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Abstract

A type hierarchy for an imperative language defines an ordering on the types such
that any application for small types may be reused for all larger types. The im-
perative facet makes this non-trivial; the straight-forward definitions will yield an
inconsistent system. We introduce a new type constructor, the partial product, and
show how to define a consistent hierarchy in the context of fully recursive types. A
simple polymorphism is derived. By extending the types to include structural in-
variants we obtain a particularly appropriate notation for defining recursive types,
that is superior to traditional type sums and products. We show how the ordering
on types extends to an ordering on types with invariants. We allow the use of least
upper bounds in type definitions and show how to resolve type equations involving
these, and how to compute upper bounds of invariants.

1 Introduction

A type hierarchy consists of an ordering of the types of a programming language, along
with a method for allowing applications written for “small” types to be reused for “larger”
types. The ordering typically centers around inclusions or projections of value sets. Qur
aim is to introduce a type hierarchy as an orthogonal extension to an imperative language.
We want the ordering to be an independently defined relation on types, so that whenever
this relation holds then all applications for the smaller type will be reusable for the larger
type. The imperative facet, in particular the use of reference parameters, makes this a
non-trivial problem.

Type hierarchies are well-known in the context of functional languages. The language
Amber [Cardelli85], which exemplifies many aspects of high-level type systems, has such
an independently defined type ordering’. However, the hierarchy does not extend to the

imperative facet of the language, since any relation between updatable fields is explicitly
disallowed.

1 Alas, with the opposite notion of large vs. small.




Other type orderings are based on coercions of values [Reynolds85, Tennent88]. Here, one
allows expressions of the smaller type to be used as expressions of the larger type, and
variables of the larger type to be used as variables of the smaller type. This is, however,
not sufficient to define the type hierarchy we seek. In section 3 it is demonstrated that
the required ordering can not be defined on values alone; in particular, we show that the
archetypical coercion from integers to reals can not be exploited in this context.

Object oriented languages such as Simula [Dahl70] are imperative languages with a type
hierarchy, but the type ordering is not independently defined. It arises as an incidental of
the construction of classes, which serve as wrappers for the types and limits the available
reusable applications.

In an imperative setting, a type hierarchy, such as we desire, is introduced in [Wirth88]
with the following simple assumptions

o the assignment a:=b is legal if the type of b is larger than that of a

e in a procedure call the types of the actual parameters may be larger than those of
the formal parameters

Here types are records whose values are products of their component values, and the
ordering expresses the possibility of projecting large products onto small products. This
situation, however, immediately implies the possibility of assigning small values to large
variables. Consider the program

Proc P(var a: A)
ai=q

end P
Var b:B
P(b)

where B is larger than A and « is a constant of type A. It must be legal according to
the definitions, but the procedure call has the effect of the assignment b:=a; since the
projection philosophy is no longer applicable, it is not clear how a should be interpreted
as a value of type B; other anomalies may also occur — the system is inconsistent. A
resolution of this problem is to consider a to be a partial value of type B.

In this paper, we introduce a partial product type constructor, which is incorporated into
a system of fully recursive types. We show how a few simple conditions yield a consistent
imperative type hierarchy. We also derive a mechanism for simple polymorphism. Apart
from allowing the hierarchy to be consistently defined, the partial product is particularly
appropriate for expressing recursive types and yields considerable notational benefits; it
is strictly more powerful than type sums and products. A seeming shortcoming of the
extreme generality of the partial product leads to the development of a technique for
combining structural invariants with type constructors. We show how the ordering on
types extends to an ordering on types with invariants. We allow the use of least upper
bounds in type definitions and show how to resolve recursive type equations involving
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these, and how to compute upper bounds of invariants. The resulting system allows static
type checking.

2 The Types

Types are defined by means of a set of type equations

Type N, =T,
Type N; = T
Type Ni = T,

where the N;’s are names and the T}’s are type ezpressions, which are defined as follows

T ::= Int | Bool | Char | simple types
N; type names
(n1:Thyee.yne : Ty) partial products, k > 0, n; € N, n; # n;
xT lists

Here N is an infinite set of names. Types are denoted by type expressions. Notice, that
type definitions may involve arbitrary recursion. If N is a type name then rhs(IN') denotes
the right-hand side of its definition.

Value Sets

Each type expression has an associated set of values, val(T), defined as follows

e val(Int) = {...,-1,0,1,2,...}

e val(Bool) = {true, false}

e val(Char) = {a, b, c, ...}

o val((ny : Thy...ym: 1)) = {¢: {n4,..., e} U; val(T) | ¢(n;) € val(T;)}

e val(xT) = val(T)*
Here * denotes finite sequences and o— denotes partial functions. If the type definitions
involve recursion we obtain a set of (simultaneous) equations on sets involving these
operations. The value sets are taken to be the unique least solutions to the equations;

these always exist, since * and o— are both w-continuous functions on sets (when the
left-hand argument of o— is fixed).



Type Specific Manipulations

We introduce a number of type specific manipulations that allow us to write programs.

e For any type T it is possible to define named variables: Var z : T'. Any variable may be
used as an expression denoting its contents. Assignments z:=e and comparisons e; = e,
are also possible for all types.

e For the simple types we have the usual constants and operations.

e For the partial product P = (n, : T%,...,np : T) we allow the following manipulations.
The expression (my : e1,...,m, : €;) denotes a value of type P if {m;} C {n;} and
whenever m; = n; then e; denotes a value of type Ti. If z is a variable of type P, then
has(z,n;) is a Bool-expression denoting whether n; is in the domain of the value denoted
by z; if so, then z.n; denotes the subvariable of type T} containing this component. The
statement z:+(n; : ;) updates the n;-component of z to contain the T;-value denoted by
e;, and the statement z:-n; removes n; from the domain of z.

o For the list type L = T we allow the expression [ey,...,e;] if each e; denotes a value
of type T. If = is a variable of type L and 7 is an Int-expression, then z.(i) denotes the
subvariable of type T' containing the corresponding component, if it exists. The expression
|z| of type Int denotes the number of components of z.

Other manipulations could be introduced, but these are sufficient for the purposes of this
paper.

Type Equivalence

Some type expressions allow exactly the same set of manipulations, and we do not wish
to distinguish between these, but merely regard them as different syntactic versions of the
same type; e.g., with the definitions

Type A = Int

Type B=A

Type C = (x: A, y: Int)
Type D = (x: B, y: A)

we want C and D to be equivalent. We shall define an equivalence relation ~ to factor
out these syntactic differences. Clearly ~ must be a congruence with respect to the type
constructors. The appropriate choice is the largest consistent congruence generated by
the type equations. By consistent we mean that it does not identify any pair of types
with different outermost type constructors. .

This is a very implicit definition; we can give a much more explicit one by associating
with each type expression T' a unique normal form nf(T), which is a (possibly infinite)
finite-branching labeled tree. The general idea is to repeatedly substitute right-hand sides
of definitions for type names. If we regard the definitions

Type Atom = %Char
Type Sexp = (leaf: Atom, node: *Sexp)
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we would expect the normal form nf(Sexp) to be the infinite tree

(leaf,node)

" *
Chlar nf( S\exp)

This is merely a short-hand notation for the full tree.

Formally, we need to get a handle on infinite trees. Regard the set 7 of all finite and
infinite X-labeled trees (the set ¥ will be evident from the definitions). We can define
a partial order on 7. The relation ¢; C ¢; holds iff we can obtain ¢, by replacing some
subtrees of ¢, with the symbol Q.2 The structure (7,C) is a complete partial order with
the singleton tree 2 as the least element. In 7 we can obtain the normal forms of type
names as limits. Apart from allowing a formal definition of normal forms, this ordering
will later be refined to yield the desired type hierarchy.

Assume that our type definitions are

Type N1:F1(N15N2:"';Nk)
Type N2 =F2(N1,N2,...,Nk)

Type Nz Fk(Nl,Ng, boe .,Nk)

Each F; extends in the obvious manner to a k-ary function F{ on 7 -trees; for single type
constructors it goes as follows

e Int”, Bool” and Char” are constants yielding the singleton trees Int, Bool and Char.

o N7 is the same function as the right-hand side of its definition. If this chain of
right-hand sides never reach a type constructor, then N[ is the constant function
yielding (.

o (ny:Ty,...,n : T}) correspond to the k-ary function mapping ty,...,t, € T to

(i 5 §700)

& t

e xT' correspond to the unary function mapping t € 7 to

t

2This method (and the notation) is inspired by the infinite normal forms of the untyped A-calculus
[Barendregt84).



We now define a family of k-tuples of approximations to normal forms. The first approx-
imation is the trivial one

(A2, 43,...,47) = (2,9,...,0Q)
Suppose the 7’th approximation is
(A1, 43, 43)
then we define the ¢ + 1’th approximation as
(FT (AL, A5y AL), F (A3, A, AY), .o F(AS, 45, .., AL))
Clearly each {A.ﬁ-}izg forms an ascending chain in 7, so we can define

nf(N;) =lim 45 = | {45}
In the non-recursive case the chain of approximations will be finite. This extends in a

natural way to normal forms of general type ezpressions, since the type constructors,
regarded as operations on trees, are continuous in (7,C).

We can now define

Ty =T, & ﬂf(T]_) = ’n.f(Tg)

Obviously, this gives a congruence relation. Why is it the largest consistent one? Suppose
that the congruence ¥ is larger. Then there must exists two types, A and B, such that
nf(A) # nf(B) and the relation A¥B holds. The trees nf(A) and nf(B) must contain
two subtrees with the same tree addresses but with different roots; otherwise, the trees
would be identical by definition. These subtrees are normal forms of some types A’ and
B'. Since ¥ is a congruence, we have that A'UB’, so that ¥ identifies two types with
different outermost type constructors and, hence, violates consistency.

Thus, our equivalence construction is a final one, i.e. things are deemed equivalent unless
there is some reason to conclude otherwise. Mutually recursive types are interesting to
observe in connection with this. With the definitions

Type A=A
Type B=C
Type C=B

the types A, B, and C are all equivalent (and empty); their common normal form is the
singleton tree {). This high-lights the finality; with an initial construction A would not
be equivalent to B or C. For notational convenience we introduce the type constant Q for
which nf(Q) = Q. We could choose any of the above types as a representative for .

The equivalence is decidable, since the infinite normal forms all have a very regular struc-
ture. One way to see this is to think of the equality of normal forms as being established
through fixed point induction; another view is to observe, that equivalence of type expres-
sions correspond to equivalence of certain tree-grammars with precisely one production
for each non-terminal. A cubic algorithm is presented in an appendix.



3 The Type Ordering

We want to define a partial order on types (i.e. equivalence classes of type expressions),
such that T} < T, states that T} is larger than T}, meaning that T, allows at least the
same manipulations as T3.

We can define < by refining the ordering C on normal forms. Since ) manipulations are
possible for all types, it is certainly the case that T satisfies the desired property. There
is, however, a suitable ordering of partial products, that will also work. A product with
more components allows at least the same manipulations as one with fewer components.
Hence, we define < to be the smallest refinement of = that satisfies the rule

}n1,72,...,m< (nlrnZ:“':nk)
=
A, A, A, By B, B;,
ift {m11m2:--')mq} C {n1,n2,...,n%} and m; =n; = A; X B;

We can now define

' 2Ty & of(Th) = nf(T2)

This yields a partial order on types since < is anti-symmetric, so
' 2L ANLTy=Ti=T,

To illustrate this ordering, we can observe, that the relation

~
IA

N
/

holds for all T;. We observe the following facts

e ) is the smallest type.

o If Ty =T, then val(Ty) C val(T,). This is easy to see, since val(Q)=0 and if the par-
tial product P is like P,, except that it has fewer components, then val(P;)Cval(P,).
The converse is not the case: the types (z : ) and (y : Q) both have the value set?
{()}, but they are clearly incomparable. Thus, the ordering is not definable on values
alone. An analogy can be made with real and integer numbers. If we introduced a
type Real, it would reasonably be the case that val(Int) C val(Real) whereas the
relation Int < Real would not hold, since not all Int manipulations make sense for
Reals. Certainly, the arithmetic operations could be extended to Reals, but things
such as z.(7) can not be interpreted if 7 is a real number. Hence, containment of
values is a much weaker notion than =<; the former may be used to define coercions,
but the latter is required for type hierarchies.

3() denotes the everywhere undefined function.



o The type constructors are monotonic and continuous with respect to the ordering.

e Many expressions, such as () have several different types, but there is always a
unique smallest type, since greatest lower bounds exist*.

o If Type T'= F(T) is a type equation, then
QIFQ)IF(Q) 2 - I F(Q) = --.
is a chain with limit 7T'.

o The ordering is decidable. In fact, we can use the algorithm for deciding equivalence
of type expressions, with only trivial modifications.

4 Consistency

The use of types guarantee that if a program is correctly typed, then certain type specific
errors will never occur during its execution; for example, there is no attempt to add Int-
and Bool-values, and lists are never confused with products. This guarantee may be
construed as a notion of consistency of the programming language.

If we inspect the various manipulations that we allow (or could imagine allowing), it turns
out that all the legal manipulations of a type are also possible for all larger types. This
basically amounts to a few simple observations

e () manipulations are possible with any type.

nothing is larger than a simple type.

anything larger than a list is still a list.

anything larger than a product is still a product, but with more components.

values of small types are also values of large types.

The closure of these rules with respect to type construction and recursion yields the
desired result.

This inspires us to extend the programming language to allow reuse of program fragments
while maintaining consistency.

5 Procedures

Program fragments are typically expressed as procedures. The definition

Proc P(vara: A,b: B)
s
end P

*Computed using knearity and the fact that Q is smallest.



denotes a procedure P with a variable (reference) parameter a of type A and a value
parameter b of type B; the body of the procedure is S.

We want to exploit that program fragments for small types may be reused for larger types.
If we consider a procedure with a single parameter and no global variables, then this is
just the situation we want. For example, the procedure

Type A = (a: Int)
Proc P(var x: A)

if has(x,a) — x.a:=7fi
end P

clearly works for all actual parameters of type = A. Hence, we define

e In a procedure call, the type of an actual parameter may be larger than that of the
corresponding formal parameter.

To express true polymorphism, we must require a uniform execution of such procedure
calls, i.e. it is not permissible to coerce or restrict the actual parameters. To motivate
this, consider that the procedure

Proc Id(var x: A)
skip
end Id

should act as the identity on all arguments of legal types. If we allow several parameters,
then we get a possibility for confusion that we must rule out. The scenario

Type AB = (a: Int, b: Bool)

Type A = (a: Int)

Var z: AB

Proc P(var x: A, y: A)
X:=y

end P
P (z,(a:7,b’@%)

is troublesome, since the Bool-variable x.b is assigned a Char-value. Thus, we must insist
upon the following homogeneity requirement

o If any two formal parameters have equivalent (sub-)types, then the corresponding
(sub-)types of the actual parameters must also be equivalent.

A similar requirement is needed in the system of [Wirth88]. All this could be avoided
if we introduced an ezplicit parameterization of procedures with types, but that would
inflict an unnecessary notational burden.

With these flexible procedure calls, we can exploit the type ordering in programs, without
risk of inconsistency. Since all the necessary requirements are decidable, we can still obtain
static type checking.



Inconsistent extensions

At a glance it seems plausible to allow the assignment of large values to small variables,
but this leads to inconsistency. Consider the scenario

Type AB = (a: Int, b: Bool)

Type A = (a: Int)

Var x: AB

Proc P(var y: A)
y:=(a:7,b:’@’%)

end P

P(x)

We end up with a Char-value in a Bool-variable, so assignment is only possible between
equivalent types. We could of course allow the projective assignment, but this seems in

violation of the idea of a uniform execution; anyway, it can be done by explicit selection
of components.

Inconsistency is also possible if procedures can access global variables. Consider the situ-
ation

Type AB = (a: Int, b: Bool)
Type A = (a: Int)
Var x: AB
Proc P(var y: A)
Proc Q(z: A)

yi=3
end Q
Q((a:7,b:’@%))
end P

P(x)

This is essentially the same situation as before.

6 Polymorphism

The type 2 allows us to write simple polymorphic procedures, such as

Proc P(var x,y: Q, z: )
X,y i=2,2

end P

This procedure will work for any type, since {2 is smallest.
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The (sensible) requirements for procedure calls impose the limitation, that we can only
have a single type “variable”. To rectify this situation, we introduce an infinite family of
empty types

{On}nen

These types will work like placeholders or type variables, but they are just ordinary types.
We want them to form a flat layer just above 2, so we define them by

e val(On) =10
e 0 <nOn <T,if T is not a O-type or
This mechanism is more sophisticated than it may seem. We can demand as much struc-

ture as we wish of the argument types. The following procedure works on all lists, but
not on other types

Proc P(var x: *Oa, y: Da)

x.(0):=y
end P

Placeholder types can without problems mix with all the other (recursive) types.

7 Least Upper Bounds

Two types T; and T; may or may not have a least upper bound Ty U Ty. For example, if
T = (e sdl;baB) and Ty ={e:€)

then

NUL={a: Ab: Bexl)
The least upper bound of the two recursive types

Ty =(z: T,y :Int) and T = (z : T, 2 : Bool)

is the recursive type

T = (@ s Ty Ing; 2 ; Bool)
The following pairs do not have any any upper bounds, let alone a least one

Ty = (¢ : Int) and T, = xBool

Ty = (¢ : Int,y : Bool) and T} = (7 : Char)

Least upper bounds are interesting, as they include the multiple inheritance [Cardelli84]
aspect of e.g. object oriented data values, a generalization of prefizing [Dahl70]. Notice,
that the existence of the polymorphic types 2 and {On} makes this a further generaliza-
tion of multiple inheritance.

We can not elevate LI to a proper type constructor ®, but we can allow type definitions of
the form

5Section 8 dismisses the obvious way of doing this.
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Type T =T, UT;

If the least upper bound does not exist, then this is an illegal definition, which would pre-
sumably result in a compiler error message; otherwise, the type T denotes the computed
least upper bound.

The type constructors behave linearly with respect to the least upper bounds. The fol-
lowing properties hold, whenever the respective least upper bounds exist

s T'USi=T
e TUT=T
o (z:T)U(y: 1) =(z:Th,y:T)

(a8 § Ty Y U Ty)oe= (10 L T5)
*A U *B = *(AU B)

Also, LI is monotonic and continuous, so that

L] Al jAg/\BlngiA;lUAz jBlu.Bz
o (L A:)U(U; B:) = L (A4; U By)

Using these properties it is easy to modify the equivalence/ordering algorithm to compute
the least upper bound of two types, or to decide that none exist.

Least Upper Bounds and Recursive Types

It seems restrictive to allow only a single LI on the right-hand side of a type definition.
Clearly, we can make sense of a definition like

Type T =E
where E is an arbitrary type expression, possibly containing Ll’s. We just compute the

type denoted by FE if it exists. If we (quite naturally) allow recursion to enter this game,

then the situation becomes considerably more complex. What sense should we make of
the definition

Type A = A U Int

The proper answer is that A equals Int, since this is the smallest type satisfying the
equation. Similarly, the definition

Type B = (x:B) U (y:Int)
denotes the type B = (x:B, y:Int). In contrast, the equation

12



Type C = (x: C U Int)

has no solution, since simple types and products are incompatible. More exotic specimens
such as

Type D = (x: D U (x:D))
Type E =*(x: EU«E)UE
Type F =*«F U F

can not be analyzed at a glance.

We need a general method to resolve such situations. Since we do not add any new types,
we want an algorithm that given a type equation containing Li’s will tell us whether it has
a solution and, if so, will disclose a type equation without LI’s that denotes this solution.

Consider a type equation
Type T = F(T)

where F' may contain several L’s. If any solution is to exist, then it must be the limit of
the chain

QX FOQ)XF(Q=...2F(Q =<

provided that all the approximants exist (this is a chain because LI is monotonic in both
arguments).

We need to define a transformation on type functions; if F' is a type expression with a
free variable T, then V1 F (or just VF) is a reduced U-free version, computed under the
assumption that T' is smaller than all other types, except 2. Another way of putting this
is that T' is substituted with a colored ® Q (which is larger than regular Q’s), then F is

reduced, and finally T is substituted back for the colored Q’s. The reduction VF may or
may not exist.

We now claim that a necessary condition for the equation T' = F(T') to have a solution is
that VF exists. This is easy, since otherwise the first approximant F(Q2) = VF(Q) can
not exist.

In fact, the chain {F*(Q)} is equal to the chain
QVFQ) I V(F)Q) 3 --- S V(F)Q) = -+
since it does not matter if we apply V or not, as we shall later substitute with Q.
The crucial observation is that
Vi>0: V(F)(Q) = (VF){(Q)
To realize this, just think of the colored Q’s as being present all along.

But this means, that if the equation T' = F(T') has a solution, then VF must exist and
T is the limit of the chain

Q2 VF(Q) 2 (VFP(Q) 2+ = (VF)(Q) = -
1.e. the recursive type defined by

8This is needed to avoid confusion with any Q constants in F.

13



Type T' = VF(T)

which does not involve LI’s.

In summary, to resolve a recursive equation with LI’s, we first check that VF exists and
then verify that the type T' = VF(T') satisfies the original equation.

Now we can analyze the types D, E, and F with ease by computing the reductions

Type D = V(x: D U (x:D)) = (x:(x:D))
Type E = Vx(x: E U +E) U E = x(x: *E)
Type F = V(xF U F) = «F

By inspection we see that D and F are solutions, whereas E is not.

The proposed method generalizes without problems to mutually recursive type equations.

8 Type Completeness

The ordered collection of types has a fairly rich structure by now, but the structure is
far from complete. Some pairs of types have least upper bounds, whereas others do not.
Recursive types give rise to chains with limits, whereas the chain

Q=2 (n:Ty) 2 (my:T1yme : Ty) <X (mg :Tyymg i Tyymg : T5) = v es

does not have a limit. From a purely algebraic viewpoint it is tempting to close this
structure by adding a fop element ©, i.e. a type which is greater than all others. This

would allow us to make LI into a proper type constructor. However, such a step leads to
inconsistency. Consider the scenario

Proc P(var i: Int) Proc Q(var b: Bool)
i:=7 e
end P end Q

Var t: ©
P(t)
QL)

This is legal since © is larger than both Int and Bool. But inside Q the Bool-variable
b contains an Int-value. In a sense, the introduction of the type @ corresponds to the
abolition of any type discipline. Values of type © can be thought of as bitstrings on which
no typing is performed.

A more careful process of adding individual upper bounds and limit points could possibly
make sense, but we can think of no applications for this.
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9 Structural Invariants

The partial product became a fact of life in order to achieve consistency of the type
hierarchy. Fortunately, there are important uses for it, too.

The partiality of the product allows for very compact definitions of recursive types. The
usual definition of a binary tree of integers use type sums and products

Type Tree = Sum(Empty: Unit, NonEmpty: Node)
Type Node = Prod(val: Int, left,right: Tree)

where Unit is a singleton type with value set {o}. Here the empty tree is denoted
(Empty: o) and a one-element tree is denoted

(NonEmpty: (val: 7, left: (Empty: o), right: (Empty: e)))
With the partial product we could write the definition as
Type Tree = (val: Int, left,right: Tree)
The empty tree is denoted () and the one-element tree is denoted
(val:7, left:(), right:())

This alleviates some of the notational burden that seem to disadvantage recursive type
definitions.

We must, however, confront the problem that the above definition strictly speaking does
not define a type of binary trees. It contains a value like

(left:(val:7))

which is undesirable, since an application might rely on all three components being present
in non-empty trees. The natural solution would be to decide upon an invariant to rule
out such “odd” values, but it would be much more satisfying to be able to obtain this
precision using type constructors. For this purpose we introduce the concept of structural
invariants that may be associated with product definitions.

A structural invariant S over a partial product type
(10 2 Whgwss 0k 3 1)

is a set of subsets of {ny,...,n;} such that if ¢ is a value of the product then it is
guaranteed that dom(¢) € S. Formally, we must associate the component names with
the invariant; we call this the basis of the invariant and write basis(S)= {n1,...,n}.

Now we can enhance type definitions with invariants in the following way
Type Tree = (val: Int, left,right: Tree) ! {0, {val,left,right}}

15



This invariant indicates that either all or none of the components must be present. One
could develop a number of standard invariants, so that the definition might look like

Type Tree = (val: Int, left,right: Tree) ! ext

We formally extend the type expressions so that structural invariants are explicitly in-

cluded

T ::= Int | Bool | Char |

N;
(P12 Thyennymp: T) 1 S k>0,n; €N, basis(S)= {n1,...,m}
*T
Some interesting standard invariants, with basis {ny,...,ns} could be
o ext = {0,{nq,...,n:}} o true = P{ny,...,ns}
e prod = {{n,,...,nx}} o false =

o sum = {{n},...,{ne}}

These are far from sufficient, though. The variant record concept of many imperative
languages is quite cumbersome to emulate with sums and products. The trouble is that
components belonging to the same conceptual level appear at different syntactic levels.
A typical example is a symbol table, where we want a fixed information for each symbol
(such as name and static level) and a variable information for each kind of symbol (e.g.
type and procedure); this we can express as follows

Type Symbol = (n: Text, s: Int, p: P, t: T) ! {{n,s,p}, {n,s,t}}
More elegance could be achieved by defining a logical notation, such as

Type Symbol = (n: Text, s: Int, p: P, t: T) ! {n As A (p|t)}
where | is ezclusive-or. If we had the type

Tyjie T =(as A, b Boe: Cd« D)

and wanted to ensure that if we had the a-component then we also had the d-component,
then we could write the invariant as

{a = d}

It would be awkward to express this using type sums and products. The authors’ best
attempt is the definition

Type T = Prod(b: B,c: C,Sum(None : Unit,
One : Prod(d: D),
Two : Prod(a: 4,d: D)))
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In this way, a more clever binary tree could be defined by
Type Tree = (val: Int, left,right: Tree) ! { (left V right) = val }
with which the singleton tree could be denoted (with ultimate simplicity) by
(val:7)

This leaves us with the task of extending the equivalence and the ordering to fit these
new definitions. The equivalence is easy to deal with. When should P, ! §; be equivalent
with P, ! §37 Clearly, the product parts must still be equivalent, and since equivalence
will allow assignments, the invariants must be identical. Hence, we define

P1!513P2132<=>P1%P2/\51282

Structural Invariants and the Hierarchy

The ordering is more complicated to mend. When should P, ! S; be smaller than P, ! §,?
Obviously, we must have P; < P,, but what are the requirements on S; and S,? We
must seek inspiration in the definition of consistency and extend it by demanding that all
invariants must be respected at all times.

Initially we need a few operations on invariants. Let X and Y be invariants; then we

define

e XxY={zUy|lze XAyeY} basis(X x Y) = basis(X)Ubasis(Y)
e X/Y ={z—basis(Y)|ze X} basis(X/Y) = basis(X)—basis(Y)
e X |Y ={znNbasis(Y) |z € X} basis(X | Y) = basis(X)Nbasis(Y)

Invariants with @, {0}, x and / behave somewhat like the integers with 0, 1, multiplication
and division; among others, the following equations hold

e X xD=10 ¢ X ¥V =Y xX
e X x{0}=X e X x(YxZ)=(XxY)x Z
o X/X = {0} e (X/Y)/Z=X/(Y x2Z)

It is not the case, however, that (X x X)/X = X.

Returning to the question of P; ! S; = P, ! 53, we can firstly observe that if a formal
parameter with an Sj-invariant must accept an actual parameter with an S-invariant,
then it must be the case that

9315 €5

This states that the Py-part of any P,-parameter must still satisfy the Si-invariant; if not,
the invariant would be violated inside the procedure.

Thinking about variable parameters we realize that the P;-part of any actual parameter
can be substituted” with any P;-value satisfying S;. Hence, the remaining (P,—P, )-part of

"Using the :+ and :- manipulations.
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the actual parameter must combine with any S;-value and still satisfy S,. This is possible
exactly when

Sl X (32/51) g Sz
These two conditions are equivalent to the single condition
Sl X (52/51) = Sz

which we can call §; divides S, and write as §;|S;. This fact is easily seen. If the two
conditions hold, we must prove that S; x (S3/S51) 2 S3. Consider any z € S,. We can
write it as # = 2’ U 2" where &' € basis(S,) — basis(S1) and 2" € basis(S;) Hence, we
conclude that =’ U 2" € (S5, | S1) x (S2/51). By assumption S, | §; C S,, so we find
that z = 2' Uz" € §; x (52/851), as desired. Conversely, if 5;|5, then S; | Sy = 51, so in
particular S, | §; C S; holds.

Finally, a variable parameter can be assigned a constant of the formal parameter type.
This necessitates that S; C S5.

Hence, we define
Pl!Sl'jP2!SZ<:>P1jP2/\S]_ng

where the ordering on invariants is defined by
5128, & 51|152A 51 C S,

The two requirements on the invariants are independent. If we look at the two invariants
X ={0,{a}} and Y = {0,{a},{d}} then X C Y but X x (Y/X) = {0,{a},{b},{q,b}}
which does not equal Y. Conversely, if X = {{a}} and Y = {{a,b}} then X|Y but
XZY.

An example of the relationship X <Y is

X = {@: {a'}? {a,, b}}

Y = {ma {a‘}: {C}a {a’: b}, {a,c},{a,b, c}}
We find that
Xx(Y/X)=X x{0,{c}}=Y
so X|Y, and clearly X C Y. This illustrates a particularly useful case. If we extend a
partial product type with a new component n, then we can extend the invariant S to

S x {0,{n}}, which is larger than S.
Clearly, S; < S, is decidable, so static type checking is maintained.

We can think of an ordinary partial product with component names B as implicitly
equipped with the invariant True = 2% (the basis B is implicit in True). We can observe,
that if P! § < @ ! True holds, then S|True, so True = S X (True/S) = S x True; this
implies that S = True. Hence, True does not have any non-trivial divisors.

The type List(T) may be thought of as an infinite homogeneous partial product (i : T);»0
with the invariant {0, {0}, {0,1},{0,1,2},...}.
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Least Upper Bounds and Structural Invariants

What is an upper bound for partial products with structural invariants? We must expect
to define

PISIUP IS, =PUP, !5 US,

where 51 LI S; is the least invariant such that S; < Sy S;. Such an invariant may or may
not exist. We can provide a method for computing the least upper bound or deciding
than none exists. We need a new operation on invariants

o X %Y = {z € basis(X) U basis(Y) | zN basis(X) € X A zN basis(Y) € Y}

where basis(X +Y') = basis(X) U basis(Y). We now claim that
S1j5ASz"_<S:>S=SI*Sz

To see this we choose any z € §; x S3. Now, define p = z N basis(S;) € §; C § and
g = zNbasis(S;) € S, € S. Let r =pNgq. Thenr € S | S, C Sy, and p—r € §/8,.
Hence, z = qU (p—r) € S, x (5/5,) = 5,50 S; xS, C S. If we have any z € § — 51+ S,
then z N basis(S1) & Sy or 2N basis(S;) € Sz,850 5 | 51 € Sy or S| Sy &Sy, which leads
to the contradiction S; A .S or S2 A 5,50 § = 5, % 5s.

Thus, we only have one candidate for upper bound, so if it exists it must be the least one.
In particular, notice that invariants with disjoint bases always have a least upper bound.

10 Conclusion

We have modified the intuitive imperative type hierarchy to achieve a notion of consis-
tency. This involved a new type constructor: the partial product. This, together with the
concept of structural invariants, yield a notation for defining recursive types that is supe-
rior to both the usual recursive type definitions and the traditional pointers and variant
records. Least upper bounds, which generalize multiple inheritance, have been smoothly
integrated with strutural invariants and recursion.
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Appendix: Decidability

Normal forms are limit points, and properties about them can be verified using fized point
induction. In this context we are interested in equality of limit points, which is clearly an
admissible predicate for fixed point induction. Given the tuple of normal forms, we wish
to prove that two of them are equal. Qur base case is

(,9,...,9)

where the equality is trivially true. For the induction we must prove that the iteration
preserves the equality. Given two type names it is easy to check this property of the cor-
responding tree iterator. Obviously, this extends to a method for deciding the equivalence
of general type expressions, since the type constructors preserve equality of normal forms.

The following algorithm is the general one, that decides the equivalence of two arbitrary
type expressions. Firstly, we need a procedure Strip that reduces a type name to an

equivalent type expression with an outermost type constructor. This may not always be
possible. A vacuous type name such as

Type Nil = Nil

cannot reduce to a type constructor. Such identifiers are all equivalent type expressions;
their normal form is the singleton tree ; we let their reduction be the symbol . We
obtain Strip as follows:

Strip(T): return S(T,0)

S(T,N): if T € N — return Q fi
if T is an identifier — return S(rhs(T), N U {T}) fi
return T

This procedure runs in time O(k), where k is the number of type definitions under con-
sideration.

Using Strip we can define a procedure Equiv that decides the equivalence of two type
expressions

Equiv(5,T): return E(S,T,0)

E(S,T,A): if S and T are id’s — if (S,T) € A — return true fi
A:=AU{(S,T)}
fi
S, T:=8trip(5), Strip(T)
if S and T' are basic types — return A= B fi
if S and T have different outermost constructors — return false fi
let S1,92,...,5, be the sub-type expressions of S
let Th,T,,...,T, be the sub-type expressions of T
return A; E(S;, T;, A)

This procedure runs in time O(k* + k(|S| + |T'|)), where again k is the number of type
definitions under consideration.
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