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Abstract - A model is proposed for the treatment of human
society as a system of highly interconnected units whose behavior
is described by a system of coupled differential equations. The
stable solutions of this system represent stable formations in
society. The concepts of 'social energy' and 'social temperature'’
are introduced for the description of these stable formations as
energy minima. Changes in society are explained as redistribu-
tions of the connections between the units. Some simple relation-
ships between political parties are analyzed as examples. The
model can be used at different levels, and it can provide help
both for the analysis of past political events and for the deve-

lopment of future political strategies.
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Abstract - A model is proposed for the treatment of human
society as a system of highly interconnected units whose behavior
is described by a system of coupled differential equations. The
stable solutions of this system represent stable formations in
society. The concepts of 'social energy' and 'social temperature!'
are introduced for the description of these stable formations as
energy minima. Changes in society are explained as redistribu-
tions of the connections between the units. Some simple relation-
ships between political parties are analyzed as examples. The
model can be used at different levels, and it can provide help
both for the analysis of past political events and for the deve-

lopment of future political strategies.

1. INTRODUCTION
The enormous complexity of the real world can be dealt with

by using simplified and idealized models that abstract its essen-
tial properties. The relationships between model objects can
always be expressed in mathematical terms. Simulation (and parti-
cularly computer simulation) is experimentation with such models.
Computer simulation is convenient for experiments which might be
slow, expensive, dangerous or impossible with real-world systems
(Korn, 1988). RAlthough it is usually easier to express social
phenomena in terms of integers, sometimes it is more convenient
to model them as continuous, differentiable variables. Then their
behavior can easily be described by means of differential equa-

ions. This approach is commonly used for the description of
social phenomena. For example, a population dynamics model can
provide insight into epidemic propagation, a competitive dynami-

cal system model can describe the voting paradox or a globally



stable economic market (Grossberg, 1988). There has even been an
attempt to describe "the entire world" in terms of some specially
selected variables (Forrester, 1972).

In this paper we shall assume that the human society is a
system of highly interconnected units whose behavior is described
by a system of coupled differential equations. Depending on the
level of the model, these units can represent nations, political
parties, special interest groups or even individuals. The stable
solutions of the system of differential equations correspond to
stable formations in society. The concepts of 'social energy' and
'social temperature' will be introduced for the description of
these stable formations as energy minima. Changes in society will
be explained as redistributions of the connections between the
units that take place more or less rapidly according to different
'temperatures'. The role of the connections between the units of
the system will be shown on concrete simulation examples. The

model can be used both for the analysis of past political events

and for the development of future political strategies.

2. THE MODEL

Let us now consider the human society as a system of highly
interconnected units. Each unit will be characterized by two
variables: its internal state and external state. This dis-
tinction is necessary due to the fundamentally nonlinear charac-
ter of the real world. Indeed, almost any individual social unit
is always unstable if it is left alone in a neutral environment.
For example, it is well known that the two existing major social-
economic systems are based on greed and envy, respectively. It
means that a single unit left alone will never be satisfied and
if its status is described with one variable only, it will grow

indefinitely. In mathematical terms this is equivalent to a



positive feedback loop. In reality, however, the external resour-
ces are always limited. Therefore, even in case of a very strong
positive feedback, the status of the unit experienced by the
environment (output state or external state) must remain within
limits, whatever high the unit's level of activity (input state
or internal state) is. This phenomenon is called saturation of
the input-output characteristics. The internal state of the unit
is measured by means of its excitation level, its external state
may represent, e.g., its wealth, power, influence, etc.

Each unit interacts with a large amount of other units wvia
mutual interconnegtions. These interactions between the units
will determine the current status of the society as well as its
dynamical behavior. Thus, we represent a social structure as a
network (Wellman and Berkowitz, 1988). Due to the practical
importance of the problem (only a stable society can survive), we
are especially interested in the problem of social stability.

Our model then can be described by the following system of
differential equations

N
dxi/dt = j{: aij(t) Xj(t) * Ii(t) f4. =y By wnwmy NI (1)
j=1
where xi(t) and Xi(t) are the internal and external states of the
ith unit at time t, N is the number of units, aij(t) is the
strength of connection between the output of the jth unit and the
input of the ith unit (it is also a function of time) and Ii(t)
is the influence applied to the input of the ith unit from out-
side of the system.

The connection strengths aij(t) form an N*N connection mat-

rix. The matrix elements are functions of time and they can be
positive or negative according to the nature of influence of one

unit toward the other. If the interaction between two units is



positive, it means that one unit reinforces the other's activity
(cooperation). In case of a negative matrix element one unit
tries to suppress the other's activity (competition). Thus, we
are dealing with a cooperative-competitive network. Such networks
have been extensively studied by brain researchers (Grossberg,
1988), therefore our present approach can be called a neural
network model of human society. We would like to emphasize that
our model does not require any symmetry: a particular unit may be
quite cooperative towards another one while the latter is hostile
towards the former (see the relationship between Social Democra-
tic and Communist parties in the past).

The correspondence between the unit's external state Xi and

its internal state Xy is expressed by the relationship
Xi = f(xi) (1 = 1y 24 smsn N (2)

where £ is a function that conveniently represents the saturated
input-output characteristiecs. In this work we shall use the

hyperbolic tangent function
f(xi) = tanh (xi/xT) (3)

whose value tends to reach + 1 at large enough positive and
negative values of the argument, respectively. Here X is a
positive parameter that determines the speed at which the
saturation values are reached: for large values of Xp @ greatexr
value of X5 is needed to reach saturation than for small values

of Xepe As we shall see later, this parameter plays the role of

'social temperature'.

Evidently, the sign of the external state determines whether



the unit's wealth, power or influence is positive or negative. A
zero value means that the given unit plays a mediocre role in the
society. The saturation values of + 1 correspond to total power
and total loss of power, respectively. In case of political
parties, e.g., Xi = -1 means that nobody votes for the ith party.
It is quite possible that a number of units reach saturation:
this case corresponds to sharing power with each other.

For very small values of xi/xT the hyperbolic tangent func-
tion can be replaced with its argument. If, in addition, we
assume that the elements of the connection matrix are just con-
stant numbers, then we arrive at a strongly simplified society
described by a linear model. As we have already mentioned iy "
reality is always nonlinear, but we can draw some conclusions
even from this primitive model.

The stability of linear systems can be investigated by
simple mathematical methods. One has to form an Nth-degree algeb-
raic characteristic equation on the basis of the connection
matrix. If every real part of its roots is negative, then the
solution of the system of linear differential equations is stable.
The tedious task of finding the roots can be avoided by using
other methods, e.g. the Hurwitz criteria, etc. (Ashby, 1960).

It is easy to understand the stability of some societies in
terms of such linear systems of differential equations. Stability
is the result of coordination between the units of the society.
It is a property of the entire system and cannot be assigned to
any part of it. It is entirely determined by the structure of the
connection matrix. It is quite possible to form a stable system
from unstable units and vice versa. The same units may form a
stable system if they are joined one way and an unstable one af
they are connected another way (Ashby, 1960). On the other hand,

an extremely stable society can be built from both very unstable



or very stable units (see, e.g. the Soviet Union under Stalin and
Brezhnev, respectively).

A single linear unit x is represented by the simple equation
dx/dt = a X (&)
where ag4 is a positive number that represents the connection
between the 'output' of the unit and its own "input', i.e. a
simple positive feedback mechanism. The solution of this diffe-
rential equation is an exponential function: the state of the
unit steadily grows with time and the rate of growth is rapidly
increasing.

It is amazing that in the real world such greedy and envious
units can live together and even survive for considerable amounts
of time without blowing everything up if they are interconnected
with each other and with some 'benevolent' units characterized by
negative internal feedbacks. It turns out that if the condition
of (a +

11 © 22

form a stable system from mostly unstable units.

+ ..., + aNN) < 0 is satisfied, it is possible to

At this point we shall abandon the linear aproximation and
return to the nonlinear model. Since in our model the input-
output relationship (3) is used, the external status of any unit
will always stay inside an N-dimensional hypercube defined by the
extremal values of + 1 at saturation (Hopfield, 1984). Moreover,
in most cases the system will tend to occupy the corners of this
hypercube at equilibrium reached after a considerable amount of
time has passed. The time needed to reach one of these equilib-

rium states depends on the 'social temperature' x the higher

ik
this temperature the slower the equilibrium is reached (see

Figure 1).



What does a social equilibrium mean in physical terms? One

of the most general laws of nature is Boltzmann's minimum energy

principle. The principle states that for a system in thermodyna-
mic equilibrium the probability Pp to occupy a state with energy
WA is proportional to exp [- Wh/(kT)] where T is the temperature
and k is a universal constant called Boltzmann's constant (Feynman,
Leighton and Sands, 1965). It means that at a fixed finite tempe-
rature the probability exponentially decreases as the energy
increases, i.e. the system will occupy the state with the lowest
available energy. At higher temperatures it is more probable that
the system will occupy a state with a higher energy than it is at
a lower temperature. In the extreme case of infinitely high '
temperature all finite energies can be reached with equal proba-
bility while in the other extreme case of a temperature at abso-
lute zero the probabilities of all states with nonzero energies

are zerxro.

The minimum energy principle governs the physical world
around us. At low temperatures any physical system will always
tend to occupy a state with the minimum available energy. This
explains such phenomena as the the formation of crystals or the
functioning of semiconductor devices. In the authors opinion this
principle has a fundamental importance for social phenomena as
well. Indeed, if we define 'social energy' as a quantity inverse-
ly proportional to the degree of satisfaction of the society as a
whole, it is quite easy to represent social equilibrium as a
state of the society with a local minimum of this 'social energy'.

The stability of differential equations can be investigated
by means of Liapunov functions that are extensions of the energy
concept (La Salle and Lefschetz, 1961). For systems of differen-
tial equations with certain kinds of connection matrices one can

construct Liapunov functions that have a possibly large number of



equilibrium points corresponding to local energy minima (Gross-
berg, 1988). The time evolution of the physical system described
by the differential equations seeks out these minima and stops at
such points (Hopfield, 1984). The phase space of the system
variables will then be divided into a number of regions of att-
raction. Depending on the initial conditions, the system will

end up in one or another energy minimum. It can get out of such a
state only if the temperature is high enough. This is equivalent
to shaking the system, or waking it up. After this treatment the
system will automatically find another energy minimum. It turns
out that by first raising the temﬁerature and then gradually
cooling it down, one can even approach the absolute minimum of
energy. This procedure is called simulated annealing (Kirpatrick,
Gelatt and Vecchi, 1983). It is important to note that the energy
is a quantity defined by the interconnections of the system and
not by the individual units.

In order to appreciate this model, one should first consider
the simplest non-trivial case of a 'society' consisting of two
units only. We assume that the units are political parties that
fight each other for power. The simulations that follow were done
by the use of the DESIRE simulation software (Korn, 1988). The
results will be presented in the form of graphs.

We shall start with connection matrices that are constant in
time. Figure 1 shows how the external states Xl and X2 change in

time for the simple symmetric connection matrix a =1,

11 - %22
Q9 T 8y = -1 (both units are equally 'gready' and both try to
suppress the other's activity with equal efforts). The initial
value of the internal state of the second unit is taken as zero:

xz(O) = 0., The initial condition for the first unit is xl(O) = .,

Three pairs of graphs are shown in the figure with ap = D.25, 1



and 5, respectively. The value of the temperature parameter
strongly influences both the initial values and the time history
of the external states: lower social temperatures correspond to
larger initial values and to faster approaches of the egilibrium
states. One can see that in this case the equilibrium state is Xl
=1, X,= - 1: the first party gains absolute power over the
second one.

The results are sometimes more convincing if we present them
as phase plots, i. e. showing one external status (Xz) as a
function of the other (Xl). On these graphs one can clearly see
the formation of the stable equilibrium points that correspond to
energy minima: phase plots with different initial conditions all
converge at two such points with coordinates (-1,1) and (1,-1),
respectively (Figure 2).

The situation drastically changes if the units abandon their

selfishness. Figure 3 presents phase plots for the connection

11 T Fgp T g T Rgq T

equilibria in this case: each initial condition leads to a sepa-

matrix a 1. There are no concentrated

rate state of equilibrium. Note that the equilibrium points are

all situated along a straight line in the phase plane.
Interesting features appear in non-symmetric cases. The

connection matrix for the case shown in Figure & has the follow-

Hq T Gy T By s

supports the second one but its sympathies are strongly rejec-

ing elements: = 1, 5. (The first party
ted.) Phase plots are shown for four different initial condi-
tions: XZ(O) = 0 and xl(O) = 0.2, 0.4, 0.6 and 0.8, respectively.
The behavior of the system is quite complicated and we find that
three corners of the two-dimensional "hypercube" appear as equi-
librium points: for the first case the coordinates are (-1,1),

for the second case they are (1,1), for the last case we have

(1,-1). In the third case, when xl(O) = 0.6, the system does not



appear to settle down at any corner at all. This can be seen from
the time history shown in Figure 5.

Naturally, social units do not behave in such a rigid way as
it is represented in the preceding examples. They learn from
their mistakes and modify their behavior accordingly by changing
their connections to the other units. Figure 6 shows a ten-year
history of a two-party system. It starts with the connections a

11
= -1 (the second party strongly supports

= 1, 5,

422 B4 =54
the first one which, in turn, tries to mildly suppress its ri-
val). After about three years it seems that the policies of the
second party were right. Since its popularity initially de-
creased, its support of the first party lead to the latter's
decline. At the end of the fourth year, however, the first par-
ty's popularity begins to grow. Then the leadership of the second
party abruptly reverses its course: it starts to strongly oppose
the first party. As a result, the first party quickly loses all
of its popular support and the second party wins.

The model is even capable to simulate dramatic social chan-
ges when an already established equilibrium is destroyved and a
new power struggle leads to a different equlibrium. Such a situa-
tion is demonstrated in Figure 7. The relationship of the two

parties is represented by the connections of ayq = 1,

S22 g
54 = 2 (both parties support each other). As a result, a power
sharing equilibrium is quickly established. At this point both
parties reverse their policies and start to oppose each other (as
it frequently happens in real life). This results in an initial
decline of both parties' popularity, but eventually the first
party wins and the second disappears from the political arena.

The above examples demonstrate our thesis that social chan-

ges can be explained (and to some extent even predicted) on the

10



basis of redistributions of the connections between the units.
These changes take place more or less rapidly according to diffe-
rent 'social temperatures'.

The model becomes more realistic and interesting as more
units are added. As an illustration, the time history of a five-

party system is shown in Figure 8. The connection matrix is

1 = -1 i ¥ =1

=) 1 ~1 -1 -1

a = -1 -3 1 -1 -1
~F ~d. -4 i 23

-1 =1 i =5 1

All units are equally greedy and all of them try to suppress all
the others. However, four of them are especially hostile to one
party each and their degree of aggressiveness is different. The

result is a wavy power struggle with two winners and three losers.

3. CONCLUSIONS

The model presented in this paper is based on two fundamen-
tal principles: 1) The dynamic behavior of a complicated society
is determined by the connections between its units. 2) The socie-
ty has a tendency to settle down at some equilibrium states that
minimize a certain 'social energy' at given 'social tempera-
tures'. It takes more time to reach an equilibrium at higher
temperatures but it is easier to change established equilibrium
states if the social temperature is higher.

We do not pretend that our model can predict the future of
the world but it can be quite helpful for analyzing the con-
sequences of certain attitudes in complex social environments.
For example, the connections between different political parties
can be quantitatively measured by the number of times they vote

together in a parliament or congress. It has been established

11



that electoral swings happen when these connections change
(Nannested, 1988). It is then relatively easy to establish the
time dependence of the connection matrix for a multi-party poli-
tical system, analyze its history and draw conclusions about the
reasons of past political events. It is the author's intention to
carry out such an analysis for a European country in the near
future. Similarly, relationships between nations can be treated
by the use of our model. It can also be helpful for the deve-

lopment of future political strategies at different levels.
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Figure 1.
The time history of a two-party system with the connection
matrix a,, = a,, = 1, a,9 = 85q -1 for three different

values of the social temperature X
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Figure 2.

Phase plots for the two-party system shown in Figure 1 with dif-

ferent initial conditions.
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Figure 3.

Phase plots for a two-party system with the connection matrix

A9 T 8yp T Ay, T Ay, = -l
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Figure 4.

Phase plots for a two-party system with a highly asymmetric

connection matrix.
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Figure 5.

Time history of the two parties represented in Figure 4.
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Figure 6.

Time history of a two-party system with a policy change.
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Figure 7.

Destruction and re-establishment of a social equilibrium.
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Figure 8.

Time history of an asymmetric five-party system.
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