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Abstract

The recently-developed framework of Unified Algebras is in-
tended for axiomatic specification of abstract data types. In
contrast, the somewhat older framework of Action Seman-
tics (earlier known as “Abstract Semantic Algebras”) is for
denotational specification of programming languages. This
paper gives an introduction to the main features of Unified
Algebras and Action Semantics, and discusses the relation
between them. The two frameworks both exploit nondeter-
minstic choice in unconventional ways.

A reformatted version of this report is to appear as an
invited paper in the Proceedings of STACS’89 (Paderborn,
February 1989), Springer-Verlag Lecture Notes in Computer
Science; citations should refer to the Proceedings.
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1 Introduction

The aim of this invited paper is to give an introduction to the author’s
work on two distinct, yet closely related, topics: “Unified Algebras”, a
recently-developed framework for the algebraic specification of abstract
data types; and “Action Semantics”, earlier known as “Abstract Semantic
Algebras”, a framework for the denotational specification of programming
language semantics, which has been developed (partly in collaboration
with David Watt, Glasgow) over the past decade. Unified algebras were
originally developed to facilitate the specification of the semantic entities
used in action semantics, although it seems that they may be of more
general applicability. The notation used in action semantics is currently
being revised to take full advantage of unified algebras. Both frameworks
make essential use of a “join” operation, which corresponds closely to
nondeterministic choice.

The framework of Unified Algebras was developed from the framework
of “order-sorted algebras” [5,9,22], which underlies the OBJ specification
language [4,6,11], and which was itself developed from “many-sorted al-
gebras” [10,3].

With unified algebras there is a unified treatment of the “elements”
of an abstract data type and their classifications into “sorts”. In fact
elements are treated as singleton sorts. Thus the operations of a unified
algebra may take sorts and/or elements as arguments, and give sorts
or elements as results. The immediate benefits of this generality are as
follows:

e Ordinary operations on elements can be extended “element-wise”
to sorts, so that for instance the successor operation maps the sort
of natural numbers to the sort of positive integers.

e Partial operations can easily be accommodated: the vacuous sort
represents the lack of a result, i.e., undefinedness.

¢ Operations that map elements to sorts correspond to “dependent”
sorts, e.g., mapping a natural number n to the interval [0 .. n], which
is the sort of all natural numbers up to n.

o Operations that map sorts to sorts (not necessarily element-wise
extensions of operations on elements) correspond to sort “construc-
tors”, for instance mapping two sorts to their union, or mapping a
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sort D to the sort of lists with components in D. Such operations
allow a straightforward specification of polymorphism, unifying the
notions of “parametric” and “inclusion” polymorphism: the sort of
lists of D is a subsort of the sort of all lists.

Action Semantics was developed from Denotational Semantics [21,
24,23,12,19]. An action semantics for a programming language is a com-
positional mapping from abstract syntactic entities to abstract semantic
entities called “actions”. These actions have a more operational nature
than the higher-order functions used as denotations in conventional De-
notational Semantics: an action can be (notionally) “performed” so as
to “process information”. It is quite straightforward to represent the se-
mantics of most programming constructs by actions; action semantics has
other pragmatic virtues as well. However, the theory of actions is not as
“powerful” as Scott’s domain theory for higher-order functions.

The basis of Action Semantics is a “standard” notation for actions,
called “Action Notation”. It provides various primitive actions, such as
computing an item of data from previously-computed data, checking that
a predicate holds (otherwise “failing”), and storing data in a cell. Action
Notation also provides a number of action combinators, including se-
quencing, interleaving, and—of special significance in relation to Unified
Algebras—nondeterministic choice.

Of course, programming languages do not often have constructs whose
semantics is “genuinely” nondeterministic, i.e., where an implementation
should make some random choice each time the construct is executed.
But they usually have some “implementation-dependent” features, for
instance the order of evaluation of subexpressions. In Action Seman-
tics, nondeterministic actions are used to represent such implementation-
dependence, as well as genuine nondeterminism.

Action Notation enjoys various pleasant algebraic laws. While these
laws were being specified (using a variant of OBJ) the following question
arose: What is the essential difference between a sort of actions and a
nondeterministic action? More generally, what is the difference between
sort union and nondeterministic choice?

The answer seems to be that there is very little difference. Opera-
tions that map nondeterministic actions to nondeterministic actions cor-
respond to operations from sorts to sorts. Increasing the nondeterminacy
of an action cannot do anything but increase the nondeterminacy of any
action in which it occurs, which corresponds to the operations on sorts
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preserving subsort inclusions.

This observation directly inspired the framework of unified algebras.
Section 2 gives the details of unified algebras. Some results are stated;
they are proved elsewhere [16]. Practical notation for basic specifications
of (classes of) unified algebras is introduced—see [14] for further details,
and for notation for modular specifications.

Section 3 presents Action Semantics. A substantial part of Action
Notation is introduced formally, using the unified specification frame-
work. The version of Action Notation given here differs in some details
from previous versions [17,15], mainly due to taking advantage of new
possibilities provided by the unified treatment of sorts and elements.

Throughout, the reader is assumed to be familiar with the general
idea of algebraic specification of abstract data types. For Section 3, some
familiarity with denotational semantics is useful. No familiarity with
previous papers on Unified Algebras or Action Semantics is assumed.

2 Unified Algebras

To start with, let us recall the basic concepts of abstract data types, and
relate them to unified algebras.

2.1 Concepts

A data type consists of a set of elements (such as numbers or lists) to-
gether with a collection of operations between elements—i.e., an algebra.
An abstract data type is a class of algebras that share some properties.
In the so-called “algebraic” approach to specification of abstract data
types, a basic specification consists of a signature and a set of logical
sentences. The signature provides symbols for operations (constants are
regarded as operations with no arguments). The satisfaction of the sen-
tences provides properties of the operations. The specified class of alge-
bras may consist of all algebras that have the named operations with the
given properties, or it may be “constrained”, e.g., to initial algebras.
When specifying an abstract data type algebraically, it is helpful to
identify various classifications of elements, and to give for each operation,
the relation between the classifications of its arguments and the classifi-
cation of its result. If the classifications of the arguments of an operation
are specialized, that of the result may also be specialized. In particular,
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when arguments are restricted to single element classifications, the result
classification may be restricted to the result of applying the operation to
these elements.

Classifications are usually treated as indices, called “sorts”: the set
of elements of an algebra is then a sort-indexed family of subsets, the
operation symbols of the signature are indexed by the sorts of arguments
and results. With a “many-sorted” algebra there is no intrinsic relation
between the sorts: the subsets that they index may or may not overlap.
With an “order-sorted” algebra, the signature defines a partial order on
the set of sorts, which has to be respected by the inclusion relation be-
tween the subsets they index. In both the many-sorted and order-sorted
frameworks, there is a sharp distinction between classifications and ele-
ments.

With unified algebras, however, classifications have the same status as
elements—in particular, operations may be applied to classifications as
well as to elements. Let us henceforth refer to classifications and elements
together as choices, avoiding the words “type” and “sort”, which have
rather too many connotations already.

A unified algebra consists of a set of choices, with a distinguished
subset of elements, together with constants that denote particular choices,
and operations that map choices to choices. A unified algebra does not
necessarily provide all possible choices between elements. However, the
set of choices always includes the vacuous choice, Hobson’s choices! of
single elements, and all finite choices. The set of choices is always closed
under (finitary) union and intersection.

Choices are partially ordered by inclusion: if ¢, and ¢, are choices,
then ‘c, < ¢,” asserts that ¢, is included in ¢,. An important special
case of inclusion is the classification relation: ‘c, : ¢,” (which may be
pronounced “c, is-a ¢,”) asserts that ¢, is the Hobson’s choice of a single
element, included in ¢,. Different Hobson’s choices are incomparable in
the partial order. The vacuous choice, denoted ‘nothing’, is least in the
partial order. The choice between two choices ¢, ¢,, denoted ‘e, | ¢,’,
is their least upper bound; their “agreement”, denoted ‘c,&¢,’, is their
greatest lower bound.

The set of choices between elements forms a distributive lattice [13]

1For the benefit of readers unfamiliar with this idiom: “Hobson’s choice: option of taking
the one offered or nothing [from T. Hobson, Cambridge carrier (d. 1631) who let out horses on
this basis].” [2]



with a bottom. Note that the Hobson’s choices need not be the so-
called “atoms” of the lattice (i.e., “just above” the bottom); but choices
between them and the bottom are not much use, as they cannot include
any elements. More generally, choices need not be “extensional”: two
distinct choices may classify the same set of elements.

NB! Choice inclusion must not be confused with computational ap-
proximation in Scott domains [20]; in fact lattices here are not usually
complete. Operations are monotonic, preserving choice inclusion, but not
necessarily continuous.

The notation used in basic unified specifications is similar to that used
in OBJ: the declarations of symbols for constants and operations may be
combined with information about their relation to classification and in-
clusion. But no distinction is made between symbols that denote elements
and those that denote (multiple) choices—except that we generally use
“Capitalized” words for the latter. We exploit “mix-fix” notation to write
the application of an operation symbol ‘S,_ ... _5,’ to terms ‘T, ..., T,
as ‘5o T, ... TnSy'; e.g., we write ‘if_then_else_(T,X,Y) as ‘if T then X
else Y’. Variables, such as X, range over all choices; they do not need to
be declared.

Let us briefly consider some examples, before proceeding to formal
details. First, Figure 1 specifies the usual truth-values. The use of the
ordinary arrow ‘—’ in the specification of ‘not_’ indicates that the oper-
ation is “total” (mapping elements to elements) and “strict” (mapping
‘nothing’ to itself). But ‘if_then_else_’ is non-strict in its second and third
arguments (which need not be truth-values), so a different arrow ‘=’ is
used, merely indicating the inclusion relation between argument and re-
sult choices. Note that the long arrow ‘=="in the last clause stands for
implication. (Conjunction in clauses, illustrated below, is written * )

Consider also the specification of natural numbers given in Figure 2.
The equation for ‘Natural’ resembles a domain equation; but ‘_| _’ is asso-
ciative, commutative, and idempotent, so it does not correspond exactly
to the sum construction used in domain theory. The ‘predecessor_’ op-
eration is partial on ‘Natural’: it may give ‘nothing’ when applied to an
element, which is indicated by the arrow ‘~»’. Notice that m and n are
restricted to be elements in the clause involving ‘sum’ and ‘product’; this
avoids the second conclusion of the clause giving problems with multi-
ple choices for m. The operation ‘{0 .. ]’ provides intervals, which are
included in each other in the obvious way.
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constant  Truth-Value = true | false
constant true : Truth-Value
constant  false : Truth-Value

operation not_: Truth-Value — Truth-Value
true — false
false — true

operation if_then_else_: Truth-Value, X, ¥ = (X | )
nothing, X, ¥ = nothing
defined elementary

if true then X else Y = X
if false then X else Y = Y
(T&Truth-Value) = nothing = (if T then X else Y') = nothing

Figure 1: Unified Specification of Truth Values

As a final example of unified algebraic specifications of familiar ab-
stract data types, consider Figure 3. The specified properties of ‘cons(_,.)’
ensure that components of lists are always elements of ‘Data’. Notice that
the operation ‘_(of_)’ provides classifications of lists according to classifi-
cations of components: ‘I/(of D)’ is just the list [ when all the components
are included in D, otherwise it is ‘nothing’. A more thorough specifica-
tion of lists would use ‘_(of.)’ to specify the polymorphic properties of
the other operations. Incidentally, ‘cons(Data,List)’ classifies the non-nil
lists.

2.2 Formalities

So much for the concepts underlying unified algebras. Let us now define
stgnatures, sentences, models, and satisfaction, to obtain an appropriate
“institution” [1,7,8] for unified algebras.

First, it is convenient to specialize the conventional notation for many-
sorted algebras by eradicating sort-indexed sets, as follows.

Let Symbol be the set of symbols used to name constants and opera-
tions, partitioned into disjoint subsets Symbol,, n > 0. Let Variable be a
set of wariables, disjoint from Symbol.

A homogeneous algebraic signature is simply a subset X of Symbol. We
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constant  Natural = 0 | successor Natural
constant 0 : Natural

operation successor_ : Natural — Natural
constant  Positive = successor Natural

operation predecessor_: Natural ~» Natural
Positive — Natural
0 ~+ nothing

N < Natural = predecessor(successor N) = N

operation sum(_,_) : Natural?> — Natural
Positive, Natural — Positive
associative commutative unit(0)

operation product(_,-) : Natural?> — Natural
Positive? — Positive
0, Natural — 0
associative commutative unit(successor 0)

| m : Natural ; 7n : Natural

—
sum(m, successor n) = successor sum(m,n) ;

product(m, successor n) = sum(m, product(m,n))
operation [0 .. _] : Natural = Natural strict defined
n: Natural = [0 .. n] =n | [0 .. predecessor n]

Figure 2: Natural Numbers with Intervals

write X, for ¥ N Symbol,, for n > 0. A homogeneous algebraic signature
morphism o : ¥ — ¥ is a family of maps o, : ¥, — X, (n > 0). We
write o(f) for o,(f), where f € T,,.

A homogeneous (3-)algebra A consists of a set |A| (of choices) and
for each f € ¥y, a function f4 : |A|" — |A| (called a constant when n = 0,
otherwise an operation). A (2-)homomorphism h: A — B is a function
from |A| to |B| such that for any f € £, and ay,---,a, € |4|

h(fa(as, -+ an)) = fa(h(a1),- -, h(an)).

So much for homogeneous algebras. Now for unified algebras.
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constant Data
constant  List = nil | cons(Data, List)
constant  nil : List
operation cons(_,.) : Data, List — List
operation head_ : List ~» Data
operation tail_: List ~» Data
head nil = nothing ; tail nil = nothing
d: Data; [: List
—
head cons(d, 1) = d ; tail cons(d, ) = I
operation _(of _) : List, Data = List
D < Data
=
nil (of D) = nil;
| d: Data; I: List
=
| cons(d, I)(of D) = cons(d&D, I(of D))

Figure 3: Generic Lists

A unified signature is a homogeneous algebraic signature that includes
the constant symbol ‘nothing’ and the binary operation symbols ‘_ | _’
and ‘& _’. Unified signature morphisms are homogeneous signature mor-
phisms that preserve the given symbols. We write UniSign for the set
of unified signatures. Henceforth, let 3 always be a unified signature.

A (Z-)unified sentence is a universal Horn clause with variables from
Variable, operation symbols from X, and binary predicate symbols ‘=",
‘<’, and ‘. We write UniSen(X) for the set of (X)-unified sentences.
Unified signature morphisms extend to translations of unified sentences
(leaving variables unchanged).

A (Z-)unified algebra A is a homogeneous (Z-)algebra A such that:

o |A| is a distributive lattice with _| _, as join, _&_, as meet, and
nothing, as bottom. Let <, denote the partial order of the lattice.

o There is a distinguished subset of incomparable values, F, C |A4]
(the elements of A). Note that E4 need not be the “atoms” of the
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lattice.

e For each f € ¥, the function f4 is monotone (in each argument)
with respect to <,.

A (Z-)unified homomorphism is a (2-)homomorphism that respects the
partial order and maps elements to elements. We write UniAlg(X) for
the class of (2-)unified algebras.

The binary predicate symbols ‘=", ‘<’, and *:’ are interpreted as fol-
lows in a unified algebra A:

e z = y holds iff z is identical to y;
o z <yholdsiff z <4 v;
e z:yholdsif x € B4 and z <, .

An institution UNI of unified algebras can be defined in the usual way,
in terms of the evident categories of unified signatures, unified sentences,
unified algebras, and the standard notion of satisfaction for universal
Horn clauses. In [16] it is shown that the institution is “liberal”, and
appropriate “data constraints” [8] are defined.

2.3 Specifications

We next define the syntax and semantics of canonical specifications,
which correspond directly to unified signatures and sentences. Such spec-
ifications are adequate in theory, but somewhat tedious to use in practice.
Therefore we proceed to extend the syntax with some convenient abbrevi-
ations, which allow us to write basic unified specifications that resemble
the order-sorted signatures and sentences used in OBJ. (In [14] it is shown
how this basic specification language can be extended to allow “modules”
and “constraints”, which are out of the scope of this paper.)

We don’t bother to give an unambiguous concrete syntax for our spec-
ification language. Instead, we use ambiguous grammars to define its
abstract syntax. The grammars are written in a minor variant .of BNF:
‘>’ stands for “produces”, ‘| ’ stands for “alternatively”, and terminal
symbols are enclosed in quotation marks. (In [14] it is shown how such
grammars can themselves be regarded as basic specifications, leading to
a unified algebraic treatment of abstract syntax.)



Each non-terminal of a grammar generates a set of strings (of terminal
symbols); the derivation trees for these strings—equipped with the tree
construction operations—are (essentially) the desired abstract syntactic
entities. For writing examples of specifications, we use parentheses and
indentation to indicate which abstract syntactic entities are intended,
when this is not clear from the context. (A thin vertical bar is used for
emphasizing indentation—and hence grouping.)

The abstract syntax of canonical basic specifications is defined by the
grammar given in Figure 4. The grammar does not define the micro-

p : Positive
=
Basic > “constant” Symboly | “operation” Symbol, |

Clause | Basic Basic
Clause > Formula | Formula “=" Clause :
Formula >  Term Relator Term ;

Relator > “=" | “<" | “

Term > Variable | Symboly | Symbol, Terms, ;

Terms; > Term ;

i 1y
Termsyy; > Term “, Terms,

Figure 4: Abstract Syntax of Canonical Specifications

syntax of symbols (‘Symbol,’, n > 0) and variables (‘Variable’). For
symbols, let us use strings of characters in this sans serif font, with the
number of occurrences of the place-holder character ‘.’ determining the
index (i.e., rank) of the symbol. For variables, let us use strings of letters
in this italic font, optionally distinguished by numerical subscripts.

The grammar is not quite context-free: the indices on the nonterminal
symbols ‘Symbol’ and ‘Terms’ ensure that operation symbols are omnly
applied to the number of arguments indicated by their indices. Each
‘Symbol,” (for n > 0) and ‘Terms,’ (for p > 1) may be regarded as a
distinct nonterminal symbol, if desired.

A simple example of a canonical specification is given in Figure 5. (It
corresponds roughly to the specification of truth-values given in Figure 1.)
There is no need to disambiguate the grouping of the symbol declarations
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constant  Truth-Value
constant  true
constant  false
true : Truth-Value
false : Truth-Value
Truth-Value = true | false
operation if_then_else_
T < Truth-Value =

(if T then X else V) < (X | Y)
if true then X else ¥ = X
if false then X else Y = Y
if nothing then X else Y = nothing
if (T | U)then X else ¥ =

(if T then X else Y) | (if U then X else Y)
T & Truth-Value = nothing —

(if T then X else Y) = nothing

Figure 5: Canonical Specification of Truth Values

and the clauses, as it is semantically irrelevant (in fact juxtaposition of
specifications is like choice: associative, commutative, and idempotent).

Now let us define the semantics of canonical specifications. First of all,
a specification is said to be complete when all the constant and operation
symbols occurring in terms (except for the reserved symbols ‘nothing’,
‘] -, and ‘_&_’) are declared by ‘constant S’ or ‘operation §’. We do not
care to give a semantics for incomplete specifications, although it could
be done.

Following Sannella and Tarlecki [18], the semantics of a complete spec-
ification B consists of two components: Sig[B], the signature specified
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by B; and Alg[B], the class of algebras specified by B. We define:

Sig[B] = {S € Symbol | § occurs in B} U {‘nothing’, *_| _, *-&_}

-y

Alg[B] = {4 € UniAlg(Sig[B]) | A satisfies all the clauses in B}.

It is left to “constraints” to restrict the class of unified algebras that
satisfy a specification to “initial” (more generally, “freely-generated”)
algebras—see [16] for the details.

As may be seen from the specification of truth-values in Figure 5,
canonical specifications are a bit tedious to use. Let us introduce some
formal abbreviations. The further abstract syntax given in Figure 6 ex-
tends that in Figure 4 and enables us to write basic specifications resem-
bling those in OBJ (as exemplified in Figures 1-3).

p : Positive

—_—

Basic > “constant” Symboly Relator Term |
“operation” Symbol, “:” Functionality, ;

Clause > Clause “" Clause | Symbol, “:” Functionality, ;

Formula > Formula “"” Formula ;

Relator > "> T

Terms, >  Term “¥" ;

Functionality, >  Terms, “—" Term |
Terms, “~" Term | Terms, “=" Term |
Attribute, | Functionality, Functionality, ;

Attribute, > “associative” | “commutative” |
“idempotent” | “unit” Term ;

Attribute,, > strict” | “defined” | “elementary”

Figure 6: Abstract Syntax for Basic Specifications

Now, basic unified specifications look quite nice—to the author, at
least—but what is their semantics? Let us consider how to reduce them
to canonical specifications.
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The symbol “;” stands for conjunction in clauses and formulae. The
relators “>" and “:-” stand for the reversals of the relations ‘<’ and
‘7, respectively. It is straightforward to reduce any clause using these
constructs to a combination of canonical (Horn) clauses; we omit the
details here.

The construct ‘constant § R T’ merely abbreviates the combination
of the declaration ‘constant S’ and the clause ‘S R T”. Likewise, ‘oper-
ation S : F” abbreviates the combination of ‘operation S’ and the clause
abbreviation ‘S : F’, where F' is a “functionality”. Thus what appear to
be order-sorted signature declarations are really abbreviations for com-
binations of (unsorted) unified signature declarations and clauses.

There are three main forms of functionality, concerned with so-called
“total”, “partial”, and “general” operations. Total and partial functional-
ities may be explained in terms of general functionalities and “attributes”,
which we consider first.

The functionality ‘S : T,..., T, = T abbreviates the clause (actually,
formula) ‘§(T;,...,T,) < T°. The monotonicity of all operations gives as
a consequence that applying the operation § to any choices (or elements)
included in the T; always gives a result included in T'.

Any attributes specified along with such a general functionality en-
hance it as follows (assuming all arguments are included in the T

o ‘strict’ asserts that when any argument is ‘nothing’, the result is
‘nothing’.

e ‘defined’ asserts that when the result is ‘nothing’, at least one argu-
ment must be ‘nothing’.

o ‘elementary’ asserts that when all the arguments are elements, the
result is either an element or ‘nothing’, and, moreover, that the
operation is “linear” (i.e., “additive”), preserving ‘_| .’ and ‘&’ in
each argument separately.

e ‘associative’, ‘commutative’, ‘idempotent’, and ‘unit 7"’ assert the

obvious properties for binary operations. (By the way, ‘T% abbre-
viates ‘T, T".)

Now it is easy to explain the “total” and “partial” functionalities:

e ‘S:T,,..,T, > T abbreviates
‘S : T,,...,T, = T strict defined elementary’ (the combination of
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‘defined’ and ‘elementary’ implies that elements get mapped to ele-
ments, hence choices that include elements get mapped to choices
that include elements).

e ‘§:1T,..,T,~ T abbreviates
‘§: T,,...,T, = T strict elementary’ (so elements may get mapped
to ‘nothing’).

In practice, it is convenient to extend almost all operations from ele-
ments to choices by using “total” or “partial” functionalities. The “gen-
eral” functionalities are needed only for non-strict operations (such as
‘if_then_else_’) and for operations that are non-linear (such as the list
operation ‘_(of.)’ in its second argument).

As in order-sorted algebras, an operation may have more than one
functionality: the clause ‘S : F, F,’ abbreviates the conjunction ‘S : F';
S : F’, where F] and F, each contain all the attributes of F, and F,,
and together contain all their total, partial, and general functionalities.
It is claimed that any clause of the form ‘S : F’ can be reduced to a
conjunction of clauses not involving functionalities.

Put together (and formally defined!) the above reductions serve to
convert basic specifications into canonical specifications, thereby provid-
ing a “transformational semantics” for basic specifications.

3 Action Semantics

This section explains the general idea of Action Semantics, and gives a
simple illustrative example of its use. The necessary pieces of Action
Notation are introduced formally, but their intended (operational) in-
terpretation is merely indicated informally. Attention is drawn to the
exploitation of unified algebras in Action Notation. This is not a “tuto-
rial” on how best to formulate action semantic descriptions—in fact the
example given is not optimal with regard to pragmatic aspects such as
modularity and modifiability.

Note that the version of Action Notation used here is somewhat ten-
tative: it has not been “polished”, nor has it yet been sufficiently tested
on large-scale examples. (Previous versions have been shown adequate

for the action semantics of a variety of programming languages, including
PAscAL, JOYCE, STANDARD ML, BETA, CCS and CSP.)
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3.1 Semantics

As mentioned in the Introduction, an action semantics for a programming
language is a compositional mapping from abstract syntactic entities to
abstract semantic entities called “actions”. Thus it is like a denotational
semantics, except that the denotations of constructs are (in general) ac-
tions, rather than higher-order functions on Scott domains.

The aim of Action Semantics is to obtain better pragmatic qualities
than those of Denotational Semantics—without sacrificing formality! For
a critique of the pragmatic qualities of denotational semantic descriptions,
together with motivation for the use of Action Semantics, see [17]. Here,
let us take the desirability of action semantic descriptions for granted,
and proceed to examine their form.

For illustration, we give an action semantics for a simple fragment of
an imperative programming language. No claims are made for the practi-
cality of this language: it has been chosen purely to allow an uncluttered
demonstration of the use of Action Notation.

The abstract syntax of the language is specified by the (context-free)
grammar in Figure 7. Abstract syntax is concerned only with the compo-

Statement >  Statement “;” Statement |
Identifier “:=" Expression |
“if” Expression “then” Statement “else” Statement |
“while” Expression “do” Statement |
“result” Expression
Expression >  Numeral | Identifier | Statement |

Expression Operator Expression

.
]

Operator 2 Horn I uandn I u:u I u+n ] “u_n I u*n

Figure 7: Abstract Syntax of an Illustrative Programming
Language

sitional structure of programs and their component “phrases”, in contrast
to concrete syntax, which is concerned (also) with the representation of
programs by strings of characters. For specifying abstract syntax, it is
convenient to use context-free grammars (here, we use the same vari-
ant of BNF as in Section 2). The abstract syntactic entities may be
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thought of as derivation trees for strings of terminal symbols that can be
generated by the grammar; then the nonterminal symbols stand for sets
(or choices!) of trees. Ambiguity of grammars is irrelevant for abstract
syntax—in fact, blatantly ambiguous grammars often facilitate semantic
description, as is the case with our illustrative programming language.

The terminal symbols of the given grammar suggest familiar concrete
symbols; but there is no formal connection with concrete syntax (a map-
ping from concrete to abstract syntax could be given separately). Notice
that the nonterminal symbols ‘Numeral’ and ‘ldentifier’ are left unspeci-
fied.

Notation for semantic functions, mapping abstract syntactic entities
to their denotations, is introduced in Figure 8. For convenience of no-

execute. : Statement = Action(giving nothing)(escaping value)
evaluate_. : Expression = Action(giving value)

operation_ : Operator => Data(taking value; | valuey)(yielding Value)
valuation_ : Numeral — Number

id_ : Identifier — Token

Figure 8: Semantic Functions

tation, let us treat abstract syntax as a unified algebra, and semantic
functions as operations of a unified algebra that encompasses both syn-
tactic and semantic entities.

The intended interpretation of the standard semantic entities
‘Action(...)’ and ‘Data(...)’, which are part of Action Notation, is ex-
plained in the following sections.

Some special semantic entities (not provided by Action Notation) are
introduced in Figure 9. The constant ‘Number’ is not fully specified. All
that we need to know is that it includes the denotations of numerals, and
that there are various operations on numbers, in particular ‘_is_’, which
tests for identity. The constant ‘Value’ combines various classifications
that would be distinguished in a more careful specification: the results of
expression evaluations, and the operands and results of operators. The
operations ‘Bindable_’ and ‘Storable.’ indicate the classifications of data
that may be bound to identifiers, respectively assigned to variable iden-
tifiers.
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constant Number < Data

operation _is_ : Number? — Truth-Value

operation product : Number? ~» Number
constant  Value = Truth-Value | Number
Bindable(id Identifier) = Cell

Storable(Cell) = Number

Figure 9: Special Semantic Entities

The semantic functions are defined inductively, by “semantic equa-
tions”, as in Denotational Semantics. (The equations may be regarded as
algebraic equations, but their “well-foundedness” is essential). In general,
each equation corresponds to a homomorphism condition: the denotation
of a particular kind of compound phrase is equated with a particular com-
position of the denotations of sub-phrases; the denotation of a primitive
phrase is 1dentified directly with a semantic entity.

The semantic equations for the statements of our illustrative language
are given in Figure 10. For now, merely observe the form of the equa-
tions: the action notation used in the right-hand-sides—which is entirely
formal!—has yet to be explained (although it is hoped that at least some
of its intended interpretation is suggested by the words used).

Further semantic equations, defining the denotations of expressions
and operators, are given in Figure 11. The first three equations are not
in the usual inductive form, because numerals, identifiers, and statements
are regarded as special sub-classifications of expressions, rather than as
components of expressions. Formally, the denotation of a statement § is
the pair of actions execute S, evaluate §.

The semantic functions for numerals and identifiers are left unspecified
here, as they do not involve actions at all, and anyway, their composi-
tional structure has not been specified by the given abstract syntax.

So much for the basic structure of action semantic descriptions (which
could be made more evident by use of explicit modules, as shown in [15]).
It remains to introduce Action Notation, and to explain its intended
interpretation.

17



execute[ S, “” S, ]| = execute S, and then execute S,
execute[ I =" F ] =
| obtain a cell from bound(id I)

and

| evaluate F then obtain a number from the value
then

store the number in the cell
execute[ “if” E “then” S, “else” S, ] =

evaluate E then obtain a truth-value from the value
then

] check the truth-value and then execute §,
or

| check not the truth-value and then execute S,

execute[ “while” EF “do” § ] =

O
where O =
evaluate F then obtain a truth-value from the value
then
| check the truth-value and then execute S and then O
or
’ check not the truth-value

execute[ “result” E | = evaluate E then (escape(taking value))

Figure 10: Semantic Equations for Statements

3.2 Actions

Actions are semantic entities that have a “computational”, rather than
“mathematical”, essence: they can be performed so as to process infor-
mation. For the moment, we need not be concerned about what kind of
information is processed by (performances of) actions.

When an action is performed, information is usually processed grad-
ually, rather than instantaneously. Particular performances of an action
may be classified as follows:

e the performance never terminates: it is said to diverge;

18



N : Numeral =
evaluate N = obtain a value from valuation NV
I : ldentifier —

evaluate I = obtain a value from
bound(id I)(yielding value) |
stored(bound(id I)(yielding Cell))

S : Statement —

evaluate S = | execute S then irrevocably fail
trap
| complete(taking value)

evaluate] E, O E, | =

| evaluate F, then obtain a value; from the value
and

| evaluate F, then obtain a value; from the value
then

obtain a value from operation O

operation[ “or” ]| = disjunction(the value;(yielding Truth-Value),
the valuey(yielding Truth-Value))

operation[ “x¥” ] = product(the value;(yielding Number),
the valuey(yielding Number))

Figure 11: Semantic Equations for Expressions and Oper-
ators

e the performance terminates normally: it is said to complete;
e the performance terminates abnormally: it is said to escape;
o the performance terminates prematurely: it is said to fail.

Obviously, diverging actions are required to represent the semantics of
programs that get into infinite loops. (Note that not all such programs are
useless: operating systems and traffic-light controllers may do significant
information processing without ever terminating.)

Completing actions represent the semantics of ordinary programs that
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process a finite amount of information and then terminate.

Escaping actions are needed to allow the performance of a part of an
action to avoid the performance of other parts that would normally follow
it, but resuming normal performance later.

Two kinds of failing actions are distinguished, according to whether
the failure occurs “immediately”, or after some “irrevocable” information
processing. Immediate failure indicates the lack of an outcome of a per-
formance, and is disregarded in a nondeterministic choice; actions that
may fail immediately, depending on the information given to them, are
useful as “guards” on choices. Irrevocable failure is a definite outcome,
useful for representing the semantics of programs that are forced to stop
because of an “error”—numerical overflow, for instance.

Some notation for actions is introduced in Figure 12. (Perhaps the
reader objects to the large number of operations and constants in Ac-
tion Notation. In practice, however, it does seem to be best to use dif-
ferent notation for representing different operational concepts. Even in
conventional Denotational Semantics, one usually introduces “auxiliary”
notation, rather than using the pure A-notation.)

The intended interpretation of the introduced notation is explained
as follows.

The constant ‘Action’ classifies all actions—mnot just those that can be
expressed using the given constants and operations (which by themselves
are rather trivial).

The constant ‘fail’ is a synonym for ‘nothing’; likewise, ‘_or_’ is a syn-
onym for ‘_ | _’ (restricted to actions). These special action symbols are
introduced because they are a bit more suggestive that the general sym-
bols, and because they have been used in previous versions of Action
Notation. Anyway, ‘fail’ does what it says, immediately. The action
‘A, or A’ may be regarded as a “tentative” choice between performing
A, and A,, with “back-tracking” if the chosen action fails immediately.
The action ‘irrevocably A’ performs A, but cannot fail immediately (even
if A is “fail’); hence “committed” nondeterministic choice can be expressed
by ‘(irrevocably A,)or(irrevocably 4,)’.

The action ‘A, and A,’ performs A, and A, together, with arbitrary
(perhaps “unfair”) interleaving of the performances of their indivisible
sub-actions; ‘indivisibly A’ performs any action A indivisibly, protecting
the sub-actions of A from interleaving with other actions. (Primitive ac-
tions may be assumed to be indivisible unless otherwise stated.) The
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constant  Action
constant fail < Action

operation _or_: Action? = Action
associative commutative
idempotent unit(fail)

constant irrevocably_ : Action = Action

operation _and_: Action? = Action
associative commutative

operation indivisibly_ : Action — Action

operation _and then_: Action? = Action
associative commutative

constant complete : Action

operation _then_ : Action? = Action
associative unit(complete)

constant  escape : Action

operation _trap_: Action? = Action
associative unit(escape)

constant O : Action

operation _where O =_: Action? = Action

Figure 12: Some Action Notation

action ‘A, and then A,’ is the specialization of ‘4, and A,’ to the inter-
leaving where all of A, is performed before any of A4,.

Next, the action ‘complete’ does just what it says. The action
‘A, then A,’ performs A,, followed by A, if the performance of 4, com-
pletes; if A, diverges, fails, or escapes, 4, is not performed.

The action ‘escape’ does what it says. The action ‘A, trap A,’ per-
forms A4,, followed by A, if the performance of A4, escapes; if 4, diverges,
fails, or completes, A4, is not performed. Notice the symmetry between
completing and escaping (however, an untrapped escape always termi-
nates an interleaving, whereas completion need not).

The action ‘O’ is a dummy action: whenever it is encountered during
the performance of 4, in ‘4, where O = A4,’, the action A4, is performed
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instead. Essentially, ‘A, where O = A,’ abbreviates the (possibly infi-
nite) action obtained by repeatedly replacing occurrences of ‘0’ in A, by
A, (more precisely, by ‘complete then A, then complete’, to ensure that
there is always a “first” step of an action). Of course, ‘O’ is not assumed
to be indivisible.

3.3 Information

Let us now consider the information processed by actions. It consists of
“organized data”. |

It is a simple matter to allow an action to compute a particular data
entity: just make the action into an operation, and apply it to a term
that denotes the required data entity. But then, of course, the same data
entity gets computed by every performance of the action, which is not
much use. What we want is to have terms denoting data that depends on
some given information. So let us consider a dependent data entity to be
an entity that can be evaluated, with some information, to yield a data
entity. (Ordinary independent data, such as truth-values and numbers,
always evaluates to itself. Actions themselves may be regarded as depen-
dent data, but usually they are left unevaluated, with their dependent
data components evaluated only when the action gets performed.)

Evaluation of dependent data is, in contrast to performance of ac-
tions, essentially “mathematical”, rather than “computational”: evalua-
tion does not involve any changes to information, merely reference to the
given information. Evaluation of dependent data cannot diverge, fail,
or escape. The evaluation of dependent data may yield an element of
data, but it may also yield a multiple choice, or even the vacuous choice,
‘nothing’.

The basic dependent data entities are simply references to particu-
lar components of the information given to their evaluation. In gen-
eral, compound dependent data entities are formed by applying ordinary
data operations to dependent data arguments; the evaluation of such a
compound entity yields the result of applying the operation to the data
yielded by evaluating the arguments. Notice that non-strict operations
(such as ‘if_then_else_’) may ignore a ‘nothing’ yielded by the evaluation
of an argument.

As data may depend on information, the data computed by an action
may depend on the information received by the action, i.e., the “current”
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information. The data computed by an action may be incorporated into
the information produced by the action.

We may classify information according to the way it is propagated by
action combinators. The following description should give the main idea,
which underlies the design of Action Notation.

e Transient information produced by an action is received only at
the start of the “immediately-following” action, unless the latter
action explicitly re-produces the information. Such information is
used to represent intermediate results in computations—values of
sub-expressions, for instance.

e Scoped information produced by an action is received throughout an
immediately-following action, except where explicitly overridden. It
is used to represent bindings established by declarations.

e Stable information produced by an action is received by all the
following actions, until explicitly overridden. It is used to represent
the assignment of values to variables.

e Permanent information produced by an action is like stable in-
formation, but can never be overridden. It is used to represent
communication histories.

Of course it is possible to use one kind of information to represent an-
other kind—e.g., using transient information to represent the “state” of
assignments to variables, making sure that all actions pass along the state
with the appropriate changes. But such abuse of action notation tends to
give poor pragmatic qualities in action semantic descriptions (since they
start to resemble conventional denotational semantic descriptions!).

The various kinds of information are what may be called “orthogo-
nal”: actions process simple aggregations of them, and the processing
of each kind of information may be considered separately. Focusing on
one kind of information at a time gives what are called the “facets” of
actions. The functional facet is concerned only with transient informa-
tion; the declarative facet, with scoped information; the imperative facet,
with stable information; and the communicative facet, with permanent
information.

The remaining action notation used in the semantics of our illustrative
programming language is introduced in Figure 13.
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constant  Data
operation _(yielding_) : Data? = Data
operation check_ : Data(yielding Truth-Value) = Action
constant Name < Data
operation Nameable_ : Name = Data
operation the_: Name = Data(yielding Nameable(Name))
operation obtain an_from_: Name, Data(yielding Nameable(Name))
= Action

operation _(taking_) : Action, Name = Action
operation _(giving_) : Action, Name = Action
operation _(escaping.) : Action, Name = Action
constant Token < Data
operation Bindable_ : Token = Data
operation bound_: Data(yielding Token) =

Data(yielding Bindable(Token))
constant Cell < Data
operation Storable_: Cell = Data
operation stored_: Data(yielding Cell) =

Data(yielding Storable(Cell))
operation store_in_: Data(yielding Storable(Cell)),

Data(yielding Cell) = Action

Figure 13: Some More Action Notation

The constant ‘Data’ classifies dependent data as well as ordinary data.
Evaluation of ‘D,(yielding D,)’ yields the agreement of the data yielded
by D, and by D,. (This is only of interest when D, or D, is dependent
data; otherwise, agreement ‘& _’ could be used directly.)
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The action ‘check ¢’ completes, provided ¢ yields the element ‘true’;
it fails immediately if ¢ yields ‘false’, or ‘nothing’. Notice that ‘(check ¢
then A,) or (check not ¢ then 4,)’ expresses ordinary conditional choice
between A, and A, (at least when ¢ always yields an element of ‘Truth-
Value?).

Not indicated in Figure 13 is the extension of all ordinary data opera-
tions to dependent data: if o stands for an operation (with n arguments)
and D,, ..., D, denote arbitrary dependent data, the term ‘o(D,,...,D,)’
denotes the dependent data that evaluates the D; and applies o to the
data yielded.

Now for some notation specifically concerned with the functional facet
of actions. It is convenient to use symbolic names (rather then the po-
sitional notation sometimes used in functional programs) for referring
to particular components of transient information. The constant ‘Name’
classifies all names. The operation ‘Nameable_’ maps each name to the
classification of data to which it may refer—notice the exploitation of uni-
fied algebras here. For our illustrative semantics, the only names needed
are ‘cell’, ‘number’, ‘truth-value’, and ‘value’ (with optional subscripts).
For brevity, the formal introduction of these names is omitted here; the
corresponding “nameables” are evident.

Let n denote a name. Then ‘the n’ yields the data named n in the
given naming—or just ‘nothing’, if there is no such data.

When D denotes (dependent) data and N denotes a choice of names,
the term ‘D(taking N)’ yields whatever D yields with the given naming
restricted to names included in the choice N.

The action ‘obtain an n from D’ completes, producing the naming of
the data yielded by evaluating ‘D(yielding Nameable n)’—unless that is
‘nothing’, in which case the action fails immediately. Note that the nam-
ing of a multiple choice is different to the choice between the namings of
its elements.

When N is a choice of names, the action ‘A(taking N)’ performs
‘complete(taking N) then A’, and the action ‘A(giving N)’ performs ‘4
then (complete(taking N))’. Note that these actions are equivalent to
A when A refers to, respectively normally produces data with names
included in N. Similarly, ‘A(escaping V)’ performs ‘A trap (escape(taking
N))’. This leaves ‘complete(taking N)’ to be explained: it merely re-
produces the restriction of the received naming to the names included in
the choice N.
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Now for the declarative facet of actions, concerned with scoped infor-
mation. The elements of ‘Token’ may be bound to data, according to the
operation ‘Bindable_’. Binding actions are quite interesting, but out of
the scope (!) of this paper: all we require here is to refer to a received
binding for a token %, which is expressed by ‘bound k.

Similarly, for the imperative facet, concerned with stable information,
we have ‘Cell’ and ‘Storable_’; reference to the current data stored in a
cell ¢ is expressed by ‘stored c¢’. The action ‘store d in ¢’ assigns data d
to a cell c; it is irrevocable, as well as indivisible.

It remains to explain how actions deal with information that consists
of namings, bindings, and storage all together. Note straight away that
dependent data arguments in an action (such as ¢ in ‘check ¢’) are always
evaluated with all the received information.

Storage is rather obvious: the only action (here) that changes the
storage is ‘store_in_’. All other actions leave the storage that they receive
unchanged. Note that interleaving ‘A, and 4,’ lets 4, and A, influence
each other’s performance by means of changes to storage. The irrevoca-
bility of changes ensures that the choice of interleaving never has to be
made tentatively.

Binding is trivial, in the absence of the binding actions: all actions re-
ceive the same bindings, and it is unnecessary to consider the production
of bindings at all.

The treatment of namings is as follows:

The actions ‘complete’ and ‘escape’ both re-produce whatever naming
their performances receive. But ‘fail’ produces the null naming, as do
‘check T’ and ‘store d in c’.

The actions ‘irrevocably A’ and ‘indivisibly A’ are “transparent” with
regard to the namings received and produced.

When ‘A, or A,’ is performed, the chosen alternative receives and
produces the same namings as the combined action.

‘A, and A,’ performs A, and A, separately, as regards namings: A4,
and A, both receive the same naming as the combined action, and (if they
both complete) the naming produced by the combined action is just the
combination of the namings they produce. Thus the interleaving of the
performances of A, and A, does not let intermediate namings produced
by A, be referred to by A,. If an escape occurs, the naming it produces is
the naming produced by the combined action—the (intermediate) naming
produced by the other action is ignored. ‘A, and then A,’ is similar.
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‘A, then A,’ performs A, with the received naming, and performs
A, (if at all) with the naming produced by A4,. This corresponds to
“functional composition”. ‘4, trap 4,’ is analogous.

The namings received and produced by ‘4, where O = A’ are those
of A,, taking into account the replacements of ‘0’ in 4, by A,. Thus 4,
does not in general receive the same naming as the combined action.

The main effect of the treatment of namings described above is that
the received naming is always propagated to both arguments of ‘_or_’,
‘_and_’, and ‘_and then_’, but only to the first argument of ‘_then_’, ‘_trap_’,
and ‘_where O =_,

The reader might now find it refreshing to re-examine the semantic
equations for the illustrative programming language.

4 Conclusion

We have considered the frameworks of Unified Algebras and Action Se-
mantics separately. Let us conclude by summarizing the relation between
them.

Unified Algebras make intensive use of the choice operation, which
corresponds to union of classifications: not only is it provided for direct
use in specifications (recall the sort equations for ‘Natural’, etc.) but also
it underlies the inclusion partial order, which is preserved by all the other
operations. .

Action Semantics makes direct use of choices between actions
for representing nondeterministic (and deterministic) choice; also,
implementation-dependent order of execution is expressed by ‘.and_’,
which involves choice of interleaving. Choices are useful in connection
with restricting the names of data received and produced by the func-
tional facet of actions (which is analogous to the restriction of list com-
ponents by the operation ‘_(of_)’ in unified algebras). Finally, choice
corresponds exactly to the “alternatively” in BNF productions, which al-
lows the use of unified algebras for abstract syntax as well as for semantic
entities.

Action Notation exploits the generality of Unified Algebras to use the
same notation for operations on classifications of actions and on particular
actions, e.g., the operation ‘_(taking_)’. Operations such as ‘Nameable_’
map elements to classifications, avoiding the clumsy indexed families of
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sorts needed in earlier formulations of Action Notation.

Thus it can be seen that Unified Algebras have made a significant
contribution to Action Semantics. But of course it was Action Semantics
that came first, and by embracing nondeterminism (rather than avoiding
it) prepared the ground for Unified Algebras.
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