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Abstract

This paper concerns the algebraic specification of abstract
data types. It introduces and motivates the recently-
developed framework of unified algebras, and provides a prac-
tical notation for their modular specification. It also compares
unified algebras with the well-known framework of order-
sorted algebras, which underlies the OBJ specification lan-
guage.
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Introduction

This paper proposes a radically new framework for the algebraic spec-
ification of abstract data types, called unified algebras, together with a
simple yet convenient notation for modular specifications.

Unified algebras challenge a dogma that has been accepted since the
earliest work on algebraic specifications: that the classification of ele-
ments into “sorts” and the elements themselves should be kept separate.

The main features of unified algebras are as follows:

Classifications of elements into sorts are represented directly as val-
ues in the carriers of unified algebras. Operations for sort union
and intersection are provided, as well as the empty sort and sub-
sort inclusions.

Operations on elements extend naturally to subsort-preserving op-
erations on sorts. For example, the successor operation maps the
sort of all natural numbers to the (sub)sort of positive natural num-
bers.

There is no distinction between an element and the sort classifying
only that element.

Both partial and non-strict operations are allowed. In fact the un-
defined result is represented by the empty sort. (The conditional
if-then-else operation is a good example of a useful non-strict oper-
ation.)

Nondeterminism is allowed. A nondeterministic choice between
some elements is not distinguished from the sort consisting of just
those elements.

Sort constructions are ordinary operations. For example, consider
an operation that maps an integer ¢ to the sort of all integers up
to i; or an operation that maps a natural number n and a sort s to
the sort of all lists of length n with components of sort s.

Sorts may be subject to equations. Thus the sort of integers may
be equated with the union of the natural numbers sort and the
application of negation to that sort. (Union is idempotent, so zero
does not get duplicated.)



The signatures of unified algebras are very simple: they give just the
number of arguments of each operation. They do not distinguish
constants that denote sorts from those that denote elements; nor
do they indicate how the sort of the result of an operation depends
on the sorts of its arguments. (Such information may specified by
axioms.)

The axioms used to specify unified algebras are quite general: Horn
clauses, involving equality, sort inclusion, and classification of ele-
ments into sorts.

All operations are fully “polymorphic”, and may be applied to arbi-
trary operands without prior “instantiation”. However, operations
may also be restricted so that they only give defined results on
certain sorts of arguments. For example, the if-then-else operation
may be restricted so that the result is only defined when the first

argument is a truth-value, whereas the second and third arguments
are left unrestricted.

Constraints, analogous to so-called “data constraints”, can be used
to restrict parts of unified algebras to be freely-generated by other
parts. For generic data types (such as lists) their parameters (such
as the sort of components) are “loosely-specified” parts; instantia-
tion is merely the specialization of such parts.

Section 2 explains the conceptual basis of unified algebras, and then

sketches the foundations. (More details may be found in [21].) However,
the emphasis of the present paper is on pragmatics, rather than founda-
tions: the aim is to show that unified algebraic specifications can be just
as concise and modular as those in other frameworks.

Section 3 introduces notation for basic specifications, and shows how
order-sorted specifications (as in OBJ [6]) can be regarded as specifica-
tions of unified algebras.

Section 4 introduces a simple notation for modular specifications.
Some pleasant pragmatic features of these modular specifications are:

e Modules may be declared in any order, and may be mutually re-
cursive. Moreover, module declarations may be split up and in-
terleaved, so that information essential to users (analogous to an
“interface”) may be specified separately from definitional details
(which are analogous to an “implementation”).
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e Modules may be nested. A module may be split into sub-modules
without affecting the use of the module. Also, a module may be
“opened”, so that the notation it specifies is tacitly made available
to other modules.

e Basically, each operation symbol has a single interpretation through-
out an entire specification: properties specified in separate modules
are simply united. “Localization” of operation symbols may be
achieved by renaming.

A direct semantics for “canonical” modular specification is given. It is
shown how any modular specification can be reduced to canonical form,
thus establishing an indirect “transformational semantics” [1] for arbi-
trary modular specifications.

Section 5 show how constraints are used to specify generic types, with
instantiation being just specialization.

Section 6 compares unified algebras and modules to related frameworks
—in particular, to order-sorted algebras and OBJ, which largely inspired
the development of unified algebras.

Some concluding remarks report on the experience so far with using
unified algebras and modules, and indicate where further development of
the framework is needed.

The reader is assumed to be familiar with the initial algebra approach
to the specification of abstract data types [12, 2, 15, 32, 5].



2 Unified Algebras

To start with, let us recall the basic concepts of abstract data types, and
relate them to unified algebras.

2.1 Concepts

A data type consists of a set of elements (such as numbers or lists) to-
gether with a collection of named operations between elements—i.e., an
algebra. An abstract data type is a class of algebras that share some
properties.

In the so-called “algebraic” approach to specification of abstract data
types, a basic specification consists of a signature and a set of logical
sentences. The signature provides names for operations (constants are
regarded as operations with no arguments). The satisfaction of the sen-
tences provides properties of the operations. The specified class of alge-
bras consists of all algebras that have (only) the named operations with
the given properties. Note that the elements of these algebras may be
any entities, abstract or concrete, provided that they are equipped with
the proper operations.

When specifying an abstract data type algebraically, it is helpful to
identify various classifications of elements into sorts, and to give for each
operation, the relation between the sorts of its arguments and the sort
of its result. If the arguments of an operation are restricted to subsorts
of the specified sorts, the result may also be restricted to a subsort. In
particular, when arguments are restricted to single element sorts, the
result sort may be restricted to the result of applying the operation to
these elements.

In general, however, few of the possible classifications are useful enough
to merit the introduction of special names for them. For instance, con-
sider the abstract data type of integers: apart from the sort of all integers,
the sort of natural numbers is certainly useful enough, being closed un-
der several integer operations; but how about the positive integers, the
negative integers, the non-positive integers, the even integers, etc., etc.?

In unified algebras, sorts have the same status as elements—in partic-
ular, operations may be applied to sorts as well as to elements. It turns
out that many classifications of secondary importance can be expressed
by applying “elementary” operations to sort constants. For instance, the
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sort of positive integers is expressed by the application of the successor
operation to the sort of natural numbers; the sort of negative integers
is given by applying negation to that sort; and so on. Thus it is not
necessary to complicate signatures with constants that name such sorts.

Let us henceforth refer to sorts and elements together as choices. (In
fact the development of unified algebras started from the observation
that there is a close correspondence between sorts and non-deterministic
choices. See [19] for more discussion of the treatment of nondeterminism
in unified algebras.)

Unified algebras do not necessarily provide all possible choices be-
tween elements. However, the set of choices provided by a unified algebra
always includes the vacuous choice, Hobson’s choices! of single elements,
and all finite choices. The set of choices is always closed under (finitary)
union and intersection.

Choices are partially ordered by inclusion: if ¢, and c, are choices,
then ‘c, < ¢,’ asserts that ¢, is included in ¢,. An important special case
of inclusion is classification: ‘c, : c,’ asserts that ¢, is the Hobson’s choice
of a single element, included in ¢,. Different Hobson’s choices are incom-
parable in the partial order. The vacuous choice, denoted ‘nothing’, is
least in the partial order. The choice between two choices ¢,, c,, denoted
‘e, | ¢;’, is their least upper bound; their “agreement”, denoted ‘c,&c,’,
is their greatest lower bound.

The set of choices between elements forms a distributive lattice with a
bottom. Note that the Hobson’s choices need not be the so-called “atoms”
of the lattice (i.e., “just above” the bottom); but choices between them
and the bottom are not much use, as they cannot include any elements.
More generally, choices need not be “extensional”: two distinct choices
may classify the same set of elements.

NB! Choice inclusion must not be confused with computational ap-
proximation in Scott domains; in fact lattices here are not usually cpos.

As well as a set of choices, a unified algebra has constants that dis-
tinguish particular choices, and operations that map choices to choices—
preserving choice inclusion. Thus operations are monotonic, but not nec-
essarily continuous.

For example, consider the usual type of natural numbers, with ele-

1For the benefit of readers unfamiliar with this idiom: “Hobson’s choice: option of taking
the one offered or nothing [from T. Hobson, Cambridge carrier (d. 1631) who let out horses on
this basis].” [4]



ments 0, 1, 2, .... This type can be represented by a unified algebra
whose set of choices includes all finite and cofinite choices between these
elements, together with the following constants and operations:

e ‘0’, denoting the Hobson’s choice of the single element 0;
e ‘Natural’, denoting the infinite choice between all the elements;

e ‘successor.’, denoting the operation that maps each element to its
successor—and maps any choice between elements to the choice
between their successors: ‘Natural’ is mapped to the choice between
all non-zero natural numbers, ‘nothing’ is mapped to ‘nothing’;

e ‘predecessor_’, analogous to ‘successor_’, except that ‘0’ is mapped
to ‘nothing’, and ‘Natural’ is mapped to ‘Natural’.

(Other operations would require further infinite choices, e.g., ‘double_’
would require choices between infinite sets of even numbers, etc.)

By the way, note that properties of operations do not always extend
from elements to multiple choices—nor to the vacuous choice. For exam-
ple, suppose that a unified algebra representing a data type of natural
numbers has binary operations for addition and multiplication. The mul-
tiplication of a choice ¢ by (the Hobson’s choice of) 2 is not the same as
the addition of ¢ to ¢ when ¢ is a multiple choice; and the multiplication
of ‘nothing’ by 0 is ‘nothing’, rather than 0.

So much for the concepts underlying unified algebras. Let us now
consider their formalization.

2.2 Formalities

Before defining unified signatures and algebras, let us specialize the con-
ventional notation for heterogeneous algebras to homogeneous algebras
(eradicating sort-indexed sets).

First, let Symbol be the set of symbols used to name constants and
operations, partitioned into disjoint subsets Symbol,, n > 0. Let Variable
be a set of variables, disjoint from Symbol.

A homogeneous algebraic signature is simply a subset 3 of Symbol. We
write , for ¥ N Symbol,, for n > 0. A homogeneous algebraic signature
morphism o : ¥ — Y' is a family of maps o, : £, — X|,. We write o(f)
for o,(f), where f € X,.



A homogeneous X-algebra A consists of a set |A| (of choices) and for
each f € ¥, a function f4 : |[4]* — |A| (called a constant when n = 0,
otherwise an operation). A X-homomorphism h : A — B is a function
from |A| to |B| such that for any f € ¥, and ay,---,a, € |4]

h(fa(as,-++5an)) = fa(h(ar), - -+, h(an)).

So much for homogeneous algebras. Now for unified algebras.

A unified signature is a homogeneous algebraic signature that includes
the constant symbol ‘nothing’ and the binary operation symbols ‘.| _’ and
‘&, (Unified signature morphisms are homogeneous signature mor-
phisms that preserve the given symbols.) We write UniSign for the set
of unified signatures. Henceforth, let ¥ always be a unified signature.

A Y-unified sentence is a universal Horn clause with variables from
Variable, operation symbols from ¥, and binary predicate symbols ‘=’
‘<’, and ‘:’. We write UniSen(X) for the set of ¥-unified sentences.

A Y-unified algebra A is a homogeneous X-algebra A such that:

b

o |A| is a distributive lattice with _| _, as join, &_4 as meet, and
nothing, as bottom. Let <4 denote the partial order of the lattice.

e There is a distinguished subset of incomparable values, E4; C |A|
(the elements of A). Note that E4 need not be the “atoms” of the
lattice.

e For each f € I, the function f4 is monotone with respect to <j.

A Y-unified homomorphism is a X-homomorphism that respects the par-
tial order and maps elements to elements. We write UniAlg(Z) for the
class of ¥-unified algebras.

The binary predicate symbols ‘=", ‘<’, and ‘.’ are interpreted as fol-
lows in a unified algebra A:

e = = y holds iff « is identical to y;
o x <y holdsiff z <, y;
o z:yholdsiff x € B4 and z <4 y.

The institution UNI of unified algebras is defined in the usual way,
in terms of the obvious categories of unified signatures, unified algebras,
and the standard notion of satisfaction for universal Horn clauses.



By establishing the institution of unified algebras, not only do we
identify all the relevant basic components of our framework, but also
we make available the full power of Sannella and Tarlecki’s institution-
independent specification notation [26] (which doesn’t seem to have a
name—Tlet’s refer to it as ‘S&T" here).

However, S&T is not intended as a practical specification language:
it is a powerful kernel upon which practical specification languages may
be built. For one thing, it does not provide notation for naming modules
of specifications.

The following sections introduce a rather simple—yet quite practical—
specification language. It would be possible to define the semantics of this
language by reducing it to S&T; but that would be somewhat hard on
readers who are not familiar with the details of S&T. Instead we give a
direct definition of the semantics of “canonical” specifications, and show
how arbitrary specifications can be reduced to canonical ones; this reduc-
tion provides a “transformational” semantics for our specifications. (In
a more thorough treatment, a denotational semantics for the full specifi-
cation language would be defined, and it would be proved that the given
reduction preserves denotations.)

The various constructs of the specification language are introduced
gradually, “bottom-up”. First come basic specifications, which are essen-
tially monolithic specifications of signatures and sentences. Then come
modular specifications, where a specification is split into named parts,
allowing the dependence of these parts upon each other to be made ex-
plicit. Finally come constraints, a special kind of sentences used to specify
“standard” models and “generic” data types.

We don’t bother to give an unambiguous concrete syntax for our spec-
ification language. Instead, we use ambiguous grammars to define its
abstract syntar. The grammars are written in a minor variant of BNF:
‘>’ stands for “produces”, ‘|’ stands for “alternatively”, and terminal
symbols are enclosed in quotation marks.

Each non-terminal of a grammar generates a set of strings (of terminal
symbols); the derivation trees for these strings—equipped with the tree
construction operations—are (essentially) the desired abstract syntactic
entities. For writing examples of specifications, we use parentheses and
indentation to indicate which abstract syntactic entities are intended,
when this is not clear from the context.



3 Basic Specifications

In this section we first define the syntax and semantics of canonical basic
specifications, which correspond directly to unified signatures and sen-
tences. Such specifications are adequate in theory, but somewhat tedious
to use in practice. Therefore we extend the syntax with some convenient
abbreviations, which allow us to write specifications that resemble the
order-sorted signatures and sentences used in OBJ. Finally, we show how
the grammars that we use to define the syntax of basic specifications can
themselves be regarded as basic specifications.

3.1 Canonical Basic Specifications

The abstract syntax of canonical basic specifications is defined by the
grammar given below.

p : Positive

SN

Basic > “constant” Symbol, |
“operation” Symbol, |
Clause | Basic Basic ;

Clause > Formula | Formula “=" Clause :

Formula > Term Relator Term ;

Relator > “=" | “<" | “" ;

Term > Variable | Symboly |
Symbol, Terms, :

Terms; > Term ;

Termsp ; > Term " Terms,

The grammar does not define the micro-syntax of symbols (‘Symbol,’,
n > 0) and variables (‘Variable’). For symbols, let us use strings of
characters in this sans serif font, with the number of occurrences of the
place-holder character ‘.’ determining the index (i.e., rank) of the symbol.
For variables, let us use strings of letters in this italic font, optionally
distinguished by numerical subscripts and/or primes.



Notice that the grammar is not quite context-free: the indices on the
nonterminal symbols ‘Symbol’ and ‘Terms’ ensure that operation symbols
are only applied to the number of arguments indicated by their indices.
Each ‘Symbol,’ (for n > 0) and ‘Terms,’ (for p > 1) may be regarded as
a distinct nonterminal symbol, if desired.

A simple example of a canonical basic specification is given below.

constant  Truth-Value
constant  true
constant false
true : Truth-Value
false : Truth-Value
Truth-Value = true | false
operation if_then_else_
T < Truth-Value —

(if T then X else Y) < (X | Y)
if true then X else ¥ = X
if false then X else Y = Y
if nothing then X else Y = nothing
if (T| U) then X else ¥ =

(if T then X else Y) | (if U then X else Y)
T & Truth-Value = nothing =

(if T then X else Y') = nothing

There is no need to disambiguate the grouping of the basic specifications,
as it is semantically irrelevant (in fact, so is the order). We exploit “mix-
fix” notation (much as in OBJ) to write the application of an operation
symbol ‘S,- ... -8’ to terms ‘T, ..., Ty’ as ‘ST, ... T55'; e.g., we
write ‘if_then_else_(¢,X,Y)’ as ‘if ¢ then X else Y.

The effect of specifying ‘¢ : ¢’ is to insist that ¢ is the Hobson’s choice
of a single element. More generally, a formula ‘z : U’ insists that U
includes some element, which (in a non-trivial specification) prevents U
from being ‘nothing’. (In general, let us follow the convention of writing
constants and variables that necessarily stand for single elements in lower
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case.)

Caveat: the examples given in this paper are intended mainly to il-
lustrate the form of specifications; the choice of which operations and
properties to specify is not always that which might be best in a prac-
tical specification. Moreover, unified algebraic specifications are no less
prone to mistakes than many-sorted or order-sorted ones, and there has
not been time to prove that the examples given here actually specify the
intended classes of unified algebras.

Now let us define the semantics of canonical basic specifications. First
of all, a basic specification is said to be complete when all the (constant
and operation) symbols occurring in terms—except for the reserved sym-
bols ‘nothing’, ‘_| _’, and ‘& _'—are declared by ‘constant S’ or ‘operation
S’. We do not care to give a semantics for incomplete specifications
(although it could be done).

The semantics of a complete basic specification B consists of two
components: Sig[B], the unified signature specified by B; and Alg[B],
the class of unified algebras specified by B. We define:

Sig[B] = {S € Symbol | S occurs in B} U
{‘nothing’, ‘_| , ‘* &’}
Alg[B] = {A € UniAlg(Sig[B]) |
A satisfies all the clauses in B}.

3.2 Abbreviations

As may be seen from the specification of truth-values above, canonical
basic specifications are a bit tedious. Let us introduce some abbrevia-
tions.

Actually, the first abbreviations we introduce would not shorten our
specification of truth-values, but they are often convenient. The syntax
is as follows (extending the previously given grammar):

Clause > Clause *;” Clause ;

Formula > Formula “” Formula :

Relator > “>" | “.”

The symbol “;" stands for conjunction in clauses and formulae. The
relators “>" and ":-” stand for the reversals of the relations ‘<’ and
‘7, respectively. It is straightforward to reduce any clause using these
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constructs to a combination of canonical (Horn) clauses; we omit the
details.

Now consider the following extensions, which enable us to write basic
specifications resembling those in OBJ—and more!

n : Natural ; p : Positive

=

Basic >  “constant” Symboly Relator Term |
“operation” Symbol, “:" Functionality, ;

Clause > Symbol, “" Functionality, ;

Terms, > Term “¥"

Functionality, >  Terms, “—" Term | Terms, “~" Term |
Terms, “=" Term | Attribute, |
Functionality, Functionality,

Attribute, > “associative” | “commutative” |

“idempotent” | “unit” Term ;

Attribute, > “strict” | “defined” | “elementary”

Using the above constructs, we may abbreviate the specification of
truth-values as follows:

constant  Truth-Value = true | false
constant true : Truth-Value
constant false : Truth-Value

operation if_then_else_: Truth-Value, X, ¥ = (X | Y)
nothing, X, ¥ ~» nothing
defined elementary

if true then X else ¥ = X
if false then X else Y = Y
T & Truth-Value = nothing =
(if T then X else Y') = nothing

Consider also the following abbreviated specification of natural numbers:
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constant  Natural = 0 | successor Natural
constant 0 : Natural

operation successor_: Natural — Natural
constant  Positive = successor Natural

operation natural predecessor. : Natural ~+ Natural
Positive — Natural
0 ~+ nothing

N < Natural =

natural predecessor(successor N) = N

operation sum(_,_) : Natural> — Natural
Positive, Natural — Positive
associative commutative unit(0)

operation product(_,.) : Natural®> — Natural
Positive? — Positive
0, Natural — 0
associative commutative
unit(successor 0)

| m : Natural ; n : Natural

==
sum(m, successor n) = successor sum(m,n) ;

product(m, successor n) = sum(m, product(m,n))

Now, such specifications look quite nice—to the author, at least—but
what is their semantics? Let us see how to reduce them to canonical basic

specifications.

The construct ‘constant S K T’ merely abbreviates the combination
of the declaration ‘constant S’ and the clause ‘S R T°. Likewise, ‘oper-
ation S : F’ abbreviates the combination of ‘operation S’ and the clause
abbreviation ‘S : F’, where F is a “functionality”. Thus what appear to
be order-sorted signature declarations are really abbreviations for com-
binations of (unsorted) unified signature declarations and clauses.

There are three main forms of functionality, concerned with so-called
“total”, “partial”, and “general” operations. Total and partial functional-
ities may be explained in terms of general functionalities and “attributes”,

which we consider first.
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The functionality ‘S : T,...,T, = T’ abbreviates the clause (actually,
formula) ‘S(T;,...,T,) < T’. The monotonicity of all operations gives as
a consequence that applying the operation S to any choices (or elements)
included in the T; always gives a result included in T.

Any attributes specified along with such a general functionality en-
hance it as follows (assuming all arguments are included in the T}):

e ‘strict’ asserts that when any argument is ‘nothing’, the result is
‘nothing’;

e ‘defined’ asserts that when the result is ‘nothing’, at least one argu-
ment must be ‘nothing’;

e ‘elementary’ asserts that when all the arguments are elements, the
result is either an element or ‘nothing’, and, moreover, that the
operation is “linear”, preserving ‘_| .’ and ‘&_’ in each argument
separately;

e ‘associative’, ‘commutative’, ‘idempotent’, and ‘unit T'"’ assert the

obvious properties for binary operations. (By the way, ‘T?’ abbre-
viates ‘T,T".)

Now it is easy to explain the “total” and “partial” functionalities:

o ‘S:T,...,T, = T’ abbreviates
‘S: T,...,T, = T strict defined elementary’ (the combination of
‘defined’ and ‘elementary’ implies that elements get mapped to ele-
ments, hence choices that include elements get mapped to choices
that include elements);

e ‘S: T,,...,T,~ T abbreviates
‘S: T,,...,T, = T strict elementary’ (so elements may get mapped
to ‘nothing’).

In practice, it is convenient to extend almost all operations from el-
ements to choices by using “total” or “partial” functionalities. The
“general” functionalities are needed only for non-strict operations (like
‘if_then_else_’) and for operations that are non-linear (like a sort construc-
tor mapping sorts of components to sorts of lists).

As in order-sorted algebras, an operation may have more than one
functionality: the clause ‘S : F, F,’ abbreviates the conjunction ‘S : Fy;
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S : F.’, where F| and F} each contain all the attributes of F, and F,, and
together contain all their total, partial, and general functionalities.

It is claimed that any clause of the form ‘S : F’ can be reduced to
a conjunction of clauses not involving functionalities, corresponding to
the above informal descriptions. A formal specification of this reduction
would define the semantics of all basic specifications; here the details are
left to the reader’s imagination.

3.3 Unified Abstract Syntax

The grammars used above to define the abstract syntax of basic speci-
fications look a lot like basic specifications themselves. Let us see how
such a grammar can be regarded as a formal abbreviation for a com-
plete basic specification whose semantics (i.e., a class of unified algebras)
corresponds to the intended abstract syntax.

First, consider the nonterminal symbols of the grammar. The unin-
dexed nonterminal symbols, such as ‘Basic’, may be regarded as constants
that stand for sorts of abstract syntactic entities. Indexed nonterminal
symbols, such as ‘Terms,’, may be regarded as operations from index ele-
ments to syntactic sorts (which would not be possible with conventional
algebras). By the way, such operations extend naturally to index sorts,
so we may express the union of all the ‘Terms,’ by ‘Terms pygitive -

Next, consider the alternatives on the right-hand-sides of the produc-
tions. We have agreed that nonterminal symbols stand for sorts; so each
alternative must be the application of an operation to sorts (or just a
constant, if there are only terminal symbols in the alternative). The op-
eration symbol may be obtained by replacing all the sort arguments by
place-holders. (Notice that the device of enclosing terminal symbols in
quotation marks helps to prevent confusion between the implicit syntactic
operation symbols and the operation symbols of other data types.) The
sorts used in the alternative, together with the sort on the left-hand-side
of the production, determine an appropriate (total) functionality for the
operation.

However, “chain productions”, such as ‘Basic > Clause’, would involve
an operation named by the invisible operation symbol ‘_’. It is preferable
to avoid introducing this symbol, and to regard chain productions as
specifying no more than the given sort inclusion.

The whole right-hand-side of a production is now a choice between
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sorts corresponding to the alternatives. As choice is sort union, the pro-
duction specifies that each of the alternatives is included in the sort cor-
responding to the nonterminal on the left-hand-side.

An example may help. Consider the following grammar:

Clause > Formula | Formula “=" Clause :
Formula >  Term Relator Term

Relator > “=" | “<" | " ;

Term > “nothing”

The corresponding constants and operations are specified as follows:

constant  Clause > Formula
constant Formula
constant Relator

constant Term

operation _ “==" _: Formula, Clause — Clause
operation _ _ _: Term, Relator, Term — Formula
constant “=" : Relator

constant  “<” : Relator

‘.

constant 7+ Relator

constant  “nothing” : Term

Combining this basic specification with the original grammar, we get a
complete specification whose semantics may be regarded as an abstract
syntax. The constraints introduced in Section 5 can be used to restrict
the class of unified algebras to those whose only elements are those im-
plied by the above specification (even leaving some parts of the syntax
unconstrained, for later specialization).
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4 Modular Specifications

Here, a module comprises an identification, together with a body, which is
a complete specification. A modular specification is a basic specification
that is divided into such modules. If one forgets the module identifica-
tions, the semantics of a modular specification is just the same as that of
the combination of its module bodies.

The modularization of specifications has several pragmatic benefits.
First, it exhibits sub-specifications that have an independent meaning,
which usually improves comprehensibility. Second, a sub-specification
that is included in another may be replaced by a reference to the identifi-
cation of the corresponding module; this allows re-use of sub-specifications
within a specification, which usually facilitates making changes, and
which also exhibits the dependency relation between modules. Last, it
permits the re-use of parts of one specification in another specification,
which would be essential for a specification “library” consisting of many
independent parts specifying standard abstract data types.

We start by introducing canonical modular specifications, where mod-
ules do not refer to each other. Then we allow recursive specifications,
with the possibility of mutual reference between modules. Next, we let
modules be textually and logically nested. Finally, we introduce nota-
tion for translating and localizing modules. Note that we do not need to
consider parameterized modules: generic data types are specified using
constraints, as described in the next section.

4.1 Canonical Modular Specifications

The abstract syntax of canonical modular specifications is defined by the
following grammar, which extends the grammar of basic specifications:

Modules > Identification “.” Basic | Modules Modules

The micro-syntax of identifications is not specified; in examples, we use
words in this bold font.

The grouping and order of modules is irrelevant. For a modular speci-
fication to be called canonical, the identifications of all the modules must
be distinct, and the bodies of all the modules must be complete.

For example, consider a specification with modules corresponding to
truth-values and natural numbers:
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Truth Values.

Numbers. Naturals.

(Where the bodies of the modules have been elided).

The semantics of a canonical modular specification M is an environ-
ment, mapping module identifications to the semantics of the correspond-
ing module bodies. We define

Env[M] = {I — (Sig[B], Alg[B]) | ‘I.B’ occurs in M},

We may also extend Sig[_] and Alg[_] from basic specifications to modules:

Sig[B] = U{Sig[B] | B occurs in M}

Alg[B] = u{4' € UniAlg(Sig[M]) |
A"t (SiglB] — Sig[M]) € Alg[B]
for all B that occur in M }.

where for any ¥ C &' and A’ € UniAlg(Y'), the S-algebra A'1(Z — %)
is obtained from A’ by forgetting the operations of X'\ ¥, but keeping
the same set of choices.

Notice that Sig[M] and Alg[M] could be defined in terms of Env[M];
but the given definitions make it obvious that they do not depend at all
on the identifications of the modules, only on the bodies.

4.2 Recursive Modules

Obviously, canonical modular specifications would be tedious to use di-
rectly: notation that is used in several different modules has to be speci-
fied afresh in each of them. So let us allow module bodies to specify the
inclusion of the bodies of other modules by referring to the corresponding
identifications. The syntax for such references is:

Basic >  “use” Identification

It is not necessary to put any restriction on the usage of “use”. In par-
ticular, mutual reference (i.e., recursion) is allowed. Duplicate references
in a body may always be eliminated; likewise, any self-reference may be
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removed: all the notation specified by such a reference is already avail-
able!

For a simple example, consider the following modular specification:

Numbers. Naturals.

Numbers. Integers.

use Numbers. Naturals

The order of the modules is irrelevant, as with canonical modular speci-
fications.

The semantics of specifications involving “use” is given by defining
their reduction to canonical modular specifications. The following algo-
rithm exploits the fact that basic specifications are essentially just sets
of operation symbols and clauses; basic specifications with references to
module identifications may therefore be regarded as monotonic functions
from basic specifications to basic specifications.

Let M be a (recursive) modular specification. Let M, be obtained
from M by replacing each module body by the vacuous trivial specification?.
For n > 0, let M, be obtained from M by replacing each ‘use I’ by
whatever I identifies in M, then removing any duplicate parts of the
resulting bodies. Clearly, the M, form a non-decreasing chain. But the
set of symbols and clauses in each module body is bounded by the set
of all the symbols and clauses in M. Thus (as there are only a finite
number of modules) the M, must stabilize at some finite value of n; let
M' denote the resulting modular specification.

We now regard M as complete if the module bodies in M’ are complete
(basic specifications). Thus for any complete recursive specification M,
M' gives its reduction to a canonical modular specification.

A direct denotational semantics for recursive modular specifications
would require making environments into a cpo and using least fixed points
of continuous functions.

Before we add more syntax to our modular specification language, let
us relax our requirements concerning the uniqueness of module identifi-
cations and the completeness of module bodies.

2which we may write as ‘constant nothing’.
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The idea is to allow the textual separation of “interfaces” from “de-
tails”. Here, an interface does not “hide” anything; it merely draws at-
tention to some particular operation symbols and (perhaps) properties.
In practice, this rather trivial form of interface seems to be quite useful.

A specification with separated modules is reduced by combining the
bodies of modules that have the same identification. This defines the se-
mantics of those separated modular specifications that reduce to canoni-
cal modular specifications.

For an example consider

Numbers. Naturals.
| ... the interface
Numbers. Integers.

use Numbers. Naturals

. the interface
. some other modules
Numbers. Naturals.
| ... the details
Numbers. Integers.
‘use Numbers. Naturals’ need not be repeated

. the details

4.3 Nested Modules

Let us next allow modules to be grouped together in nests, so that the
identification of the nest may be used to refer to all the modules in the
nest. To start with, we enhance the syntax of module identifications, to
allow what we call “logical nesting”; afterwards, we permit module bodies
to be bodies, to allow the “textual nesting” of modules.

The syntax for identifications reflects a convention that has been used
in the examples above: identifications are essentially sequences of basic
identifications.

Identification >  ldentification “.” ldentification

Now we may regard ‘use I’ as an abbreviation for the combination of ‘use
I. I” for every (relevant) identification I'.
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For example, given the above examples, we may write just ‘use
Numbers’ instead of

use Numbers. Naturals :

use Numbers. Integers.

Moreover, if we forbid identifications where the same sub-identification
occurs more than once, we may unambiguously abbreviate references by
omitting a common prefix of the “source” and “target” identification of
the reference. Thus ‘use I’ occurring in a module body with identification
I' abbreviates ‘use I". I’ for some unique prefix I" of I'. (Such abbrevi-
ations are context-dependent, so they must be eliminated before module
bodies are substituted for references.)

For example, the ‘use Numbers. Naturals’ in the module
‘Numbers. Integers’ may be abbreviated to ‘use Naturals’.

Now for textual nesting, which can be useful for emphasizing the
“logical” nesting implied by the structure of identifications. The syntax
is just

Modules > Identification “.” Modules

The semantics of ‘I. M’ is very simple: it is the same environment as that
specified by M, except that all the identifications are prefixed by I. Ob-
viously, such constructs can be eliminated syntactically, by distributing

<L an M.
We may now exhibit the nesting structure of ‘Numbers’ by

Numbers.

Naturals.

Integers.

use Naturals

The analogy between this notation for nested modular specifications and
hierarchical file systems is rather obvious.

Actually, with the above syntax for modules, it is not always possible
to convert canonical modular specifications into “fully-nested” modular
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specifications with unique identifications at each nesting level. The prob-
lem arises when the identification of one basic specification is a proper
prefix of that of another basic specification: the body identified by the
shorter identification would be a mixture of a basic specification and an
identified module, which is not allowed by our syntax so far.

It is a simple matter to extend the syntax to remove this problem:

Modules > Basic

but the semantics requires careful consideration. The question is whether
the notation declared in a basic specification at some level of nesting is
made available to the identified sub-modules of that level, or not. By
analogy with block structure in programming languages, we may expect
that it should be. The semantics may then be defined by a reduction
that distributes basic specifications at outer levels into all identified sub-
modules.

But this weakens the modularization discipline somewhat: it is no
longer the case that the notation used (but not declared) in a module
comes entirely from explicitly-referenced modules: it may come from en-
closing modules as well. In particular, notice that our modules may now
consist of sequences of basic specifications and identified modules—and
that ‘use I’ is a basic specification. So we may specify

Truth Values.

|ooo

use Truth Values

As usual, ‘use Truth Values’ references the corresponding basic speci-
fication. Thus the notation for truth-values is made available to all the
other modules in the specification—just as if it were “built in”. The ben-
efit of allowing this specification seems to outweigh the weakening of the
modularization.

4.4 'Translation and Localization

Sometimes it is convenient to specify several different abstract data types
on the basis of a common part—for instance, flat lists and nested lists
on the basis of general lists. But although such related data types may
sensibly use the same symbols for “polymorphic” operations (such as
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‘cons(_,)") and for constants that have the same interpretation (such as
‘nil’), it would be inconsistent for them to use the same notation (such as
‘List’) for the classifications of their respective elements into sorts.

A translation allows us to make a copy of a specification with some
changes to the symbols. The syntax is as follows:

n : Natural

_—

Basic > Basic Translation ;

Translation >  Symbol, “:=" Symbol, |
Translation “;” Translation

Let us restrict translations to ‘S,:=S!; ...; $,:=S)’ where the §; are all
different—and do not include ‘nothing’, ‘.| _’, or ‘.&_’. The order and
grouping in translations is irrelevant.

The semantics of ‘B T, where B is a canonical basic specification
and T is a translation ‘S,:=S}; ...; S,:=S,’, is the same as that of the
canonical basic specification obtained by replacing all occurrences of the
S; in B by the corresponding S; (leaving other symbols alone).

Notice that in practice, a translation is usually applied to a reference
‘use I'. The semantics of such basic translations is determined by the
given reduction of recursive modular specifications to canonical modular
specifications.

The final syntactic construct for modules introduced here provides a
simple form of “hiding”, called localization:

Basic > “local” Basic ;

‘o1

Symbol, > Identification “.” Symbol,

The idea is to allow the introduction of auxiliary notation in a module,
but without the danger that its specified properties might “conflict” with
properties specified in other modules.

The semantics of ‘local B’ is given by reducing it to a translation ‘B
T°. The translation T translates every operation symbolin B to the same
symbol prefixed by the identification of the module directly enclosing
the localization. It is possible to specify properties of the translated
operations in another module—but only by including an identification in
the operation symbol. In practice, identifications would never be written
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explicitly in operation symbols, so there is no conflict between the local
operations of different modules.

Note that the reduction of localization to translation depends on (the
identification of) the context, so it must be made before substituting
the enclosing module for references to it—and before distributing basic
specifications into identified modules.
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5 Constraints

So far, the sentences allowed in basic specifications are (essentially) re-
stricted to first-order universal Horn clauses involving predicates for equal-
ity, inclusion, and classification. It is well-known that Horn clauses are
the most general sentences that can be used if one wants to exploit the so-
called “initial algebra approach” to specification of abstract data types,
where algebras with “junk” and “confusion” are eliminated by taking
only the initial algebra of the specified class, as in [12] (see also [15]),
or more generally by using “data constraints” [3, 9, 10] or “initial con-
straints” [24, 25]. (An alternative to the initial algebra approach is to
allow first-order sentences that express inequality, to use them to specify
away all possibility of “confusion”, and then to impose “generating” or
“reachability” constraints, see [26].)

The main idea of a data constraint on a specified class of algebras
is that it restricts the class to those algebras where a certain “part” is
“freely-generated” by another part. These parts may be identified by
sub-specifications, where the specification of the generating part is a sub-
specification of that of the generated part. (For full generality, a transla-
tion of the sub-specifications is allowed.) When freely-generated algebras
determined by specification inclusions (technically, “theory morphisms”)
always exist, data constraints can be treated as sentences.

Usually, data constraints cannot be satisfied in homogeneous algebras:
the class of algebras satisfying a homogeneous data constraint is empty.
The problem is that the so-called “forgetful functor” _t o determined by
a homogeneous signature morphism o doesn’t forget any values at all—
only operations! (With heterogeneous algebras, forgetful functors may
forget whole sorts of values.)

However, it turns out that the classification relation of unified algebras
can be exploited to define a “more forgetful functor”, which forgets values
unless they are (or are generated by) elements included in a denotable
value—which is quite analogous to the special way sorts are treated in
heterogeneous algebras. This more forgetful functor can be used to define
so-called “bounded data constraints” for unified algebras; the details are
sketched in [21].

Our syntax for bounded data constraints assumes that the sub-
specifications involved are always identified as modules:
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Basic >  “constrain” Identification |
“constrain” ldentification “over” ldentification

Let us consider some examples. First,

Truth Values.

Base.

constant Truth-Value = true | false
constant true : Truth-Value

constant false : Truth-Value

constrain Base
Rest.
use Base

operation if_then_else_: Truth-Value, X, ¥ = (X | Y)

The constraint restricts the specified class of algebras to those where
the Base-part has no “junk” or “confusion”. Here, the Base-part of an
arbitrary Sig[Truth Values]-unified algebra A consists of those elements
that are included in the choice Truth-Valuey, together with the choices
denoted by terms built from the Base signature. Thus Rest must not
contradict this constraint by adding further elements classified by ‘Truth-
Value’ (although it may add new choices included in ‘Truth-Value’), nor by
causing Base-denotable values to be identified. By the way, the operation
‘if.then_else_’ does not generate new elements of any sort, so it may be
specified in the Rest of Truth Values.

Finally, consider the specification of generic lists below. The con-
straint ensures that, whatever the elements of the sort ‘Data’ might be,
the elements of sort ‘List’ are all finite lists of them. Without making
the constraint relative to ‘Data’, we would only get the empty list, since
there are no elements specified to be included in ‘Data’.
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Lists.
Data.

constant Data
Base.
use Data
constant List = nil | cons(Data,List)
operation _(of _) : List, Data = List
constant nil : List(of nothing)
operation cons(.,.) : Data, List — List
D < Data = nil(of D) = nil

|d: Data ; [ : List ; D < Data

s

| cons(d,1)(of D) = cons(d&D, I(of D))
constrain Base over Data

Rest.

use Base
operation head_: List ~» Data
operation tail_: List ~» List
head nil = nothing
tail nil = nothing
{d:Data;l:List
—

head cons(d,l) = d ;

tail cons(d,l) =1

Note that we may (independently) specialize the module ‘Data’ to
include various elements, such as numbers; we may even constrain it to
preclude further specialization. For instance:
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Lists of Numbers.
use Lists
use Numbers

Natural < Data

constrain Lists of Numbers

(It might be as well to translate the constants ‘List’ and ‘Data’, if other
instantiations are contemplated.)

How about nested lists? Well, it is tempting just to add ‘List <
Data’ to the above instantiation. Unfortunately, this conflicts with the
constraint in ‘Lists’: the lists would no longer be freely generated by the
elements of data. Instead, we should specify an unconstrained module,
say ‘General Lists’, much as ‘Lists’, only we weaken the equation for
‘List’ to ‘List > nil | cons(Data,List)’; then both flat lists and nested
lists can be obtained by specializing and constraining general lists. For
example,

Nested Lists. Base.
use General Lists (List := Nested-List)
cons(_,-) : Nested-List, Nested-List — Nested-List

constrain Base over Lists. Data

(Some minor extensions are needed to the ‘Rest’ to define ‘head’ and
‘tail_’ on nested lists.)
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6 Related Work

Our notation for the modular specification of unified algebras may be
compared with the OBJ specification language, which is based on the
framework of order-sorted algebras. (The reader is now assumed to be
familiar with order-sorted algebras [7, 11, 31] and OBJ [6, 8, 13].) There
are substantial differences between the approaches, both at the techni-

cal and at the pragmatic level. First, some comments on order-sorted
algebras:

e The signatures of order-sorted algebras are complex objects, giving
the sorts of operation arguments and results separately for each
“version” of polymorphic operations, subject to some constraints
that guarantee that terms have least sorts.

e Order-sorted algebras do not allow sort constructors, nor sort union

and intersection. Sort inclusions are allowed only in signatures, not
in conditional axioms.

e Partial operations are represented in order-sorted algebras by the
disciplined use of a constant that denotes a particular element. No-
tational conventions are required to ensure the proper treatment of
this element (e.g., it is not allowed to test for equality with it).

One could in fact simulate unified algebras using order-sorted algebras:
by introducing values that are tokens for sorts, and defining truth-valued
operations on these values corresponding to inclusion and classification.
But it is not clear that this simulation would be convenient enough for
practical use.

Smolka [29] gave a reduction of order-sorted Horn logic to unsorted
Horn logic using tokens for sorts, and treating inclusion and classifica-
tion as predicates. Recently he has developed an unsorted Horn clause
“type logic” [30] which is closely related to unified algebras. The main
difference is that his framework is based on partial algebras, so only strict
operations are considered; also, he leaves union and intersection of types
to be specified by the user, rather than building them into the frame-
work (one could do that with unified algebras too, but that would make
unified specifiations more tedious). Scollo has reported [27] that Manca
and Salibra [16] have recently proposed a framework somewhat similar
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to that of Smolka. It will be interesting to see whether a useful notion of
data constraint can be provided for these partial algebra frameworks.

Next, consider how generic types are specified in OBJ by parameter-
ized modules:

e Explicit instantiation is needed, usually with translation of nota-
tion, which prevents instances from being regarded as subtypes
(note also that OBJ’s conditional operation needs to be a “built-
in”, otherwise every module using it would have to instantiate its
parameterized specification).

o Generic types cannot be combined without specifying a new param-
eterized module.

¢ Elements can only be used as parameters of modules by introducing
new modules just for them.

Finally, regarding module declarations in OBJ:
e They are sequential—mutual recursion is not possible;.
e They cannot be split into “interfaces” and “definitions”.

e The default is for imported notation to be exported, and it is tedious
to override this default.

o Artificial modules are needed to avoid unintentional duplication,
when several modules are to share notation.

Against these rather negative comments should be set the fact that
order-sorted algebras and OBJ are a great advance over many-sorted al-
gebras and earlier specification languages; also that OBJ has been im-
plemented and has been shown to be a useful tool. Indeed, this author
previously adopted OBJ as the basis for specifying the action notation
used in Action Semantics [20, 22], and used an early version of OBJ3 [13]
to (partially) check an equational specification of functional actions. The
development of unified algebras and modules took order-sorted algebras
and OBJ as the starting point.

Finally, it should be noted that there are many other frameworks
where “types” may be treated in the same way as elements, with opera-
tions on types; most of them originate from Scott’s domain theory [28] or
from Martin-Lo6f’s type theory [17]. The foundations of these frameworks
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seem to be essentially different from those of unified algebras. Moreover,
they cater for higher-order functions, and it seems difficult to combine
higher-order functions with type inclusion and monotonicity [18].

Conclusion

The framework of unified algebras and modules seem to have some at-
tractive features, compared to alternative frameworks. However, it is too
early to tell whether the unified framework will be useful enough in prac-
tice to justify its rather presumptuous name. So far, the only experience
of using the framework is my own efforts to specify the abstract data and
process types of “action notation”, which is a (profoundly) polymorphic
notation for use in Action Semantics [22].

One topic that needs to be investigated thoroughly is the right notion
of “implementation” for unified algebras. As sorts correspond to non-
deterministic choices, it seems natural to let implementations be more
deterministic than specifications by contracting sorts.

Note that it is easy to extend unified algebras to allow the specification
of predicates as well as operations; then so-called “Structural Operational
Semantics” [23], also known as “Natural Semantics” [14], can be specified
in the unified framework.
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Appendix: The Modular Specification Language
Abstract Syntax.

n : Natural ; p : Positive

—

Modules > ldentification “.” Modules | Basic |
Modules Modules g

Basic > "use” ldentification | Basic Translation |

“local” Basic |

“constant” Symboly | “operation” Symbol, |
Clause | Basic Basic |

“constant” Symboly Relator Term |
“operation” Symbol, “:” Functionality, |
“constrain” Identification |

“constrain” ldentification “over” ldentification ;

Identification >  Identification “.” Identification :

Translation >  Symbol, “:=" Symbol, |

Translation “;” Translation ;
Symbol, > ldentification “.” Symbol, ;
Clause >  Formula | Formula “=" Clause |

Clause “" Clause | Symbol, “” Functionality, ;
Formula >  Term Relator Term | Formula “;” Formula :
Relator e I <l - S T
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p : Positive

_—

Term > Variable | Symbol, | Symbol, Terms, ;

Terms; >  Term ;

Terms, > Term “"

Terms,4 >  Term “” Terms, ;

Functionality, > Terms, “—" Term | Terms, “~»" Term |
Terms, “=" Term | Attribute, |
Functionality, Functionality,

Attribute, > “associative” | “commutative” |
“idempotent” | “unit” Term ;

Attribute, > Ustrict” | “defined” | “elementary”
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