ISSN 0105-8517

Name Collision
in Multiple Classification Hierarchies

Jogrgen Lindskov Knudsen

DAIMI PB - 250
May 1988

AARHUS UNIVERSITY I
COMPUTER SCIENCE DEPARTMENT]

Ny Munkegade 116 — DK 8000 Aarhus G ~ DENMARK
Telephone: +456 1271 88 Telex: 64767 aausci dk

THT

=5l
L

—|

Name Collision in Multiple
Classification Hierarchies*

Jorgen Lindskov Knudsen
Computer Science Department, Aarhus University,
Ny Munkegade 116, DK-8000 Aarhus C, Denmark.

E-mail: jlk@daimi.dk

Abstract

Supporting multiple classification in object-oriented programming lan-
guages is the topic of discussion in this paper. Supporting multiple clas-
sification gives rise to one important question — namely the question of
inheritance of attributes with identical names from multiple paths in the
classification hierarchy. The problem is to decide how these multiple classi-
fication paths are reflected in the class being defined. One of the conclusions
in this paper is, that by choosing strict and simple inheritance rules, one
is excluding some particular usages of multiple classification. This leads
to the notion of attribute-resolution at class definition, which means that
the programmer in some cases is forced or allowed to resolve the potential
ambiguity of the inherited names. The concept of attribute-resolution is
managed through the identification of two conceptually different utilizations
of specialization (unification and intersection), and two different attribute
properties (plural and singleton) to guide the attribute-resolution.

Introduction

One of the vital issues when designing programming languages or soft-
ware systems using the object-oriented perspective, is multiple classifica-
tion. In this paper, we will restrict ourselves to deal with programming
languages in the sense that our examples and our terminology are influ-
enced by work done within programming language design. However, we

*Presented at the Furopean Conference on Object-Oriented Programming (ECOOP’88), Au-
gust 15th-17th 1988, Oslo, Norway.

will claim that the discussion is relevant in the design process of object-
oriented systems, too. In fact, we find that a major part of the design of
an object-oriented system is language design, bringing the following dis-
cussion into the realm of object-oriented system design. In the past there
have been many proposals for programming language support for object-
oriented programming with multiple classification. Some of the most
notable proposals are the object-oriented extensions to Lisp: LOOPS[3]
and FLAVORSJ[13], the proposal for multiple classification in the class hi-
erarchy of Smalltalk-80[5], the ThingLab system[4], and the programming
languages Galileo[1], Amber[6], Eiffel[10], and C++[11]. The problem of
name collision has been dealt with very differently by these proposals.
Some of the proposals treat name collision in the hierarchy as illegal;
others treat name collisions as separate declarations of equal right, while
others treat name collisions as specialization of the attribute. As it can
be seen, no general agreement of the treatment of name collision has been
reached yet. This paper will examine the underlying issues in order to
reach a unified understanding of name collision and also to understand
why there isn’t one right treatment of name collision in class hierarchies
with multiple classification. Underlying the discussion is an aim to solve
as many name collisions as possible at compile-time, and to ensure the
highest degree of polymorphism.

1 Discussion of Object-Oriented Program-
ming and Multiple Inheritance

Object-oriented programming is one of the buzzwords of the eighties of
which all agree without agreeing on what it is. In the following, I will
shortly discuss my view of object-oriented programming to put this pa-
per into perspective. In object-oriented programming we have shifted our
attention from the program text onto the program execution. We look at
the program execution as a physical model of some part of the real world.
We want to structure both the program text and the actual program exe-
cution in a way that reflects this aspect of modeling. We want to be able
to identify structures of the program as models of actual phenomena in
the part of the world that we want to model.* This inspires us to examine

*In fact, we want to be able to model parts of some imaginary world, too, e.g. during the
design of a new application without any predecessors. To ease the writing, we will only use the

the ways in which we as humans conceive and structure our knowledge of
the phenomena of the world around us. Object-oriented programming is
inspired by three different ways in which humans structure their knowl-
edge. The first structuring mechanism is classification, where we identify
that a number of different phenomena share some common characteris-
tics. By classifying phenomena, we create concepts. A concept can be
described by its name, its intension, and its extension. The extension of a
concept is the phenomena that can be described by the concept, and the
intension is a description of the properties which phenomena in the ex-
tension possess. Having identified some concepts, we use these concepts
to create other concepts. This can be done in two different ways. Either
by aggregation or by specialization. Structuring concepts by aggregation
is to form a concept by describing the properties of the phenomena by
means of other concepts. Specifying a concept as being an aggregate con-
sists of specifying the sub-components and other aspects of the intension
(i.e. properties of the aggregate as a whole). Classification and aggre-
gation are not unique to object-oriented programming. In fact, almost
any programming language contains language constructs for specifying
classification and aggregation (e.g. type systems and record types).

The unique aspect of object-oriented programming is the language
support for the structuring mechanism specialization. Specialization of
concepts supports the specification of concepts as variants of other con-
cepts. When we specialize a concept, we do it either by specifying further
properties in the intension or by specializing one or more of the proper-
ties in the intension. Specialization of concepts gives rise to a hierarchical
structure on the concepts. In object-oriented programming we utilize this
hierarchical structure in the class hierarchy, and furthermore we may uti-
lize the structure to support polymorphic programming. By polymorphic
programming as part of object-oriented programming we understand the
ability to utilize the hierarchical structure of concepts in the specifica-
tion of e.g. parameters. Let us assume that we have a parameterized
program fragment, where one of the parameters is specified as class A.
Then the program fragment can be compile time checked with respect to
the legal usages of this parameter, since the manipulations of the param-
eter is legal, as long as it is manipulated according to the specification
given in class A. Since specialization is property preserving (i.e. if an

term “part of the world” instead of “part of the world or part of some imaginary world”.

instance of class A has property z, then instances of all specializations of
A will have the same property z) it is now possible to use instances of all
specializations of class A as actual parameter to the program fragment,
since they will possess at least the properties described in class A. We do
not say that specialization is semantics preserving, since most language
constructs for specialization do not necessarily preserve the semantics
of the attribute (especially of actions), although this is the ultimative
goal. For a more detailed discussion of this approach to object-oriented
programming, see [8] and [12].

Looking at existing specialization hierarchies reveals that very many
of them cannot be described by tree-structured hierarchies, since they
contain concepts which are specialized from at least one general concept
but along two (or more) paths in the hierarchy. The language support
for specialization in many programming languages allows only for tree-
structured classification hierarchies, thus limiting the expressive power of
the language. The concept of multiple inheritance (or multiple classifica-
tion) is one approach to loosen this limitation.

2 Definition of Terms

In order to ease the following discussion, a few terms need to be clarified.
In fact, these terms are used in the above discussion in accordance with
these definitions. By the term hierarchy, we will mean structures that
can be described by acyclic, directed graphs.

The term class hierarchy will be used
to cover the hierarchy of all the
classes in a given system and their
sub/super-class relationships. As de-
scribed above, the class hierarchy can
Fig. 1: Class hierarchy be used both for specifying inheritan-

ce of properties and for polymorphic programming.

The term classification hierarchy will
be used to cover that part of the class
hierarchy which is involved in the
classification of one particular class.
That is, there is one class hierarchy
Fig. 2: Classification hierarchy for F in a system, but several classification

hierarchies (one for each class in the system). In fact, the class hierarchy
is the union of all classification hierarchies.

The term inheritance hierarchy of a
class with respect to a particular at-
tribute is the part of the classification
hierarchy that covers the inheritance
Fig. 3: Inheritance hierarchy w.r.t. x paths of that attribute.

Name collision can arise in two different ways depending on whether
the collision is a result of the presence of more than one super-class, or
whether the collision arises because of ambiguities between the class itself
and its super-classes. It clarifies the discussion if these two types of name
collision are separated.

The term horizontal name collision
will be used to cover name colli-
sions, where a class inherits several
attributes with the same name from
Fig. 4: Horizontal name collision different super-classes.

Note that horizontal name collision cannot arise in tree-structured hier-
archies.

The term vertical name collision will
be used to cover name collisions,
where a class defines an attribute
Fig. 5: Vertical name collision with the same name as one (01‘ more)

attributes, inherited from one of its super-classes.

Please note, that both horizontal and vertical name collision might
be involved in a particular name collision, if e.g. in fig. 5, class A and/or
class C has an z-attribute, too.

3 Issues of Name Collision

Essentially, there are three different views on the consequences of a name
collision. We say that a name collision is intended if different attributes
with the same name describe the same phenomenon. We say that a name
collision is casual if different attributes with the same name describe
different phenomena. And we say that a name collision is #llegal if the
relation between attributes, names and phenomenon must be unique. In

5

the following sections, we will discuss these views in more detail.

3.1 Intended Name Collision

When a name collision is regarded as an intended name collision, we are
actually dealing with one attribute (defined by the name; i.e. the relation
between attribute name and phenomenon is unique). The attribute will
have several specifications (one for each inherited attribute, and possibly
one in the class itself) which together must constitute the full specification
of the unique attribute. In a programming language where all name
collisions are regarded as intended, the phenomenon is modeled by one
attribute with multiple specifications. This means that, in order to be
able to ensure the polymorphic property of the classification hierarchy,
the specifications must not be in conflict. If there are conflicts, it is
impossible to unify these separate specifications into one specification for
the phenomenon. It is not obvious in which situations we are able to

ensure the polymorphic property. Let us consider an example:
) B |

)

Fig. 6a: Intended vertical name collision Fig. 6b: Intended horizontal name collision

If we have an intended vertical name collision (as in fig. 6a), we
can ensure the polymorphic property if we know that the specification
of B.x is a specialization of the specification of A.x. This specialization
property can be ensured by classification hierarchies on the specifications.
This approach to specifications is taken by the Beta language[9]. Another
example is type-hierarchies as exemplified in the language Amber[6]. The
situation is more complex, when we consider intended horizontal name
collision (as in fig.6b). At least four different situations might arise:

1. The domains of A.x and B.x might be disjunct.
This might happen if A.x is a variable of type integer in the range:
1-99, and B.x is a variable of type integer in the range: 200-1000.

2. The domains of A.x and B.x might be inconsistent.
This might happen if A.x and B.x both model temperature but the
domain of A.x is Fahrenheit, whereas the domain of B.x is Celsius.

3. A.x and B.x might be of different nature.

6

This might happen if A.x is a variable of some type (e.g. integer),
whereas B.x is an operation.

4. The classes of A.x and B.x might have a common superclass.
In this case, the two attributes are to some extent related, and it

might therefore be plausible to consider them as different views on
the same attribute.

3.2 Casual Name Collision

When a name collision is considered casual, we are allowing several at-
tributes with the same name but with different, and not necessarily re-
lated specifications. In this situation it is important to be able to dis-
tinguish between the different attributes by some means other that their
names. The most immediate solution is to qualify attribute names with
the name of the class from which it is inherited (this qualified name is
unique). That is, in fig. 6a it must be possible to denote both A.x and
B.x, whereas in fig. 6b it must be possible to denote both A.x, B.x, and
C.x. In the case of casual name collision, it is useful to use horizontal
and vertical overwriting. Horizontal overwriting means that in class B
in fig. 6a it is possible to state that the z-attribute of B is e.g. A.x.
Vertical overwriting means that in class C in fig. 6b it is possible to state
that the z-attribute of C is e.g. B.x. Horizontal and vertical overwrit-

ing does not exclude the possibility of denoting the other z-attributes by
qualification — it is merely a short-hand.

3.3 Illegal Name Collision

When a name collision is considered illegal, the relation between names,
attributes and phenomena must be unique. This means that name colli-
sions will always give rise to compile-time errors, and not run-time errors.

3.4 Summary of Name Collision

The above discussion can be summarized by the following table:

Intended Casual Illegal
Horizontal « Disjunct * Qualification
* Inconsistent * Horizontal
« Different nature overwriting
= Specializations
Vertical = Specializations » Qualification
» Vertical
overwriting

Figure 7: Summary of issues of name collision

4 The Need for Programmer Control

By examining a selected classification hierarchy, we find that all three
views on name collision are useful, and each corresponds to different
aspects of programming and modeling, and that choosing one particular
interpretation will result in the inability to express certain structures.
That is, using one particular view in connection with either vertical or
horizontal name collision is a matter of choosing to express one particular
relationship between the inherited attributes, and the specified attribute
(if there is such one).

T A mployee

@ Unification ! I\.]/) Y
O Intersection < Address
» Seniori

B
Accountant Part-time Lecturer Secretary

Part-time Lecturer & University Secretary
niversity Employeg

O
art-Time Lecturer I Male J ;
: Part-Time Lecturer &
University Employee & Par.t—tu'r.le Lecuntr.& University Secret
iversity Employes iy ary

Figure 8: An example classification hierarchy
To guide the discussion of the various possibilities involved in dealing
with name collisions in multiple classification hierarchies, we will examine
the classification hierarchy in figure 8. Let us assume that we are in the
process of developing an accounting system for the university administra-
tion. Currently we are focusing on the structures for handling the data

8

concerning employees (name, address, job-category, salary, etc.). Assume
that we are utilizing an object-oriented system, and that some part of the
classification hierarchy is developed outside our organization (that is, we
cannot make changes to parts of the system — only expand those parts).
There is one important requirement; namely that an employee must only
be represented as one employee-object in the system.

We have only identified three attributes of the employee class to sup-
port the discussion. Further attributes may be specified in both the
employee class and in the shown specializations (e.g. accountant). In
the hierarchy there are four examples of multiple classification, namely
classes D, F, H and J. Now looking at the attributes Name, Address, and
Seniority there is no doubt that throughout the entire hierarchy, the at-
tributes Name and Address are singleton (i.e. any instance of any class
in the hierarchy will only have one Name and one Address attribute).
The question is more subtle when we consider the Seniority attribute. In
that case we often find that a single person is employed at the same uni-
versity in more that one position at a time. As an example, we may find
a person who is professor at one department, but at the same time part-
time lecturer at another department. And he may even be accountant
of some foundation, administrated by the university in question. The
Seniority attribute is concerned with the seniority of the person as em-
ployed in the particular job-category. Since we know that any employee
is employed in at least one job-category, it is meaningful to specify that
any employee-object has a Seniority attribute. But the seniority of one
particular person is dependent on whether we consider his/her seniority
as e.g. accountant or as e.g. part-time lecturer. This might lead to speci-
fying that the Seniority attribute should be inherited down the hierarchy
with duplicates when multiple classification is involved. This is, however,
erroneous since the class F models secretaries employed at the university,
and as such secretary instances should only have one Seniority attribute.
In fact, the following table indicates the intended distribution of Seniority
attributes in this small class hierarchy:

A B |C D |E F G H I J

Number of
Seniority 1 1 1 2 1 1 1 3 2 P

attributes

Figure 9: Table showing number of Seniority attributes
The problem is how do we obtain the situation where some name

9

collisions are treated as intended, others as casual, and yet others as
illegal? It is obvious that choosing one particular view on name collisions
(e.g. casual name collision) will not result in the above table.

5 Discussion of Solutions

Looking at the classification hierarchy in figure 8 and the table in figure
9, one can see that the specialization taking place in the specification of
class D and H is different from the specialization of class C and E to
class F. If we look at (G,D) = H and (C,E) = F, we will see that the
number of Seniority attributes in H resp. F will be either 3 resp. 2, or
1 resp. 1. This inspires to look closely at the underlying semantics of
the classes H and F. Class H models employees who at the same time
are employed as part-time lecturer, university employee, and accountant;
that is, holding three job-positions, whereas class F models employees
who are secretaries at a particular university; that is, holding only one
job-position. This gives us the motivation for introducing two different
specialization methods. The first specialization method (called unifica-
tion) takes care of the kind of specialization where the specialized class
is supposed to model the unification of all the classes in its classification
hierarchy; that is, if a horizontal name collision should occur, it should
be treated as a casual horizontal name collision, giving rise to multiple
attributes with the same name. We call such a class an unification class.!
The second specialization method (called intersection) takes care of the
kind of specialization where the specialized class is supposed to model
the intersection of all the classes in its classification hierarchy; that is, if
a horizontal name collision should occur, it is treated as an intended hori-
zontal name collision if the attribute for all the immediate superclasses is
inherited from a common superclass. We call such a class an intersection
class. To motivate this rule, let us look at figure 8 and assume that class
D is an intersection specialization. Then the name collision of the two
Seniority attributes from B resp. C is treated as an intended horizontal

tPlease note, that unification is conceptually different from aggregation, since a unification
of classes A, B and C specifies that the unified class can be approached from three different
perspectives (namely those perspectives that are defined by the classes A, B and C). This is
called subtyping by combination in [7]. An aggregation of classes A, B and C specifies that the
aggregated class is composed of an instance of class A, an instance of class B, and an instance
of class C. This is called subtyping by composition in [7], and part hierarchy in [2].

10

name collision, since the attribute originates from class A which is a com-
mon superclass of both B and C. If classes B and C, on the other hand,
both had an z-attribute (not inherited from class A), the name collision
in D would be treated as a casual horizontal name collision. Now, apply-
ing the above rule to the hierarchy in figure 8 will give us the intended
distribution of the Seniority attribute, if we assume that classes D and H
are unification classes, and class F is an intersection class. If we however
look at the Name and Address attributes, we do not get the intended
distribution, since there will be multiple copies in the classes D and H.
This is highly undesirable, since it may give rise to inconsistencies in the
contents of these different copies of this semantically identical attribute.
It is therefore not sufficient to device two different specialization meth-
ods — we have to specify inheritance properties of individual attributes,
too. We will therefore introduce the concept of singleton attributes with
the semantics that they may only exist in one copy in any of the future
specializations of the class. All other attributes are said to be plural.
The singleton property is associated with the attribute in the class that
initially declared the attribute. Looking at figure 8, the attributes Name
and Address must be specified as singleton in class A in order to obtain
the desired distribution of attributes.

Of course, it may be possible to specify the singleton property on
a class as a whole implying that all attributes of the class are given the
singleton property. This is merely a shorthand for the common case where
the whole class is shared by all subclasses in the classification hierarchy.
Singleton classes are very similar to virtual classes in the proposal for
multiple inheritance in C++[11].

6 Discussion of Unification and Intersec-
tion Inheritance

The detailed properties of unification and intersection inheritance can be
discussed in detail by examining the cases outlined in figure 10. These
cases illustrate the various possible types of hierarchies that may arise
in multiple classification hierarchies. In the following, I will give some
comments on the most important cases in order to justify the formal
rules for inheritance in multiple classification hierarchies that are given
in section 7.

11

The classes in the hierarchies are named Al, A2, etc. Case 1
on first level, B1, B2, etc. on second level, and so on.
See case 2.
Assume that an x-attribute is defined in all A—classes. (la)
Case 2 Case 3
(3a)

Case 5

(6e)

Figure 10: Important Multiple Classification Hierarchies

12

Case 1: Single Inheritance
If class B inherits from class A using single inheritance, name col-
lision is dealt with using the well-known rules from tree-structured
classification. We will not discuss this case further in this article.

Case 2: Disjoint Multiple Inheritance
The case of disjoint multiple inheritance is the place where we decide
to consider some name collisions as being illegal.

2(a): Unification
When disjoint hierarchies are combined using unification in-
heritance, we consider name collisions as being casual, and
allow duplicate instances of attributes having the same name.
The reason is, that we want to combine two independent hi-
erarchies. An example is combining a hierarchy concerning
job type (teacher, secretary, trucker, etc.) with a hierarchy
concerning nationality (Danish, Swedish, American, etc.). If
there is an attribute X in both hierarchies, then this attribute
will not be considered as being the same attribute (i.e. the
two hierarchies use the same name X by coincidence).
2(b): Intersection

When hierarchies are combined using intersection inheritance,
we are stressing that the involved hierarchies are considered
as mutually contributing to the full specification of the new
class. That is, the new class is created by merging attributes.
In the case of a name collision, we have to consider whether it
makes sense to merge the attributes. If the attributes are not
defined in a common superclass (that is, the attributes have
each their own defining statement), then there is no way to
ensure, that the attributes are related in any way (see section
3.1), and any automatic rule must consider name collisions in
disjoint intersection inheritance as illegal name collisions.

Case 3: Simple Multiple Classification
In this simple case of multiple inheritance, the classification hierar-
chies of the superclasses share a common superclass in which the X
attribute is defined (and no multiple inheritance is involved in the
superclass hierarchies).

13

3(a): Unification
The same as disjoint unification above, giving rise to two X
attributes in class C.

3(b): Intersection
In this case, the superclass hierarchies share a common super-
class in which the X attribute is defined, and it is therefore
possible to assure that the inherited X attributes are related
and thus it makes sense to merge them into one attribute.

Case 4: Chained Multiple Classification
Chained multiple inheritance is similar to simple multiple inheri-
tance, so only two sub-cases need to be commented on:

4(a): Chained Unification
When a unification class (e.g. C) is a common super-class in
another unification class (e.g. E), all attributes are inherited
along all available paths in the resulting inheritance hierarchy
for ' w.r.t. X. In this case giving rise to four X attributes
in E. It may be argued, that class F only contains two X
attributes, and the formal rules in section 7 can relatively easy
be modified to reflect such a decision.

4(c): Unification after intersection
Having intersected an attribute does not imply that the at-
tribute is made singular (i.e. further specializations may con-
tain duplicates of the attribute), but merely that at this level
in the hierarchy, the attribute is unique. If this attribute is
further inherited multiple times in a unification, it will give
rise to multiple instances of the attribute. In this case, class
E will possess two X attributes.

Case 5: Two-level Multiple Classification
The case of two-level multiple classification deals with the case
where an attribute is defined in a common superclass, and that
class is (independently) specialized into several classes. These spe-
cialized classes are then involved in separate multiple classifications
that in turn are classified into one class using multiple classification.
None of those cases needs further comments.

Case 6: Two-level Mixed Multiple Classification
This case is similar to case 5, except that the specialized classes

14

are involved in multiple classifications that are overlapping. Here
cases 6(a), 6(c), and 6(e) need to be commented on:

6(a): Two-level Mixed Multiple Unification
This case is very similar to case 4(a), leading to four X at-
tributes in class E. However, similar to case 4(a), it may be
argued, that class E only contains three X attributes, and the
formal rules in section 7 can relatively easy be modified to
reflect such a decision.

6(c): Merging
In this case, the X attribute which is inherited along the path
A-B2-C1-D1 is merged into the X attribute inherited along
path A-B2-C2-D2 since the origin (class B2) is involved in
both class D1 and D2.

6(e): Unification after overlapping Intersection

With respect to the number of X attributes, this case is iden-
tical to case 4(c).

7 Formal Specification of Inheritance Rules

After the above discussion of the objectives for inheritance rules, it is
time to state them more formally. The formal rules will be followed by
the rationale for the intrinsics of the rules.

15

7.1 Notation

Xymdtetor = The set of all paths in the inheritance-hierarchy for class
B w.r.t. the singleton attribute X. If X is not a singleton
attribute of B, Xg‘"“g’“"" = 0.

Xpvra = The set of all paths in the inheritance-hierarchy for class
B w.r.t. the plural attribute X. If X is not a plural
attribute of B, X5 =),

X379 = The set of merged attributes named X in class B. Each
element in the set is a set containing all the paths, con-
tributing to the particular merged X. If X is not a plural
attribute of B, Xg"””d = (.

super(B) = The set of all superclasses of class B.

X:ingiet}gn - U leingleton

uper(B) A€ super(B)
Xplura.l — U Xﬁluml

B =

super(B) Aesuper(B)
Xmerge% = U Xlnerged

Hge(P) Aesuper(B)

merged __ d

UX ety = {pe SIS e X |

Comments on Notation

The sets X5 9" X2l and Xm"9*? contain the information necessary
to decide the number of X-attributes in B, divided into three categories,
depending on whether the particular X-attribute is singleton, plural or
merged. When an instance of class B is created, the sets are used in the
following way:

For each element in X5, an X-attribute is instantiated with the
qualification given by the path in the classification hierarchy for B speci-
fied by that element. Intuitively, this rule states that a plural attribute is
to be instantiated with the full qualification along its (unique) inheritance
path in the classification hierarchy for its class.

For each element in X5"%? an X-attribute is instantiated with a

16

qualification that is given by the path in the classification hierarchy for
B, specified by the longest common path (LCP) of that element. LCP
is the longest common path of the set. Intuitively, this rule states that a
merged attribute cannot always be instantiated with the full qualification
along its inheritance path in the classification hierarchy for its class since
that path is not necessarily unique. A merged attribute may be inherited
along multiple paths in the classification hierarchy (as with the Seniority
attribute in class J in figure 8). Since these multiple paths may have
conflicting qualifications for the attribute, the only qualification that can
be ensured for the attribute is the qualification which all inheritance
paths for that particular instance of the attribute agree upon, namely
that given by the nearest branching node in the inheritance hierarchy
(defined by LCP).

If X35"9'" £ (), one attribute is instantiated with a qualification given
by LCP(X 3 '),

The inheritance paths are represented in the sets in the following way:
Upper-case letters indicate names of classes, lower-case letters indicate
sub-paths. The classes in the path are separated by either ‘.’, ‘’ or ‘}’
where ‘A.B’ indicates that B inherits from A using single inheritance,
‘AfB’ indicates that B inherits from A using unification inheritance, and
‘A B’ indicates that B inherits from A using intersection inheritance. In
path expressions, ‘x’ is taken to denote any of ¢.’, ‘4’ or ‘}’. For any path
p, |p| represents the length of the inheritance path (i.e. the number of
classes along the path).

7.2 Plural and Singleton definition in B

Xgural — {B} U XpluméB)

super

singleton __ singleton
XB = {B} U Xsuper(B)

Comments on Plural and Singleton Definition Rules

The rules for plural and singleton definitions state that defining a plural
attribute in a class gives rise to one more potential attribute of that name
in all subclasses of that class. Defining a singleton attribute implies the
presence of at least that instance of the attribute. In both cases, the
definitions from the superclasses are retained.

17

7.3 Single inheritance in B

stngleton _ {SB| s € X:;?;gi?tg?}

X%luml _ {p.B] pc Xpluml }

super(B)

erged g
xpmd = (68| se 5} S € xpom)

7.4 Unification inheritance in B

Xsmgleton — {STB | sE Xsingleton}

super(B)
x5 = {ptB|pe Xhurts A (Fats € UXTSL - p = axp/ Ala] > 0)}

X'gbe'rged = {{STBl s € S}U

{aiptB | axp € X A (Jats € S:la| > 0)}| S € x;j;’;g‘gd)

super(B)

Comments on Unification Inheritance Rules

The case of unification inheritance is complex. Let us first comment on
the rule for X%**, This rule states that the set of X-attributes in B
is those attributes inherited from the superclasses that have not been
merged in any of the superclasses. The exact rule states that a plural
attribute is turned into a merged attribute, iff the plural attribute is
inherited along the same path as one of the paths of the merged attribute
up to the node in the classification hierarchy where the attribute is made
merged. Intuitively this implies that name collisions are considered casual
unless the name collision is between a plural and a merged attribute with
a common subpath.

The first part of the rule for X5 states that all merged attributes
in the superclasses are inherited unconditionally. The second part of
the rule states the actual merging of a plural attribute into a merged
attribute. Exactly this is done by injecting the (slightly modified) path
of the plural attribute into the element of Xp TeHiEd containing the common
subpath. Intuitively this implies that the specification of that particular
instance of the merged attribute is extended to include the specification

18

}

given by the plural attribute. This implies that the name collision is
considered intended.

7.5 Intersection inheritance in B

if da : (Ial >0AVYp e Xfi;:ffEB) u UX:Z;’;?,‘EdB) ip=axp Vp= a)

then X5 = {6tB | s € X125}

Xglural _ 0

xpeoet = {{s1B|s € Xrhuty Uy XTIt 1)

else illegal name collision on X in B

Comments on Intersection Inheritance Rules

The conditional part of the rule states that intersection is legal iff all
inherited plural attributes share a common subpath in their inheritance
path. If not, the name collision is considered illegal, since the origin of
the different plural attributes is distinct parts of the hierarchy with no
connections in the inheritance path of attributes.

If, on the other hand, the inherited plural attributes share a common
subpath, they are all merged into one merged attribute. Intuitively this
rule states that intersection is like unification except that all inherited
plural attributes must be considered as all contributing to one particular
attribute. If this is not possible, the name collision is considered illegal.

8 Resolving Conflicts

The above inheritance rules do not resolve the conflicts, but merely re-

strict the possibilities for conflicts. Now assume that we want to access

the z-attribute of class B. If only one z-attribute exists in Xj<ro*4Uxg**,

no ambiguity arises. But if more than one exist, the specification of the z-

attribute must be unambiguous. We will propose the foldlowing rule: If no
merge

further specification is given, the z-attribute in Xp will be selected,
if the set is not empty. If the set is empty, or if one of the z-attributes in

19

X% is wanted, a qualification must be given to resolve the ambiguity.

This qualification can be given by specifying a subpath of the inheritance
path of the attribute in the inheritance hierarchy for the attribute from
the present class and to a node, where the attribute is unique (according
to the above rule). This implies that the above mentioned node must be
either the defining node of the attribute, or a node where the attribute
has taken part of an intersection inheritance.

9 Horizontal and Vertical Overwriting

Instead of resolving conflicts (as described above) each time it may arise,
it might be easier to allow for horizontal or vertical overwriting. If this is
allowed, the above rule for resolving conflicts must be extended to check
for the existence of an overwriting, in which case the qualification can be
considered unambiguous. Naturally, further qualification is allowed, and
sensible, in the case where the overwriting is not what is wanted in the
present situation.

9.1 Explicit Inheritance

In section 7, the default rules for inheritance of attributes in a multiple
classification hierarchy are given. The reasons for the rules are based on
the recognition of the classification hierarchy as a conceptual hierarchy.
There might be cases in which the expected inheritance does not conform
with the conceptual hierarchy. This might be the case in situations where
the classification hierarchy is slightly ill-suited for the specific application,
but where reorganization for some reason is not applicable.

In these situations some restricted usage of horizontal overwriting can
be allowed. In fact, in this situation we are dealing with intended name
collision which cannot be dealt with by the default rules. Returning to
section 3.1, four situations might arise. The case of the inherited at-
tributes being disjunct cannot be remedied by horizontal overwriting.
The next two cases can be remedied by horizontal overwriting by means
of language constructs for specifying transformations between two do-
mains, or to a lesser extent by language constructs for interchanging
variable denotations with operation denotations. The case of the inher-
ited attributes having a common superclass is the most easily remedied

20

case, since it only requires abilities similar to the abilities already used
in intersection inheritance and further described in [12].

Vertical overwriting is the usual method redeclaration in Smalltalk-
80, or the virtual declaration in languages like Simula67, C++ or Beta.
The most interesting version of virtual declaration is the one in Beta,
since virtual declarations in Beta to some degree ensure that inherited
properties are not invalidated by the vertical overwriting.

10 Conclusion

The prime result here is the recognition of the need for supporting all
three views on name collision in one programming language, unless one
accepts to be unable to express certain structures. As stated in the
introduction, the discussion in this paper is in itself valuable as many
proposals have been put forward, and in many cases the arguments and
the discussion of the alternatives aren’t given. This paper offers such a
discussion relieved from the burden of promoting one particular solution
at the same time. It will thus hopefully be a source of inspiration for
future designers of programming languages with support of classification
hierarchies with multiple classification.

References

1. A. Albano, L. Cardelli & R. Orsini: Galileo: A Strongly- Typed, In-
teractive Conceptual Language, ACM TODS, 10(2), 230-260 (June
1985).

2. E. Blake & S. Cook: On Including Part Hierarchies in Object-
Oriented Languages, with an Implementation in Smalltalk, Proceed-

ings of the European Conference on Object-Oriented Programming
(ECOOP’87), Paris, France, June 1987.

3. D.G. Bobrow & M.J. Stefik: Loops — Data and Object-Oriented
Programming for Interlisp, Discussion papers, Proceedings of the
European Conference on Al, Orsay, France, July 1982.

4. A. Borning: The Programming Language Aspects of ThingLab, a
Constraint-Oriented Stmulation Laboratory, ACM TOPLAS, 3(4),
353-387 (October 1981).

21

10.

11,

12.

13.

A. Borning & D.H.H. Ingalls: Multiple Inheritance in Smalltalk-
80, Proceedings of the National Conference on AI, Pittsburgh, PA,
1982.

. L. Cardelli: Amber, AT&T Bell Labs Technical Memorandum, 11271-

84092-410TM, 1984.

. D.C. Halbert & P.D. O’Brien: Using Types and Inheritance in

Object-Oriented Languages, Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP’87), Paris, France,
June 1987.

. J. Lindskov Knudsen & K. Stougdrd Thomsen: A Conceptual Frame-

work for Programming Languages, Computer Science Department,
Aarhus University, DAIMI PB-192, 1985.

. B. Bruun "Kristensen, O. Lehrmann Madsen, B. Mgller-Pedersen &

K. Nygaard: The Beta Programming Language, in B.D. Shriver &
P. Wegner (eds.): Research Directions in Object-Oriented Program-
ming, MIT Press, 1987.

B. Meyer: FEiffel: Programming for Reusability and Extendibility,
ACM Sigplan Notices, 22(2), 85-94 (February 1987).

B. Stroustrup: Multiple Inheritance for C++, Proceedings of the
Spring 87 EUUG Conference, Helsinki and Stockholm, May 1987.

K. Stougdrd Thomsen: Inheritance on Processes, Ezemplified on
Distributed Termination Detection, International Journal of Paral-
lel Programming, 16(1), 17-52 (1987).

D. Weinreb & D. Moon: Flavors: Message Passing in the Lisp
Machine, MIT AI Memo No. 602, November 1980.

22

