ISSN 0105-8517

Some Behavioural Aspects of Net Theory

P.S. Thiagarajan

DAIMI PB - 259
August 1988

AARHUS UNIVERSITY M [
COMPUTER SCIENCE DEPARTMENT | [

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK
Telephone: +456 12 71 88 Telex: 64767 aausci dk r

[
Tf

LH |

Some Behavioural Aspects of Net Theory

P.S. Thiagarajan
The Institute of Mathematical Sciences
Madras 600 113, India

0 Introduction

Net theory was initiated by C.A. Petri in the early 60’s [P1]. The subject
matter of the theory is distributed systems and processes. The key aspect
of net theory is that the three fundamental relationships that can exist
between the occurrences of a pair of actions at a state are clearly sepa-
rated from each other at all levels of the theory. These three relationships
are:

(i) At the state s, the action a; can occur only after the action a; has
occurred (causality).

(ii) @1 can occur or a; can occur at s but not both (conflict, choice,
indeterminacy).

(iii) At the state s both a; and a, can occur but with no order over their
occurrences (concurrency).

Another important feature of net theory is that states and changes-
of-states (called transitions) are viewed as two interwined but distinct
entities; they are treated on an “equal” footing by the theory.

Over the years net theory has evolved along many directions. It is
difficult to give an overview of the whole theory in one place. Hence we
shall attempt to do something more modest here. We shall first convey
the basic concerns of net theory by presenting a simple system model
called elementary net systems. Then we shall give a brief sketch of some
of the tools that have been proposed to describe the behaviour of elemen-
tary net systems. We shall concentrate on those tools that have either
directly come out of net theory or which have been prodded into existence
by the insistence of net theory that causality, conflict and concurrency
should be clearly separated from each other in behavioural descriptions
of distributed systems.

In our presentation we will concentrate on motivations and basic def-
initions at the expense of stating theorems. The few results that we

present are stated without proofs. The proofs can be found in [NRT]. We
shall however leave a trail of pointers to the literature using which the
interested reader can get a reasonably broad overview of net theory and
closely related topics.

In the next section the elementary net system model is presented.
Using this model we then define the basic concepts of net theory. This
sets the stage for developing the behavioural tools that can capture the
essential features of distributed systems as defined by the elementary net
system model. Section 2 develops some notation and introduces a purely
sequential mode of behavioural description called firing sequences. In the
next section the theory of traces which have an independent existence
is used to recover information concerning concurrency from the firing
sequences. In section 4 the notion of non-sequential processes is intro-
duced. Non-sequential processes are a behavioural tool developed within
net theory to describe the non-sequential stretches of behaviour of an
elementary net system.

Both trace theory and the theory of non-sequential processes represent
concurrency directly but handle information concerning conflict in an
indirect fashion. One must work with the whole set of traces or non-
sequential processes in order to talk about conflicts and that too in an
indirect fashion. This disadvantage can be overcome with the help of
behavioural tools called unfoldings and labelled event structures that are
presented in section 5. The unfolding of an elementary net system is a
single object in which all the basic behavioural features of the system
are represented in a transparent fashion. Labelled event structures are
direct descendents of unfoldings and they are more pleasing mathematical
objects.

1 Elementary Net Systems

Elementary net systems, as the name suggests, are meant to be the sim-
plest system model of net theory. They may be viewed as transition
systems obeying a particular principle of change. This view of elemen-
tary net systems is explained in more detail in [T]. Here, for the sake of
brevity, we shall make a direct presentation.

Definition 1.1

A netis a triple N = (S, T, F') where S and T are sets and F C (S xT)U
(T x S) are such that

(i) SNT=0
(ii) domain(F)U range(F)= S UT where
domain(F) = {z | Jy.(x,y) € F'} and
range(F) = {y | 3z.(z,y) € F}.
d

Thus a net may be viewed as a directed bipartite graph with no iso-
lated elements. Note that we admit the empty net Ny = (0,0,0).

S is the set of S-elements, T is the set of T'-elements and F is the
flow relation of the net N = (S,T,F). In diagrams the S-elements will
be drawn as circles, the T-elements as boxes and the elements of the flow
relation as directed arcs. Here is an example of a net.

N

Figure 1.1

In this paper, unless otherwise stated, the S-elements will be used to
denote the (local) atomic states called conditions and the T-elements will
be used to denote (local) atomic changes-of-states called events. The flow
relation will model a fized neighbourhood relation between the conditions
and events of a system. Following usual practice, we shall represent such
nets of conditions and events by triples of the form N = (B,E,F).

Let N = (B, E,F)be anet. Then Xy = BUE is the set of elements
of N. Let z € Xy. Then

z={y|(y,z) € F} (the set of pre-elements of)
e = {y | (z,y) € F} (the set of post-elements of)

4

This “dot” notation is extended to subsets of X in the obvious way. For
e € F we shall call ‘e the set of pre-conditions of e and we shall call e
the set of post-conditions of e.
Definition 1.2
An elementary net system is a quadruple N' = (B, E, F,¢c;;) where

(i) Ny = (B, E,F) is a net called the underlying net of N.

(ii) cin C B is the initial case of N.

a

In diagrams the initial case will be shown by “marking” the members
of ¢;,. Here is an example of an elementary net system. Through the rest
of the paper we shall refer to this net system as Ns.

by by
&) €3
by by
e4 es
Figure 1.2

In most of what follows, we will only deal with elementary net systems.
Hence we will refer to them as net systems. The dynamics of a net system
are simple. A state (usually called a case) of the system consists of a set
of conditions holding concurrently. An event can occur at a case iff all
its pre-conditions and none of its post-conditions hold at the case. When
an event occurs each of its pre-conditions ceases to hold and each of
its post-conditions begins to hold. This simple and restrictive notion of
states and changes-of-states leads to a surprisingly rich and sophisticated
class of objects. Indeed one of our aims here is to convince the reader that
the essential features of distributed systems can be isolated and studied
using net systems. First however we must formalize the dynamics of net
systems.

5

Let N = (B, E,F)be anet. Then —yC 28 x E x 25 is the (elemen-
tary) transition relation generated by N and is given by

—y= {(k,e,k') | k—Lk =eANk -k = e'}

Definition 1.3
Let N = (B, E, F,c;,) be a net system.

(i) Cu, the state space of N (also denoted as [c;, >) is the least subset
of 22 containing c;, such that if ¢ € Cy and (c,e,c') €=y, then
c € Cy.

(ii) TSy = (Cwn, E,—y) is the transition system associated with N
where — s is —y,, restricted to Cyy x E x Cy.

O

For the system N, shown in fig. 1.2, {{b1, b2}, {b1,bs}, {b2,b3}, {b3,bs}}
is its state space. We recall that a transition system is a triple T'S =
(S, A,—) where S is a set of states, 4 is a set of actions and — C
S x A x S is the (labelled) transition relation. According to the above
definition there is a natural way of explaining the dynamics of a net
system with the help of a transition system. We are now in a position to
bring out the particular and restricted notion of change adopted in net
theory. Before doing so it will be convenient to adopt some notations.

Let N' = (B, E, F,ci,) be a net system, c € Cy and e € E. Then e
is said to be enabled at ¢ — denoted c[e > — iff there exists ¢' € Cy such
that (c,e,c’) E—— . we shall often write ¢ = ¢’ and sometimes we shall
write c[e > ¢ in place of (c,e,c') E—op.

Proposition 1.1

Let N = (B, E, F,c;,) be a net system e € E and ¢, ¢, ¢y, etc. members
of Cy. Then the following statements hold.

. e
i) e1 > e Neg = cq =
Ci1—Ca=2C—CsNCyg—C1 =¢C4—C3

(ii) cle><=eCcAeNc=10

‘e e e
i) c>dAco = =" 0

(i) says that an event causes the same change in the system state

whenever it occurs; its pre-conditions cease to hold and its post-conditions
begin to hold.

(ii) says that an event is enabled at a case if and only if the fixed
change associated with its occurrence is possible at the case. Thus no
“side-conditions” are involved in the enabling of an event. Net systems
are in this sense clean flow models with the result that they are amenable
to analysis using the basic techniques of linear algebra [L].

(iii) says that the transition systems associated with net systems are
deterministic. Hence in order to connect up with other approaches to the
theory of distributed systems such as CCS [Mi] or CSP [Ho] one must
go over to labelled net systems. When one does so, it is possible to give
an operational semantics for CCS-like processes in terms of (labelled) net
systems. The interested reader can consult [DDM], [O].

Here we wish to emphasize that in net theory, the act of labelling
(often just the events but sometimes also the conditions) is considered
to be a step towards abstraction. Stated differently, the theory provides
for and indeed starts at a primitive level of system modelling where the
“bare skeleton” of a distributed system is described and studied. The
advantage of starting this way is that the basic concepts concerning the
behaviour of distributed systems can be captured — and separated from
each other —in a clean way as we shall now see.

Through the rest of this section we fix a net system N'= (B, E, F\ ¢;y,).
We let e, €', e, e; range over E, ¢,c,c",¢1,ca and c3 range over Cy .

Let e; # e;. We say that e; and e; can occur concurrently at ¢ —
denoted c[{e, ez} > — iff c[e; > and c[ea> and (e; Ue;) N (ea U ey) = 0.

Thus e; and e; can occur concurrently at a case iff they can occur
individually and their “neighbourhoods” are disjoint. When we say that
e; and e; can occur concurrently what we mean is that they can occur
with no order over their occurrences. Hence net systems can in general
display non-sequential patterns of behaviour. For the system N5, at the
initial case e; and e; can occur concurrently. This notion of concurrency
between a pair of event occurrences can be extended to a set of events
in an obvious way. One then obtains the notion of e step and indeed

one can define a transition relation between cases based on the notion of
steps (see [T]).

7

Concurrency as defined above at once gives rise to the notion of con-
flict.

Let e; # es. e; and ep are said to be in conflict at ¢ iff c[e; > and
clez > but not (c[{e1, ez} >).

For the system My, at the initial case e; and e; (as well as e; and
e3) are in conflict. If two events are in conflict at a case then either one
of them may occur but not both. Thus net systems can display inde-
terminate behaviours. Conflict situations can be used to model the flow
of information between a system and its environment. Wherein conflict
and concurrency “overlap” there can be uncertainty regarding informa-
tion flow. This situation is known as confusion. Before formalizing the
notion of confusion, let us consider two examples.

For the system N, let ¢ = {by,by},c = {bs,bs}. It is clear that e;
and es; can occur concurrently at c to lead the system from ¢ to ¢. Two
sequential observers reporting on this transformation could claim:

O; The conflict between e; and e, at ¢ was resolved in favour of e; which
then occurred to lead the system to the state ¢; = {bs,b3}. At ¢,
the event ey occurred without being in conflict with any event and
this led the system to the state c'.

O The conflict between e; and e3 at ¢ was resolved in favour of e3 which
then occurred to lead the system to the state c; = {b1,bs}. At cs,

the event e; occurred without being in conflict with any event and
this led the system to the state c'.

Thus the confusion here is over which conflict was resolved in going
from ¢ to ¢'. This type of confusion is often referred to as symmetric
confusion. Here is a different kind of confusion often referred to as asym-
metric confusion.

by by
e €2 €3
bz by
e4 €s

Figure 1.3

Let ¢ = {by, b3} and ¢ = {b1,bs}. Clearly e; and e4 can occur concur-
rently at c to lead the system from c to ¢'. The confusion here is regarding
whether or not a conflict (between e; and e3) was resolved in going from ¢
to ¢'. The observer who records the occurrence of ey first will claim that a
conflict was resolved whereas the observer who records the occurrence of
e first will claim that no conflict was resolved. In general, confusion can
be a mixture of both types of confusion outlined above and the general
definition is as follows.

Let c[e>. Then
cfl(e,c) = {€' | e and €' are in conflict at c}
We say that (c, e, ep) is a confusion iff

(i) cl{er,e2}>
(ii) cfl(er,c) # cfl(e1,cs) where ¢ =25 cs.

It seems safe to assert that distributed systems both at the hardware
and software level are difficult to implement and analyze mainly because
of the problem of confusion. Net theory provides some strong positive
evidence in support of this claim. It turns out that systems that are
confusion-free admit a nice theory. More precisely one can identify a large
subclass of confusion-free net systems by placing a simple restriction on
the underlying nets. And this subclass has a nice theory. In fact we can
identify subclasses of sequential (concurrency-free), determinate (conflict-
free) and confusion-free net systems by requiring the underlying nets to
be S-graphs, T-graphs and Free-Choice nets respectively. Actually in the
case of S-graphs one must require the underlying nets to be connected in
the graph-theoretic sense but this is a minor technicality. Here are the
definitions of the three net classes.

An S-graphis a net N = (B, E, F)such that Ve € E. |e| =1 = |e|.

A T-graphis a net N = (B, E, F) such that Vb € B. |b| =1 = |b].

A Free-choice netis a net N = (B, E, F) such that Vb € B. Ve € E.
(b,e) e F = b ={e}V {b} =e.

It is easy to check that every S-graph as well as every T-graph is
a Free-choice net but the converse is not true in general. Clearly not
every S-graph (T-graph) is a T-graph (S-graph). Here are examples of
net systems based on the three kinds of nets. The interested reader can

9

verify that the system shown in fig. 1.4.a (fig. 1.4.b, fig. 1.4.c) exhibits
no concurrency (no conflict, no confusion) within its state space.

[5 !
@<E L]

(a) (b) (c)

Figure 1.4

<

+—(e
h

Net systems based on S-graphs essentially correspond to sequential
state machines. Net systems based on T'-graphs are known — in a larger
context — as marked graphs and their theory is very well-understood
[CHEP], [GL1], [JT]. What is surprising is that net systems based Free-
Choice nets also admit a beautiful theory [H], [TV]. Thus net theory
suggests that it is not the combination of concurrency and conflicts as
such that causes problems. It is only when these two phenomena combine
to produce confusion that life becomes difficult.

Before concluding this section we wish to point out that the elemen-
tary net system model can be generalized in a variety of ways. One
obvious and popular generalization leads to a model known as Petri nets
but which we prefer to call marked nets.

Let N = (S,T,F) be a net. Then a marking of N is a function
M : S — Ny (= {0,1,2,...}). The transition ¢ € T is enabled to occur
at the marking M - denoted M[t> — iff Vs & t.M(s) > 0. When the
enabled transition # occurs at the marking M, a new marking M’ is
obtained which is given by:

M(s)—1, ifsct—¢
VseS. M'(s)={ M(s)+1, ifsct —t¢
M(s), otherwise

10

The transformation of M into M' by the occurrence of t at M is
denoted as M[t > M'. A marked net is then defined to be a quadruple
MN = (S,T,F, M;,) where Ny = (S,T, F) is a net called the underly-
ing net of MN and M;, is a marking of Ny x called the initial marking
of MN. The state space of M N — denoted [M;, > — also referred to as
the set of reachable markings of M N is the least set of markings of Ny y
containing M;, such that if M € [M;, >, t € T and M’ is a marking of
Ny such that M[t> M' then M’ € [M;,>.

A slight generalization of marked nets were independently discovered
as vector addition systemsin [KM]. Over the years a number of interesting
and difficult decision problems concerning marked nets (or equivalently
vector addition systems) have been studied and solved (see [J1] for a
limited overview of this topic). Marked nets also have some intersing
connections to formal language theory [J2].

A second generalization of elementary net systems which is more vital
from a practical stand-point was first achieved by Genrich and Lauten-
bach [GL2]. The idea is quite simple. Let N' = (B,E,F,c;,) be an
elementary net system. Then B can be viewed as a set of atomic propo-
sitions and each ¢ € Cy can be viewed as a boolean valuation of B. An
event then transforms one boolean valuation in Cy into another subject
to certain restrictions determined by F', the flow relation. We can now
generalize by replacing B by a set of predicate symbols P. Instead of
Cy, we identify the state space to be a set p of (set-theoretic) structures
for P with respect to a chosen domain D of individuals. An event then
transforms one structure in g into another subject to certain restrictions
imposed by the flow relation F'. What one then obtains is a first-order
net system which is very rich in expressive power. The model can be
made more useful by exploiting the standard notions of first-order logic
such as function symbols, constants and individual variables.

The notion of an event however is kept the “same” so that a first-
order version of Prop. 1.1 goes through smoothly. As a result we once
again obtain a clean flow model and the tools of linear algebra become
available for analysis. First-order net systems come in different forms.
The two most well-known versions are known as Predicate/Transition
nets [G] and coloured Petri nets [Je]. These models play a crucial role in
the applications of net theory [BRR].

11

2 The Behaviour of Net Systems: Preliminaries

We now wish to survey the concepts and techniques that have been pro-
posed in and around net theory to study the behaviour of distributed
systems. We shall do so by providing various answers to the question:
What is the behaviour of a net system?

The most primitive behavioural representation is called firing sequen-
ces. Here the net system is viewed as generating a set of strings over the
events of the system. All information concerning condition-holdings is
thrown away. This is a desirable feature in that the states are after all
abstract entities whose only role is to “implement” the intended pattern
of event occurrences. However, we will show that treating the condition-
holdings on par with event occurrences can lead to a number of useful
intermediate behavioural representations that are of independent inter-
est. Returning to firing sequences, what they convey is the mere causal
ordering over the event occurrences; all information concerning concur-
rency and conflict (-resolution) is “lost”. The various other behavioural
tools we shall present can be seen as an attempt to recover this informa-
tion either partially or completely. Now for some preliminaries.

We fix a net system Ny = (B, Fo, Fp, ¢g) for the rest of this section
and through the next three sections (up to section 5). We let b,5',0"
with or without subscripts range over By. We let e, €', e” with or without
subscripts range over Ey. We let ¢, ¢/, ¢ with or without subscripts range
over Cy, which we shall write, for convenience, as Cj.

In dealing with sequences we shall adopt the following conventions.
Given a set of symbols ¥, we let £* denote the free monoid generated
by 3. The null sequence will be represented as A. If p is a sequence of
symbols and z is a symbol, then #,(p) is the number of times = appears
in p. If X is a set of symbols then #x(p) = Tzex #z(p)-

We will also have to deal with labelled posets. Let ¥ be a non-empty
alphabet set. Then a X-labelled poset is a triple 7 = (X, <,¢) where
(X, <) is a poset and ¢ : X — X is a labelling function.

Let 7 = (X, <,¢) be a finite X-labelled poset. In other words, 7 is
such that X is a finite set. Then Lo(w) (the set of unlabelled linear orders
of) is the subset of X* given by:

p € Lo(w) iff the following conditions are satisfied:

(1) Yz € X. $hslp)=1.
(ii) Vz,y € X.Vp' € Prefix(p)[z < y = #,(p') <" #.(p)].

12

Prefix(p) is the set of prefixes of p and <’ is the usual ordering over
the integers. Consider the ¥-labelled poset m; = (X1, <1, 1) (with & =
{a,b}) whose Hasse diagram is shown in fig. 2.1.

X4 ?
Xl a a X2
Figure 2.1

We have indicated ¢; by writing ¢;(z) inside the diagram representing
xz. We will follow this convention through the rest of the paper. It is easy
to check that fo(m;) = {x1zox3, Z12320, L2123}

For Y-labelled poset m = (X, <,¢) we now define LO(n) (the set of
labelled linear orders of 7) as:

LO(w) = {¢(p) | p € Lo(m)}

Here we have denoted, by abuse of notation, the natural extention of
@ to X* as also ¢. For the poset 7y, of fig. 2.1, we then have LO(m;) =
{aab,aba}.

We can now introduce the first and the most primitive of our be-
havioural tools. Actually T'Sys, the transition system associated with A/
can also be viewed as a representation of the behaviour of A/. We can
however afford to ignore this given our present aims.

The set of firing sequences of Ny — denoted F'Sy — is the least subset
of B} (recall that Ny = (By, Ey, Fo,cy)) given by

(i) A € FSp and ¢A > ¢

(ii) Suppose p € FSy, cp > c and ¢ = . Then pe € FS; and
colpe > .

Thus [> is the obvious “extension” of —u to {co} X E§ x Co.

For the system MNj, ejese; and esejes are firing sequences. As men-
tioned earlier, firing sequences “hide” information concerning concur-
rency and conflict-resolution. We will now see how the theory of traces
can be applied to extract information concerning concurrency from the
firing sequences.

13

3 Traces

The theory of traces was introduced by Mazurkiewicz [M1] to model the
non-sequential behaviour of distributed programs. The basic idea is to
postulate an independence relation over the letters of an alphabet. The
members of the alphabet represent the actions that can be executed by a
program. T'wo actions that are in the independence relation are supposed
to occur concurrently whenever they occur “adjacent” to each other. This
induces an equivalence relation over the language which is a sequential
description of the behaviour of the program.

Definition 3.1

i) A concurrent alphabet is a pair Z = (X,I) where X is a non-empt
) Pty
alphabet set and I C ¥ x X is an irreflezive and symmetric inde-
pendence relation.

(ii) Let p,p' € E*. Then p~pp' iff there exist p1, pp € T* and (a,b) € T
such that p = piabps and p' = pibap,.
(i) ~r 2 (L)
|

It is easy to check that ~; as defined above is an equivalence relation.
(In fact it is a congruence.) For p € * we denote by [p]; the equivalence
class of strings containing p; we call it a trace. In other words, [p]; =
{¢' | p~1p'}. Where I is clear from the context we will write [p] instead
of [p];. The set of traces over T* generated by the concurrent alphabet
Z = (%,1) is given by

5/ ~i={lp] | p € £}

A trace language over the concurrent alphabet Z = (X, I) is simply a
subset of £*/ ~7.

A good deal of effort has gone into the study of trace languages. A
survey of the major results in this area can be found in [AR]. A nice
application of trace theory to the theory of net systems is presented in
[M2]. In the recent past trace languages have also been studied from
the standpoint of formal languages. In such studies the term “partially
commutative monoids” is used instead of “trace languages” [C]. Pomsets,

14

which are basically labelled posets can be viewed as a generalization of
traces. Pomsets form the basis of a theory of distributed systems which
is under construction by Pratt [Pz].

Returning to our main concern, a simple but crucial observation con-
cerning traces is the following.

Proposition 3.1

Let Z = (3,I) be a concurrent alphabet and ¢ € X*/ ~;. Then there
is a unique (upto isomorphism) 3-labelled poset m = (X, <, ¢) such that
LO(r)=tand Vz,y € X. p(z) = p(y) >z <yVy < =z

O

Actually this result can be — and perhaps should be — stated in a more
precise form but we will not pause to do so here. The idea should be
clear and we will proceed to consider an example.

Let £ = {a,b,c} and I = {(a,b), (b,a), (b,c), (¢,b)}. Then {abe, bac, acb}
is a trace and it is represented by the X-labelled poset shown below.

C

T

a b

Figure 3.1

We shall introduce one more notion before we relate trace theory to
net systems. Let Z = (X, I) be a concurrent alphabet and let L C X* be
a (sequential) language. Then L is consistent with I iff Vp € L. [p] C L.

Suppose ¥ = {a,b} and I = {(a,b),(b,a)}. Then clearly L = {ab} is

not consistent with I.

Definition 3.2
(i) Zo = (Ey, Io)is the concurrent alphabet of N'g = (B, Eo, Fy, cy)where
Iy ={(e,€2) | (e2U€1) N (2 Uey) = 0}
(ii) The trace language of Ny — denoted Ty — is
To 2 {[o] | p € FSo}

15
Proposition 3.2
F'S, is consistent with Ij.

O

It is easy to check that I, as specified in def. 3.2 is irreflexive and
symmetric so that Zj isindeed a concurrent alphabet. For the net system
N its independence relation denoted as I is given by

I = {(e1, e3), (€3, €1), (€4, €3), (€3, €4), (€1, €5), (€5, €1), (€4, €5), (€5, €4) }

{eseqeres, ereqseser, eseseser } is a member of Ty,. The labelled poset rep-
resentation of this trace is shown below.

Figure 3.2

As seen in this diagram, the trace theory formalism enables us to
reconstruct information concerning concurrency from the firing sequences
of Ny via the independence relation I;. It is important to note that I
depends purely on the structure of the underlying net of A/y.

It turns out that T} also contains information regarding conflict resolu-
tion. To extract this we need an ordering relation over Ty. Let t1,t; € Tj.

Then
tiCots EVpet,. 3 €ta p< /.

Here < stands for the usual prefix ordering over Ej. It is straight-
forward to verify that Ty is a partial ordering relation. We have shown
below an initial fragment of the poset (of traces) for the system A,. For
convenience, each trace has been specified by a representative member of
the trace.

16

[ereses] [ezeses] [ereses)

X

leres] [ezes] [eres] [eses] [eses)

NS
N

[A]
Figure 3.3

Let ¢1,t3 € To. Then we say that ¢; and ¢; are compatible (bounded) —
and this is denoted £, T ¢5 — if there exists a t € Ty such that t; Cg ¢t and
ty Co t. We shall write ¢; J ¢5 to denote the fact that ¢; and ¢, are not
compatible.

We claim that the relation ¥ reflects all information concerning con-
flicts and their resolution. To substantiate this claim however, we must
wait till event structures have been introduced. Here we shall only indi-
cate that the relation ¥ carries some information concerning conflict.

Proposition 3.3

Let t1,t3 € Tp. Then ¢y ¥ t, if there exist p € F'Sy and e, ey € Ey such
that the following conditions are fulfilled.

(1) pei, pes € F'Sy
(ii) [pe1] Co t1 and [pes] Ty ty

(ili) e; and ey are in conflict at ¢ where co[p> c.
O

We propose that the poset (T, Co) is a behavioural representation of
N which captures all the features of causality, concurrency and conflict
that arise during the history of Ay. Our next task will be to obtain an
alternative representation which is quite different in spirit but which will
“agree” with the information provided by (T, Co).

17

4 Non-Sequential Processes

Petri suggested that certain kinds of labelled nets called non-sequential
processes should be used to describe the behaviour of net systems [P2].
Before presenting this idea, we need to impose a restriction on net sys-
tems.

The net system N'= (B, E, F,¢;,) is said to be contact-free iff Ve €
Cy Ve € Ee Cc= enNc=0]. We will assume that the generic net
system N whose behaviour is under study to be contact-free. This does
not involve any loss of generality. It turns out that every net system A/
can be converted into a contact-free net system N’ such that A and A’
are “behaviourally equivalent” in a strong sense. The interested reader
is referred to [RT] for details. Here we shall illustrate the principle with
the help of an example. In fig. 4.1 we have shown a net system (which is
not contact-free) and its contact-free equivalent.

by 4%—0 by by —‘/»[]—@ By

ey €,y €4

Figure 4.1

Note that in a contact-free net system an event is enabled at a case iff
all its pre-conditions hold. Similarly the definitions of concurrency, con-
flict and confusion become much simpler and more intuitively appealing
in the absence of contact. Clearly the system A, is contact-free.

Next we need the notion of a labelled net.

A Y-labelled net is a quadruple N = (B, E, F,) where (B,E,F) is a
net and ¢ : BUFE — X is the labelling function.

A non-sequential process of the net system A will be an X-labelled
net N = (B, E, F,y) in which F' and ¢ are required to satisfy a number
of requirements. (Here Xy = By U Ey.) For instance one requires F* to
be a p.o. relation and one demands ¢(B) C By and ¢(FE) C E,. For our
purposes it will be convenient to associate a non-sequential process with
each firing sequence. This will enable us to build them up inductively.

18

More, our method of construction will directly lead to yet another be-
havioural representation called the unfolding. From now on we shall refer
to non-sequential processes as processes. Here is an example of a process

of Ns.

As already mentioned, for each firing sequence p of Ay we will con-
struct a Xo-labelled net NV, = (B,, E,, F,,¢,) and call it a process of
No. Each member of B, U E, will be of the form (y,Y) with y € X,
and Y C B, U E,. The labelling function will be the obvious projection
operator; for each (y,Y’) € B,UE, it will be the case that ¢,((y,Y)) = y.
Hence in what follows we will suppress ¢,.

The idea is that for each (b, X) € B, the set X will be a record of the
unique history of My that led to this particular holding of b. Similarly

for (e,X) € E, the set X will record the unique history that led to this
particular enabling of e.

The construction of N, is by induction on |p|. For convenience we will
keep track of the conditions that hold in Ny after the run represented by
the firing sequence p. This set of conditions will be encoded as &5

Definition 4.1
Let p € F'Sy. Then N, = (B,, E,, F,) is given by:
(i) lﬁlj_ N, =(0,0,0) and
cy = {(b,0) | b € co} (recall that Ny = (B, Ey, Fy, cp))

(ii) |p| >0 Let p = p'e and assume that Ny = (By, E,, Fy)
and cy are defined. Then N, = (B,, E,, F,) is
given by:

(1) E,=E,U{(e,X)} where
X ={(b,D) |beeA (b D)€ cy)

19

(2) B, =By UX UY where
Y = {(ba {(e:X)}) I bee}t.

() F=FUuXx{eX))U{Ex)}xY)
Finally, ¢, = (¢y — X)UY.
O

N, (with the obvious projection operator as the labelling function) is
called a process of Ny. We let Py denote the set of processes of Ny where

Py LN, | p e FSp}

Actually P, just denotes the set of finite processes of Ay but for our
current purposes they will do.

It is easy to see that there is a close relationship between the processes
and traces of Ny. In order to state this relationship in a strong way, we
define an “inclusion” relation C' C Py x P, as:

N, =(By, E,, F,) C' Ny = (By, Ep, Fy) iff

B,C By and B, C Ey and F, C F,.

Theorem 4.1

(P, C') and (Tp,Cp) are isomorphic posets. In fact f : Py — Ty given by
f(N,) = [p] is an isomorphism.

a

The underlying nets of the processes of net systems are interesting
objects in their own right. We shall call them causal nets.

A causal netis a net N = (B, E, F) such that
(i) Vb € B. |'b],|b]| < 1.

(ii) F™ is a partial ordering relation over X = BU E.

20

Proposition 4.1

The underlying net of each process of Ny is a causal net.

Here is an example of an infinite causal net.

Figure 4.3

Causal nets are interesting because they can be used to study concur-
rency in isolation from conflict. To see thislet N = (B, E, F)be a causal
net and let <= F*. Then we can define the concurrency relation co as:

Vm,yEBUE.mcoy@wﬁy/\y{m

Thus in the setting of causal nets concurrency just expresses the ab-
sence of causality and causality is simply a partial ordering relation.
Hence the theory of posets can be applied to study the co-relation. This
part of net theory was initiated by Petri [P3]. A variety of density proper-
ties for causal nets have been proposed and their interrelationships have
been investigated [Be], [FT], [FNT]. Returning to our main theme we are
now ready to present unfoldings and labelled event structures.

5 Labelled Event Structures

Due to theorem 4.1 the poset (P, C') also contains information about
conflicts and their resolutions. In a seminal paper, Nielsen, Plotkin and
Winskel showed — among other things — how to “glue” together the el-
ements of P into a single object in which causality, concurrency and
conflict are represented explicitly [NPW].

Definition 5.1

Let N, = (B,, E,, F,) be the process associated with p € F'Sy. Then the
unfolding of N is the triple Uy = (By, Ey, Fy) where

21

(i) Bo=U{B,|p € FSp}

(i) Bo=U{E,|p€ FSo}

(i) By =U{F, | p e FSy}
O

As before, the labelling function is the obvious projection operator
and we have suppressed it. Here is an initial fragment of the unfolding
of M. As this example shows, the unfolding of a net system will be in
general an infinite object.

-]
SENI NS & ® & & @

Figure 5.1

The unfolding of a net system presents a single record of all the runs of
the system. In this record each occurrence of an element of the net system
(condition-holding or event occurrence) is recorded separately so that the
unique — in general — non-sequential history that led to this occurrence

22

lies in its past. The underlying nets of the unfoldings of net systems are
called occurrence nets.

Before we present the notion of occurrence nets it will be convenient to
adopt some notations concerning posets. Let 7 = (X, <) be a poset and
YCX. Then |Y={z|FyeY z<yland 1Y ={z |y e Y. y <z}
If Y = {y} is a singleton, we will write Ty and |y instead of T {y} and
L {y} respectively. For z,y € X, z Ty will denote the fact that there
exists z € X such that z < z and y < z. Finally z ¥ y will denote the
negation of = Ty.

An occurrence netis a net N = (B, B, F) such that

(i) Vbe B. |b| < 1.
(i) < Ndéf F* is a partial ordering relation over Xy.
(iii) Vei,es € E.[e1 #eaNerMNex # 0 =TeiN Tey = 0]
(where Te is defined w.r.t. the ordering relation <y).
Proposition 5.1

The unfolding of a net system is a labelled occurrence net.

a

In an occurrence net N = (B, E, F') causality is represented by the
partial ordering relation <y= F*. The conflict relation #y C Xy x Xy
is defined to be the least subset of Xy x Xy satisfying:

(1) Ve, es € E. [61 7£' ea N'ejMey 75 0= e #N 62]
(11) Vm,y,z € Xy.z #N y<yz=uw #N Z.

It is easy to check that #y is irreflexive and symmetric. If two el-
ements are in conflict then the idea is that in no stretch of behaviour
can they both occur. On the other hand, for an element to occur all the
elements that lie in its “past” (as specified by <y) must have occurred.
These considerations will be made more precise when we come to deal
with event structures. Going back to the occurrence net N = (B, E, F)
the concurrency relation coy can now be defined as:

V:B,yEXN.mcoNydéfnot (z<yy Vy<wz V z#ny)

23

Proposition 5.2

Let N denote the underlying occurrence net of U, the unfolding of the
net system No. Suppose that z,y € B,U Ey. Then z #y y iff there does
not exist a process N, = (B,, E,, F,) of Ny such that z,y € B, U E,,.

O

Corresponding statements can be made about <y and coy, the causal-
ity and concurrency relation respectively of the occurrence net underlying
Uy. In this sense U is a behavioural representation of Ay in which causal-
ity, concurrency and conflict are explicitly represented. We can now ask
in what sense are Uy and (Tp, o) are related to each other. To answer
this question we must go over to labelled event structures.

In the present setting we note that a trace — via the labelled poset
associated with it — can be seen as a more abstract representation of a
process; it is a representation in which the conditions have been restricted
away. Similarly an event structure is a more abstract representation of
an occurrence net that is obtained by throwing away the conditions.

An event structure is a triple ES = (F, <, #) where

(i) E is a set of events.

(ii) <C E X E is a partial ordering relation called the causality relation
of ES.

(iii) # is an irreflexive and symmetric relation called the conflict relation
of ES.

(iv) # is “inherited” via < in the sense that Vei, ey, e5 € E.

e1ftes < e3 = ejffes

Definition 5.2

FSs = (E’g,go,#g,g&o) is the labelled event structure of Ny given by:
(recall that Uy = (B, Ey, Ey))

(i) <¢is <y restricted to By x B, where N is the underlying occurrence
net of .

(ii) #o is #py restricted to By x Fj.
(i) @ : Ey — E, is the restriction of the labelling function of U, to E,.
O

24

Proposition 5.3
(Eg, <o, 7o) is an event structure.

L]

There is a natural notion of a state of an event structure which plays a
crucial role in the theory of event structures. States of an event structure
are usually called configurations.

Definition 5.3

Let ES = (E,<,#) be an event structure. Then d C E is called a
configuration iff it satisfies:

(i) (dx d)N# =0 (conflict-free)
(i) d =]d (left-closed)

a

Cgs will denote the set of configurations of ES and CL7 will denote
the set of finite configurations of ES. Now let CJ™" denote the set of finite
configurations of ES;, the (labelled) event structure of Ay, We are at
last in a position to tie together the various behavioural representations
of Ny that we have been considering.

Theorem 5.1
(Cy m, C) and (Ty, Cy) are isomorphic posets.
O

In fact, the map f : Py — C{™ given by f(N, = (B,,E,,F,)) = E,
establishes an isomorphism between (P, C') and (C’éc i C). Thus trace
theory and the theory of event structures “agree” as to what the be-
haviour of a net system is.

Occurrence nets have not been investigated as objects of independent
interest in the way that causal nets have been studied. Event structures
on the other hand have a substantial theory. They were introduced in
[NPW], where a basic representation theorem for event structures was
established in terms of the posets of configurations. It turns out that for

the event structure ES, the poset of configurations (Cgs,C) is a prime

25

algebraic coherent cpo. Due to lack of space we will not go into details
here. Moreover, given PO, a prime algebraic coherent cpo, there is a way
of associating an event structure ES with PO such that (Cgs,C) and
PO are isomorphic posets. Since a prime algebraic cpo is a special kind
of an algebraic cpo, event structures can be identified with a restricted
class of Scott domains.

Winskel has constructed a major part of the theory of event structures
[W1] and has used them to provide the first non-interleaved denotational
semantics of CCS-like languages [W2]. Actually, what we have called
event structures here are called prime event structures in the literature.
It turns out that in semantic applications it is more convenient to use
a generalization of prime event structures called stable event structures.
For details, the reader is once again referred to [W2).

6 Summary

Our aim here has been to give a general picture of the behavioural aspects
of net theory. We have done so by presenting a number of behavioural
notions which, regardless of their origins, reflect the basic concerns of net
theory.

A number of other behavioural tools have not been presented (see for
example [RT], [S]). The relationship between trace theory and event struc-
tures can be established in a general setting [RoT]. Studies which relate
a variety of behavioural notions to each other in a categorical framework

can be found in [W3] and also in [B].

In CCS and CSP, which are two other approaches to the study of dis-
tributed systems, one is concerned in some sense with only behaviours.
In these approaches a great deal of the theory is devoted to the search for
the proper notion of behavioural equivalence. In net theory the study of
the interplay between the structure of a distributed system (as specified
by a net) and its behaviour has traditionally been one of the main con-
cerns. Consequently, the search for the “correct” notion of behavioural
equivalence, has not been a major driving force in the theory.

In the recent past however, a number of bridges have been constructed
between net theory on the one side and CCS and CSP on the other. As
a result, in the future, the notion of behavioural equivalence is likely to
be pursued more vigorously within net theory.

26

Acknowledgements

I thank Carl Adam Petri for creating net theory and for teaching me his
version of the theory. The line of presentation followed here has been
strongly influenced by my joint work with Mogens Nielsen and Grzegorz
Rozenberg. Many many thanks to Karen Mgller for producing, as usual,
a nice manuscript in record time. This paper was written during a very
pleasant stay at the Computer Science Department of Aarhus University.

References

[LNCS is an abbreviation for Springer Lecture Notes in Computer Sci-

ence|

[AR]

[B]

[Be]

[BRR]

(€]

Aalbersberg, I.J. and Rozenberg, G.: Theory of Traces. Technical

Report 16, Computer Science Department, University of Leiden,

Thee Netherlands (1986).

Bednarczyk, M.: Categories of Asynchronous Systems, Ph.D. The-
sis, Computer Science Department, University of Sussez, Great
Britain (1987).

Best, E.: A Theorem on the Characteristics of Non-Sequential

Processes. Fundamenta Informaticae III.1 (1980), pp. 77-94.
Brauer, W., Reisig, W. and Rozenberg, G. (eds.): Petri Nets:
Applications and Relationships to Other Models of Concurrency.
LNCS 255 (1987).

Choffrut, C.: Free Partially Commutative Monoids. Technical Re-
port 86-20, LITP, University of Paris 7, France (1986).

[CHEP] Commoner, F., Holt, A.N., Even, S. and Pnueli, A.: Marked

[DDM]

[F'T]

[FNT]

Directed Graphs. Journal of Computer and System Sciences 5
(1971), pp. 511-528.

Degano, P., DeNicola, R. and Montanari, U.: A New Operational
Semantics for CCS based on Condition/Event Systems. Nota In-
terna B4-42, Departmen of Computer Science, University of Pisa,
Italy (1986).

Fernandez, C. and Thiagarajan, P.S.: D-Continuous Causal Nets:
A Model of Non-Sequential Processes. Theoretical Computer Sci-

ence 28 (1984), pp. 171-196.
Fernandez, C., Nielsen, M. and Thiagarajan, P.S.: Notions of Re-

alizable Non-Sequential Processes. Fundamenta Informaticae IX
(1986), pp. 421-454.

[GL1]

[GL2]

27

Genrich, H.J.: Predicate/Transition Nets. LNCS 25/ (1987), pp.
207-247.

Genrich, H.J. and Lautenbach, K.: Synchronisationsgraphen.
Acta Informaticae 2 (1978), pp. 143-161.

Genrich, H.J. and Lautenbach, K.: System Modelling with High-
level Petri Nets. Theoretical Computer Science 18 (1981), pp.

109-136.
Hack, M.: Analysis of Production Schemata by Petri Nets. M.S.

thesis, TR-94, Project MAC, Department of Electrical Engineer-
ing, Massachusetts Institute of Technology, Cambridge, Mass.,
USA (1972).

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-

Hall Publishing Company, London, Great Britain (1985).
Jantzen, M.: Complexity of Place/Transition Nets. LNCS 25/
(1987), pp. 418-435.

Jantzen, M.: Language Theory of Petri Nets. LNCS 25/ (1987),
pp. 397-412.

Jensen, K.: Coloured Petri Nets. LNCS 25/ (1987), pp. 248-299.
Jump, J.R. and Thiagarajan, P.S.: On the Equivalence of Asyn-
chronous Control Structures. SIAM Journal of Computing 2, 2
(1973), pp. 67-87.

Karp, R.M. and Miller, R.E.: Parallel Program Schemata. Journal
of Computer and System Sciences 8, 2 (1969), pp. 147-195.
Lautenbach, K.: Linear Algebraic Techniques for Place/Transition
Nets. LNCS 254 (1987), pp. 142-167.

Mazurkiewicz, A.: Concurrent Program Schemes and their Inter-
pretations. DAIMI Report PB-78, Computer Science Department,
Aarhus University, Denmark (1977).

Mazurkiewicz, A.: Semantics of Concurrent Systems: A Modular
Fixed-Point Trace Approach. LNCS 188 (1985), pp. 853-875.
Milner, R.: A Calculus of Communicating Systems. LNCS 92
(1980).

Nielsen, M., Rozenberg, G. and Thiagarajan, P.S.: A Com-
parison of some Elementary Net-theoretic Behavioural Notions.
Manuscript. (To appear soon as an Internal Report of the Com-
puter Science Department, Aarhus University, Denmark.)
Nielsen, M., Plotkin, G. and Winskel, G.: Petri Nets, Event Struc-
tures and Domains: Part 1. Theoretical Computer Science 13

(1980), pp. 85-108.

[P3]

Olderog, E.R.: Operational Petri Net Semantics for CCSP. LNCS
266 (1987), pp. 196-223.

Petri, C.A.: Kommunikation mit Automaten. Schrifften des IIM
Nr. 2, Institute fir Instrumentelle Mathematik, Bonn University,
W. Germany (1962).

Petri, C.A.: Non-Sequential Processes. Interner Bericht ISF-77-8,
Gesellschaft fiir Mathematik und Datenverarbeitung, St. Augustin,
W. Germany (1977).

Petri, C.A.: Concurrency Theory. LNCS 25/ (1987), pp. 4-24.
Pratt, V.R.: Modelling Concurrency with Partial Orders. Inter-
national Journal of Parallel Programming 15, 1 (1986), pp. 83-71.
Rozenberg, G. and Thiagarajan, P.S.: Petri Nets: Basic Notions,
Structure and Behaviour. LNCS 22/ (1986), pp. 585-668.
Rozoy, B. and Thiagarajan, P.S.: Event Structures and trace
Monoids. Report 87-47, LITP, University of Paris 7, France
(1987).

Starke, P.H.: Traces and Semiwords. LNCS 208 (1985), pp. 332-
349.

Tiiagarajan, P.5.: Elementary Net Systems. LNCS 254 (1987),
pp. 26-59.

Thiagarajan, P.S. and Voss, K.: A Fresh Look at Free Choice Nets.
Information and Control 61, 2 (1984), pp. 85-1183.

Winskel, G.: Event Structures. LNCS 255 (1987), pp. 325-892.
Winskel, G.: Event Structure Semantics of CCS and Related Lan-
guages. LNCS 140 (1982).

Winskel, G.: Categories of Models for Concurrency. Technical
Report no. 58, Computer Laboratory, Cambridge University, Great
Britain (1986).

