a solution
to this problem, to obtain a useful version of data constraints for unified
algebras.

For each ¢ : ¥ — ¥'in Signyy; we define a functor _t¢ : Modyy(Z') —
Moduyni(X). The idea is that _}¢ is “more forgetful” than _t¢, in that it
forgets not only functions but also (some) values. This is done essentially
by regarding ground terms as “sorts”, and considering the elements that
are included in them.

Suppose for simplicity that ¢ is merely an inclusion of ¥ in ¥'; then
the only elements of a ¥'-model that _ { ¢ retains are those that are
included in the values of ground X-terms; values that are not elements
are retained only if they are denotable by ground ¥-terms, or by applying
Y-operations to retained values.

Now let ¢ : & — X' be any unified signature morphism. The general
definition of the more forgetful functor _{ ¢ is as follows. Let A' be in
Modyni(X'). We take A’ t ¢ to be the unified Z-algebra A determined
by:

(¢] EA — {I,‘ - EAI |CB SA' qb(t)A’
for some ground X-term ¢ }.
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o |A| is the least set that includes E4 such that when o € ¥, and
T1y..+,Tn € |A] then also ¢(o)w(z1,...,2,) € |A|.

® 04 = ¢(c)u for each o € T.

Further, for each unified X'-homomorphism &' : A' — B', let A’ 1 ¢ be A’
regarded as a ¥-homomorphism from A'} ¢ to B’} ¢. This makes _1 ¢
into a functor.

The next proposition shows what happens when ¢ is not just a sig-
nature morphism but a unified theory morphism.

Proposition 4 If ¢ : T — T' is a unified theory morphism then _1 ¢
maps models of T' to models of T'.

Proof: Let A’ be a model of 7". We know that A' t ¢ is a model of T'.
But A'f ¢ is as A' T ¢, except that some values have been forgotten. Thus
the universally-quantified Horn clauses in T hold a fortiori for A' 1o,
which is therefore a model of 7. I

We now exploit _{ ¢ to define new constraints, called “bounded data
constraints”. A X-structure A satisfies the bounded data constraint (¢ :
T" - T,6:%Y — %) iff A16 isa model of 7' and naturally isomorphic
to F4(A 10 1¢). Translation of bounded data constraints by signature
morphisms is defined as for ordinary data constraints.

Finally, we show that satisfaction of bounded data constraints is in-
variant under change of signature, so that we may get an institution for
specifying unified algebras where sentences may be bounded data con-
straints as well as universal Horn clauses.

Lemma 5 If ¢ : & — %, and (@,6) is a bounded data constraint (as
above), then for any - umﬁed algebra B, B 1 (ob) = (B tv¥) 10,

Proof: By calculation. We have

Eé¢(¢oe) = {z€Ep |z <z (ob)(t)s}
{ze Ez|z<59(0(t)5}
{z € Egy |z Bty e(t)ffw;}
E(Bnb)w

Similarly for the values and functions. I
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Lemma 6 If ¢ : & — 3 is a unified signature morphism, if (¢ : T" —
7.0 : ¥ — E) is a bounded data constraint, and if B is a 2- unified
algebm then B satisfies (d,% 0 8) iff B+ satisfies (0,8).

Proof: B satisfies (b, o 9) iff B (1 0 0) is a model of T" and ¢-free.
B t 9 satisfies (qb, 6) iff (B T ) {6 is a model of T" and ¢-free. By the
previous lemma, B } (1 (Ho8)= (Bt ¥) 16. 1

Theorem 7 The extension of UNI by allowing bounded data constraints
as sentences gives an institution, UNICON.

Proof: Lemma 6 verifies the Satisfaction Condition for bounded data
constraints, and the result follows from a general theorem about adding
constraints as sentences [8, Proposition 40] |

Some examples of UNICON specifications are given in the next sec-
tion.

5 Examples

The following simple examples should give an idea of what unified spec-
ifications look like. For examples of modular unified specifications using
a more practical notation, see [22].

Truth Values

»Tr = ¥°u {Tr, true, false, if_then_else_}

[T = {true: Tr, false: Tr,
Tr = true | false,
nothing = true & false,
if true then X else Y = X,
if false then X else Y =Y,
if nothing then X else Y = nothing,
if (T'| U) then X else Y =
(if T then X else Y) |
(if U then X else ),
(T' & Tr) = nothing =
(if T' then X else Y') = nothing}

12



When ¢ is the inclusion of (the closure of) (0,0) in (the closure of)

(Z77,TT7), the constraint (¢, %d) restricts models to those where the only
elements are true and false.

Natural Numbers

3¥et = 5° U {Nat, 0,succ_, pred_, [0 .. ]}

Vet — £0: Nat, n:Nat = succn : Nat,
succ nothing = nothing,
Nat = 0 | succNat,
nothing = 0 & succ Nat,
pred 0 = nothing, pred nothing = nothing,
N < Nat = predsucc N = N,
[0 .. nothing] = nothing,
0. (M]N)]=[0..M]]][0..N],
N<Nat==[0..N]=N|][0.. predN]}

When ¢ is the inclusion of (the closure of) (§,0) in (the closure of)
(xNat TNat) ' the constraint (¢,id) restricts models to those where the
only elements are 0, succ0, succsuccO, ... .

Lists of Data

Yt = 30 U {List, Data, _(of ), nil, cons(_,_)}

DLt = {List = List(of Data), nil : List,
(d : Data;l : List) = cons(d,l) : List,
cons(d,nothing) = nothing,
cons(nothing,!) = nothing,
D £ Data =

List(of D) = nil | cons(D,List(of D)),

nil(of D) = nil,
cons(d,l)(of D) = cons(d & D,l(of D))}

When ¢ is the inclusion of (the closure of) ({Data},?) in (the closure of)
(277, TT7), the constraint (¢,id) restricts models to those where the only
elements of List are (finite) lists of Data elements.
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6 Comparison with Related Work

Sort inclusions are used in the order-sorted framework of Goguen and
Meseguer [6,10,30]. Unified algebras generalize order-sorted algebras by
allowing operations to be applied to sorts as well as elements, and by
allowing (Horn clause) axioms involving sort inclusion.

It seems that any order-sorted specification can be translated to an
analogous unified specification: the unified signature is the union of the
sort, constant, and operation symbols of the order-sorted signature; there
is a unified clause for each sort inclusion, for each order-sorted constant
and operation declaration, and for each order-sorted conditional equation
(extra hypotheses are needed in these latter clauses: to restrict variables
to be elements of the declared sorts).

The other way round, one could probably simulate unified algebras
using order-sorted algebras: by introducing values that are tokens for
sorts, defining truth-valued operations on these values corresponding to
inclusion and classification. But it is not clear that this simulation would
be convenient enough for practical use.

Smolka [28] has given a reduction of order-sorted Horn logic to un-
sorted Horn logic using tokens for sorts, and treating inclusion and clas-
sification as predicates. Recently he has also developed an unsorted Horn
clause “type logic” [29] which is closely related to unified algebras. One
difference is that his framework is based on partial algebras, so only strict
operations are considered; also, he leaves union and intersection of types
to be specified by the user, rather than building them into the frame-
work (one could do that with unified algebras too, but that would make
unified specifications more tedious). Another difference is that his typ-
ing relation ‘:’ is not necessarily reflexive, so that there may be types
of types—in unified algebras, the only way of classifying classifications
is as subclassifications of a classification. It would be interesting to see
whether a useful notion of data constraint can be provided for this partial
algebra framework.

Manca and Salibra [18], also together with Scollo [19], have proposed a
homogeneous partial algebra framework rather similar to that of Smolka.
They make do without the inclusion relation, ‘<’, and do not assume any
properties of the typing relation. More recently they have investigated
the use of total algebras for the foundations of their framework [20], but
full details are not yet available.
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Nondeterminism has been represented in algebraic specifications by
using multi-algebras [15,23]. The power algebras introduced here (Section
3) are a simple generalization of multi-algebras.

Scott’s Domain Theory [27] was originally based on complete lattices
and continuous functions. Operations on domains are usually limited
to universally-characterized categorical constructions. Nondeterministic
domains (with linear operations) have been studied by Hennessy and
Plotkin [14].

In logic programming, sorts are typically represented as predicates.
(Fitting [5] shows how computability theory can be based on such a
treatment.) By letting sorts be values, unified algebras allow (first-order)
operations on sorts.

Future Work

Let us conclude by posing various questions about unified algebras:
1. Is UNI actually eguivalent to the institution of order-sorted speci-

fications?

2. What is the precise relationship between UNI and the frameworks
recently proposed by Smolka and by Manca et. al.?

3. Can unified algebras be generalized to deal with higher-order oper-
ations? (What is the appropriate ordering on operations?)

4. What restrictions on UNI specifications are required to allow im-
plementations in the style of OBJ [12]?

5. Can extra sentences always be added to unified specifications so
that values are identified (only) when
(a) they classify the same sets of elements, or
(b) their distinction is incompatible with regarding elements as

indivisible (as in power algebras)?

6. What is the appropriate notion of “correct implementation” for

UNI?

7. Can bounded data constraints be relaxed so that (e.g.) the subse-
quent identification of distinct non-elements in constrained parts
does not conflict with constraints?
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The author would be grateful for any assistance with elucidating the
answers to these questions.
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