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NEURAL NETWORKS WITH COMPLEX CONNECTION MATRICES

Bbstract-The concept of neural networks is generalized to include
complex connections between the network's units. The similarity
between the dynamics of some linear complex networks and the

guantum mechanical behavior of atomic systems is shown.
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The dynamic behavior of neural networks can be fully de-
scribed by systems of differential equations (Hopfield, 1984;
Grossberg, 1988). A large amount of information can be extracted
from both the theoretical investigation and the numerical solu-
tion of such systems. It is also possible, however, to explore
the behavior of neural networks by means of suitable physical
models whose behavior is determined by similar systems of diffe-
rential equations. The number of such physical systems is abun-
dant. Let us just mention the oscillations of coupled mechanical
and electrical systems such as coupled pendulums, delay-line
circuits, analog amplifiers or ecological systems, e.g. the pre-
dator-pray model, etc. (Korn, 1988).

Classical harmonic oscillators represent a characteristic
example of such systems. The states of such oscillators change in
a continuous manner but the frequencies that define those states
can only have discrete values. The oscillations of the system are
superpositions of some monochromatic oscillations with normal-
mode frequencies. These frequencies are the properties of the
entire system and in the general case an infinite number of modes
must be present, each having an appropriate amplitude and phase.
Any linear oscillatory system is equivalent to a set of such
harmonic oscillators. The natural frequencies of the system cor-
respond to the normal modes of the harmonic oscillators.

For example, a set of N pendulums represents the sum of N
oscilletions with N different frequencies. The general motion is
the superposition of these oscillations with a continuous energy
transfer between the pendulums. The system is described by N
coupled second-order linear differential equations. The speed at

which the energy is swapped back and forth depends on the coup-



COMPLEX CONNECTION MATRICES, p. &

ling terﬁs of the equations (Feynman, Leighton and Sands, 1965).
Complex functions are commonly used for the description of
physical quantities. A well known example is the treatment of
electric networks in terms of complex potentials, currents and
imbedances. The dynamics of such networks is represented by
systems of differential equations in which the complex impedance
matrix plays the role of the connections between the different
elements of the network. One can even introduce the notion of
complex power as the inner product of the complex voltage and
current vectors. The real and imaginary parts of this power are
the active (dissipative) and the reactive powers, respectively.
The Hamiltonian equations of Quantum Mechanics represent
another well known example. Schrodinger's wave equation can be
written in the form of the following system of N coupled diffe-

rential equations (Feynman, Leighton and Sands, 1965):

do.
1h 2 = H., C (3 =1, 2, ... , N) (1)
q% ik "k
k=1

where N is the number of base states, h = h/(2 ), h is Planck's
constant, t is time, 1 = (—1)1/2 is the imaginary unit, ij is an
element of the Hamiltonian matrix and Ck is the probability
amplitude to find the state of the system in the kth base state
at time £. The system of differential equations (2) describes the
time dependence of all these probability amplitudes, i.e. the
global dynamic behavior of the entire atomic system.

The ebements of the Hamiltonian matrix characterize the
probability amplitudes of the generation of one base state from
another one, i.e. the gouplings between the different base states

of the system.
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In general, the probability amplitudes as well as the ele-
ments of the Hamiltonian matrix are complex. However, since the
Hamiltonian matrix is hermitian, i.e. ij* = ij (where the
asterisk represents the conjugate complex), its diagonal elements
are all real.

Since the nature of information processing in biological
nervous systems is totally different from that in digital compu-
ters (Kohonen, 1988), and it is still mostly unknown, one should
not ex catedra exclude the existence of neural networks with
complex connection weights between its individual units. Indeed,
the response of biological neurons to stimuli can be represented
as a measuring process and there is some evidence that the quan-
tum mechanical theory of measurement can be épplied to it (Jolesz
and Szilagyi, 1978). Thus, although the connection weights in the
anatomy of macroscopic neural networks may be real, there is
no evidence that would exclude the existence of neural networks
with complex connections at the funcgtional level that can be
anatomically realized e.g. between clusters of neurons,

Let us now consider a neural network with complex connec-
tions between its units. For simplicity, we shall restrict this
treatment to linear networks but it can easily be extended to
arbitrary nonlinear networks, too. The network dynamics is de-
scribed by the system of differential equations written in the

matrix form as

dz/dt = A 2.
~

z
where 2z = [e, (t), z, (t), ... , z.(t)] is the complex state vector
P’ 1 2 N

that describes the time dependence of the activation of each unit

and A is the complex connection matrix (in this simplified treat-
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ment we shall assume that the activation of each unit is equal to
the output of the same unit). In case of an electric network’g
may be the complex voltage vector and A is the complex impedance
matrix. In Eq. (1) the components of the state vector 2, are the

probability amplitudes Qk' Then
Ry = - (1 /7 H) Hyp (3)

and all diagonal elements Ajj are imaginary.

The solutions of Eq. (1) exist if and only if the condition
Det (H,, - b;k E) = 0 (&)

is satisfied where 5;k is the Kronecker delta. This is the
equation for the eigenvalues En of the Hamiltonian matrix. Equa-
tion (&), in general, has N solutions (some of them may be equal

to each other). The eigenvalues are given by

1/2

_ _ )
E1,2 = (H11 + sz)/z + [(H11 sz) /4 + H H,., 1 (5)

12 721

Due to the hermitian nature of the Hamiltonian, its diagonal
elements are always real and the product le H21 is real and
positive. Therefore, the eigenvalues are always real. They repre-
sent the possible energies of the system. The energy values are
only dependent on the elements of the Hamiltonian matrix. The
exact value of the energy is only defined for the stationary
states. In t?e general case we can only talk about probabilities

of being in one base state or another.

If the eigenvalues and eigenfunctions are known for a cer-

tain connection matrix, an approximate solution can be obtained

for a slightly different matrix by using perturbation theory

(Landau and Lifshitz, 1965). In case of a time-dependent Hamil-
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'tonian matrix the energy is not conserved, therefore the statio-
nary states do not exist. In this case the perturbation is a
function of time. Very little can be said about the energy in
this case but we know that Heisenberg's uncertainty relation
exists between the results of measurements of energy at two
different moments of time and the time interval. Bs we have
pointed out before (Jolesz and Szilagyi, 1978), the uncertainty
relation is probably present in the measuring process of the
nervous system, too,

Eq. (4) is equivalent to the algebraic characteristic equa-
tion of the system of differential equations (2) and the eigenva-
lues En are proportional to the latent roots An of the characte-
ristic equation that are all imaginary in this case, according to
Eq. (3). This fact represents the fundamental difference between
real and complex networks. The complex solutions of Eq. (2)
describe oscillatory behavior of the state vector in most cases.

The trivial case of N = 1 evidently vields that the only
eigenvalue is El = Hll which is the energy of the single statio-
nary state. The realization of a system with a very large value
of N is, e. g., an electron in a crystal lattice. The solutions
can still be sought in the form of normal modes (exponential
functions of the eigenvalues).

In order to better understand the properties of neural
networks with complex connection weights, one should consider the
simplest nontrivial case of N = 2. The solutions of the system of
equations (2) are simple enough but they depend on the relation-
ships between the different elements of the connection matrix
(Kamke, 1959). They can always be written in the form of sums of

two complex exponential functions of hn'



COMPLEX CONNECTION MATRICES, p. 8

Two special cases should be mentioned.

In the gvmmetric case of H11 = sz and le = H21 all ele-
ments of the Hamiltonian are real. It means that all matrix
eleménts of the corresponding neural network are imaginary. The
solutions will oscillate like two identical coupled pendulums.

In case of H11 = H22 = 0 the integral curves in the phase
plane can be hyperbolae or ellipses. If, in addition, we require
that the matrix elements le and H21 be imaginary, then the
corresponding neural network has real connection weights but they
are antisvmmetric. The integral curves are circles with their
centers at the origin of the coordinate system which corresponds
to oscillating solutions.

We can see that in most cases the basic difference between
neural networks with complex and real connection weights is their
oscillatory and dissipative dynamics, respectively. In case of
complex connections it is generally difficult to construct a
Liapunov function. It is, however, not impossible. In some cases
asymptotic stability can be reached (La Salle and Lefschetz,
1961). We would like to mention that the Lyapunov function is a
global map of the entire system while the eigénvalues of the
energy discussed above represent only the stationary solutions.
Evidently, the initial conditions determine which eigenvalue will
be reached first.

‘ In conclusion,'we would like to emphasize that neural net-
works can be investigated on the basis of simple physical models.
3ince the functional behavior of biological neural networks is
mostly unknown, their genesral models should include complex con-
nection matrices. The dynamics of some linear networks is similar

to the quantum mechanical behavior of atomic systems. Of course,
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it does not mean that a classical model of quantum mechanics is
possible but this approach may shed some light to the actual
functioning of biological nervous systems. Further investigations
of this problem should be based on the analysis of nonlinear neural

networks with complex connection matrices.
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