ISSN 0105-8517

Teaching Object-Oriented Programming is
more than teaching Object-Oriented
Programming Languages

Jgrgen Lindskov Knudsen
Ole Lehrmann Madsen

DAIMI PB - 251

May 1988
AARHUS UNIVERSITY ] :ﬂ:[]
COMPUTER SCIENCE DEPARTMENT 1] q: [
Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK il —[='
Telephone: +456 1271 88 Telex: 64767 aausci dk j | rh—




Teaching Object-Oriented
Programming is more than teaching
Object-Oriented Programming
Languages®

Jgrgen Lindskov Knudsen and Ole Lehrmann Madsen
Computer Science Department, Aarhus University,
Ny Munkegade 116, DK-8000 Aarhus C, Denmark.
E-mail: jlk@daimi.dk -and- olm@daimi.dk

Abstract

One of the important obligations of an expanding research area is to
discuss how to approach the teaching of the subject. Without this dis-
cussion, we may find that the word is not spread properly, and thus that
the results are not properly utilized in industry. Furthermore, discussing
teaching the research area gives additional insight into the research area
and its underlying theoretical foundation. In this paper we will report on
our approach to teaching programming languages as a whole and especially
teaching object-oriented programming.

The prime message to be told is that working from a theoretical foun-
dation pays off. Without a theoretical foundation, the discussions are often
centered around features of different languages. With a foundation, dis-
cussions may be conducted on solid ground. Furthermore, the students
have significantly fewer difficulties in grasping the concrete programming
languages when they have been presented with the theoretical foundation
than without it.

Introduction

Most text books on programming languages describe the technical differ-
ences between various language constructs. This implies that emphasis is

*Presented at the Furopean Conference on Object-Oriented Programming (ECOOP’88), Au-
gust 15th-17th 1988, Oslo, Norway.



often concentrated around features of one language compared to features
of another language. This makes it difficult to discuss the qualitative dif-
ference between languages. The well-known “Turing Tarpit”* states the
fact that, on theoretical basis, any computation which can be expressed
in one of the familiar programming languages can also be expressed in
any of the others — including Turing machines. Thus comparison of
features should be more than a discussion about whether or not a given
construct may be simulated in another language. Furthermore, “a tech-
nical discussion” of programming languages is often lacking arguments
about the programmers perspective! on programming. (One illustrative
example of this approach can be found in [17].)

Instead of technical details it is often much more fruitful to discuss
requirements for supporting one or more perspectives. However, there
are books that discuss languages relative to one perspective. The per-
spectives are usually based on mathematical models. (One illustrative
example of this approach can be found in [37].) Few books are devoted
to the object-oriented perspective. This may be due to the fact that the
foundation/basis of object-oriented programming has not yet been very
well formulated.

The purpose of this paper is to describe how programming languages
are being taught at the Computer Science Department, Aarhus Univer-
sity. This teaching is highly influenced by 15-20 years of research in
programming languages and system development in Scandinavia, mainly
in Oslo and Aarhus. For more than 10 years, the teaching of program-
ming languages at the Computer Science Department, Aarhus University
has been heavily influenced by the object-oriented perspective. The ap-
proach to teaching object-oriented programming as well as the structure
of the present courses will be described.

First a description of the overall approach to teaching Computer Sci-
ence at the Department will be given. This is followed by a description of
the objectives for teaching the subject of programming languages, leading
to a description of the approach to teaching object-oriented programming.
Finally, the courses that have been given over the last few years, both in
the department and to industry are presented.

*According to W.A. Wulf[41] the “Turing Tarpit” was originally formulated by Alan Perlis.
tPlease note, that others use the phrase paradigm instead of perspective here, but the use of
paradigm in computer science has been questioned from several different sources; see e.g. [26].



1 Background

When planning s course it is important to be conscious of the prerequi-
sites of the students in order to design the most effective course. Our
courses have primarily been given to students at the Computer Science
Department and the overall approach to teaching computer science at the
department will therefore be described.

The Computer Science Department at Aarhus University has grown
out of the Institute of Mathematics. This has resulted in a strong influ-
ence of theoretical approaches to subjects. That is, the prime emphasis
in teaching computer science is put on teaching theories and perspec-
tives. Teaching concrete techniques and methods are considered as uti-
lizations of the theories and perspectives. This implies that the students
are trained in handling abstract notions besides being able to utilize these
abstract notions in approaching concrete problems. That is, they are
taught the abstract notions in order to make them capable of (relatively
easy) learning techniques and methods for applying the abstract notions
on concrete problems.

A study for the Master’s degree is supposed to take 5 years. Most
students, however, take considerable longer time to complete their degree.
During the first 3 years approximately half of the time is devoted to
computer science. The other half is usually mathematics and statistics.
After 3 years the students are at the level of a Bachelors degree. The last
2 years are full time computer science, including a thesis.

With respect to programming languages, the students are trained dur-
ing the first 2 years of study in using traditional procedural languages,
such as Pascal, Modula-2, and Concurrent Pascal. This implies that
their perspective on programming is highly influenced by the procedural
programming perspective.

The courses described here are given on year 3-5 of the study.

2 Objectives

The fundamental principle is that teaching concrete programming lan-
guages should be a subordinate objective in teaching the subject of pro-
gramming languages. There is a number of reasons for this:



e It is very difficult to predict which programming languages will be
the most influential in industry 10-20 years ahead (unless we settle
with the good old workhorses Cobol and Fortran). Furthermore,
we have to make sure that the students of today are able to access
the programming languages in the 21’st century (it’s only 11 years
ahead). By teaching them concrete languages of today, we are liable

to make it difficult for them to access the languages of the 21’st
century.

e In any teaching situation, it is most important to emphasize the
principles and utilize this insight to access concrete examples of the
principles. If you e.g. teach people object-oriented programming
by just giving a course on Smalltalk, they may have difficulties in
understanding the basic principles of object-oriented programming.
They will very likely equalize object-oriented programming with
programming in Smalltalk. Furthermore they often have difficulties
in actually learning Smalltalk.

e By learning principles, techniques and concepts, the student will
be able to evaluate different programming languages on basis of the
principles, and not on basis of more or less important concrete dif-
ferences (such as syntax). Furthermore, with well-chosen principles,
there is a better chance of the evaluation being fair to all languages
under consideration, and not being in favor of one specific language.
For any concrete programming language, it may be difficult for the
student to distinguish the important and general constructs of the
language from the always present idiosyncrasies. State-of-the-art in
programming language design has not yet reached a level where it
is possible to design a language that does not end up having some
poorly designed features, even if the overall principles are good and
sound. Simula 67[3] and Smalltalk-80 are good examples of this.
The basic principles behind these languages were excellent at the
time of invention. Still a user of these languages is confronted with
a large number of poorly designed edges.

e The students must be made able to consider using different lan-
guages for different programming tasks. In this case it is important
that the student (when he later acts as a system developer) is aware
of the perspectives which underlie the specific languages (or rather,



is able to identify the underlying perspective of different languages)
since the underlying perspective of a programming language in a
sense outlines the borders of the application areas for which the
particular programming language is well-suited, and therefore will
have an impact on the programming process.

We also strive towards avoiding the discussion of features of program-
ming languages, and stress that in order to make languages accessible it
is very important that the concepts simplicity, consistency and orthogo-
nality are the primary guidelines — features will never be fully utilized or
understood if they are nothing but features. Simplicity, consistency and
orthogonality of language constructs are what makes a language acces-
sible, irrespective of which programming perspective the language sup-
ports.

The quantitative approach to evaluating programming languages has
some serious defects, the “featurism” mentioned above being one of them.
Without more abstract notions of what constitutes important aspects
of a programming language, one is seriously in danger of the “Turing
tarpit”. This may stop any serious discussion of different programming
languages, since it does not make any distinction between supporting and
simulating a particular language construct. One very good example of
not making this distinction clear is the discussion by Per Brinch Hansen of
selecting language constructs to be included in the Edison programming
language[6]. One of these discussions is about whether it is necessary
to include both the repeat- and the while-statements. P.B. Hansen
argues that since repeat may be expressed in terms of while there is
no need for the repeat. This is the “Turing tarpit” since applying the
argument repeatedly reduces any control statement to being only specific
goto structures, and since not having the repeat in the language places
the burden on the programmer to implement the repeat each time he
finds a need for it. In this case we will say that the Edison language
simulates the repeat concept.

The question is now: What do we demand of a language in order for
it to support a given concept? Let us use the repeat example again. If
the repeat were present in a language, we would of course state that the
language supports the repeat concept, but more generally we would say
that a language supports the repeat concept if there exists a mechanism
in the language that makes it possible to state the repeat concept as



an abstraction which may then be used on equal terms with the built-in
concepts. In this way it is possible to create new abstractions that can be
safely implemented once, and then securely utilized over and over. That
is, the consistency of the abstraction is expressed once in the implemen-
tation and not scattered all over the program as with simulated concepts
discussed above.

Returning to object-oriented programming, it is important to be aware
that object-oriented programming is a lot more than inheritance, objects,
and message passing or member function calling, very much the same way
as structured programming is a lot more than goto-less programming.

3 Approach

The approach to teaching programming languages and especially object-
oriented programming is very much influenced by the perspective you
have on the role of the programming language in the system development
process. In fact this role is a three-way role: as a means for expressing
concepts and structures (conceptual modeling), as a means for instructing
the computer, and as a means for managing the program description.
Just focusing on the role as a means for instructing the computer is far
to narrow. In the role for conceptual modeling, the focus is on constructs
for describing concepts and phenomena. In the role for instructing the
computer, the focus is on aspects of the program execution such as storage
layout, control flow and persistence. Finally, in the role for managing the
program description, focus is on aspects such as visibility, encapsulation,
modularity, separate compilation, library facilities, etc.

Some of the success in teaching programming languages can be traced
back to the emphasis that is put on using these roles as the foundation
of the approach. Here the roles as means for conceptual modeling and
prescription have proven very effective, and to some extent this makes the
approach to teaching programming languages novel. It has been found
that restricting the discussion of programming languages to the role of
instruction (or coding) is far to restrictive, primarily because the end-
product of a programming process (the program) cannot (and should
not) be viewed in isolation from the programming process and thereby
the application domain.



3.1 Perspectives

Teaching the perspective of object-oriented programming cannot (or should
not) take place in isolation from other perspectives. Extensive parts of
the courses are therefore devoted to programming perspectives as such,
and presentation of various different programming perspectives.
Procedural programming? is taken as the starting point for the discus-
sion. Functional/logical programming and object-oriented programming
are then described as two different reactions to several problems related to
the concept of state in procedural programming. In functional program-
ming, the approach has been to eliminate the concept of state, whereas
the approach taken in object-oriented programming has been to treat the
concept of state as a first-class citizen. In addition various other perspec-
tives such as the process perspective, the type system perspective and
the event perspective are treated. The latter three perspectives are not
treated extensively but primarily in the context of the other perspectives.
Below a short formulation of the perspectives are given.

Procedural Programming

A program ezecution is regarded as a (partially ordered) sequence of pro-
cedure calls, manipulating data structures. This perspective is the most
common and supported by languages like Algol, Pascal, C and Ada. Pro-
cedural programming has the prime focus on the instructive role of the
programming language and very little support for the other roles of the
programming language, and is therefore not sufficient.

The courses we give do only treat procedural programming on the
level of perspective since the students in their previous courses have been
trained extensively in procedural programming. We do, however, cover
Ada as a representative of state-of-the-art within procedural program-
ming languages.

Functional Programming

A program is regarded as a mathematical function, describing a relation
between tnput and output. In functional programming, the concept of

'To ease the writing we will use the phrase .. programming” interchangeable with the
phrase “the ... programming perspective”.



state or variable is eliminated entirely. I.e functional programming is
variable free programming.

Lisp is often mentioned as the most prominent “functional program-
ming” language. It is well-known that most Lisp variants also have vari-
ables and thereby state. For this reason it is important to stress that
instead of classifying a given programming language as either a “func-
tional programming language”, a “procedural programming language”,
etc., it is often more useful to discuss to what extent a given program-
ming language has support for functional programming, object-oriented
programming, etc. There are few programming languages that are based
purely on one perspective.}

In the courses, functional programming is treated on the level of per-
spective. The students are trained in functional programming using the
Scheme programming language[27]. In another part of the department, a
course is devoted entirely to the subject of functional programming using
the Miranda language[39]. This course is complementary to the course
described here, since its main emphasis is on the theoretical foundation
for functional programming. Students are advised to take that course if
they have special interest in functional programming.

Constraint-Oriented (logic) Programming

A program is regarded as a set of equations, describing relations between
input and output. As in functional programming, the concept of state
is eliminated in constraint-oriented programming. Prolog is the most
dominant example of a language supporting the constraint-oriented per-
spective.

In the courses we treat constraint-oriented programming on the level
of perspective and exercises the constraint-oriented programming per-
spective using the Prolog language. In another part of the department,
a course is devoted entirely to the subject of logic programming using
the Prolog language and again students are advised to take that course
if they have special interest in constraint-oriented programming.

Object-Oriented Programming

A program ezecution is regarded as a physical model, simulating the be-

§To ease the writing, we will however use the phrase “... programming language” to mean
“programming language with primary support for ... programming”.

8



havior of either a real or imaginary part of the world. The object-oriented
perspective on programming is in contrast to the above perspectives that
are focusing either on manipulations of data structures or on mathemat-
ical models. The object-oriented perspective is closer to physics than
mathematics. Instead of describing a part of the world by means of
mathematical equations, a physical model is literally constructed. This
means that elements of the program execution are regarded as models
of phenomena and concepts from the real world. The part of the world
being modeled is described by the program. Some of the well-known ex-
amples of languages supporting this perspective are Smalltalk-80, Beta
and C++.

This “definition” cannot be seen in isolation but must be understood
in a broader context (this applies for the other perspectives as well.) In
the courses we elaborate extensively on this broader context as described
in section 3.2.

The Process Programming Perspective

A program execution is regarded as consisting of a set of processes, each
involved in their own activities, and communication with other processes.

The process perspective is focusing on structuring the transformations
on state. Some of the well-known examples of languages supporting this
perspective are CSP[7], Concurrent Pascal, and Ada.

In the courses we treat the process perspective at the level of perspec-
tive and study CSP and the process aspects of Ada.

It is also discussed to what extent the process perspective is at the
same level as some of the other perspectives. You may e.g. view the
process perspective as a development of the procedural perspective or as
subordinate to the object-oriented perspective.

Concurrent programming in languages like Concurrent Pascal and
Adais in our view mainly carried out as a generalization of a “sequential”
procedural perspective.

The modeling of objects with individual action sequences is a funda-
mental part of the Scandinavian tradition for object-oriented program-
ming. Simula 67 has support for coroutines and Beta[l6]. has support
for coroutines and concurrency. For this reason it is natural to view the
process perspective as subordinate to the object-oriented perspective.

Again we must stress (and this is of course also done in the courses)



that there is no objective way of defining what is right and wrong with
respect to the different perspectives on programming.

The Type System Perspective

The type system perspective may be viewed as a subordinate perspective
of the constraint-oriented perspective, where the relations are described
by means of type structures. Since type systems are an integrated part
of many procedural languages, these perspectives co-exist harmonically
in the same programming language. Many type systems have been pro-
posed in the past, most notably the Pascal type system, the Ada type
system, the ML type system (incorporating type inference and polymor-
phism), and the Cardelli and Wegner type system (incorporating hierar-
chical types).

Type systems are treated at the perspective level, and are related to
the object-oriented perspective by studying the relations between hierar-
chical type systems and classification hierarchies. We focus on the Ada
type system and on the Beta type system.

The Event Perspective

A program execution is regarded as a (partially ordered) set of events. The
event perspective is a theoretical approach to the process perspective.
The most notable representatives of the event perspective are Petri net
models[28], Calculus for Communicating Systems (CCS)[24], CSP-85[8].

The event perspective is only treated at the perspective level, and
as with the functional and constraint-oriented perspective, students with
special interest in the event perspective are advised to follow the Petri
net course, given by others in the department.

As indicated above we do not pretend to be objective in our teaching
in the sense that we make it clear that our perspective on programming is
mostly object-oriented. This implies that we (in the interest of honesty)
inspire the students to take the specific courses directed towards the other
perspectives if they find special interest in them.

3.2 Teaching Object-Oriented Programming

Having described the context of object-oriented programming, we will
now present the actual subjects treated in our courses on object-oriented

10



programming.

3.2.1 Theoretical Foundation for Object-Oriented Program-
ming

As stated above, the object-oriented perspective must be accessed on
basis of a theoretical foundation and not on basis of specific language
constructs. The theoretical understanding of object-oriented program-
ming which will be outlined in the following is among others a result
of research activities that the authors have carried out together with a
number of other people. It is important to stress that the teaching has
influenced the research too. A large number of students have treated
many of the subjects in their thesis work. A more detailed description
of the issues discussed may be found in [13] and [16]. The foundation is
highly influenced by the work reported in [9,22,32,25].

Modeling

In order to clarify the different roles that the programming language
plays in the programming process, we have to look more closely at that
process. The programming process may be described as a modeling pro-

cess in which several sub-processes take place. The figure illustrates the
programming process as a modeling

process between a referent system and
a model system. The referent system
@a \ |is part of the world that we are fo-

SN cusing on in the programming process,
and the model system is a program ex-
ecution modeling a part of the referent
system on a computer. The referent
system is the concrete physical world
or some imagination of a future phys-
ical world, and as such it consists only
of phenomena. As a characteristic

7S modelling

problen
specific
concepts

abstraction abstraction

phenomena {entities 4
™

Referent System Model System

human activity, we create concepts in order to capture the complexity of
the world around us — we make abstractions. That is, in the referent sys-
tem, both phenomena and concepts are important. In the model system,
we find elements that model phenomena and concepts from the refer-
ent system. Objects in a Smalltalk-80 program execution are typically

11



models of physical phenomena in the referent system and the sequence of
events generated by the execution of a method is typically a model of a
sub-process going on in the referent system. Concepts in the referent sys-
tem are modeled by abstractions such as classes, types, procedures and
functions. The program text is a description of the referent system and
in addition it is a prescription that may be used to generate the model
system.

The programming process can now be described in terms of this figure.
During the programming process, three sub-processes are taking place:
abstraction in the referent system, abstraction in the model system, and
modeling. Please note that intentionally we do not impose any ordering
among the sub-processes. Abstraction in the referent system is the process
where we are perceiving and structuring knowledge about phenomena in
the referent system with particular emphasis on the problem domain
in question. We say that we are creating problem specific concepts in
the referent system. This process is an integrated part of the system
development process. Abstraction in the model system is the process
where we build structures that should support the model we are intending
to create in the computer. We say that we create realized concepts in
the model system. Finally, modeling is the process where we connect
the problem specific concepts in the referent system with the realized
concepts in the model system.

Concepts and Abstraction

As discussed above, concepts and abstraction are the key notions in our
understanding of the programming process. It is therefore necessary to
discuss subjects like the notion of concepts and their relations to phenom-
ena, concept understanding, and important aspects of the abstraction
process.

A phenomenon is something in the world that has definite, individual
existence in reality or the mind; anything real in itself. What constitutes
a phenomenon is to some degree dependent on the view of the observer.
A concept is a generalized idea of a collection of phenomena, based on
knowledge of common properties of the phenomena in the collection. Con-
cepts may be characterized by three aspects: the designation, extension
and intension. The designation refers to the collection of names under
which the concept is known. The eztension refers to the collection of

12



phenomena that the concept somehow covers, and the intension refers to
the collection of properties that in some way characterize the phenomena
in the extension of the concept.

These definitions are deliberately somewhat vague since there are (at
least two) different ways to understand concepts: the Aristotelian view
and the prototypical (or fuzzy) view. Space does not allow an exten-
sive discussion of these two views — just a short characterization. In
the Aristotelian view, the concepts are rigidly defined, leading to sharp
concept borders and relatively homogeneous phenomena in the extension.
The Aristotelian view is the view that can be mechanized without human
interaction. The prototypical view, on the other hand, is characterized
by blurred concept borders, phenomena of varied typicality in the exten-
sion, and decision-making/judgement when a phenomenon is considered
for inclusion in the extension. The prototypical view is the view that best
describes human concept understanding.

As it can be seen above, the programming process is faced with the
problem that not only do we restrict the precision of our model by only
considering a part of the world (this is a problem studied in system de-
velopment courses), but equally important, the modeling process has to
take into account the restrictions imposed by modeling a possible pro-
totypical concept structure in the referent system into an Aristotelian
concept structure in the model system.

In both the referent system and the model system, concept structures
are created. This implies that we have to discuss the process of producing
and using knowledge, i.e. issues related to epistemology. Part of this
discussion includes an introduction to some of the work of Marx, who
has split the process of knowledge into three levels:

1. The level of empirical concreteness. At this level we conceive reality
or individual phenomena as they are. We do not realize similarities
between different phenomena, nor do we obtain any systematic un-
derstanding of the individual phenomena. We notice what happens
but does neither understand why it happens nor relations between
phenomena. In the programming process this corresponds to a level
where we are trying to understand the single objects that constitute
the system. We have little understanding of the relations between
the objects, e.g. how to group them into classes.

2. The level of abstraction. In order to understand the complications of

13



the referent system, we have to analyze the phenomena and develop
concepts for grasping the relevant properties of the phenomena that
we consider. In the programming process this corresponds to de-
signing the classes and their attributes and to organize the classes
into a class/sub-class hierarchy. At this level we obtain a simple and
systematic understanding of the phenomena in the referent system.

3. The level of thoughtconcreteness. The understanding corresponding
to the abstract level is further developed to obtain an understanding
of the totality of the referent system. By having organized the
phenomena of the referent system by means of concepts we may
be able to understand relations between phenomena that we did
not understand at the level of empirical concreteness. As well as
we may be able to explain why things happen and may be able to
predict what will happen.

In the process of creating concepts it is useful to identify the three
well-known sub-processes of abstraction: classification, aggregation and
generalization. To classify is to form a concept that covers a collection of
similar phenomena. To aggregate is to form a concept by describing the
properties of the phenomena by means of other concepts. And finally,
to generalize is to form a concept that covers a number of more special
concepts based on similarities of the special concepts. All three sub-
processes have an inverse process, called ezemplification, decomposition
and specialization, respectively.

In general the process of creating new concepts cannot just be ex-
plained as consisting of the above sub-functions. In practice the defi-
nition of concepts will undergo drastic changes. This is similar to the
situation with top-down and bottom-up programming. It is realized by
most people that pure top-down or bottom-up development of programs
is rarely possible. The understanding obtained during the development
process will usually influence previous steps. It is however useful to be
aware whether a problem is approached top-down or bottom-up. In the
same way it is useful to be aware of the above mentioned sub-functions
of abstraction. _

The word abstraction may be used to characterize a process, and the
sub-functions of abstraction were explained as processes going on with the
aim of creating concepts. On the other hand the word abstraction may
also be used in a static or descriptive way. A concept is an abstraction.

14



Given a number of concepts, their structure may be described in terms
of classification, aggregation and generalization. It is e.g. possible to
describe a given concept as a generalization of a number of other concepts.

In teaching it is important that the students are aware of this dis-
tinction. When evaluating a given language they might consider to what
extent the language support abstraction and its sub-functions as a pro-
cess and to what extent the language supports abstraction and its sub-
functions as a means for describing concept structures.

Information Processes and Object-Oriented Programming

Having discussed concepts and abstraction we turn our attention to-
wards characterizing the part of the world we are interested in creating
model systems for, and then characterize object-oriented programming
in greater detail.

The kind of model systems we are interested in, are those that model
information processes. An information process is regarded as a system,
developing through transformations of its state. The substance of the
process is organized as objects. The state of the substance may be mea-
sured upon through measurable properties, and the state of the substance
may change as an effect of transformations on the substance. Substance
is physical matter, characterized by a volume and a position in time and
space. Substance have certain properties that may be measured. E.g.
measurements may be compared with other measurements. Transfor-
mations are partially ordered sequences of events that change the sub-
stance and thereby its properties. Note that by focusing on information
processes, concepts exist that cannot be captured, e.g. “God”, “good”,
“bad”, etc.

In object-oriented programming, an information process is modeled
by organizing the substance of the program execution as a number of
objects. The measurable properties are modeled as state of objects, and
transformations are organized as action sequences performed by objects.
An object is furthermore characterized by a set of attributes that may
be either measurable properties, part-objects, references to objects, proce-
dures, or classes. Finally, an object may have an action-sequence associ-
ated with it. Every object has at any given point in time a state. States
are changed by objects performing actions that may involve other objects.
Actions may in addition be involved in the production of measurements.

15



A program ezecution consists of a collection of objects. Objects are clas-

sified into classes, and classes may be specializations of more general
classes.

3.2.2 Study of Object-Oriented Languages

Having set the scene for object-oriented programming, we turn to the
study of concrete examples of programming languages supporting object-
oriented programming. Here we focus on the languages Simula 67, Small-
talk-80, Beta, C++ and LOOPS, and discuss hierarchical type systems|2]
and delegation systems[18]. The study of the languages Smalltalk-80 and
Beta is extensive and includes training in actual programming using the
systems, whereas Simula 67, C++ and LOOPS are only evaluated the-
oretically. Here we have found that the theoretical foundation for ap-
proaching programming languages really has paid off. The students have
very little problems in grasping the concrete language constructs pre-
sented in the different languages when they utilize the theoretical foun-
dation as the basis for the learning process. They find that the notions
that are handed to them in the theoretical part of the courses are in fact
useful (although they might doubt it in the beginning of the courses).

It is not possible to discuss the application of the foundation in full
details in this paper but to illustrate the issues, we discuss classes as
models of concepts, class/subclass hierarchies as models of generalization
hierarchies, and classes as aggregations.

3.2.3 Applying Object-Oriented Theory to Traditional Lan-
guages

Besides utilizing the theoretical foundation for studying object-oriented
programming languages, we apply the foundation to traditional program-
ming languages, such as Pascal, Modula-2 and Ada. In this way, we are
able to gain additional insight into the foundation, but also to study
the limitations of the support for object-oriented programming in the
traditional languages. As an example, we discuss the relations between
(generic) packages in Ada and abstraction (especially generalization).

16



3.2.4 Persistency

One of the major drawbacks of present object-oriented systems is that
they do not support multi-user usage very well — they are essentially
single-user systems (e.g. the Smalltalk-80 system). In order to support
multi-user projects, persistent objects and shared program libraries must
be supported within the object-oriented framework (i.e. object-oriented
databases). The subject of object-oriented databases and persistence is
presently not discussed in detail. Only a discussion of the underlying
ideas and the reasons for the presently growing interest in the area is
included. It is however mandatory that this subject is included in our
courses In the near future.

3.2.5 Integration of Perspectives

The discussions of the various perspectives on programming give rise to
discussions of possible ways for integration of the perspectives in one lan-
guage. As already indicated, we find that some integration is both possi-
ble and fruitful. Since our perspective on programming is centered around
object-oriented programming, we discuss how the other perspectives can
be integrated in an otherwise object-oriented programming language. For
this discussion the Beta programming language has been chosen.

As mentioned in section 3.1, the Beta language integrate the procedu-
ral, process, object-oriented and type system perspectives in one unified
language. The limitations of these perspectives, and the elegance of cer-
tain solutions using the functional and constraint-oriented perspectives
are constant inspirations to the discussions. We find that integration can
be utilized to specify purely functional transformations on the states of
objects, and to specify constraints on the interrelations between objects.
Although not implemented, it seems to be possible to specify a purely
functional sub-part of Beta such that parts of a running Beta system is
specified using the functional perspective. With respect to integration
with the constraint-oriented perspective, various different approaches are
being considered. The proof-of-existence can be found in the Smalltalk/V
system[43] that contains a Prolog subsystem, but this system has not
been found sufficient. With respect to the event perspective, we have
found that the process perspective should be chosen as the pragmatic
approach to multi-sequential programming, using the event perspective
as the inspiring theoretical foundation.

17



3.2.6 Integration with Related Subjects

Traditionally the study of programming languages have been integrated
with aspects of compiler construction, formal language theory, machine
architecture and mathematical semantics. The courses described here are
also concerned with integrating with aspects of system development. As
indicated above, the approach to system development and the approach
to programming languages are related in such a way that selecting a
programming perspective will have an impact on the system development
process as a whole and to some degree on the resulting product. We
discuss those relations and their impacts as an integrated part of the
courses.

4 Courses

Several different courses based on the above premises have been given.
The present line of courses at the department is described together with
two courses given to people from the industry.

At the Computer Science Department we are offering two courses on
programming languages. The two industrial courses are one on object-
oriented programming and one on Smalltalk/V.

Bachelor level

The first course is at the third (and last) year of the Bachelor level pro-
gram. The course is partly on systems development and partly on pro-
gramming languages. The course is occupying 1/3 of the student program
for a whole year of which the programming language part is apx. 1 /2.
The part on systems development, includes the Jackson System De-
velopment Method(JSD)[11] and various approaches to prototyping. The
programming language part covers the following topics: The program-
ming process and conceptual modeling. Presentation of different per-
spectives on programming. Introduction to and practical training in
Smalltalk-80, Scheme and Beta. The introduction to JSD is related to
object-oriented programming where it is emphasized that JSD in fact is
very close to an object-oriented methodology. It is discussed to what
extent JSD may be strengthen by using an object-oriented language.
Smalltalk-80 is also used as an example of an environment that supports

18



fast prototyping.

As mentioned, the important issues in teaching is not teaching the ac-
tual languages. This makes it difficult to find good textbooks on the sub-
ject. Take for example Scheme. In the courses we want to demonstrate to
what extent Scheme supports the various perspectives on programming.
That is the teaching is concerned with features for supporting procedu-
ral programming, features for functional programming and features for
object-oriented programming. The book by Abelson and Sussmanl[1] is
an excellent book for a course on introduction to programming. However
it is far to big to be used by students already familiar with programming.
Other books on Scheme (and most books on Lisp in general) introduces
the language feature by feature, and does not relate it to perspectives.
The material used in the course includes (parts of) [4,19,16,42,30,13,20].

The reasons for using Smalltalk-80, Scheme and Beta are: Smalltalk-
80 and Scheme are representatives of flexible, dynamic languages without
static typing. This make them well-suited for exploratory programming.
Beta on the other side is a language with a static type system and in-
tended for production programming. Smalltalk-80 and Beta are repre-
sentatives of the two major directions in object-oriented programming.
Finally Scheme and Beta are languages that are not solely based on one
perspective. This is in contrast to Smalltalk-80 that has little support
for other perspectives than object-orientation.

Master’s level

The second course is at the Master’s level with a bachelor degree (in-
cluding the above course) as the only explicit requirement. The course
is on advanced features of programming languages with most emphasis
on programming language support of object-oriented programming. The
course is occupying 1/3 of the student program for one semester.

The course covers the following topics:

e The programming process and conceptual modeling[13].

e Types, packages, generics, tasks from Ada.

Various definitions of “object-oriented programming”[20,40,36].

Inheritance, delegation and enhancement[5,18,29,23,10].

Multiple inheritance[35,38,14].

19



e Modularization[21,33].

Furthermore, the Beta programming language is used extensively through-
out the entire course. The references are indications of material used.
The course is organized mainly as a seminar course where the students
are giving oral presentations of selected topics with the purpose of open-
ing discussions on the topics. At the end of the course, the students are
asked to write a small report on a selected topic within the course.

At the end of the course it is evident that the students are very able
in programming perspectives, their relative merits and application areas,
and object-oriented design and programming. Finally, they are able to
evaluate particular languages with respect to their relation to specific
application domains. Their ability to actually construct programs using
some specific programming language is not the subject of this course,
but experience has shown that the students are becoming accustomed
to learning new programming languages and use them effectively after a
short learning period. We find this to be a contribution of our theoretical
approach to learning the subject of programming languages.

Industrial Courses

In the industrial environment we have been given two courses on ob ject-
oriented programming. The first industrial course was called “Object-
Oriented Programming” and has been taught twice. The courses were
arranged by “Datalogforeningen” (an association of Danish computer sci-
entists, mainly in industry). The courses were limited to members of the
association, and in effect this meant that the attendants were all having
a Master’s in computer science from Aarhus University. They had at
least 4 years experience in industrial settings and had only very limited
previous experiences with object-oriented programming.

The course was two-days with lectures and discussions. The course
material was journal and conference papers, and language descriptions
(almost identically to the material used in the department courses). The
subjects discussed were object-oriented programming as discussed above
and the Smalltalk-80 and Beta programming languages with a brief dis-
cussion of the C++ language. The second course had attached to it a
one-day workshop one week after the course, covering exercises in actual
programming using the Smalltalk-80 and Beta systems.

20



Since the attendants were computer scientists with extensive training
in handling theoretical approaches to problems, we found that stressing
the theoretical approach to object-oriented programming was very fruit-
ful. The attendants were very active during the course and very many of
the discussions were centered around applying object-oriented programs-
ming in real-life industrial settings. The following workshop showed that
they were able to handle object-oriented design very well, and their pri-
mary problems could be traced down to problems in expressing these
designs in the concrete languages and to problems in handling the sys-
tems.

The second industrial course was given as an in-house course. The
course was on object-oriented programming using the Smalltalk/V sys-
tem on IBM personal computers. The attendants were mostly engineers
with no previous experiences with object-oriented programming but ex-
perienced in traditional procedural programming languages (Pascal and
Modula-2) and assembler programming.

The course was two-days with lectures, discussions and class-room
problem solving followed by an one-day workshop with one week delay,
covering exercises in actually using the Smalltalk/V system working on
relative small programming tasks in groups. The course material was the
tutorial and reference book accompanying the Smalltalk/V system plus
some articles from the Byte issue on Smalltalk-80[44].

Having no previous experience in object-oriented programming and
most importantly not being used to extensive theoretical approaches,
the attendants were in the beginning rather confused (Question: When
do we start learning something about Smalltalk/V programming?). In
the last part of the course they realized the importance of taking the
broader view (Reaction: Oh, that’s why I need to think differently!).
Finally, in the workshop the attendants had their major problems in
handling the Smalltalk/V system (they had nearly no previous experience
using window/mouse based interaction), whereas they were able to take
the initial steps in the direction of creating classification hierarchies. In
time of writing it is known that at least two of the companies having
representatives at the course are in the process of experimenting with
object-oriented programming using either Smalltalk-80, Smalltalk/V or
C++.

21



5 Final Remarks

Thus ended the story about teaching object-oriented programming at
the Computer Science Department at Aarhus University. Computer sci-
entists in the 21’st century will be forced to master several programming
perspectives and a magnitude of languages supporting those perspec-
tives. Without the theoretical understanding of the underlying perspec-
tives they may run into difficulties. Mastering concrete programming
languages and literacy in features will not be sufficient.

The most important single pay-off of the theoretical approach to the
subject has been the ease with which the students have been able to access
the concrete programming languages. When approaching new languages
they have proven to be able to characterize the language in question on
basis of the theoretical foundation, and thus avoiding discussing features
of one language compared with features in another language. That is,
they make qualitative evaluations on basis of the theoretical foundation
and not quantitative evaluations on basis of features.

Looking back, we have found that we as teachers (and to some re-
spect as researchers) are lacking some profound knowledge within other
research areas. Some of our work have strong connections to philosophy,
linguistics, philosophy of science, and psychology. The danger is that we
in those disciplines are somewhat amateur researchers. We have therefore
been very conscious to tell the students that we are not experts in all these
disciplines, and that our approach might have some defects if seen from
those research disciplines. However, we hope to improve our knowledge in
those areas. We are also aware that many of the interdisciplinary issues
mentioned here are well-known to people working with knowledge rep-
resentation within artificial intelligence and data bases, where modeling
of real world phenomena are central issues. Our approach is not pri-
marily directed towards issues of knowledge representation, but on issues
of software construction. This implies, that we are primarily discussing
the various aspects of utilizing object-oriented design principles in the
context of software construction and not knowledge representation. This
is the reason why we are discussing the object-oriented perspective in
this very broad context of system development, program description, and
program prescription as well as in the context of traditional languages
like C, Pascal, Modula-2 and Ada.

22



6 Acknowledgements

The motivation to write this paper came from discussions in an ad-hoc
working group at ECOOP’87 in Paris. Here it became evident that there
is a great need for discussing how people teach object-oriented program-
ming.

This paper reports on the experiences of teaching programming lan-
guages at the Computer Science Department at Aarhus University for
more than 10 years. Many people have been involved in this process.
Furthermore, the approach have been influenced by the last 15-20 years
of research in system development and programming languages in Scan-
dinavia. Proper acknowledgement of all these people is impossible. How-
ever, Kristine Stougdrd Thomsen must be mentioned for taking very ac-
tively part in the design and implementation of several of the courses. A
special thanks must go to the large number of students who have actually
taken the courses.

7 References

1. H. Abelson, G.J. Sussman & J. Abelson: The Structure and Inter-
pretation of Computer Programs, MIT Press, 1985.

2. L. Cardelli & P. Wegner: On Understanding Types, Data Abstrac-
tion, and Polymorphism, Computing Surveys, 17(4), 471-522 (De-
cember 1985).

3. O0.-J. Dahl, B. Myhrhaug & K. Nygaard: Simula 67, Common Base
Language, Norwegian Computing Center, 1970.

4. A. Goldberg & D. Robson: Smalltalk-80: The Language and its
Implementation, Addison-Wesley Publishing Company, 1983.

5. D.C. Halbert & P.D. O’Brian: Using Types and Inheritance in
Object-Oriented Programming, IEEE Software, 4(5), 71-79 (Septem-
ber 1987).

6. P. Brinch Hansen: The Design of Edison, Software — Practice &
Experience, 11, 363-396 (1981).

7. C.A.R. Hoare: Communicating Sequential Processes, Comm. of the
ACM, 21(8), 666-677 (August 1978).

23



10.

11.
12.

Lk,

14.

15.

16.

17.

18.

19.

. C.A.R. Hoare: Communicating Sequential Processes, Prentice-Hall,

Inc., 1985.

. E. Holbaek-Hanssen, P. Haandlykken & K. Nygaard: System De-

scription and the DELTA Language, publication no. 523, Norwe-
gian Computing Center, February 1977.

C. Horn: Conformance, Genericity, Inheritance and Enhancement,
Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP’87), Paris, France, June 1987.

M.A. Jackson: System Development, Prentice-Hall Inc., 1983.

J. Lindskov Knudsen & K. Stougird Thomsen: A Taxonomy for

Programming Languages with Multisequential Processes, Journal of
Systems and Software, 7(2) (June 1987).

J. Lindskov Knudsen & K. Stougérd Thomsen: A Conceptual Frame-
work for Programming Languages, Computer Science Department,

Aarhus University, DAIMI PB-192, 1985.

J. Lindskov Knudsen: Name Collision in Multiple Classification
Hierarchies, Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’88), Oslo, Norway, August 1988.

B. Bruun Kristensen, O. Lehrmann Madsen, B. Mgller-Pedersen &
Kristen Nygaard: Syntaz Directed Program Modularization, in P.
Degano & E. Sandewall (eds.): Integrated Interactive Computing
Systems, North-Holland Publishing Company, 1983.

B. Bruun Kristensen, O. Lehrmann Madsen, B. Mgller-Pedersen &
K. Nygaard: The Beta Programming Language, in [31].

H. Ledgard & M. Marcotty: The Programming Language Land-
scape, Science Research Associates, Inc., 1981.

H. Liebermann: Using Prototypical Object to Implement Shared Be-
havior in Object Oriented Systems, Proceedings of Conference on
Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA’86), Portland, Oregon, September 1986.

B.J. MacLennan: Principles of Programming Languages: Design,
Evaluation, and Implementation, CBS College Publishing, 1983.

24



20

21.

22.

23.

24.

25.

26.

2

28.
29.

30.

31.

32.

O. Lehrmann Madsen & B. Mgller-Pedersen: What Object-Oriented
Programming may be — and what it does not have to be !, Proceed-

ings of the European Conference on Object-Oriented Programming
(ECOOP’88), Oslo, Norway, August 1988.

O. Lehrmann Madsen: Block Structure and Object-Oriented Lan-
guages, in [31].

L. Mathiassen: Systemudvikling og systemudviklingsmetode (in Dan-

ish), Computer Science Department, Aarhus University, DAIMI
PB-136, 1981.

B. Meyer: Genericity versus Inheritance, Proceedings of Conference
on Object-Oriented Programming Systems, Languages and Appli-
cations (OOPSLA’86), Portland, Oregon, September 1986.

R. Milner: A Calculus of Communicating Systems, Springer Lecture
Notices in Computer Science, Vol. 92, Springer Verlag, 1980.

K. Nygaard: Basic Concepts in Object Oriented Programming, Sig-
plan Notices, 21(10), 128-132 (October 1986).

K. Nygaard & P. Sgrgaard: The Perspective Concept in Informat-
ics, in G. Bjerknes, Pelle Ehn & Morten Kyng (eds.): Computers
and Democracy — A Scandinavian Challenge, Avebury, 1987.

J. Rees & W. Clinger (eds.): Revised® Report on the Algorithmic
Language Scheme, Sigplan Notices, 21(12), 37-79 (December 1986).

W. Reisig: Petri Nets — An Introduction, Springer Verlag, 1985.

D. Sandberg: An Alternative to Subclassing, Proceedings of Con-
ference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’86), Portland, Oregon, September 1986.

B. Sheil: Power Tools for Programmers, Datamation, 29(2) (Febru-
ary 1983).

B.D. Shriver & P. Wegner (eds.): Research Directions in Object-
Oriented Programming, MIT Press, 1987.

J.M. Smith & D.C.P. Smith: Database Abstractions: Aggregation
and Generalization, ACM TODS, 2(2) (June 1977).

25



33

34.

35.

36.

37.

38.

39.

40.

41.

42,
43.

44.

A. Snyder: Inheritance and the Development of Encapsulated Soft-
ware Components, in [31].

B. Stroustrup: An Overview of C++, Sigplan Notices, 21(10) (Oc-
tober 1986).

B. Stroustrup: Multiple Inheritance for C++, Proceedings of EUUG
Spring 87 Conference, 1987.

B. Stroustrup: What is “Object-Oriented Programming”?, Proceed-

ings of the European Conference on Object-Oriented Programming
(ECOOP’87), Paris, France, June 1987.

R.D. Tennent: Principles of Programming Languages, Prentice-Hall
Inc., 1981.

K. Stougdrd Thomsen: Inheritance on Processes, Exemplified on
Distributed Termination Detection, International Journal of Paral-
lel Programming, 16(1), 17-52 (1987).

D. Turner: An Overview of Miranda, Sigplan Notices, 21(12), 158-
166 (December 1986).

P. Wegner: Dimensions of Object-Based Language Design, Proceed-
ings of Conference on Object-Oriented Programming Systems, Lan-

guages and Applications (OOPSLA’87), Orlando, Florida, October
1987.

W.A. Wulf: Languages and Structured Programs, in R.T. Yeh (ed.):

Current Trends in Programming Methodology, Vol. I, Prentice-Hall
Ing., 1977,

Scheme Manual (Seventh Edition), MIT, September 1984.

Smalltalk/V: Tutorial and Programming Handbook, Digitalk Inc.,
1986.

Special Issue on Smalltalk-80, Byte, Aug. 1981.

26



