ISSN 0105-8517

What object-oriented programming may be
— and what is does not have to be

Ole Lehrmann Madsen
Birger Mgller-Pedersen

DAIMI PB - 273
February 1989

AARHUS UNIVERSITY I
COMPUTER SCIENCE DEPARTMENT L]

I 1]
e =
Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK % % [T
i]

Telephone: +456 127188 Telex: 64767 aausci dk

=0

What object-oriented programming may be -
and what it does not have to be

Ole Lehrmann Madsen

Dept. of Computer Science, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark
email: olm@daimi.dk

Birger Mgller-Pedersen
Norwegian Computing Center
P.O.Box 114 Blindern, N-0314 Oslo 3, Norway
ean: birger@vax.nr.uninett

Abstract

A conceptual framework for object-oriented programming is presented. The framework is
independent of specific programming language constructs. It is illustrated how this frame-
work is reflected in an object-oriented language and the language mechanisms are compared
with the corresponding elements of other object-oriented languages. Main issues of object-
oriented programming are considered on the basis of the framework presented here.,

1. Introduction

Even though object-oriented programming has a long history, with roots going
back to SIMULA [SIMULA 67] and with substantial contributions like Smalltalk
[Smalltalk] and Flavors [Flavors], the field is still characterized by experiments,
and there is no generally accepted definition of object-oriented programming.

Many properties are, however, associated with object-oriented programming,
like: "Everything is an object with methods and all activity is expressed by
message passing and method invocation", "Inheritance is the main structuring
mechanism", "Object-oriented programming is inefficient, because so many
(small) objects are generated and have to be removed by a garbage collector" and
"Object-oriented programming is only for prototype programming, as late name
binding and run-time checking of parameters to methods give slow and un-
reliable ("message not understood") systems".

Part of this work has been supported by NTNF, The Royal Norwegian Council for Scientific and Industrial
Research, grant no. ED 0223.16641 (the Scala project) and by the Danish Natural Science Research Council, FTU
Grant No. 5.17.5.1.25. Also appearing in Proceeding of European Conference on Object Oriented Programming,
August 1988, Oslo, Norway.

There are as many definitions of object-oriented programming as there are
papers and books on the topic. This paper is no exception. It contributes with yet
another definition. According to this definition there is more to object-oriented
programming than message passing and inheritance, just as there is more to
structured programming than avoiding gotos.

While other programming perspectives are based on some mathematical theory
or model, object-oriented programming is often defined by specific program-
ming language constructs. Object-oriented programming is lacking a profound
theoretical understanding. The purpose of this paper is to go beyond language
mechanisms and contribute with a conceptual framework for object-oriented
programming. Other important contributions to such a framework may be found
in [Stefik & Bobrow 84], [Booch 84], [Knudsen & Thomsen 85], [Shriver &
Wegner 87], [ECOOP 87] and [OOPSLA 87,88].

2. A conceptual framework for object-oriented programming

Background

The following definition of object-oriented programming is a result of the BETA
Project and has formed the basis for the design of the object-oriented program-
ming language BETA, [BETA87a].

Many object-oriented languages originate from SIMULA, either directly or in-
directly via Smalltalk. Most of these languages represent a line of development
characterized by everything being objects, and all activities being expressed by
message passing. The definition and language are built directly on the philosophy
behind SIMULA, but represent another line of development.

SIMULA was developed in order to describe complex systems consisting of
objects, which in addition to being characterized by local operations also had
their own individual sequences of actions. In SIMULA, this led to objects that
may execute their actions as coroutines. This has disappeared in the Smalltalk line
of development, while the line of development described here, has maintained
this aspect of objects. While SIMULA simulates concurrency by coroutines, the
model presented here incorporates real concurrency and a generalization of
coroutines.

The following description of a conceptual framework for object-oriented
programming is an introduction to the basic principles underlying the design of
BETA. In section 3 the framework is illustrated by means of the BETA lan-
guage. It is not attempted to give complete and detailed description of the basic
principles nor to give a tutorial on BETA. Readers are referred to [DELTA 75],
[Nygaard 86] and [BETA 87a] for further reading. This paper addresses the
fundamental issues behind BETA, but it also has a practical side. The Mjglner
[Mjglner] and Scala projects have produced a industrial prototype implementation
of a BETA system, including compiler and support tools on SUN and Macintosh.

Short definition of object-oriented programming

In order to contrast the definition of object-oriented programming, we will
briefly characterize some of the well-known perspectives on programming.

Procedural programming. A program execution is regarded as a (partially
ordered) sequence of procedure calls manipulating data structures.

This is the most common perspective on programming, and is supported by
languages like Algol, Pascal, C and Ada.

Functional programming. A program is regarded as a mathematical function,
describing a relation between input and output.

The most prominent property of this perspective is that there are no variables
and no notion of state. Lisp is an example of a language with excellent support
for functional programming.

Constraint-oriented (logic) programming. A program is regarded as a set of
equations describing relations between input and output.

This perspective is supported by e.g. Prolog.

The definitions above have the property that they can be understood by other
than computer scientists. A definition of object-oriented programming should
have the same property. We have arrived at the following definition:

Object-oriented programming. A program execution is regarded as a
physical model, simulating the behavior of either a real or imaginary
part of the world.

The notion of physical model shall be taken literally. Most people can imagine
the construction of physical models by means of e.g. LEGO bricks. In the same
way a program execution may be viewed as a physical model. Other perspectives
on programming are made precise by some underlying model defining equations,
relations, predicates, etc. For object-oriented programming the notion of physi-
cal models have to be elaborated.

Introduction to physical models

Physical models are based upon a conception of the reality in terms of
phenomena and concepts, and as it will appear below, physical models will have
elements which directly reflect phenomena and concepts.

Consider accounting systems and flight reservation systems as examples of parts
of reality. The first step in making a physical model is to identify the relevant
and interesting phenomena and concepts. In accounting systems there will be
phenomena like invoices, while in flight reservation systems there will be phe-
nomena like flights and reservations. In a model of an accounting system there
will be elements that model specific invoices, and in a model of a flight reser-
vation system there will be elements modelling specific flights and specific
reservations.

The flight SK451 may belong to the general concept of flight. A specific
reservation may belong to the general concept of reservation. These concepts will
also be reflected in the physical models.

1 GOTTA
GET OFF
THIS DIET!

@_10&1 Uniied Feature Syndicate, Inc

Figure 1. In the object-oriented perspective physical models of part of the
real world are made by choosing which phenomena are relevant and which
properties these phenomena have.

In order to make models based on the conception of the reality in terms of
phenomena and concepts, we have to identify which aspects of these are relevant
and which aspects are necessary and sufficient. This depends upon which class of
physical models we want to make. The physical models, we are interested in, are
models of those parts of reality we want to regard as information processes.

Aspects of phenomena

In information processes three aspects of phenomena have been identified:
substance, measurable properties of substance and transformations on substance.
These are general terms, and they may seem strange at a glance. In order to
provide a feeling for what they capture, we have found a phenomenon (Garfield)
from everyday life and illustrated the three aspects by figures 2- 4.

Substance is physical matter, characterized by a volume and a position in time
and space. Examples of substances are specific persons, specific flights and speci-
fic computers. From the field of (programming) languages, variables, records
and instances of various kinds are examples of substance.

21D gﬁM pAVTﬁ (© 1881 United Feature Syndicate, Inc.

Figure 2. An aspect of phenomena is substance. Substance is
characterized by a volume and a position in time and space.

Substance may have measurable properties. Measurements may be compared and
they may be described by types and values. Examples of measurable properties

are a person's weight, and the actual flying-time of a flight. The value of a
variable is also an example of the result of the measurement of a measurable

property.

LET'S MEASURE ANP THAT
YOUR TUOMMY, .
GARFIELD GoNT

COUNT

1

© 1984 United Foature Syndicate, Inc.

Figure 3. Substance has measurable properties.

A transformation on substance is a partially ordered sequence of events that
changes its measurable properties. Examples are eating (that will change the
weight of a person) and pushing a button (changing the state of a vending
machine). Reserving a seat on a flight is a transformation on (the property
reserved of) a seat from being free to being reserved. Assignment is an example

of a transformation of a variable.
MY LEGS ARE
SHRINKING!
O
o]

JM I?AV‘?Q; 7 &-8 | ©1983 United Feawre Syndicate, Inc” =

Figure 4. Actions may change the measurable properties of substance.
Aspects of concepts

Substance, measurable properties and transformations have been identified as the
relevant aspects of phenomena in information processes. In order to capture the
essential properties of phenomena being modelled it is necessary to develop ab-
stractions or concepts.

The classical notion of a concept has the following elements: name: denoting the
concept, intension: the properties characterizing the phenomena covered by the
concept, and extension: the phenomena covered by the concept.

Concepts are created by abstraction, focussing on similar properties of
phenomena and discarding differences. Three well-known sub-functions of
abstraction have been identified. The most basic of these is classification. Classi-

fication is used to define which phenomena are covered by the concept. The
reverse sub-function of classification is called exemplification.

Concepts are often defined by means of other concepts. The concept of a flight
may be formed by using concepts like seat, flight identification, etc. This sub-
function is called aggregation. The reverse sub-function is called decomposition.

Concepts may be organized in a classification hierarchy. A concept can be regar-
ded as a generalization of a set of concepts. A well-known example from
zoology is the taxonomy of animals: mammal is a generalization of predator and
rodent, and predator is a generalization of lion and tiger. In addition, concepts
may be regarded as specializations of other concepts. For example, predator is a
specialization of mammal.

Elements of physical models: Modelling by objects with attributes
and actions

Objects with properties and actions, and patterns of objects

Up till now we have only identified in which way the reality is viewed when a
physical model is constructed, and which aspects of phenomena and concepts are
essential. The next step is to define what a physical model itself consists of.

A physical model consists of objects, each object characterized by
attributes and a sequence of actions. Objects organize the substance
aspect of phenomena, and transformations on substance are reflected
by objects executing actions. Objects may have part-objects. An
attribute may be a reference to a part object or to a separate object.
Some attributes represent measurable properties of the object. The
state of an object at a given moment is expressed by its substance, its
measurable properties and the action going on then. The state of the
whole model is the states of the objects in the model.

In a physical model the elements reflecting concepts are called
patterns. A pattern defines the common properties of a category of
objects. Patterns may be organized in a classification hierarchy.
Patterns may be attributes of objects.

Notice that a pattern is not a set, but an abstraction over objects. An implication
of this is that patterns do not contribute to the state of the physical model. Pat-
terns may be abstractions of substance, measurable properties and action sequen-
CEs,

Consider the construction of a flight reservation system as a physical model. It
will a.0. have objects representing flights, agents and reservations. A flight object
will have a part object for each of the seats, while e.g. actual flying time will be
a measurable property. When agents reserve seats they will get a display of the

flight. The seat objects will be displayed, so that a seat may be selected and
reserved. An action will thus change the state of a seat object from being free to
becoming reserved.

Reservations will be represented by objects with properties that identify the
customer, the date of reservation and the flight/seat identification. The customer
may simply be represented by name and address, while the flight/seat iden-
tification will be a reference to the separate flight object/seat object. If the agency
has a customer database, the customer identification could also be a reference to a
customer object.

As there will be several specific flights, a pattern Flight defining the properties
of flight objects will be constructed. Each flight will be represented by an object
generated according to the pattern Flight.

A travel agency will normally handle reservations of several kinds. A train trip
reservation will also identify the customer and the date of reservation, but the
seat reservation will differ from a flight reservation, as it will consist of (wagon,
seat). A natural classification hierarchy will identify Reservation as a general
reservation, with customer identification and date, and Flight Reservation and
Train Reservation as two specializations of this.

Actions in a physical model

Many real world systems are characterized by consisting of objects that perform
their sequences of actions concurrently. The flight reservation system will consist
of several concurrent objects, e.g. flights and agents. Each agent performs its
task concurrently with other agents. Flights will register the reservation of seats
and ensure that no seats are reserved by two agents at the same time. Note that
this kind of concurrency is an inherent property of the reality being modelled; it
is not concurrency used in order to speed up computations.

Complex tasks, as those of the agents, are often considered to consist of several
more or less independent activities. This is so even though they constitute only
one sequence of actions and do not include concurrency. As an example consider

the activities "tour planning", "customer service" and "invoicing". Each of these
activities will consist of a sequence of actions.

A single agent will not have concurrent activities, but alternate between the
different activities. The shifts will not only be determined by the agents
themselves, but will be triggered by e.g. communication with other objects. An
agent will e.g. shift from tour planning to customer service (by the telephone
ringing), and resume the tour planning when the customer service is performed.

The action sequence of an agent may often be decomposed into partial action
sequences that correspond to certain routines carried out several times as part of
an activity. As an example, the invoicing activity may contain partial action
sequences, each for writing a single invoice.

Actions in a physical model are performed by objects. The action
sequence of an object may be executed concurrently with other ac-
tion sequences, alternating (that is at most one at a time) with other
action sequences, or as part of the action sequence of another object.

The definition of physical model given here is valid in general and not only for
programming. A physical model of a railroad station may consist of objects like
model train wagons, model locomotives, tracks, points and control posts. Some
of the objects will perform actions: the locomotives will have an engine and the
control posts may perform actions that imply e.g. shunting. Patterns will be
reflected by the fact that these objects are made so that they have the same form
and the same set of attributes and actions. In the process of designing large
buildings, physical models are often used.

i
o & |
e .
‘ (.

Figure 5. States are changed by objects performing actions that may
involve other objects.

Object-oriented programming and language mechanisms supporting it

The notion of physical models may be applied to many fields of science and
engineering. When applied to programming the implication is that the program
executions are regarded as physical models, and we rephrase the definition of
object-oriented programming:

Object-oriented programming. A program execution is regarded as a
physical model, simulating the behavior of either a real or imaginary
part of the world.

The ideal language supporting object-orientation should be able to prescribe
models as defined above. Most elements of the framework presented above are
represented in existing languages claimed to support object-orientation, but few
cover them all. Most of them have a construct for describing objects. Constructs
for describing patterns are in many languages represented in the form of classes,
types, procedures/methods, and functions.

Classification is supported by most existing programming languages, by concepts
like type, procedure, and class. Aggregation/decomposition is also supported by

10

most programming languages; a procedure may be defined by means of other
procedures, and a type may be defined in terms of other types.

Language constructs for supporting generalization/specialization (often called
sub-classing or inheritance) are often mentioned as the main characteristic of a
programming language supporting object-orientation. It is true that inheritance
was introduced in SIMULA and until recently inheritance was mainly associated
with object-oriented programming. However, inheritance has started to appear in
languages based on other perspectives as well.

Individual action sequences should be associated with objects, and concurrency

should be supported. For many large applications support for persistent objects is
needed.

Benefits of object-oriented programming

Physical models reflect reality in a natural way

One of the reasons that object-oriented programming has become so widely
accepted and found to be convenient is that object orientation is close to the
natural perception of the real world: viewed as consisting of object with pro-
perties and actions. Stein Krogdahl and Kai A. Olsen put it this way:

"The basic philosophy underlying object-oriented programming is to make the
programs as far as possible reflect that part of the reality, they are going to
treat. It is then often easier to understand and get an overview of what is
described in programs. The reason is that human beings from the outset are
used to and trained in perception of what is going on in the real world. The
closer it is possible to use this way of thinking in programming, the easier it is
to write and understand programs."

(translated citation from "Modulaer- og objekt orientert programming",
DataTid Nr.9 sept 1986).

Physical model more stable than the functionality of a system

The principle behind the Jackson System Development method (JSD, [JSD]) also
reflects the object-oriented perspective described above. Instead of focussing on
the functionality of a system, the first step in the development of the system
according to JSD is to make a physical model of the real world with which the
system is concerned. This model then forms the basis for the different functions
that the system may have. Functions may later be changed, and new functions
may be added without changing the underlying model.

11

3. A language based on this model and comparisons with other
languages

The definition above is directly reflected in the programming language BETA.
The following gives a description of part of the transition from framework to
language mechanisms. Emphasis is put on conveying an understanding of major
language mechanisms, and of differences from other languages.

Objects and patterns

The BETA language is intended to describe program executions regarded as
physical models. From the previous it follows that by physical model is meant a
system of interacting objects. A BETA program is consequently a description of
such a system. An object in BETA is characterized by a set of attributes and a
sequence of actions. Attributes portray properties of objects. The syntactic ele-

ment for describing an object is called an object descriptor and has the following
form:

(#
Decly; Declpz; ...; Declp
do
Imp
#)
where Declq; Decly; ... Decl, are declarations of the attributes and Imp

describes the actions of the objects in terms of imperatives.

In BETA a concept is modelled by a pattern. A pattern is defined by associating a
name with an object descriptor:

P: ¢ Decly; De€lyi ...; Decly
do
Imp
#)

The intension of the concept is given by the object descriptor, while the objects
that are generated according to this descriptor, constitute the extension. So, while
patterns model concepts, the objects model phenomena.

The fact that pattern and object are two very different things is reflected in their
specification. An object according to the pattern p has the following specification

aPp: @ P

where ap is the name of the object, and p identifies the pattern. The fact that
some objects model singular phenomena is reflected in BETA: it is possible to
describe objects that are not generated according to any pattern, but are singular.
The object specification

12

$:@ (# Declqy; Decly; ...; Declp
do
Imp
#)

describes a singular object s. The object s is not described as belonging to the
extension of a concept, i.e. as an instance of a pattern. Singular objects are not
just a convenient shorthand to avoid the invention of a pattern title. Often an
application has only one phenomenon with a given descriptor, and it seems
intuitively wrong to form a concept covering this single phenomenon. A search
for a missing person in the radio includes a description of the person. This
description is singular, since it is only intended to cover one specific phe-
nomenon. From a description of a singular phenomenon it is, however, easy to
form a concept covering all phenomena that match the description.

The framework presented here makes a distinction between phenomena and
concepts, and this is reflected in the corresponding language: objects model
phenomena and patterns model concepts. A pattern is not an object. In contrast to
this distinction between objects and patterns, Smalltalk-like languages treat classes
as objects. Concepts are thus both phenomena and used to classify phenomena. In
the framework presented here, patterns may be treated as objects, but that is in
the programming process. The objects manipulated in a programming environ-
ment will be descriptors in the program being developed.

Delegation based languages do not have a notion corresponding to patterns. They
use objects as prototypes for other objects with the same properties as the proto-
type object.

References as attributes

An attribute of an object may be a reference that denotes another object. A refe-
renced object may be either a part of the referent (the object containing the
reference) or separate from the referent.

In the flight reservation system each flight is characterized by a number of seat
objects. Each seat object will have a reference to a separate object representing
the reservation, one reference to a part object representing the class of the seat
and one reference to a part object representing whether the seat is a Smoking seat
or not.

Given the pattern Seat,

Seat: (#
Reserved:” Reservation;
Class: @ ClassType;
Smoking: @ Boolean
#)

a flight reservation system will contain the pattern Flight defined locally to
pattern FlightType:

13

FlightType: (#

source, destination: ...;
Flight:
(#

Seats: [NoQOfSeats] @ Seat
#);

DisplayTimeTableEntry: (# ... #);

8

For each entry in the time-table there will be a F1ight Type-object. sk451 will be
a FlightType-object. The actual flights on this route will be represented by
Flight-objects. Scheduled departure time, flying time, and arrival time will be
attributes of FlightType-objects, while actual departure time, flying time, and
arrival time will be attributes of F1ight-objects.

Reserved, Class, Smoking are references to objects, while seats is a repeti-
tion of references to seat objects.

Each F1ight-object will consist of NoOfSeats objects of the pattern seat. The
lifetime of these seat-objects will be the same as the lifetime of the F1ight-
object. Every seat-object will consist of part objects that represent its class and
whether it is a smoker's seat or not. In addition it will have a reference
Reserved, 10 @ Reservation-object representing the reservation of the seat
(with customer identification, date, agent, etc.). The object referenced by
reserved Wwill change if a reservation is cancelled or changed to another reser-

vation. Class and Smoking are part objects as they represent properties that may
be changed.

The fact that the substance of a phenomenon may consist of substances of part-
phenomena is reflected in BETA by the possibility for objects to have part
objects. Part objects are integral parts of the composite object, and they are
generated as part of the generation of the composite object.

Most languages support part-objects of pre-defined types, or they model it by
references to separate and often dynamically generated objects. One exception is
composite objects of Loops [Stefik & Bobrow 82].

References in BETA are qualified (typed). A reference that may only denote
Reservation objects, will thus be specified by

Reserved: " Reservation

The reference Reserved may then not by accident be set to denote e.g. an
Invoice object.

14

Patterns as attributes

Objects may be characterized by pattern attributes. A Smalltalk method is an
example of a pattern attribute in the BETA terminology. In the example above
Flight is a pattern attribute of F1ightType. In addition FlightType instances
have the attribute destination and the method pisplayTimeTableEntry. For
the different instances sx451 and sk273 of the pattern F1ightType, the attributes
SK451.destination and SK273.destination are different attributes. In the same
way SK451.DisplayTimeTableEntry and SK273.DisplayTimeTableEntry are
different patterns, since they are attributes of different instances. In the same way
the "classes" sk451.Flight and sk273.F1ight are different. For further exploi-
tation of "class attributes" see [Madsen 86].

Actions are executed by objects

Another consequence of the definition above is that every action performed
during a program execution is performed by an object. For example, if seats
are to be displayed, then the display action must either be described as the actions
of seat-objects or as the actions of a local object.

In
Seat: (#...
Display:
(# (* display Reserved, Class, and Smoking *) #)
#)

Display is a local pattern (here just described by a comment). In order to
display a seat-object (as part of the display of the Flight) a pisplay-object is
generated and executed. In BETA this is specified by:

do ... ; Seats[inx].Display;

Most object-oriented languages has a construction like this. Lisp-based languages
may use the form pisplay (Seats[inx]). From Smalltalk it has become known
as "message passing”, even though concurrent processes are not involved. It has
the same semantics as a normal procedure call, the only difference is that the
procedure is defined in a remote object and not globally. SIMULA introduced
the notion of "remote procedure call” for this construction.

In BETA pisplay is a pattern attribute. While seat is a pattern defining objects
with attributes only, pisplay has an action-part, describing how seats are
displayed on the screen. The objects in BETA will thus have different functions
(or missions) in a program execution, depending on their descriptor . No objects
are a priori only "data objects with methods" and no objects are a priori only
"methods".

15

Measurable properties

As an example of a measurable property, consider the percentage of occupied
seats of a flight. A flight has parts like seats, but is has no part representing the
percentage of occupied seats. This is a property that has to be measured. The
value "85 %" is not an object, but is rather a denotation of the value of some
measuring object.

Actions producing measurements

In BETA a measurable property is reflected by an object that produces a value as
a result of executing the object. An object may therefore as part of its actions
have an exit-part. This consists of a list of evaluations that represents the value of
the object.

Flight: (# Seats: [NoOfSeats] @ Seat;

Occupied:
#F ...
do (* compute NoOfReservedSeats *)
exit NoOfReservedSeats/NoQOfSeats*100
¥)

#)

While a F1ight object will have seat part objects, its occupied will be a pattern
attribute. In this example the specification of occupied is just indicated.

Measurement of percentage of occupied seats is represented by execution of an
object generated according to the occupied pattern. This object will not be a part
of the F1ight object, but will temporarily exist when measuring the percentage
of occupied seats.

In other languages this aspect is to some degree covered by function attributes.

Actions resulting in state changes

Change of state is usually associated with assignment to variables. In physical
models there is a duality between observation of state (measurement) and change
of state. A measurement is reflected in BETA by the execution of an object and
production of a list of values that represents the value of the measurement.
Correspondingly a change of state is reflected by reception of a list of values
followed by execution of the actions of an object.

In order for an OccupiedRecord object (e.g. of a statistics object) to receive
the value of the percentage of occupied seats of a flight, the 0ccupiedRecord
object will have an enter-part:

OccupiedRecord:@ (# Occ: @ Real enter Occ do ... #);

16

The percentage of occupied seats of a F1ight object may then be measured and
assigned to this object by

SK451.0ccupied — Statistics.OccupiedRecord

The main actions of sk451.0ccupied are executed (the actions described after
do), its exit-part is transferred to the enter-part of Statistics.
OccupiedRecord and the main actions of statistics.0ccupiedRecord are
executed. As a side-effect the main action of Statistics.OccupiedRecord may
e.g. count the number of assignments.

The association of reception of values with actions are also found in other lan-
guages (active, annotated values).

Classification hierarchies

As mentioned above a travel agency will normally handle reservations of several
kinds. Classification of reservations into a general Reservation and two specia-
lizations Flight Reservation and Train Reservation will be reflected by corres-
ponding patterns.

Reservation:
(#
Date: (# ... #);
Customer: (# ... #);
#)

FlightReservation: Reservation
(#
ReservedFligt: ”~ Flight;
ReservedSeat: ™ Seat;
#)

TrainReservation: Reservation
(#
ReservedTrain: ~ Trailn;
ReservedWagen: ~ Wagon;
ReservedSeat: ™ Seat;

#)

We will say that F1ightReservation and TrainReservation are sub-patterns
of Reservation and that Reservation is the super-pattern of
FlightReservation and TrainReservation.

Besides supporting a natural way of classification, this mechanism contributes to
making object-oriented programs compact. The general pattern only has to be
described once. A revision of the pattern Reservation will have immediate
effect on both sub-patterns. It also supports re-usability. All object-oriented
languages, except delegation based languages, have this notion of class/sub-class.

Given this classification of reservations, the Reserved attribute (qualified by
Reservation) of each Fl1ight object may now denote Reservation,

17

FlightReservation and TrainReservation objects. In order to express that it
may only denote FlightReservation objects, it is qualified by
FlightReservation:

Reserved:” FlightReservation

Virtuals

When making a classification hierarchy, some of the pattern attributes of the
super-pattern are completely specified, and these specifications are valid for all
possible specializations of the pattern. The printing of date and customer of a
reservation will be the same for both kinds of reservation. Other attributes may
only be partially specified, and first completely specified in specializations. The
printing of reservations will depend upon whether a F1ightReservation or a
TrainReservation is to be printed.

The descriptor of PrintDateAndCustomer in Reservation will be valid for all
kinds of reservations. The descriptor of print will, however, depend upon
which kind of reservation is to be printed. So this pattern may not be fully
described in the pattern Reservation. It will perform PrintDateAndCustomer,
but in addition it must print either flight/seat or train/wagon/seat. It is, however,
important to be able to specify (as part of Reservation) that all Reservation
objects have a print, and that it may be specialized for the different kinds of
Reservations. This is done by declaring print as a virtual pattern in
Reservation.

Declaring print as a virtual in Reservation implies that

* in every sub-pattern of Reservation, Print can be specialized to what is
appropriate for the actual sub-pattern, and

 execution of print of some Reservation object, by
do ...; SomeReservation.Print;

where someReservation denotes some Reservation object, means execution
of the print, which is defined for the Reservation object currently denoted
by SomeReservation is executed.

Execution of a virtual pattern implies late binding (to the print pattern of the
actual object denoted by SomeReservation), while qualification of
SomeReservation, SO that it may only denote objects of pattern Reservation
or of sub-patterns of Reservation, assures that SomeReservation.Print will
always be valid (someReservation will not be able to denote objects that do not
have a print attribute) .

In languages like Smalltalk and Flavors all methods are virtuals, while in BETA,
C++ [Stroustrup 86] and SIMULA it must be indicated explicitly. This means,

18

that message-passing in Smalltalk and Flavors always implies late binding, while
non-virtuals in C++ , BETA and SIMULA may be bound earlier and thereby be
executed faster. It also has the implication, that with non-virtual methods it is
possible to state in a super-pattern, that some of the methods may not be
specialized in sub-classes. This is useful when making packages of patterns. In
order to ensure that these work as intended by the author, some of the methods
should not be re-defined by users of the packages.

As methods in BETA are represented by pattern attributes, the ordinary
pattern/sub-pattern mechanism is also valid for these. The virtual concept and
specialization of methods are further exploited in [BETA 87b].

It 1s well-known that object-oriented design greatly improves the re-use of code.
The main reason for this is sub-classing combined with virtuals [Meyer 87]. For
many people this is the main issue of object-orientation. However, as pointed out
above, modelling which reflects the real world is an equally important issue.

Individual action sequences

As mentioned above all actions in a BETA program execution are executed by
objects. Each object has an individual sequence of actions. The model identifies
three ways of organizing these sequences: as concurrent, alternating or partial
sequences. In BETA, these are reflected by three different kinds of objects:
system objects, component objects and item objects.

Concurrent action sequences

System objects are concurrent objects and they have means for synchronized
communication: a system object may request another system object to execute one
of its part-objects, and the requester will wait for the acceptor to do it. When the
requested object accepts to execute this part-object, possible parameters will be
transferred and the part-object executed. If parameters are to be returned, then
the requesting object must wait until the part-object is executed.

In the BETA model of the flight reservation system mentioned above, agents and
flights will be represented by concurrent objects, reflecting that there will be
several agents, each of which at some points in time tries to reserve seats on the
same flight. Seat reservations will take place by synchronized communication
(the flight object will only perform one reservation at a time), so double reser-
vation of the same seat is avoided.

For example, an Agent object may perform the following request
(date, 3,window) — SK451 >7? ReserveSeat

in order to reserve a window seat in 3th row.

19

The object SK451 may at this point in time be performing ReservesSeat for
another Agent object, but when it performs the accept-imperative

<? ReserveSeat

then it will accept to perform Reserveseat. The descriptor of ReserveSeat may
contain a specification saying that it may be requested by some Agent object or
only by one specific Agent object.

As each object may have their individual action sequence it may at different
stages in this sequence accept different requests. When the flight is fully booked,
it has come to a stage in its action sequence where it does not accept
ReserveSeat requests.

The underlying model of a language determines to a certain degree which kind of
concurrency is supported. While languages supporting objects as the main
building blocks will have objects executing actions concurrently (even if this may
only be accomplished by concurrent execution of methods as in Concurrent
Smalltalk), Lisp-based languages will have concurrency based on concurrent
evaluation of expressions (futures).

Alternating action sequences

Component objects in BETA are alternating objects, i.e. objects where at most
one object is executing at a time and where the shift of control from object to
object is non-deterministic.

In a BETA model of the system above the activities Tour Planning, Invoicing and
Costumer Service will be represented by component part-objects of Agent
objects, and each Agent will be an object, that executes these component objects
alternately:

Agent: (# ...
do...;
(| TourPlanning | Inveicing | CostumerService |);

8

The activity TourPlanning may consist of planning a series of tours that are
bought earlier, and just wait to be planned. Correspondingly, the activity
Invoicing may consist of writing invoices for a series of tours. The activity
CostumerService consists of waiting for customer requests and fulfilling them. A
shift from TourPlanning or Invoicing to CostumerService will thus only take
place, when there is a request for it, so it will not be part of the descriptor of
neither TourPlanning nor Invoicing when this shall happen.

Partial action sequences

The example above with the execution of an object according to the Print attri-

20

bute of some Reservation object is an example of a partial action sequence,

represented by an item object. The action sequence of Print is executed as part of
the "calling" object.

All languages have a notion of partial action sequences. The notion of procedure
and function covers this aspect of actions. Method invocation as a result of
message passing is a special case of a partial action sequence, where the proce-
dure to perform is defined in an object different from the invoking object.

One of the characteristics of most other object-oriented languages is that
everything is an object with methods and all activity is expressed by message
passing and method invocation. Objects in these languages do not have any
individual action sequence; they are only "executing methods" on request. Thus,
objects in these languages may not support alternating or concurrent action
sequences. One exception is the Actor model of execution [Agha 86], where the
objects are concurrent, but sub-classes are not supported in the common sense of
the word. Work has been initiated to make concurrent Smalltalk, but this work
does not include giving the objects their own sequence of actions.

21

4. What object-oriented programming does not have to be

As mentioned in the introduction many properties are associated with object-
oriented programming. In this section we will comment on some of the mis-

understandings (according to the definition given here) of object-oriented pro-
gramming.

Everything is objects with methods, and all actions are message
passing

A property common to most object-oriented programming languages is that
everything has to be regarded as objects with methods and that every action
performed is message passing. The implication of this is that even a typical
functional expression such as

6+7

gets the unnatural interpretation
6.plus(7)

Even though 6 and 7 are objects (integer so), and they are also in the definition
of object-oriented programming presented here, then there is no reason that +
may not be regarded as an object that adds two integer objects:

plus(6,7)

Thinking object-oriented does not have to exclude functional expressions when
that is more natural. Functions, types and values are in fact needed in order to
describe measurable properties of objects.

Object-oriented programming and automatic storage management

According to the definition of object-oriented programming given here it has not
necessarily anything to do with dynamic generation of objects. This is one of the
properties often associated with object-oriented programming. In many object-
oriented languages it is only possible to generate objects dynamically. But
whether objects are parts of other objects or generated independently and dyna-
mically, is not crucial for whether program executions are organized in objects
or not. It is demonstrated above that in BETA it is possible to specify part-
objects. Program executions are still organized in objects with attributes and
actions, but some of the objects are allocated as part of other objects. As shown
above a F1ight object consists of seat objects, and these are constituent parts of
a Flight object. When objects are generated dynamically, as e.g. Reservation
objects will be in the example above, it is, however, important that the imple-
mentation includes an automatic storage management system.

22

Late (and unsafe) binding of names gives slow execution (and un-
reliable systems)

Object-oriented programming does not necessarily imply late and unsafe binding
of names. As mentioned above, pattern attributes of BETA objects and proce-

dures in C++ objects may be specified as non-virtual, which means that late
binding is not used when invoking them.

When Smalltalk or Flavors objects react on a message passed to it with "message
not understood"”, it has nothing to do with Smalltalk or Flavors being object-
oriented, but with the fact that they are untyped languages.

The combination of qualified (typed) references and virtuals in BETA implies
that it may be checked at compile time that expressions like “aRef.aMethod” will
be valid at run time, provided of course that aRef denotes an object and not
none. And still a late binding determines which aMethod (of which sub-pattern)
will be executed. Which aMethod to execute depends upon which object is cur-
rently denoted by aRef.

In the example above the reference someReservation will be qualified by
Reservation. This means, that SomeReservation may denote objects generated
according to the pattern Reservation or sub-patterns of Reservation. As Print
is declared as a virtual in Reservation, it is assured that

SomeReservation.Print

is always valid and that it will lead to the execution of the appropriate Print.
However, the use of untyped references in Smalltalk-like languages has the
benefit, that recompilation of a class does not have to take the rest of the pro-
gram into consideration .

What makes late binding slow is not only the method look-up. If a method in
Smalltalk has parameters, then the correspondence between actual and formal
parameters must be checked at the time of execution. print will e.g. have a
parameter telling how many copies to print. This will be the same for all spe-
cializations of print, and should therefore be specified as part of the declaration
of Print in Reservation.

In BETA this is obtained by qualifying virtuals. The fact that print will have a
parameter is described by a pattern PrintParameter:

PrintParameter: (# NoOfCopies: @ Integer; enter (NoOfCopies) do
.)

Qualifying the virtual Print with PrintParameter implies that all special-
izations of Print in different sub-patterns of Reservation must be sub-patterns
of PrintParameter, and thus have the properties described in PrintParameter.
This implies that print in all sub-patterns to Reservation will have an Integer
NoOfCopies input-parameter.

23

If object-oriented programming is to be widely used in real application
programming, then the provision of typed languages is a must. As Peter Wegner
says in "Dimensions of Object-Based Language Design":

"..., the accepted wisdom is that strongly typed object-oriented languages
should be the norm for application programming and especially for pro-
gramming in the large."

As demonstrated above it does not have to exclude flexibility in specialization of
methods or late binding.

Inheritance/code sharing

Since inheritance has been introduced by object-oriented languages, object-
oriented programming is often defined to be programming in languages that
support inheritance. Inheritance may, however, also be supported by functional

languages, where functions, types and values may be organized in a classification
hierarchy.

In most object-oriented languages classes are special objects, and inheritance is
defined by a message forwarding mechanism. Objects of subclasses send
(forward) messages to the super-class "object” in order to have inherited methods
performed. This approach stresses code sharing: there shall be only one copy of
the super-class, common to all sub-classes. With this definition of inheritance it is
not strange that "distribution is inconsistent with inheritance" [Wegner] and that

"This explains why there are no languages with distributed processes that support
inheritance" [Wegner].

In the model of object-oriented programming presented here, the main reason
for sub-classing (specialization) is the classification of concepts. The way in
which an object inherits a method from a super-class is - or rather should be - an
implementation issue, and it should not be part of the language definition,

According to the definition of patterns and objects in BETA given above, pat-
terns are not objects, and in principle every object of pattern P will have its own
descriptor. It is left to the implementation to optimize by having different objects
of P share the descriptor. Following this definition of patterns and objects there
is no problem in having two objects of the same sub-pattern act concurrently and
even be distributed. The implementation will in this case simply make as many
copies of the pattern as needed, including a possible super-pattern. This does not
exclude that a modification of the super-pattern will have effect on all sub-
patterns.

Multiple inheritance

Multiple inheritance has come up as a generalization of single inheritance. With
single inheritance a class may have at most one super-class, whereas multiple

24

inheritance allows a class to have several super-classes. Inheritance is used for
many purposes including code sharing and hierarchical classification of concepts.
In the BETA language inheritance is mainly intended for hierarchical classi-
fication. BETA does not have multiple inheritance, due to the lack of a profound
theoretical understanding, and also because the current proposals seem tech-
nically very complicated.

In existing languages with multiple inheritance, the code-sharing part of the
class/sub-class construct dominates. Flavors has a name that directly reflects what
is going on: mixing some classes, so the resulting class has the desired flavor, that
is the desired attributes. For the experience of eating an ice cone it is significant
whether the vanilla ice is at the bottom and the chocolate ice on top, or the other
way around. Correspondingly, a class that inherits from the classes (A, B) is not
the same as a class that inherits from the classes (B, A).

If, however, multiple inheritance is to be regarded as a generalization of single
inheritance and thereby as a model of multiple concept classification (and it
should, in the model presented here), then the order of the super-classes should
be insignificant. When classifying a concept as a specialization of several con-
cepts, no order of the general concepts is implied, and that should be supported
by the language.

Single inheritance is well suited for modelling a strict hierarchical classification
of concepts, i.e. a hierarchy where the extensions of the specializations of a given
concept are disjoint. Such hierarchies appear in many applications, and it is often

useful to know that the extensions of say class predator and class rodent are
disjoint.

By classifying objects by means of different and independent properties, several
orthogonal strict hierarchies may be constructed. A group of people may be
classified according to their profession leading to one hierarchy, and according
to their nationality leading to another hierarchy. Multiple inheritance is often
used for modelling the combination of such hierarchies. It may, however, be
difficult to recognize if such a non-strict hierarchy is actually a combination of
several strict hierarchies.

25

5. Conclusion

The programmer's perspective on programming is perhaps more important than
programming language constructs. Object-oriented programming should not be
defined only by specific language constructs. It is absolutely possible to think
and program object-oriented even without a language that directly supports it.

It is a great advantage to use an object-oriented language that directly supports
object-orientation. Such a language should support:

* Modelling of concepts and phenomena, i.e. the language must include con-
structs like class, type, procedure.

» Modelling classification hierarchies, i.e. sub-classing (inheritance) and vir-
tuals.

* Modelling active objects, i.e. concurrency or coroutine sequencing, combined
with persistency.

The benefits of object-oriented programming may be summarized as follows:

» Programs reflect reality.
» Model is more stable than functionality.
» Sub-classing and virtuals improve re-usability.

The above statements are of course not objective, in the sense that it is arguable
what is natural, easy and stable. For a mathematician it may be more natural to
construct a model using equations.

Finally we would like to stress that a programming language should support
other perspectives than object-orientation. There are many problems that may be
easier to formulate using procedural, functional or constraint-oriented pro-
gramming. BETA supports procedural programming and has good facilities for
functional programming. Work is going on to improve the support for functional
programming and to include support for constraint-oriented programming. The
overall perspective will still be object-oriented, but transitions may be described
as functions without intermediate states. Support for constraint-oriented pro-
gramming will allow for expressing constraints and for a more high level
description of transitions. Loops is an example of a language supporting several
perspectives.

Acknowledgement. The framework presented here is mainly a result of the
authors' participation in the BETA project. In addition to the authors, Bent
Bruun Kristensen, Aalborg University Centre, Denmark and Kristen Nygaard,
University of Oslo, Norway, have been members of the BETA team. Jgrgen
Lindskov Knudsen, Kristine Stougdrd Thomsen, Jon Skretting and Einar Hodne
have contributed with useful discussions and by commenting the paper. A very
early version (in Danish) appeared in the special December 1987 issue of
Nordisk Datanytt edited by Stein Gjessing.

26

References

[Agha 86] G. Agha: An overview of Actor Languages. Sigplan Notices Vol.21
No.10 October 1986.

[BETA 87a] B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard:
The BETA Programming Language. In: [Shriver & Wegner 87].

[BETA 87b] B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard:
Classification of Actions or Inheritance also for Methods. Proceedings of the

Second European Conference on Object Oriented Programming, Paris, June
1987.

[Booch 86] G. Booch: Object-Oriented Development, IEEE Trans. on Software
Engineering, Vol. SE-12, No. 2, Feb. 1986.

[DELTA] E. Holbaek-Hanssen, P. Haandlykken, K. Nygaard: System Description

and the DELTA Language, Publication no. 523, Norwegian Computing Center,
19735.

[ECOOP 87] Proceedings of European Conference on Object-Oriented
Programming. BIGRE+GLOBULE No. 54, June 1987.

[Flavors] H. Cannon: Flavors, A Non-Hierarchical Approach to Object-oriented
Programming. Draft 1982,

[JSD] M. Jackson: System Development. Prentice Hall 1983.

[Knudsen&Thomsen 85] J. Lindskov Knudsen and K. Stougérd Thomsen: A

Conceptual Framework for Programming Languages. DAIMI PB-192, Aarhus
University, April 1985.

[Madsen 86] O.L. Madsen: Block Structure and Object Oriented Languages. In
[Shriver & Wegner 87].

[Meyer 87] Reusability: The Case for Object-Oriented Design. IEEE Software,
Vol.4, No.2, March 1987.

[Mjglner] MJ@LNER, A highly efficient Programming Environment for
industrial use. Mjglner Report No.1.

[Nygaard 86] K.Nygaard: Basic Concepts in Object Oriented Programming.
Sigplan Notices Vol.21 No.10 October 1986.

[OOPSLA 87,88] OOPSLA, Object oriented Programming Systems, Languages
and Applications. Conference Proceedings, 1986 and 1987.

27

[Shriver & Wegner 87] B. Shriver, P. Wegner: Research Directions in Object-
Oriented Languages, MIT Press, 1987.

[SIMULA 67] O.J. Dahl, B. Myhrhaug & K. Nygaard: SIMULA 67 Common
Base Language, Norwegian Computing Center, February 1968,1970,1972,1984.

[Smalltalk] A. Goldberg, D. Robson: Smalltalk 80: The Language and its
Implementation. Addison Wesley 1983.

[Stefik & Bobrow 82] D.G. Bobrow and M. Stefik, : Loops: An Object-Oriented
Programming System for InterLisp, Xerox PARC 1984.

[Stefik & Bobrow 84] M. Stefik, D.G. Bobrow: Object-Oriented Programming:
Themes and Variations, The Al Magazine, 1984.

[Stroustrup 86] B. Stroustrup: The C++ Programming Language. Addison
Wesley 1986

[Wegner] P. Wegner: Dimensions of Object-Based Language Design. Tech.
Report No. CS-87-14, Brown University, July 1987.

