ISSN 0105-8517

Object Oriented Programming and
Computerised Shared Material

Pal Sgrgaard

DAIMI PB - 247
May 1988

AARHUS UNIVERSITY [
COMPUTER SCIENCE DEPARTMENT -

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK
Telephone: +456 1271 88 Telex: 64767 aausci dk |

T
=
oal
a8

Abstract

Computer supported cooperative work currently receives much atten-
tion. There are many aspects of cooperative work. One of these is the
use of shared material. Much cooperation is based on silent coordination
mediated by the shared material used in the work process. The prop-
erties of the shared material are, however, often ignored when work is
computerised. Instead the emphasis has been on automating frequent
work procedures. This has resulted in very inflexible systems.

A fundamental idea in object oriented programming is to model the
phenomena in the part of reality the system addresses. These modelling
techniques can be used to implement shared material on computers. The
result is a raw system providing the material and the essential primitive
operations on this material. Such a system can be seen as a specialised
programming environment which can be tailored to the needs of individ-
ual users or be modified for future needs.

This use of object oriented programming requires persistent and shar-
ed objects. Some objects may be active and execute as parallel processes.
Incremental change of a running system will be needed to allow evolution.

It is non-trivial to decide which properties of the material to model.
An example demonstrates that this decision may depend on the kind of
technology being considered.

Key words and phrases: computer supported cooperative work, object
oriented programming, shared material, persistent objects.

1 Introduction

In this paper an attempt will be made to bridge two research areas in
informatics. These are object oriented programming, or actually object
orientation in general, and computer supported cooperative work. This
connection is based on the observation that shared material may play
an important role in cooperative work and that object orientation will
be useful when implementing computerised shared material. This paper
is based on the Mjglner project [5] and on the research programme on
computer supported cooperative work [1] at Aarhus University.

The Mjglner project aims at developing an industrial prototype of a
programming environment for object oriented programming. The project
is deeply rooted in the “Scandinavian approach” to object oriented pro-
gramming, a fact which also is reflected in the programming languages
which the Mjglner environment is going to support: Simula [4] and Beta
[12]. In this approach to object oriented programming a program exe-
cution, or actually a computer system, is seen as a model of an external
system, the referent system: The phenomena in the referent system, the
objects, go through their life processes, interacting with each other in
various ways. The lives of these objects are reflected by the lives of cor-
responding objects in the computer system. Thus the ability to write
programs where a set of objects execute in parallel is not an extravagant
feature of some exotic programming languages; it is one of the most ba-
sic means of expression in programming. Correspondingly the semantics
of a program is the interpretation of the program as a physical model.
More in-depth expositions of this view on object oriented programming
can be found elsewhere, see Nygaard [19], Knudsen and Madsen [11], and
Madsen and Mgller-Pedersen [17].

During the last couple of years computer supported cooperative work
has started to receive attention [3], see also the special issues of the ACM
Transactions on Office Information Systems (5(2), April 1987) and of
Office: Technology and People (3(2), August 1987).

The term cooperative work is somewhat ill-defined. One tentative
definition is given by this author in [24]. Cooperative work is nothing
new, but now its existence has been recognised by people working with
computers. It turns out that new technical possibilities open up if we
may assume that the users are few in number and geographically close.
In the transaction cost theory organisations are classified as markets,

bureaucracies, and groups or clans [20]. Currently the state of the art
of commercial computer systems is that they either support individual
work or work divided in a formal manner as in bureaucracies and markets.
Support for markets and bureaucracies has typically taken the shape of
transaction processing systems or management information systems. The
fact that people share tasks, work closely together in teams, know each
other, exercise mutual solidarity, etc., is not only unreflected in current
computer systems. It is often hampered by the way the computer sys-
tems change the conditions of work. The interest in computer supported
cooperative work can thus be seen as an attempt to deal with some of
the shortcomings of current computer systems.

Computer systems suitable for cooperative work can take many forms.
Two main classes of systems are those supporting ezplicit communication
and those providing — or supporting the existence of — shared material.
Typical examples of systems supporting explicit communication are elec-
tronic mail, bulletin boards, and synchronous media like the UNIX com-
mands write and talk. Support for shared material is more subtle, but
the support for idea generation and shared writing provided by Cognoter
is one example [6,26]. Shared material is the only aspect of computer
supported cooperative work dealt with in this paper.

Jackson has written a system development method which is based
on object orientation [9]. This method proposes an approach where the
basis of the computer system is a model of the referent system. A crucial
step in the development process is to identify which kinds of objects the
system should model, and which objects are “outside model boundary.”
The method consists of several steps. After the kinds of objects that are
to be modelled have been identified the model is constructed. Thereafter
functions may be added to the model. Jackson argues that a model is
more stable than the concrete functions, and that a system built in this
way will be amendable to new kinds of functions. This requires that the
model is sufficiently general, and that the new functions lie within the
functionality the model has been made for. The ideas presented in this
paper can be seen as an application of some of Jackson’s ideas.

The paper proceeds as follows: The next section discusses the role of
shared material in cooperative work. It also presents some examples of
computer systems providing shared material. Section 3 presents several
arguments for modelling material rather than frequent work procedures;
these arguments are not restricted to the context of cooperative work.

3

Section 4 presents some ideas for how the design of a computer system
could be based on modelling the material used in the work process. Fi-
nally, section 5 identifies some of the requirements of the programming
languages and run time systems which are incurred by the use of object
oriented programming to model shared material.

2 Cooperative work and shared material

Two ways of coordinating cooperative work can be identified. One is by
explicit communication about how the work is to be performed, another
is less explicit, mediated by the shared material used in the work process.
A simple example is the way two people carry a table. A part of the
coordination may take place as explicit communication, for example in a
discussion about how to get the table through a door. When the table is
carried, however, the two people can follow each others’ actions because
the actions get mediated through the shared material. This coordination
1s not very explicit, it does by no means involve an explicit exchange of
messages. Also, it has been learned. There is a big difference between
two persons’ first attempt at carrying something together, and the way
people with experience do it. The learning is both on part of the indi-
vidual, and on part of the team. It is crucial to this coordination that
the actions of the other actor can be immediately observed or felt, so
that appropriate corrective or supplementary actions may be taken. The
pattern of cooperation is not fixed, it is often defined by the actors. The
material and the situation in general make a wide range of patterns of co-
operation possible. For people with computer support in mind it should
be noted that the mediation of actions taking place through a table is a
mediation with a very high bandwidth. Another example is the way a
manual file is used as a shared material. A record in such a file can only
be in one place at a time. When a document — a record — is gone, it may
mean that somebody is already dealing with the problem in question. It
may also mean that some other person is using out-of-date information
in a potentially dangerous way. This could be the case with a medical
journal. The meaning of an absent record, or some other sign attached
to the material, depends on the context, but it is mediated through the
material.

It is a central hypothesis in this paper that the properties of the shared

4

material often determine or strongly structure the pattern of cooperation
in a work process. If we look at how shared material is used we will get
design ideas which are appropriate for computer supported cooperative
work. In this way the concept of shared material is used as a design
metaphor, a technique proposed by, among others, Madsen [15,16].

When work is computerised the material people work with is normally
changed. As a result some properties of the material which were crucial
to cooperation may get lost or changed. One example of such a change
is that a record is no longer only in one place at a time. Many of the
above mentioned “nice” properties of a manual file may therefore disap-
pear. Another example is the transition to computerised text processing.
On the surface the typewriter is replaced by a text processor, a “modern
typewriter” which has the convenient capacity of storing the text so that
corrections can be made without having to retype the whole document.
In reality paper is replaced by magnetic storage. Printouts are just snap-
shots of a document. The document is in the computer. This has many
consequences, one of these is that the concept of original is more blurred
than ever before. There can be many originals since a copy of a file is
Just as good as the original, and an original can be perceived to be in
many places at the same time. People are able to produce new versions
of documents more often, and with smaller changes, than before.

Computerisation of material does not, however, have to have negative
consequences. There is also a potential for giving the material new prop-
erties suitable for coordination. It is the interpretation of this author
that the examples presented below implement shared material.

In Colab at Xerox PARC a number of experimental computer systems
for cooperative use have been made [26]. Many of these systems are based
on the WYSIWIS (What You See Is What I See) metaphor. The users
are in other words given the impression of working on a shared surface.
Actions of the other users are visible and pieces of material grabbed by
somebody else is typically shown to be reserved or removed by being
greyed out. For a discussion of the WYSIWIS metaphor see especially
Stefik et al. [25].

Kaiser, Kaplan, and Micallef [10] present an experimental program-
ming environment which allows concurrent update of different well de-
fined parts, modules, of the same program. If inconsistencies arise, i.e.
if the definition of a module is changed so that its use becomes invalid,
the involved programmers will be informed. The technique used in this

5

environment is attribute grammars, like in the Cornell Program Synthe-
sizer [21,28]. The computations are performed in parallel, however, with
one process for each module. Information about changed attributes will
only in a few cases need to travel from one module, and process, to an-
other. The points where attributes may enter or exit are well defined,
they are explicit import and export statements in the programming lan-
guage. This makes it possible to distinguish between attribute changes
that may affect other modules and changes that are certain to be local.

In UNIX and in many other programming environments facilities have
been made to support controlled access to different versions of a file (a
program). Two examples running on UNIX are the Source Code Control
System (SCCS) [22] and the Revision Control System (RCS) [29]. These
two systems perform a multitude of functions. Many of these functions
are specific to programming and to a specific way of representing pro-
grams (as text files), but they do both implement a material which has
the same property as a paper-based document: It can only be in one
place at a time. This is implemented through commands like check-out
and check-in. In addition to version numbering of the different modules
symbolic naming is supported. This can be used to name configurations
and make it easier to retrieve these at later points in time. Different
versions of the same module may be updated concurrently. Different
branches in a version tree may later be joined or merged, provided the
updates of the common ancestor do not textually overlap.

3 Model material, not work procedures

Newman [18] and Suchman and Wynn [27] describe office work as a mix-
ture of problem solving and work according to known procedures. There

1s not a sharp distinction between these two kinds of work. Newman
states [18, p. 55]:

Existing procedures are used extensively in solving problems.
They suggest manageable subgoals and thus simplify the de-
velopment of problem-solving strategies. In some cases, only
a minor modification is needed to a basically adequate proce-
dure; in other cases, an ad hoc solution is constructed from a
number of procedural elements.

6

In many administrative systems, however, the emphasis has been on au-
tomating frequent work procedures. This approach can be motivated by
its simplicity, and by the fact that much time is spent on these seemingly
trivial work procedures. Hence large and immediate savings appear to
be obtainable. There are several arguments against this approach:

o The computerisation of work procedures ignores the learning as-
pects of the supported work. Intimate knowledge of the compo-
sition of the procedures is needed in order to perceive the proce-
dure as what it is: a work procedure which sometimes is used “as
is”, sometimes is combined with other procedures, and often needs
slight modification to be applied to a deviant case. This need not
cause trouble for users who know the work procedures from before
the system was introduced. New users, however, will have little
chance for learning this, and will often perceive their work as that
of an operator.

o The view of an office as a collection of machines executing proce-
dures is false. The work can be approzimated by a number of proce-
dures, but this will not cover the work in the office. The strategy of
starting with a few, recurrent procedures will turn into a process of
implementing an apparently infinite number of procedures having
less and less volume. As the procedures get less typical, they will
be harder to describe, making the development process more diffi-
cult. Also, since the volume is low, the gains from rationalisation,
if any, do not outweigh the development costs. Thus a strategy
which start with large potential savings as the aim, may end up as
a money sink.

e Work is not static. It is hard and expensive to change tailor-made
systems to new or modified procedures. The degree of reuse of the
old pieces of software is often low and conversion can cause large

difficulties.

e The view of work as the execution of procedures ignores or under-
emphasises the cooperative aspects of the work. Cooperation which
took place in the manual system is reduced to issues of shared access
to databases. In other words, only the formalisable, bureaucratic,
aspects of cooperation are supported.

7

The picture given above is not pure speculation. We get confronted
with the consequences of the procedure-automating approach in many
situations. Some authentic cases:

e A family reserves berths in the night-train from Oslo to Trondheim.
The reservation is made for seven persons, but it is explicitly stated
that only six are certain to come, the seventh berth should therefore
in some way be independent of the other six.

When they go to the railway station to pick up the tickets, the
seventh person has decided not to go. It turns out, however, that
one single reservation has been made (probably the only way to
get seven berths next to each other). It also turns out that one
cannot selectively “dereserve” one berth from a reservation. The
clever clerk in the ticket office decides to cancel the seven berths and
thereafter reserve six berths. The cancellation works fine, but the
new reservation fails because the train is full! (The seven released
berths had probably been taken by a waiting list.) Luckily there
was another train to Trondheim with free berths that night.!

e As a student I used to have a teaching assistantship (TA) and a
research assistantship (RA) at Aarhus University. At the beginning
of a new term I decided to drop the TA since time was shorter than
money. For some obscure reason the university paid me salary as a
TA also in the new term. As a consequence more tax was deduced
from my RA salary since my deductions had been “spent” on the
TA salary. I made the salary department aware of the error and I
also stated that I at any time was willing to pay the money I had
received in excess of what I would have received only as an RA.
This amount was less than what I had received as TA because of
progressive tax deductions.

This was the start of a long series of complicated transactions. It
took three months before it all was settled. Although I complained
the matter was settled in such a way that I had to pay back all the
money I had received as a TA before my tax deduction as an RA
was corrected.

e In a Danish bank a typing error led to the erroneous deposit of
an enormous amount, say 100 million kroner, on a customer’s ac-

1Leikny @grim, Institute of Informatics, University of Oslo, told me about this case.

count. The error was immediately discovered, and the amount was
withdrawn only a few instances after it was deposited. So far so
good.

Due to the way interest is computed (deposits take place from the
next day, withdrawals from the same day) it was computed that the
customer had to pay interest for the erroneous amount for one day,
approximately 15,000 kroner, roughly equivalent to a months salary.
Consequently the bank informs the customer that his account is
grossly overdrawn. The customer, of course, complained, and after
some dispute the case was settled.

The problem in these cases is not only bad design of the tasks per-
formed by the system, it is the failure to observe the intimate relationship
between procedures and problem solving. The alternative proposed here
is that instead of automating the procedures one should model, or im-
plement, the material used in the work process. Material, or substance,
can in a natural way be modelled as objects. Modelling of substance is
one of the defining characteristics of object oriented programming. These
objects should have value sets corresponding to the different states of the
material. There should be operations on the objects corresponding to the
primitive operations performed on the material. It is in other words pro-
posed that object oriented programming should be applied to implement
computerised shared material.

Primitive operations are the most primitive meaningful single opera-
tions modifying the material we can identify. Thus deposit-money-on--
an-account is not such an operation because it involves several primitive
operations, like change balance, record information for the computation
of interest, etc. To write a single digit in a bank-book is too primitive.
It does only have a meaning using a specific kind of technology. Care
must be taken in identifying the material and the primitive operations
to model. Much inspiration can be obtained from the different ways the
corresponding traditional material is being manipulated, but in general
a thorough analysis of the work in question, its purposes, etc., is needed.
In the terminology of Jackson System Development [9] this corresponds
to the entity-action step and some of the activities which have to precede
the application of JSD.

There is a conceptual difference between primitive operations and
work procedures, not only a difference in level of detail. A work procedure

9

often reflects a normative view of the work, often as seen by management.
Procedures are aggregates of simpler operations. Also, procedures are
subject to change, and there may be deviations from a procedure in the
actual performance of a work task. Primitive operations are stable, they
have not changed, and are not expected to change in the future. Also
they cannot meaningfully be divided in yet simpler operations.

The distinction between procedures and primitive operations is dif-
ferent from the psychological distinction between actions and operations
which has been used by Bgdker in [2]. The latter distinction applies to
how a person conceives a task. What is a composite action to one person
can be an operation to another, typically a professional. The distinction
between procedures and primitive operations presented here is not indi-
vidual. The distinction is given by the system and is in principle common
to all users.

The raw model coming out of a development process focussing on ma-
terial and primitive operations can be used, but it will be very clumsy
for many practical purposes. The raw model should be seen as, and de-
signed as, a specialised programming environment with a user-oriented
or profession-oriented programming language. Machine implementation
of many entire procedures should be made in this environment, and these
programs or functions should be made available to the users for inspec-
tion and modification. Users who are inclined to do so can construct
their own programs. The programs can, of course, contain calls to other
programs as well as to primitive operations. Besides being convenient in
programming, it allows some procedures to be seen as simple operations
by some users. This implementation of procedures allows a user to reuse,
modify, and combine machine implemented procedures in much the same
way as can be done with manual procedures. When needed the user may
resort to “manual” execution of primitive operations. The new or modi-
fied functions can be seen as incremental changes to the existing system.
The system will also be tailorable to the needs of the individual users.

Facilities like this are often implemented by mechanisms like accelera-
tors or macros. The possibility to write shell scripts in UNIX is a typical
example. This way of doing it works, but is far from ideal because of the
poor syntax and semantics of most macro-facilities.

10

4 Computerised material: an example

This section will discuss how some important aspects of material can
be retained or created when the material is computerised. A train seat
reservation system is used as example. The example illustrates how many
improvements can be made by carefully implementing a new material.
Some aspects of cooperation are also illustrated.

Manual seat reservation systems, as the author remembers them, were
based on a number of sheets illustrating the cars in the train; see figure
1. The seats could be checked or the part of the trip where the seat

17/8-88
Et 41
Car 116

NSB

Oslo-Eidsvoll Oslo-Stgren 17/8-88

Hamar-Trh. Et 41
Car 116

Seat 30
Dep. 09.28
30 29 Arr. 14.35

Hamar-
Trondheim

Figure 1: The manual seat reservation system

was occupied could be indicated. Travellers were given small tickets in-
dicating the details of their reservation. This scheme was very flexible in
terms of the kinds of services which could be supplied. For example, the
reservation of a seat next to another specific seat, and the reservation of
a seat close to the door (my grandmother always wanted that), etc., were
feasible. Entries were of course written with pencil to allow easy update.
The reservation sheets were kept at the train’s station of departure so
that they could be sent with the conductor.

This system obviously had many drawbacks making it impossible to
retain: (The reasons given here are speculation; the author never worked

11

with the railroad.)

e It could not handle high volumes of transactions incurred by com-
pulsory reservation in some trains.

e Updates could only take place at the station of departure. Reser-
vation from other railroad stations and travel agencies had to be
made by phone calls to this station.

e The system was inadequate for a new policy where charges were
made for seat reservation.

e Reservations from and to abroad were not well integrated in the
system.

The system which was implemented solved some of the above-men-
tioned obvious problems with the manual system. At the same time
almost all of the flexibility of the sheet-based system disappeared. It
appears that the only functions which were implemented were make-res-
ervation and cancel-reservation. In fact the only way to figure out
whether there was room on a train was to make a reservation.

Many of the necessary improvements could have been made while
retaining much of the flexibility of the sheet based system. This could
be done by appropriate object oriented modelling of trains with cars and
seats, reservations and reservation agents, and by making this model
visible to the user. The manual system was actually based on a model
of the trains and their seats. A major part of a computerisation of the
system should have been to make a computerised model of the trains
using the reservation sheets as inspiration for the design.

The approach taken here is different from the approach taken in most
database systems. In database systems much effort is made to make it
appear as if each user is working alone, unaffected by all others, on the
whole database. In the approach taken here the sharing of the material,
the reservation sheets, should be made explicit. The users should have
access to them in a way which clearly distinguishes between looking at the
current state of a piece of information which can be modified by others,
and having a unique sheet at disposal for update. Also the process of, in
competition with others, obtaining a sheet for unique manipulation must
be made explicit. In this way patterns of cooperation can be retained
and developed further. In the following a brief sketch will be given of
how such a system might look to the user.

12

Trains Oslo S - Hamar 17/8-88

Et41 0800 0928 43/28/3/2
Ht 351 1010 1157 50/32
Ht 341 1140 1327 25/10
Ht 343 1430 1622 44/35
Ht 375 1542 1733 54/22
Ht 307 1640 1840 11/7
Ht 345 1900 2050 37/22
Ht 405 2300 0049 20/7

Figure 2: List of trains

Users could have access to shared information by obtaining displays of
trains satisfying some criterion, see figure 2. The trains listed in the figure
are the trains bringing passengers from Oslo to Hamar a specific day. The
trains are listed with train number, time of departure and arrival, and the
number of free seats in different categories. All but one train have only
second class. The information displayed here is volatile, and this should
be made clear to the users. The best way to do this would be to update
the displayed numbers of free seats as reservations and cancellations are
made. In this way the users would get an idea of the update activity
on the trains, and they could develop their work practices on the basis
of that. If a cheaper solution is needed one could display information
subject to change in a special font or in a special colour.

Access to “reservation sheets” for single cars can be obtained in a
shared display of the train. See figure 3. The figure indicates that car 117

Et41 Oslo S - Trondheim o/Dovre 17/8-88
0 15/8 10/7

2 | SN = | P NP [N |

17 116 115 114 113 112 111

Figure 3: Shared train display

is sold out and that somebody else is updating car 115. The users working
with this display compete with each other about obtaining unique access
to single reservation sheets. One way to do this would be to implement
this display in the WYSIWIS style [25], where the pointing and selection
devices of the other users would be visible. In such a setting it could
happen that two users try to get the same sheet at the same time. The
system does not prevent such collisions, but it must of course detect them.

13

Collision prevention is up to the users, they can see all cursors and can
therefore “keep away” from each other. A WYSIWIS solution requires
very high bandwidth in the communication network since updates and
cursor movements should be propagated in real time between the users.
Today such a solution can perhaps only be implemented using a high-
speed local area network. This makes it hard to build a seat reservation
system that way, but the principle could be applied in a case where
the users are geographically close. This would typically be the case in
cooperative work. A cheaper solution is to accept that the users do not
have any means of seeing each other, and that they therefore will run
into collisions more often. The system could also have a built-in function
which gets hold of some free car in the train. It will not, however, be
acceptable to force users to use this function. It would prevent services
like reserving seats in a car near the restaurant car.

Assume our user successfully gets hold of car 116, see figure 4. The car

Et41 Oslo S - Trondheim o/Dovre 17/8-88 Car 116

e 8 E% _> 15
HHBHHEH EHEEEHHEEEEH]
AHBEEHHER HEABREHBAHHE

73 61 49 37 25 13 1

Figure 4: Car display

is now in a private display, and is displayed to others in the same way as
car 115 in figure 3. The user may return the car unmodified to the shared
display. This could be the case if the user was searching for a seat near the
door and could not find one in this car. The typical mode of operation,
however, will be to “enlarge” a part of the car and make a reservation,
see figure 5. When the user checks the wanted seats, the corresponding
seat reservation is built up in the display. When necessary, seats can
be released by updating an old reservation. Standard procedures like
make-reservation should be available as programmed functions.

It would be too much to say that the example is a system which
supports cooperative work. But it does not prevent cooperation either.
If cooperation is needed it may evolve because the users to some extent
can “see” each other’s actions, and because the work organisation is made
visible by defining three types of display: a shared information display, a
shared selection display, and a private update display.

14

Osk-Trh Osl-Trh SEAT RESERVATION
48 44 40

Osl-Lil Osl-Eid From Oslo 08.00 17/8-87

Rin-Trh Ham-Trh
47 43 39 ToHamar 09.28 17/8-87

Etd41 Car116 Seat 45

Osl-Otta Eg
46 42 38 l
o | 65Es odbHHHH|HHHHHHdHdHEBHHE
Osl-Hant HHHHHHHI BHAHHAABHHBHAABAAR
45 41 37 73 61 49 37 25 13 1
¢ I D

Figure 5: Making a reservation

The grain size of the system, the size of the object allocated to the
single user for update, should of course be small enough to allow the
needed degree of concurrency. At the same time it should be as large as
possible to allow maximal flexibility. In this example the car was made
the “grain”, it could also have been the compartment or the whole train.
This paper focuses on support for cooperative work, a kind of work where
the number of users is limited. A large grain size does not necessarily
cause too many collisions in a small group. In addition to this we can
interpret collisions as a natural property of the material. It may simply
reflect the fact that several users need to coordinate their actions. In
computer supported cooperative work the “grain” should therefore be
chosen to correspond to a natural piece of material.

Cooperation between users can also be supported by letting two users
look at the same reservation, perhaps even work on it concurrently. This
can be useful when problems show up or when a case needs to be taken
over by another user.

The example shows that the properties of the phenomena which need
to be modelled go beyond those which are modelled in traditional com-
puter systems. Especially the “layout” of the train, for example the
position of the restaurant car, needs to be reflected in the model. The
system needs to keep track of different car types and also their physical
layout. This should be done although there is no functionality in the
system which depends on this information. Similarly search systems in
libraries should contain information about the colour and physical shape

15

of books, although such information do not immediately provide extra
functionality.

The example also illustrates that new technology, in this case es-
pecially output media which can draw pictures of train cars, result in
changes of which parts of the referent system that should be modelled in
the computer system. Clearly traditional computer systems have been
designed with slow devices with few capabilities and with high commu-
nication costs in mind.

It should be asked whether the kind of design proposed here is pro-
hibitively expensive or otherwise unrealistic. Clearly it requires better
terminals than those typically found in clerical workplaces, but media
with graphic capabilities are getting cheaper. The communication costs
involved in transferring drawings of trains, cars, etc., could be high, but
they can be reduced by having the different graphics elements distributed
once, and later only transfer what is needed to build the drawing in ques-
tion. In addition, communication costs are also falling.

5 Requirements of the environment

The use of object oriented programming in this paper puts some require-
ments on the programming languages and the run time environments of
the systems.

The objects in question need to be permanent or persistent across in-
dividual program executions. Thus a language with persistent objects is
needed, and certainly persistence is more central than object orientation.
Reasonable programming languages with no or little support for perma-
nent, in practice disc-based, data structures will therefore have no chance
in the competition with 4th generation tools, which can be characterised
as data base management systems augmented with primitive program-
ming facilities. We must hope that work on persistent languages and on
object oriented databases will change this situation.

Objects used as shared material clearly need to be sharable in some
well-defined way. In some cases the sharing will take place as a series of
exclusive accesses, in other cases there will be concurrent use of the same
objects by several users who make updates and see the effects of their

own and others’ updates. This issue is discussed by Greif and Sarin in
[8] and by Stefik et al. in [26].

16

In making object oriented models of the referent system parallelism
arises as a natural part of the model. In a seat reservation system the
objects executing in parallel will be the objects modelling the users and,
if the system is to be able to handle the reservations while the train is
travelling, the objects modelling the trains. Reservation objects can be
passive, they only change because some other object sends messages to
them. It is therefore important that the language used not only facilitates
classes as a kind of abstract datatypes (like Smalltalk [7]), but that the
classes have some sort of action part, like in Simula and Beta. Further-
more the objects, i.e. the instances of the classes, must be able to execute
in parallel. Parallel execution in Beta is described by Kristensen et al. in
[12,14].

Finally these objects may reside at different places in a network of
computers. One such place could be an object server. Work is going on to
allow the cooperation of several operating system processes to constitute
a Beta ensemble [13].

In this paper it has been assumed that it is possible to make a sta-
ble model of the shared material. In the seat reservation example it was
shown, however, that changes in the model may be needed because new
technology makes it relevant to model new aspects of the referent system.
Jackson System Development is also based on the stability of the model.
New functions are expected to be within the predicted functionality. This
will not always be the case. We also know that no description, and hence
no model, of reality is complete. If we have a system consisting of many
long-lived objects we may therefore need to be able to modify the model
while the system is running. In other words: we need incremental ezecu-
tion. This may lead to the concurrent presence of instances of different
versions of the same class, some mechanisms for handling this is discussed
by Skarra and Zdonik in [23]. It is still an open question, however, how
we should understand a system which is a changing model of a changing
referent system.

In this paper it has been argued that the modelling aspects of object
oriented programming can be useful in the implementation of computer
based shared material. There is, however, no guarantee that object ori-
ented programming will lead to better computer support for cooperative
work. Conversely object oriented programming is not a necessary require-
ment for making this kind of computer support. The only claim made is
that object oriented programming will be useful for this purpose.

REFERENCES 17

Acknowledgements

I am indebted to Riitta Hellman and Ole Lehrmann Madsen for their
constructive comments.

References

[1] Peter Bggh Andersen et al. Research Programme on Computer Sup-

port in Cooperative Design and Commaunication. IR 70, Computer
Science Department, Aarhus University, Arhus, 1987.

[2] Susanne Bgdker. Through the Interface — A Human Activity Ap-
proach to User Interface Design. PB 224, Computer Science Depart-
ment, Aarhus University, Arhus, April 1987.

[8] Conference on Computer Supported Cooperative Work, MCC Soft-

ware Technology Program, Austin, Texas, December 1986. Proceed-
ings.

[4] Ole-Johan Dahl, Bjgrn Myhrhaug, and Kristen Nygaard. SIMULA

67 Common Base Language. Pub. S-2, Norwegian Computing Cen-
ter, Oslo, 1967.

[6] Hans Petter Dahle, Mats Lofgren, Ole Lehrmann Madsen, and Boris
Magnusson. The MIOLNER project. In Software Tools: Improving
Applications: Proceedings of the Conference held at Software Tools
87, pages 81-87, Online Publications, London, 1987.

[6] Gregg Foster and Mark Stefik. Cognoter, theory and practice of a
colab-orative tool. In Proceedings from the Conference on Computer
Supported Cooperative Work, MCC Software Technology Program,
Austin, Texas, December 1986.

[7] Adele Goldberg and David Robson. Smalltalk-80, The Language and
its Implementation. Addison-Wesley, 1983.

[8] Irene Greif and Sunil Sarin. Data sharing in group work. ACM

Transactions on Office Information Systems, 5(2):187-211, April
1987.

[9] Michael Jackson. System Development. Prentice-Hall, Englewood
Cliffs, 1983.

18

[10]

[11]

[12]

[14]

[15]

[16]

[17]

REFERENCES

Gail E. Kaiser, Simon M. Kaplan, and Josephine Micallef. Multiuser,
distributed language-based environments. IEEE Software, 4(6):58—
67, November 1987.

Jgrgen Lindskov Knudsen and Ole Lehrmann Madsen. Teaching
object-oriented programming is more than teaching object-oriented
programming languages. In Stein Gjessing and Kristen Nygaard, ed-
itors, Proceedings, Second European Conference on Object Oriented
Programming (ECOOP’88), Oslo, Norway, August 1988, Springer
Verlag, Heidelberg, 1988.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Mgller-
Pedersen, and Kristen Nygaard. The BETA programming language.
In Bruce Shriver and Peter Wegner, editors, Research Directions in
Object-Oriented Programming, pages 7-48, MIT Press, Cambridge,
Massachusetts, 1987.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Mgller-
Pedersen, and Kristen Nygaard. Dynamic exchange of BETA sys-
tems. January 1985. Unpublished manuscript.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Mgller-
Pedersen, and Kristen Nygaard. Multi-sequential execution in the
BETA programming language. Sigplan Notices, 20(4), April 1985.

Kim Halskov Madsen. Breakthrough by breakdown. In Heinz K.
Klein and Kuldeep Kumar, editors, Proceedings of the IFIP WG8.2
Working Conference on Information Systems Development for Hu-
man Progress in Organisation, Atlanta, 29-31 May 1987, North-
Holland, Amsterdam, 1988 (forthcoming). Also available as PB 243,
Computer Science Department, Aarhus University, Arhus, March
1988.

Kim Halskov Madsen. Sprogbrug og Design — sammenfattende re-
deggrelse. PB 245, Computer Science Department, Aarhus Univer-
sity, Arhus, November 1987.

Ole Lehrmann Madsen and Birger Mgller-Pedersen. What ob-
ject oriented programming may be — and what it does not have
to be. In Stein Gjessing and Kristen Nygaard, editors, Proceed-
ings, Second European Conference on Object Oriented Programming

REFERENCES 19

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(ECOOP’88), Oslo, Norway, August 1988, Springer Verlag, Heidel-
berg, 1988.

William M. Newman. Designing Integrated Systems for the Office
Environment. McGraw-Hill, Singapore, 1986.

Kristen Nygaard. Basic concepts in object oriented programming.

SIGPLAN Notices, 21(10), October 1986.

William G. Ouchi. Markets, bureaucracies, and clans. Administra-
tive Science Quaterly, 25:129-141, March 1980.

Thomas Reps and Tim Teitelbaum. The synthesizer genera-
tor. In Peter Henderson, editor, Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Parctical
Software Development Environments, pages 42—-48, May 1984. Pub-
lished as ACM Software Engineering Notes 9(3) and ACM SIGPLAN
Notices 19(5).

Marc J. Rochkind. The source code control system. IEEE Transac-
tions on Software Engineering, SE-1(4):363-370, December 1975.

Andrea Skarra and Stanley Zdonik. Type evolution in an object-
oriented database. In Bruce Shriver and Peter Wegner, editors, Re-
search Directions in Object-Oriented Programming, pages 393-415,
MIT Press, Cambridge, Massachusetts, 1987.

Pal Sgrgaard. A cooperative work perspective on use and develop-
ment of computer artifacts. In Pertti Jarvinen, editor, The Report of
the 10th IRIS (Information Research seminar In Scandinavia) Sem.-
inar, pages 719-734, University of Tampere, Tampere, 1987. Also
available as PB 234, Computer Science Department, Aarhus Univer-
sity, Arhus, November 1987.

Mark Stefik, Daniel G. Bobrow, Gregg Foster, Stan Lanning, and
Deborah Tatar. WYSIWIS revised: early experiences with mul-

tiuser interfaces. ACM Transactions on Office Information Systems,
5(2):147-167, April 1987.

Mark Stefik, Gregg Foster, Daniel G. Bobrow, Kenneth Kahn, Stan
Lanning, and Lucy Suchman. Beyond the chalkboard: computer

support for collaboration and problem solving in meetings. Commu-
nications of the ACM, 30(1):32-47, January 1987.

20 REFERENCES

[27] Lucy Suchman and Eleanor Wynn. Procedures and problems in the
office. Office: Technology and People, 2(2):133-154, January 1984.

28] Tim Teitelbaum and Thomas Reps. The Cornell program synthe-
sizer: a syntax-directed programming environment. Communica-
tions of the ACM, 24(9):563-573, September 1981. Also in David R.
Barstow, Howard E. Shrobe, and Erik Sandewall, editors. Interactive
Programming Environments. McGraw-Hill, New York, 1984.

[29] Walter F. Tichy. RCS: a revision control system. In Pierpaolo
Degano and Erik Sandewall, editors, Integrated Interactive Comput-
ing Systems, pages 345-361, North-Holland, Amsterdam, 1983.

