From High-level Descriptions

to VLSI Circuits

M. R. Greenstreet
J. Staunstrup

DAIMI PB - 255
June 1988

ISSN 0105-8517

AARHUS UNIVERSITY
COMPUTER SCIENCE DEPARTMENT

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK
Telephone: + 456 1271 88 Telex: 64767 aausci dk

Himsl

L]

From High-level Descriptions to VLSI
Circuits

J. Staunstrup
Computer Science Department
Aarhus University, Ny Munkegade
DK-8000 Aarhus C

Denmark

M.R. Greenstreet
Computer Science Department
Princeton University
Princeton, NJ 08540
USA

To appear in BIT 1988

Abstract

This paper presents a high-level language for describing VLSI circuits
designed as a collection of asynchronous concurrent processes. This lan-
guage is called “Synchronized Transitions,” and it can be used to describe
designs from very high levels of abstraction down to the gate level design.
Both synchronous and asynchronous/self-timed circuits can be described,
and it is not necessary to choose a particular type of circuitry in the early
phases of a design. “Synchronized Transitions” programs may be used for
experimenting with (simulating) a design at several levels, e.g., to explore
different high-level decisions or to verify the gate level. By observing cer-
tain constraints in a “Synchronized Transitions” program, it is possible
to systematically transform the program into an efficient layout.

CR categories: B6, C.1.2, C.5.4, D.1.3, D.3.3.

1

expressed explicitly in the preconditions of transitions (i.e., as an expres-
sion of the system state). Thus, high-level descriptions in “Synchronized
Transitions” do not depend on details of the low-level implementation.
This makes “Synchronized Transitions” programs both clearer and easier
to write.

The development of “Synchronized Transitions” was motivated by
research in applying VLSI to parallel processing. Traditional VLSI ar-
chitectures are based upon a synchronous model of parallel computation
which require the timing details of the low-level implementation to be
reflected in its high-level descriptions. Systolic algorithms [9] are an
example of this and are well suited for many applications such as ma-
trix operations. However, systolic algorithms are poorly suited for ap-
plications where the computation to be performed depends on the input
data or requires response to inputs at times that cannot be statically
determined. Such computations are naturally expressed as interactions
of asynchronous processes which can be specified using “Synchronized
Transitions”.

At the other end of the design spectrum, circuits for VLSI have tra-
ditionally been designed using a synchronous (i.e. clocked) approach. In
many fast circuits, clock distribution imposes the dominant speed limi-
tation, and they cannot operate as fast as would be allowed if only gate
delays were significant. Self-timed/asynchronous designs promise to over-
come such limitations [14]. However, self-timed designs have typically re-
quired intricate analysis of the timing details of the circuits. A promising
alternative is to analyze the functionality of self-timed circuits indepen-
dently of timing details by viewing the operation of the circuit as the
execution of a collection of asynchronous parallel processes as can be
described with “Synchronized Transitions” [6].

“Synchronized Transitions” programs are well suited for designing
application specific VLSI circuits (so-called ASICs). ASICs are usually
designed to satisfy requirements of size, maintainability, speed, or spe-
cial function which cannot be met by off-the-shelf components. Because
ASICs are typically produced in small quantities, it is important to re-
duce design costs wherever possible. The need for ASICs typically arises
from a specific application, and to meet the requirements of the applica-
tion, creative architectures and alternative systems approaches need to be
considered. Tools developed for particular classes of VLSI circuits such as
microprocessors, signal processors, and PLAs can be too specialized for

3

the design of ASICs. “Synchronized Transitions” provides the flexibility
needed to explore alternative implementations and produce useful ASIC
designs.

This paper presents the “Synchronized Transitions” language and its
application to the design of VLSI circuits. Section 2 introduces the no-
tation, and section 3 describes an application, the problem-store which
is used as an example throughout the rest of the paper. A particular
implementation of the problem-store called a storage-ring is described in
section 4. The use of “Synchronized Transitions” programs for simula-
tion is presented in section 5, and the simulation of the storage-ring is
discussed. In section 6, transformations from “Synchronized Transitions”
programs to synchronous circuits are described, and these transforma-
tions are applied to the storage-ring in section 7.

2 Synchronized Transitions

This section gives a brief introduction to the “Synchronized Transitions”
notation. Like a VLSI circuit, a “Synchronized Transitions” program con-
sists of state variables and transitions (combinatorial logic). Transitions
specify state changes using multi-assignments. For example,

< from # E A to = E — to, from := from, E >

defines a transition which is performed only when from # E and to = E
holds, and it leads to a state where to = from®? and from = E (£rom°'d
denotes the value of from before the transition is performed).

In general, transitions are of the form

< precondilion — action >>.

The precondition is a boolean expression. A transition can only be
performed when its precondition is satisfied. The action is a multi-
assignment which specifies the state transformation made by the tran-
sition. Transitions are atomic as indicated by the notation << ... >.
This means that each transition appears to be executed indivisibly.

It is not required that a transition be performed immediately after its
precondition becomes satisfied, and there is no upper bound on when it
takes place. This is an abstraction of delays in hardware. For example,

&« TRUE — y :=a V b >

4

describes an OR gate. The precondition, TRUE, specifies that it is always
allowed to set the output, y, to the OR of the inputs, a and b; however, an
arbitrary delay may elapse between changing the inputs and the changing
of the output. In fact, other transitions can change the values of variables
while a transition is enabled. Thus, the precondition of a transition may
become false again without the transition having been performed.

2.1 Combinators

A transition describes the behavior of a subcircuit (e.g., an area of the
chip). Once such a subcircuit is fabricated, it is never removed, and it is
continuously in operation. This behavior is modeled in a “Synchronized
Transitions” program by a transition instantiation which results in a
transition that is performed repeatedly, i.e., every time the precondition
is satisfied, the action may be performed. To describe any significant
circuit, a large number of such transitions are needed. Two operators are
provided for combining simple transitions into descriptions of substan-
tial circuits. The asynchronous combinator, ||, combines two transitions
which execute independently. For example,

<< a<b-—oa,b:=b,a>|kKb<c—>b,c:i=c, b>

is a description with two independent transitions each of which may be
performed whenever its preconditions is satisfied. This computation sorts
a, b, and c into ascending order. All transitions combined with || are
independent; there is no global thread of control determining the order
of execution.

The synchronous combinator, *, creates transitions which are always
performed together. For example,

K cl —sa:=bh>*xKc2—=>D:=c>
is equivalent to
<< ¢c1 AND ¢c2 — a,b := b,c >,

Synchronous composition is used to specify that two operations are always
performed simultaneously (e.g., under control of a global clock); whereas,
no such assumptions are made with asynchronous composition. The || and

* combinators have the following properties:

Commutative: tilltz = talts, tixty = taxty
Associative: (t1|t2)||ts = t1]|(ta]lts), (E1%t2) *%ts = 1% (t2 % t3)
Precedence: t1||ta xt3 = t1]|(t2 * £3)

Distributive: t1 * (t2]|ts) tyxty || £ % 3

These properties of || and * give “Synchronized Transitions” great expres-
sive power in describing the relationships of transitions. A few special
forms of transitions are used to simplify forming expressions:

<< Multi-Assignment >>
This is a transition whose precondition is always true. For example,
<< y :=a Vb >isequivalent to: << TRUE —» y := a V b >
-3

<< Boolean Ezpression >>
This is a transition which has a preconditon, but performs no action.

For example, << c1 >> % << a := b >> is equivalent to: << c1
— a :=b >.

Frequently, the same operation is required in many different places in a
“Synchronized Transitions” program. In each place, the operation is per-
formed on a different set of state variables. “Synchronized Transitions”
provides a mechanism for parameterizing and naming transitions which
is analogous to functions of traditional languages. For example,

TRANSITION copy(from, to: element);
& from # E A to = E — to, from := from, E >

Several instances of a transition can be created using the operators
described above and supplying actual parameters. For example,

copy(a, b) || copy(x, ¥y).

2.2 Sets, Qualifiers, and Quantifiers

Often it is necessary to create a number of similar instances of a transition
(operating on a set of state variables, for example, an array). This is
expressed as follows:

| { 0 <=1i < n: copy(alil, ali+1l) },

6

which is equivalent to

copy(al0], al1]) || copy(al1ll, al2]) || copy(al2], al3])
| ...]| copy(aln-11, a[n])

This notation can be used in general to combine a set of transitions. In
its simplest form, a set is written {a, b, c}, and an expression such as
| {a, b, c}isequivalenttoa || b || c. Sets may also be used in binary
expressions. a || {b, c}isequivalenttoa | b || c,and a || {} (where
{} denotes the empty set) is equivalent to a.

A set element may be qualified by preceding it with a predicate. For
example, the set

{a >1: a}

includes a if d > 1. This allows conditional instantiation of transi-
tions.

A set element may be quantified by preceding it with the range for an
index variable. For example, the set {0 <= i < n: a(i)} is equiva-
lent to

{aC0), a(1), a(2), ..., a(n-1)},
and % {0 <=i<n: a(i)} is equivalent to
{a(0) * a(1) * a(2) * ...x a(n-1)}

The predicates and range expressions used in sets are evaluated statically
(when the transition is instantiated). Transitions, like hardware, are not
dynamically created and destroyed.

2.3 Cells

Cells are used for subdividing a large program into smaller components.
An example of a cell is given in figure 1. It consists of n registers forming
a ring. The ring circulates the elements in its registers. The cell heading

CELL ring(p: ARRAY[0..n-1] OF element);

gives the name of the cell and its formal parameters. The corresponding
actual parameters form the interface by which the cell communicates
with other cells. A cell may contain declarations of local state variables,
transitions and cells. The body of a cell (enclosed by BEGIN END) describes

7

CELL ring(p: ARRAY[0..n-1] OF element);
(* n gives the size of p *)
TRANSITION copy(from, to: element);
<< from # E A to = E — to, from := from, E >
BEGIN
| {0 <=1 < n: copy(plil, pl[(i+1) MOD nl)}
END ring.

Figure 1: A ring of registers

the instantiations which take place when the cell itself is instantiated.
These are described using the combinators || and * introduced above.

Instantiation of a cell is written in the same way as the instantiation
of a transition, by giving its name and actual parameters. Such a cell
instantiation creates the state variables of the cell and performs the inter-
nal instantiations of the cell, which in turn instantiate all its transitions
and possible further subcells. Cell instantiations may appear in expres-
sions using the || and * combinators, just like transition instantiations. A
cell may instantiate itself recursively, but recursion is a description mech-
anism only. The recursion takes place during instantiation. Cells may
have STATIC parameters which are fixed when the cell is instantiated and
may be used to dimension arrays, control recursive instantiation, etc.

The remainder of this paper presents an example showing how “Syn-
chronized Transitions” may be used to derive a non-trivial VLSI design.
The design is done as a sequence of refinements. FEach refinement is
written as a “Synchronized Transitions” program, with increasing imple-
mentation detail.

3 An Example: The Problem-store

A problem-store is a multi-set with one or more independent ports,
see figure 2. At each port processors may change the contents of the
problem-store by inserting or retrieving elements. When retrieving an
element, a processor may get any element previously inserted; there is no
requirement on the order in which the problem-store returns elements.
However, elements may not disappear or be duplicated by the store. Each

problem-store

.................................

— port — port — .-+ — port —

..... ea. B

Figure 2: Problem-store with multiple ports

element in the problem-store is associated with one or more categories. To
retrieve an element of a certain category, the processor supplies a pattern
which the retrieved element must match. The essential operations on a
problem-store are:

e out: inserts an element into the store, and

e in(p) retrieves an element matching the pattern p (when there is
one).

The operation names in and out are taken from the tuple operations in
Linda [3]. This reflects the strong resemblance between the tuple space
of Linda and a problem-store.

Algorithms using a problem-store have been implemented on several
general purpose multiprocessors [3][5][11]. The motivation for studying a
specialized problem-store is to achieve speed improvements beyond what
is possible on general purpose multiprocessors.

The interface to the problem-store is a number of ports. Each port
can be manipulated independently. It contains three registers: inreg,
pattern, and outreg, see figure 3.

e An element is inserted in the store by placing it in outreg.

e An element is retrieved by placing a pattern in the register pattern.
An element matching pattern will appear in inreg (if there is one).

e For all three registers it is assumed, that it can be detected when
they are empty (e.g., by inspecting a status variable).

The rest of this paper discusses a particular implementation of a problem-
store, called a storage-ring. It is intended to be implemented as one or

9

external

5 problem-store
processor g

Figure 3: A port into the problem-store

more VLSI chips. Naturally, this leads to a very different architecture
than the S/Net’s Linda kernel [3], which is implemented on top of a local
area network. Even at the VLSI level, there is a wide span of possible
implementations [1] [12]. The one considered here is a ring of storage
elements. Problems circulate around until they are retrieved at a port
(where an in operation with a matching pattern is performed).

4 Storage-ring

To illustrate the concept of a storage-ring, consider the simple design
shown in figure 4. It consists of n stages each of which has a port (plil)
and a register (x[i]). The out and in transitions correspond directly to
the out and in operations for the problem-store. The stages form a ring
by connecting the registers of adjacent stages.

wire(x[i], x[(i+1) MOD n])

All elements stored in the ring keep moving (as long as there is at least
one register which is empty). When an element passes a port, a, which
has a matching pattern (match(...) is satisfied), it is retrieved.

The problem-store implementation shown in figure 4 has several de-
ficiencies, among others a limited storage capacity and a potential for
blocking operations for long periods when the store starts filling up.
These problems can be solved by using a rubber-wire. This is a connec-
tion which can appear to stretch, increasing the storage capacity to more
than the two registers found at the ends of a wire in the program shown
in figure 4. When both registers are full, a new pair of empty register
appears between the two. The third register has been there all the time;

10

CONSTE = ... ; (* value of an empty register *)
TYPE port = RECORD
inreg, outreg: element;
pat: pattern;
END;

CELL storage_ring(p: ARRAY[0..n-1] OF PORT);
STATE x: ARRAY [0..n-1] OF element;

TRANSITION out(a: port; b: element);
<< (a.outreg <> E) AND (b = E) -> a.outreg, b := E, a.outreg >>

TRANSITION in(a: port; b: element);
<< (a.inreg = E) AND match(a.pat, b) -> a.inreg, b := b, E >>

TRANSITION wire(from, to: element);
<< (from <> E) AND (to = E) -> from, to, := E, from >>

BEGIN
Il { 0<=13i<n: wire(x[il], x[(i+1) MOD n]) ||

out(plil, x[i1) || in(p[il, x[il) }
END storage_ring.

Figure 4: A simple storage-ring

11

CELL rubber_wire(A, B: element; STATIC d: INTEGER);
(* Au --rubber_wire--> Bu

STATE Bu, Au: element;

TRANSITION stretch;
<< (A<>E) AND (Au = E) AND (B<>E) -> A, Au:= E, A >>
BEGIN
wire(A, B) || stretch || wire(Bu, B) ||
{d > 1: rubber_wire(Au, Bu, d-1),
d = 1: wire(Au, Bu) }
END rubber_wire.

Figure 5: Rubber-wire

it is bypassed when it is not needed. In figure 5, a “Synchronized Transi-
tions” description of such a rubber-wire is shown. The STATIC parameter
d specifies the height of the wire. The rubber-wire acts as a normal wire
when B is empty, but when it is not, elements are sent upwards to Au, the
terminal of another rubber-wire. The argument d specifies the maximal
height of the rubber-wire. Note that the rubber-wire instantiates itself
recursively.

The rubber-wire can be used to create an improved version of the
storage-ring by replacing the wire connecting the registers of two ports,
wire(x[i], x[(i+1) MOD n]), with a rubber-wire connecting the same
two registers, rubber_wire(x[i], x[(i+1) MOD n]).

5 Program Prototypes

The “Synchronized Transitions” language is well-suited for describing
hardware as parallel programs. Descriptions written in “Synchronized
Transitions” can be used to derive program prototypes (simulations) and
the final physical implementation (a circuit). Program prototypes are
useful for experimenting with and analyzing the properties of a design
at an early stage of its development. The prototype exhibits the same

12

functional behavior as the “Synchronized Transitions” description, and
therefore as the physical implementation. For example, program proto-
types of the storage-ring have been used to evaluate the effectiveness of
rubber-wires.

Each transition in a “Synchronized Transitions” program performs
only two simple operations: expression evaluation and assignment. These
operations are typical of imperative high-level languages, and it is straight-
forward to translate “Synchronized Transitions” programs to a more tra-
ditional language (e.g., Modula-2 or C). The concurrent execution of
transitions is accomplished by providing a module which implements
lightweight processes. Each transition is executed as a separate process.
This results in a very large number of concurrent processes; however, the
requirements of these processes are so simple that efficient implementa-
tions are readily achieved.

The program prototype for the storage-ring was derived by hand
translating the “Synchronized Transitions” program to Modula-2. The
“Synchronized Transitions” language deliberately has many similarities
with Modula-2 which facilitate this approach to translation. Declara-
tions, expressions, and parameter mechanisms do not require any modifi-
cation. Cells are translated into procedures which perform the necessary
instantiations, and transitions are implemented as lightweight processes.

A compiler to translate “Synchronized Transitions” programs to C is
currently being implemented. Although C has slightly different forms for
declarations, expressions, etc., the translation process is straightforward.
This compiler will be used to perform experiments with exploiting the
intrinsic parallelism of “Synchronized Transitions” programs on several
different multiprocessors.

5.1 Simulations

A translation such as the one just described may be used to transform the
program given in section 4 into a simulation aimed at giving a quantitative
evaluation of the design. The evaluation given here will focus on the
significance of the rubber-wires, so several versions of a storage-ring with
different heights (the parameter d) are compared.

The quantitative comparisons are based on the execution times needed
to finish an input batch. An input batch consists of n sequences, where
n is the number of ports of the storage-ring. Each sequence contains in

13

i o lower bound | d = d =4|d = 2| upper bound
' 45 205 | 205 | 205 1200

; _|lower bound |d =8 |d =4 |d = 2 | upper bound
biased : 3 T = 7 e

Figure 6: Simulation results, n = 32

and out operations. A simulation consists of running the storage-ring
with a given batch. Each port attempts to perform the operation at the
front of its sequence in the batch, and does it as soon as it is possible. An
in operation is possible if there is an element to retrieve from a particular
port. Similarly, an out is possible if there is room to insert the element
at the port.

The execution time is measured by counting the number of time steps
required to process the entire batch. In every time step, each transition is
performed at most once depending on its precondition. It is quite simple
to give both an upper and a lower bound on the execution time. If
the problem-store is represented in a traditional common store, at most
one operation from one batch can be performed at a time. Thus, the
sum of the lengths of all input sequences is an upper bound. With an
ideal problem-store, out operations (from any number of ports) would
always be possible and in operations (from any number of ports) would
be possible whenever there are matching elements in the store. The
execution time of such an ideal problem-store can be determined from
the sequences in the input batch. This time is used as a lower bound on
the execution time of a batch.

The simulations were done on two types of batches, in the first, called
random, ins and outs were distributed evenly on all ports. In the second,
called biased, the batch has more outs than ins (ratio 3:1) in its first
half, and more ins than outs (also ratio 3:1) in the second half. The
execution times for two batches (one of each kind) are shown in figure 6
(the execution times for the biased batches show considerable variation,
but the trend is the same in all the simulations that have been performed).
For the random batches the height of the rubber-wire is not significant.
One would expect that most of the time there are relatively few elements
in the store, because in and out operations are in balance. The benefit of

14

the rubber-wire is to absorb bursts of out operations, where the rubber-
wire works as a buffer. This is clearly demonstrated by the simulation
results of the biased batches.

The conclusion from these preliminary simulations is that the rubber-
wires effectively smooth out variations in the insertion rates. The height
of rubber-wires needed does of course depend on the expected variations,
but a few levels (< 10) seems to be sufficient for realistic batches.

6 VLSI Implementations

The previous sections have shown how the functional behavior of a cir-
cuit may be specified, analyzed, and verified using “Synchronized Tran-
sitions.” This facilitates exploring a design at a high level of abstraction
which is very important for evaluating capabilities and trade-offs. Just as
“Synchronized Transitions” specifications can be transformed to program
prototypes, they can also be used to derive the final physical implementa-
tion (layout). “Synchronized Transitions” is not tied to a specific type of
circuit. For example, it is possible to transform a “Synchronized Transi-
tions” program into either a synchronous or an asynchronous /self-timed
circuit. We will illustrate this by deriving a synchronous implementation
of a storage-ring with rubber-wires. The use of “Synchronized Transi-
tions” with self-timed circuits is presented in [6].

The synchronous design is based on a two-phase clock. Each clock
phase is controlled by a global signal available in all transitions. The
clock signals alternate between high and low, and the high periods of
the two clocks are guaranteed not to overlap. The essential property of
the clocks is this period of non-overlap which separates computations that
must not be performed simultaneously. Consider the following transition:

t:x ct 51t =Pt >

The reading and writing of state variables may be separated by doing
the reads during the high interval of one phase (called ¢; pulses) and the
writes on the complementary clock pulses (called ¢;). The transition t
can be implemented as follows using a two-phase non-overlapping clock:

<K pq — temp,enable := F(J:.t),Ct >
<< 9 A enable — 1t .= temp >

15

state
variables

jenable

C'| r:=| F()

[901 st’z](Pl
Figure 7: Two-phase implementation

This is called a two-phase implementation. The direct implementa-
tion of this pair of transitions is shown in figure 7. In the two-phase
implementation, there is a block such as the one shown in figure 7 for
each transition. The state variables are implemented as wires connected
to all the transitions using them.

6.1 Implementation conditions

To transform a “Synchronized Transitions” program to a circuit (using
the two-phase implementation described above), state variables are re-
alized as wires (connected to latches) and transitions as combinational
functions. However, a mechanical application of such transformations
can result in a circuit which does not exhibit the same behavior as the
“Synchronized Transitions” program. This is because transitions may
be performed simultaneously by the hardware in a way that violates the
atomicity of the “Synchronized Transitions” specification. For example,
two circuits could simultaneously attempt to assert different values on a
wire (state variable); whereas, an atomic execution assumes that these
two writes of the variable would happen one at a time. Likewise, in the
hardware, a value could be changed by one circuit while it was being
used by another resulting in an undefined value, but the atomic model
assumes a distinct sequence of reads and writes, so that each transition
reads consistent and well-defined values. We chose to restrict the spec-
ifications to ones for which such anomalous behaviors cannot occur and
mechanical transformations from specifications to circuits are valid. Such
restrictions are called implementation conditions. In the design pro-

16

cess, the “Synchronized Transitions” program is shown to satisfy a set of
implementation conditions, and the implementation is guaranteed to be
correct.

In the two-phase implementation, all enabled transitions are per-
formed in every clock cycle. This is a correct way of implementing a “Syn-
chronized Transitions” program where there are never dependent transi-
tions enabled simultaneously. Two transitions are dependent if one writes
a state variable which the other reads or writes. This implementation con-
dition can be defined more precisely as follows: Let Rf = {ry,r,, vees TRy }
be the set of variables read by a transition t*, and W* = {w1, wa, ..., wp, }
be the set of variables written by tt.

Concurrent Read Exclusive Write Condition (CREW):
For all distinct pairs of transitions instantiations t1 and 2

(RINW2£0)V(RPNW! £ 0) V(W NW? £ 0) = =(c! A 2)

The CREW condition says, that it must not be possible to satisfy the
precondition of a transition while another dependent transition is en-
abled. Establishing —(c* A ¢?) may require more analysis than just a local
argument using boolean algebra. Typically, an invariant capturing some
global property of the “Synchronized Transitions” program is needed.

It is important to note that this condition is applied to the “Syn-
chronized Transitions” program. Because the description is based on a
model of atomic transitions, established proof techniques such as invari-
ants are directly applicable to demonstrate that the conditions are sat-
isfied [4]. The implementation, on the other hand, may be constructed
from hardware which does not preserve atomicity; however, such an im-
plementation will preserve the appearance of atomicity (i.e., the possible
behaviors of the implementation will correspond to possible atomic exe-
cutions). Starting in a certain state S, a two-phase implementation of a
description satisfying CREW can only lead to states S', which could also
have been obtained by a sequence of atomic transitions starting from S.
To see this, consider one full clock cycle (both phases) starting in a state
S and leading to a state S'.

17

Let (s1,52,...,5m) be the state variables written in this clock cycle. Be-
cause it is assumed that CREW is satisfied, each is written by exactly one
transition, ¢;, and none of them are read by any of the other transitions
(1, t2y «oy tic1, tit1, ..., o). Hence, writing (81,52, ..., 8m) (by the same
transitions) in some serial order (atomically) cannot lead to a different
state than S’.

5 S’
t i< ... >

U315 s 25>
by 3 .u. 5

Thus, any state which is obtained by a two-phase implementation of a
program satisfying CREW can also be obtained by performing the tran-
sitions one at a time (atomically). This means that the two-phase im-
plementation is sound. Therefore, CREW is a sufficient condition for
using the two-phase implementation, but it is not necessary. There are
other (weaker) conditions that allow transitions to be performed simul-
taneously and still have valid two-phase implementations. The argument
given above indicates what such a weaker condition could be, namely one
which ensures that when a set of transitions is performed simultaneously,
the same result could have been obtained by executing the transitions
atomically. Any condition which ensures the existence of such a sequence
is sufficient.

Even when CREW is satisfied, there may be physical problems in a
two-phase implementation. For example, the duration of a clock phase
may be to short for all signals to propagate through the circuit and for
transistors to switch. Such physical problems are not discussed in further
detail here.

18

6.2 Transformations to satisfy CREW

The CREW condition is a rather strong condition and many programs
may not satisfy it immediately. However, in this section, a few trans-
formations are shown which can be used to obtain a program satisfying

CREW.
Consider two transitions not satisfying CREW.

tli el 5al >
t2:x 2 512 >

Hence, !

and +* are dependent and the conjunction: ¢! A ¢, may be
satisfied. Somewhere, a decision must be made about which transition
to perform when both preconditions are satisfied. Let us represent the
outcome of this decision by a boolean, b. If b is true, the first transition is
performed, otherwise the second. The two transitions can be transformed
as follows:

tl:x clA(=c2VvD) -4l »

t2: < CZA(mclv-b) — 42 »
Now the conditions are disjoint, and the transitions may be implemented
as above. Regarding b, there are several alternatives. The simplest is to
make a static choice about which transition should be performed, e.g., if
b is statically true:

tl:« ¢l -4t >

t?: x (C2A-cl) 52 »
If this is not adequate, one can introduce a boolean variable assigned in
the two transitions as follows:

tl: <« ¢l A(-c2vb) — 4l b:= FALSE >
t2 ;<< €2 A (=Ct v -b) - 42,b := TRUE >

Finally, b could also be implemented by circuitry producing a random
value; then, the choice of which transition to perform is non-deterministic.

The rubber-wire may be used to illustrate how CREW is used. Con-
sider the transition operating on one of the B-registers.

(Bu# E)A (B =E)A (A= E)

(4+# E)A(B = B)

i B

__(B#FE)A...

19

The last conjunct on the vertical transition, ...A (4 = E), is included to
satisfy CREW. It is an example of the static choice mentioned above.

7 Synchronous Implementation

The storage-ring of sections 3 and 4 can be implemented using the meth-
ods just described. The derivation process offers many opportunities for
refining the design; for example, the storage-ring presented in this sec-
tion is based upon bit serial communication. The bit-serial approach was
chosen to simplify wiring both on and off chip and to reduce the number
of pins required. The bit serial design is assumed to be controlled by a
global clock and all enabled transitions are performed in each clock cycle
(two-phase implementation). The global control signal, transfer, is true
for ww comsecutive clock cycles (to enable a shift from one register into
another). So, ww is the word width of a register. The signal transfer
is false for exactly one clock cycle (in which state changes take place).
The transfer of values from one register to another may be described as
follows:

TRANSITION copy(from, to: register);
<< transfer >> % << to.r[ww-1]:= from.r[0] >>
* {0 <= i < ww-1: << to.r[i] := to.r[i+1] >> }
* {0 <= i < ww-1: << from.r[i] := from.r[i+1] >> }

This transition is the only one which needs to be different in the de-
scriptions of a bit serial and a bit parallel design. In figure 8, a detailed
description of a bit serial version of the rubber-wire is given. The other
parts are similar. Note that this program assumes that the two-phase
implementation is used.

This specification of a rubber-wire satisfies CREW; thus, it can be
implemented with a two-phase clocked implementation as described in
the preceding section. It would be too space consuming to give a de-
scription of how a complete layout is derived; however, a small example
will illustrate the technique. Consider the following transitions (part of
a rubber-wire):

TRANSITION enable(from, to: register);
<< from.s AND NOT to.s >>

20

CONST

WW = ... (* # bits in an element (word width) #)
TYPE
element = ARRAY [0..ww-1] OF bit;

RECORD
s: BOOLEAN; (* TRUE = full, FALSE = empty %)
r: element;

END;

register

TRANSITION enable(from, to: register);
<< from.s AND NOT to.s >>

TRANSITION newstate(from, to: register);
<< NOT transfer >> * << from.s, to.s := F, T >

TRANSITION copy(from, to: register);
<< transfer >> * << to.r[ww-1]:= from.r[0] >>
* {0 <= i < ww-1: << to.r[i] := to.r[i+1] >> }
* {0 <= i < ww-1: << from.r[i] := from.r[i+1] >> }

TRANSITION wire(from, to: register);
enable(from, to) * (newstate(from, to) || copy(from, to))

CELL rubber_wire(A, B: register; STATIC d: INTEGER)

(* Au --rubber_wire--> Bu
I I
I I
B e > B *)
STATE Au, Bu: register;
BEGIN
wire(A, B) Il

wire(A, Au) * < B.s > |l

wire(Bu, B) * < NOT A.s > ||

{d>1: rubber_wire(Au, Bu, d-1), d=1: wire(Au, Bu) }
END rubber_wire.

Figure 8: Bit serial description of rubber-wire

21

from.s

to.s
A TS

P1

NOT transfer

Figure 9: Two-phase implementation of newstate transition

enable(from, to) * << NOT transfer >> *
<< from.s, to.s:=F, T >>

The layout for the last transition (part of the wire in figure 8) follows
the outline given in figure 7 with standard building blocks for each major
part of a transition (precondition, left hand side of :=, and right hand
side of :=), see figure 9. In figure 10, a layout of the circuit in CMOS is
shown. A complete layout of a rubber-wire following this approach has
been completed.

8 Conclusion

This paper has introduced a high-level language, “Synchronized Transi-
tions,” for describing VLSI designs. The following key points have been
stressed in this paper.

e A VLSI chip is described as a massively parallel computation.
e A systematic derivation of a VLSI design from a high-level program.

e Restrictions applying to a particular technology are formulated as
implementation conditions which can be checked on the high-level
description.

22

Figure 10: Layout of newstate transition

e Use of program prototypes for early experimentation /simulation of
a design.

Another important property is the potential for formal verification of
designs, e.g., invariance proofs. This has been described in a separate
paper [4]. An important application of this is doing automatic check of
implementation conditions such as CREW.

The detailed design of a so-called storage-ring was used to illustrate
the “Synchronized Transitions” language. A storage-ring is a specialized
store aimed at representing a problem-heap [11] or a tuple space [3].
Both of these concepts have been used to program a variety of different
multiprocessor algorithms. The motivation for studying a specialized
problem-store is to achieve speed improvements beyond what is possible
on general purpose multiprocessors.

Acknowledgements

Anders P. Ravn provided valuable insight and inspiration in the early
phases of the development of “Synchronized Transitions.” The first au-
thor is grateful to “The University of Washington”, Seattle for inviting
him as a visitor, supported in part by the National Science Foundation
under Grant No. CCR-8619663, and providing excellent conditions for
undertaking most of the work presented in this paper.

23

References

[1] F. Barrett, Problemhobe og VLSI, Masters Thesis (in Danish),

Computer Science Department, Aarhus University, Denmark, Octo-
ber 1986.

[2] K.M. Chandy and J. Misra, A Foundation of Parallel Program
Design, Prentice Hall, 1987.

[3] N. Carriero and D. Gelernter, “The §/Net’s Linda Kernel,” ACM
Transactions on Computer Systems 4, 2, May 1986.

[4] S. Garland, J. Guttag and J. Staunstrup, Verification of VLSI cir-
cuits using LP, Proceedings of the IFIP WG 10.2 Worshop
on ‘Design for Behavioural Verification’, North Holland 1988.
unpublished

[5] A. Gottlieb, B. Lubacevsky and R. Rudolph, “Basic techniques for
the efficient coordination of very large number of cooperating sequen-
tial processors,” ACM Transactions on Programming Lan-
guages 5, 1, January 1983.

[6] M.R. Greenstreet, T.E. Williams, and J. Staunstrup, “Self-Timed

Iteration,” in Proceedings from VLSI-87, Vancouver, North Hol-
land 1987.

[7] D.D. Hill and D.R. Coelho, Multi-level Simulation for VLSI
Design, Kluwer Academic Publishers, 1986.

[8] C.A.R. Hoare, “Communicating Sequential Processes,” Communi-
cations of the ACM, vol. 21, no. 8 (August 1978), pp. 666-677.

[9] H.T. Kung and C.E. Leiserson, “Systolic Arrays (for VLSI),” in
Sparse Matrix Proc., 1978, [.S. Duff and G.W. Stewart (eds.),
pPp- 256-282, SIAM 1979

[10] J.D. Morison, et al., “ELLA: Hardware Description or Specification,”
in Proceedings of 1984 IEEE ICCAD.

[11] P. Mgller-Nielsen and J. Staunstrup, “Problem-heap. A paradigm

for multiprocessor algorithms,” Parallel Computing 4, February
1987, North Holland.

24

[12] J. Staunstrup, F. Barrett, M. Greenstreet and P. Mgller-Nielsen,

“The Design of a Problem-mesh,” Proceedings from Comp-Euro
87, VLSI and Computers, IEEE 1987.

[13] “1986 Survey of Logic Simulators,” VLSI Systems Design, Vol.
4, no. 2, Feb. 1986, pp. 32-40.

[14] T.E. Williams, M. Horowitz, et al., “A Self-Timed Chip for Divi-

sion,” Proceedings of the Conference on Advanced Research
in VLSI, Stanford University, March 1987.

25

