ISSN 0105-8517

A Note on the Complexity of the

Transpose of a Matrix

Philip Matthews
Carl Sturtivant

DAIMI PB - 265
September 1988

AARHUS UNIVERSITY
COMPUTER SCIENCE DEPARTMENT

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK
Telephone: +456 12 71 88 Telex: 64767 aausci dk

nsni

Abstract

Let x be a column vector of indeterminates. We show that the complex-
ity of computing the linear forms Ax for a fixed matrix A is essentially the
same as that of computing the linear forms A'x where the prime denotes

transpose. Our result also holds for non-square matrices, under a simple
restriction.

Introduction

Let A be a matrix over the field K. Given an appropriately sized vector
of indeterminates x, 4 defines the linear forms Ax . We informally define
the complexity of A (denoted k(A)) to be the complexity of computing
the linear forms Ax . Of course, & is only fully defined with respect to a
particular model of computation.

Preliminaries

We use definitions similar to those in [Valiant, 77]. We define a binary lin-
ear combination program (or BLC program) to be a straight-line program
in which each line computes an arbitrary linear combination of any two
previously computed sub-results (by sub-results here we include the in-
determinates ; ...x,). Clearly, such a program can only compute linear
forms.

Corresponding to a BLC program is a BLC circuit. This is just a fan-in
2 circuit (DAG) where for convenience, there are n input vertices with
in-degree 0 which correspond to the indeterminates z;...z,, m output
vertices for the resulting linear forms, and where each intermediate vertex
corresponds to a linear combination and has in-degree 2. We refer to all
vertices that are not input vertices as computation vertices. The output
vertices are simply distinguished computation vertices. We also label the
edges of the circuit with elements of the field K as follows: if an edge e
is an ingoing edge to some computation vertex at which the sub-result at
e is included in a linear combination with weight A, then e is labeled by
A. Thus an alternative interpretation of the action of the circuit is that

1

when a value is transmitted down an edge labeled), then it is scaled by
A, and when values enter a vertex, they are added.

We define a linear program to be a straight-line program in which each
line computes an arbitrary linear combination of any number of pre-
viously computed sub-results and indeterminates. Corresponding to a
linear program is a linear circuit. This is precisely the same as a BLC
circuit, except that the fan-in to a vertex is not restricted to 2.

Complexity Measures

We define various complexity measures for linear forms and note their
interrelationships.

Definition 1/1 kprc(A4) equals the minimum number of lines in any
BLC program computing the linear forms Ax over the field K, where
output scaling is free.

Definition 2/2 kp(A) equals the minimum, over all linear circuits
computing the linear forms Ax over K, of the number of edges minus the
number of computation vertices.

Definition 3/3 kys4(A) equals the minimum number of non-scalar
arithmetic operations in an arithmetic straight-line program to compute
the linear forms Ax over K. Here we include the addition of two non-
constant quantities in the count of non-scalar operations.

Definition 4/4 k4(A) is defined in the same way as kys4, except with
an all-operation count.

Proposition 1/5 kygy differs from xprc by at most a constant factor,
as does k4, provided the field K is infinite.

Proof Seee.g. [Borodin 75].
Remark: For finite fields, this is open.
Proposition 2/6 For all matrices A, kprc(4) = xr(4).

2

Proof A BLC circuit is a linear circuit. Furthermore, if there is a BLC
circuit of size C' computing Ax , then the number of edges minus the num-
ber of computation vertices in that circuit is C, since each computation
vertex has in-degree 2. Thus kprc(4) > ki (A).

Conversely, suppose there is a linear circuit computing Ax of complexity
C (i.e. the number of edges minus the number of computation vertices
equals C). Each computation vertex in the circuit with in-degree d con-
tributes d — 1 to the complexity. However, such a node may be simulated
by a tree of d — 1 fan-in 2 nodes. The only problem is with d = 1, but
this problem may be eliminated by assuming this to be an output scal-
ing. The result of replacing all vertices with fan-in greater that 2 with
such simulating trees, clearly gives a BLC circuit that has C computation
vertices. Thus kprc(A) < kp(4).

Transposition

In this section, we consider linear circuits with n inputs and m outputs
over a field K. We assume the input vertices are indexed 1...n, and the
output vertices are indexed 1...m. The linear circuit is then simply an
edge-weighted DAG computing linear forms Ax where 4 is m X n. We
assume there are no isolated input or output vertices.

It is easy to see that A;; is then just the sum of the weights of all paths in
the circuit from input j to output i. (Here the weight of a path is simply
the product of the weights on its edges.)

Proposition 3/7 Let G be a linear circuit computing linear forms
defined by a matrix A. Let rev(G) be the linear circuit defined by revers-
ing the sense of all the edges of G and regarding the outputs as inputs
and vice-versa. Then rev(G) computes linear forms corresponding to the
matrix A4’

Proof Let B be the matrix associated with rev(G); thus B;; equals the
sum of the weights of all paths from input j to output ¢ in rev(G). But
this is just the sum of the weights over all paths from input 7 to output

3

J in G itself, which, by definition, is A;;. Thus B;; = Aj;and B=A'.
O

Proposition 4/8 For any m x n matrix A, provided A has no zero
columns or zero rows, K(4) —n = kz(4') — m.

Proof Let G be a minimal linear circuit for Ax . Then by proposition
3/7, rev(G) computes the linear forms associated with A’ Therefore,
kz(A) equals the number of edges in G minus the number of computation
vertices in G. Thus kz(A) — n is the number of edges of G minus the
number of nodes of G, which is the same as the number of edges of rev(Q)
minus the number of nodes of rev(G). Since rev(G) corresponds to A’,
kp(A') —m < kp(A) — n. Repeating the argument beginning with an
optimal circuit for A’ yields the opposite inequality.

O

Corollary Let A be a square matrix with no zero rows or columns.

Then kp(A) = k(4").

Proof Follows immediately.

References

Borodin Borodin, A. and Munro, 1., The Computational Complezity
of Algebraic and Numeric Problems. American Elsevier,

1975.

Valiant Valiant, Leslie G., “Graph-Theoretic Arguments in Low-
Level Complexity”, Mathematical Foundations of Computer
Science, 1977. Lecture Notes in Computer Science # 53,
Springer Verlag.

