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Abstract

We show how to exactly implement an n input threshold gate with
arbitrary real weights by a circuit of constant depth and size polynomial in
T

Our circuits use and, or and majority gates as well as unary negation
gates. The use of majority is imperative due to certain lower bound results.

Introduction

Threshold gates have been used as formal models for neurons, for rea-
soning about neural network behaviour, and for constructing neural net-
works for tasks such as the learning of simple pattern recognition (see e.g.
[Rumelhart 86, Kohonen 88]). The learning process has been modelled
by a (continuous) modification of the weights in the individual threshold
gates [Jones 87]. One might naively imagine that threshold gates with ar-
bitrary real weights are more powerful than gates with weights restricted
to be integers of manageable size.

Surprisingly, this is not the case. We give an exact and efficient hardware

implementation of any threshold gate by reducing arbitrary real weights
to small integer weights.

In this implementation, the basic hardware units are taken to be majority
gates as well as the usual boolean gates. We shall argue both that these
basic units are physically reasonable and that the power of majority is
needed in any similarly efficient implementation.

Majority is a special kind of threshold gate. Let a = (ay,...,0y,) be an
arbitrary tuple of real numbers. We define T} (®1,...,z,) € {0,1} for
arbitrary real k as follows:

T (1. yzn) = 1iff Y auz; > k

where z; € {0,1} for each i. T¢ is then said to be a real weighted
threshold function. Rational weighted threshold functions and integer



weighted threshold functions are defined analogously, i.e. by restricting
a and k to be rational numbers and integers respectively.

A majority gate is a threshold gate with & = (1,1,1,...,1) and k =
We show that the fan-in to these gates remains small in our constructio
Thus, super-polynomial amounts of hardware are not required.
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The use of majority is essential. It has been shown that boolean cir-
cuits using unbounded fan-in and and or gates and unary negation of
size n°(1) that compute n-input majority have depth at least Q(lolg"lo’g‘n)
This even extends to when arbitrary fan-in exclusive-or (parity) and

generalizations thereof are allowed as gates [Razborov 87, Smolensky 87].

Majority nevertheless seems a physically reasonable gate. (e.g. if we have
n switches that when closed each add a standard current to a common
wire, then by testing the common current, majority may be computed.)
Naively, arbitrary fan-in parity gates seem less physically reasonable than
majority gates, so that it is an interesting fact that an n input parity gate
can be simulated by an n°(® size depth 4 circuit using fan-in 2n majority
gates and unary negation gates [Hajnal 87]. The aforementioned result
extends to the simulation of any gate computing a symmetric function.

We show how to implement an arbitrary real weighted threshold gate as

a circuit of constant depth and n°®) size using majority, and, or and
negation gates.

Definition d1/1

We define an equivalence relation on R” as follows: Let 2q,...,2, be n
fixed indeterminants. Define I, to be the set of formal inequalities of the
form Yier, zi 2 Tier, 2i OF Tier, 2i > Tier, zi for all I, I, C {1,...,n} with
I] N Iz — @

We write 1(z) € I, to refer to such an inequality, which we regard as a
predicate on R™ in the obvious way: namely, for x € R™, ((x) is true iff
x satisfies ¢(2).

Let x € R"*; we define Z(x) = {u(z) € I, | ¢«(x)}. This is just the set of
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inequalities satisfied by x written in terms of the variable z.
For a, 8 € R", we define @ = 8 if Z(a) = Z(B).

Remark: Our results below will hold for threshold functions with a thresh-
old of zero. The corresponding results for threshold functions with arbi-
trary thresholds may be inferred directly from the following proposition.

Proposition p1/2

Let Ti (@1, ... ,2n) = Liff ¥, az; > k, i.e. TE is an arbitrary threshold
function with threshold k.

Define 8 = (a1,...,04,—k) and Tgé(azl,...,a:nﬂ) = 1 iff ¥ Biz; > 0.
Then T@é(wl, cevyny 1) = TE(2q,.. ., 2,) for any z; € {0,1}.

Proof

T2y s Ty 1) = 1iff Ty oz — k > 0 8ff Tz, .., 2a) = 1

a
Proposition p2/3
Let , € R". Thena=8 =T = Tog (functional equality).
Proof
Assume o = B. Since Tj(zy,2,...,2,) = 1 implies that Siep, o >

Yier, @; for I = {¢ | #; = 1} and L, = 0, it must also be the case that

Yier, Bi > Yier, (i and consequently Toé(ml,...,azn) = 1. By a similar
argument for zero, the rest of the proposition follows. O



Proposition p3/4

Va € R® dB € Z" such that a =B and for 1 <i < n 18] < n™.

Proof

Let (o1, g, ..., a) be an arbitrary tuple of reals. An inequality in Z{«)
of the form Yz, 0 > Tier, o or Tier, o5 > Yier, ®; may be written as
el O — Liel, @ 2 0 or Tier, o — Yier, o > 1 respectively.

This suggests that we write all of Z(a) as a single vector equation Aa? >
b, where b is a vector with 0,1 entries and A is a matrix with —1,0,1
entries having 1 row for each inequality in Z(a) and n columns.

Let us establish that {8 | Z(a) = Z(8)} = {8 | AB > b}. First we
observe that any solution x = 8 to Ax > b satisfies that I(a) C Z(B).
Assume that AB > b and ¢(2) € Z(8) \ Z(a). If +(2) is a sharp inequality
of the form ¥;cp, 2 > Tier, z; then Z(a) must contain the negation of
t(z), which is a weak inequality Yien #i < Tier, %, and so must Z(3) by
the observation above. Hence Z(f) contains both +(z) and the negation
of 1(z), which is a contradiction. A similar argument can be made in the

case of ¢(z) being a weak inequality of the form Ticy, z; > Ticy, 2.

At this point, we have proven that {8 | « = 8} = {8 | AB > b}. We note
that A has full column rank n and the set {x | Ax > b} is nonempty.
In this case it is a fundamental fact of linear programming theory that
there exists a basic feasible solution x = 7y for Ax > b [Grotschel 88].
Such a basic feasible solution satisfies By = d, where B is some n x n
nonsingular submatrix of A and d is the corresponding subvector of b.

By Cramer’s rule 7' = 2= (detBy, detBs,, .. .,detB,), where B; is B with
the ’th column replaced by d. We note that the vector 7 has rational
entries and from y we may obtain an integer valued solution x = g

to Ax > b by multiplying through by the common denominator: B -
(detB - detBy,...,detB - detB,,).

In order to bound the absolute values of the integers 81, B, ..., Bn, We



observe that B, By, ..., B, are matrices with —1,0,1 entries. The deter-
minant of such a matrix can be interpreted as the volume of a hyperpaz-
allepiped each of whose edges is at most y/n in length, implying that the
absolute value of such a determinant is bounded by /n".

It follows that each entry 5; of the integer valued solution B defined above
satisfies |5;| < (\/ﬁ")z = i,

Theorem th1l/5

Let Ti¥(xy, . - . ,Z,) be an arbitrary threshold function with o € R® and
k € R. Then there exists 8 € Z" and £ € Z such that for 1 < i < n the
following propositions are true: [8;] < (n+ 1), || < (n + 1)**! and
T = Tf' (functional equality).

Proof

In accordance with pl/2, we introduce an additional variable ZTp+1 and
consider the zero threshold function T3 (zy,..., Tny1) satisfying
Tgl(azl,. . ,a:n,l) = T}%(.’Bl,.. .,wn).

By p3/4, there is some 4/ € Z"™ with v' = yand for 1 < i < n+ 1
having the property that |y| < (n + 1)1, By p2/3, we have Ty = TZ .

Finally, by setting "™ to 1, we have T = T,_f—a wherey' = (B1,..., B, —£).
O

Remark: This theorem asserts that all threshold functions can be ob-
tained by using integer weights and thresholds of magnitude at most

(n+1)**1. It is not possible to improve this result so as to obtain a poly-
nomial bound on the values of the weights and the threshold. Taking



a = (f1,fes...,fn) and k = f,,1 where f; is the i’th Fibonacci-number,
yields a threshold function that is not equivalent to any other thresh-
old function with a smaller magnitude of the weights and the threshold.
However, since the exponentially bounded values are implementable using
around n logn bits, the possibility of implementing all threshold functions
directly from the definition is open. The next theorem asserts how this
may be done with great parallel efficiency.

The following lemma was first noted in [?].

Lemma 11/6

Given any threshold function T (a1, ..., %), defineamap 8 : {1,... ,M} —
{0,1} given by 6(i) = 1 iff a; < 0. Define B = (B1,-..,6a) by Bi = |ai]
for each i. Let @ denote exclusive-or. Then, 3¢ € Z* U {0} such that
Tz @ 6(1), 22 @ 0(2), ..., 2, @ 0(n)) = T(z1,. .., z,).

Proof

Te(my,...,2,) = Liff ¥ | o42; > k. Since By = ai-(—-l)e(i), this inequality
is equivalent to the condition 37 ,(—1)%®.3;.2; > k. Since z; € {0,1}, we
have z; @ 6(7) = 6(z) + (—1)9(5) - ¢; where the right hand expression uses
integer arithmetic, as can easily be verified by checking the two cases,
6() = 0 and 8(i) = 1. Thus, we have Tg(z; @ 6(1), 2, @ 6(2),...,z, ©
6(n)) = 1iff 7, Bi(—1)P@D(8(:) 4 (—1)°Dz;) > k. Expanding the bracket
by the distributive law and subtracting terms independent of z from both
sides yields the equivalent condition T}, Bix; > k + =, 5:0(:). Since
the left hand side of this condition is always non-negative, then if the
right hand side is negative it may be replaced by zero without changing
the condition. Thus, define £ = maz(0,k + ¥, 3;0(i)) and we have

T2(z1 @ 0(1), 22 6(2),-..,2, ® 0(n)) = Ty, ..., zn).



Remark: The lemma simply shows that a threshold function with positive
and negative weights may be expressed in terms of a threshold function
with the absolute values of the weights and possibly a different threshold
value. This can be done by negating those variables of negative weight.

Lemma 12/7

There is a constant depth n°(1) size majority /negation circuit to compare
2 n-bit binary numbers.

Proof

See [Chandra 84].

Lemma 13/8

There is a constant depth n°(") size majority /negation circuit to compute
the sum of n n-bit numbers.

Proof

See [Chandra 84].

Theorem th2/9

There exists a constant depth n°() size majority /negation circuit to com-
pute T (z1,...,2,) for any o € R® and k € R.
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Proof

By theorem 1/5 and lemma 1/6, we may take o € (Z)" and k € Zt
without loss of generality. Lemma 1/6 then may necessitate at most n
negations in parallel in addition in depth 1 (inputs with weights of zero
are ignored). What is more, theorem 1/5 guarantees that these weights
are at most (n41)"*! and thus can be implemented in n°(") bits. For each
i, there is a depth 1 size n°(M) circuit to compute o,z; since x; € {0,1}.
The ¥ a;z; is computed from the outputs of these circuits in constant
depth and n°() size. This is done by using the circuits from lemma 3/8
with input size n°®) instead of n. The results of this computation may
be compared to k in constant depth and n°® size by using the circuit
from lemma 2/7 with input size n°()) instead of n. Thus the predicate
Y oiz; > k may be tested in constant depth and n®® size.
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Errata
december 1988

Please make the following corrections upon reading:

Page 4, line 4-6: The paragraph

Let (ai,a9,...,a,) be an arbitrary tuple of reals. An
inequality in Z(a) of the form Yicr, o > Ticr, @ or Tic I, O >
Yicl, &; may be written as Yier, a; — Yier, a; > 0 or Yier O —
Yier, ®; > 1 respectively.

1s replaced by

Let o = (o4, az,...,04) be an arbitrary tuple of reals. For
such ¢ there exists € > 0 such that every inequality in Z(q)
of the form Yicr, 05 > Tier, o or Sier, o > Yiel, ®; may be
written as Tier, @ — Tier, @ > 0 or Tier, o — Yie, 04 > €
respectively.

If we replace o by 1/e - a then an inequality of the form
il @ > Yier, & may be written as Yicr, o — Tier, o > 1.

We asssume henceforth that o has been replaced by 1 [e-a.
This implies no loss of generality since such a transformation
preserves the equivalence class generated by a.
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Page 4, line 10: The sentence

Let us establish that {8 | Z(a) = Z(8)} = {8 | AB > b}.
is replaced by

Let us establish that {3 | Z(a) = Z(8)} 2 {8 | AB > b}.
Page 4, line 18: The sentence

At this point, we have proven that {8 | a = B} = {8 |
AB> b}

is replaced by

At this point, we have proven that {8 | a = 8} D {8 |
AB > b}.

Page 4, line 28: The expression
(detB - detBy,...,detB - detB;).

is replaced by the expression

o5l (detBy, ..., detB,).

Page 5, line 6:

satisfies |G;| < (y/n")% = n™.

is replaced by



Page

satisfies |3;| < v/n" = n™?2, which is far better than stated
in the proposition that was to be proved.

6, between line 3 and line 4: Insert

Let us make the statement of this lower bound more pre-
c1se and provide a short argument to support its truth: If

Tl =T for,@EZ“andlEZthenl>fn+1andﬂzzfzfor
= 1,.

In order to prove By > f, it suffices to prove that

(1) Bops1 > 1+, B

(i) Bon > Th, Bait
since
(i) fant1 =142, fos
(iv) fon =Tk, faicx
In the case of n being even it follows by (iii) and (iv) that
T%(0,1,0,1,0,1,...,0,1) = 0 but T (0 0,0,...,0,1,1,0,1,
0;1,0,15..:;0,1) = 1, Smce T = T} th1s implies that

?j Bai <l and Bapiq+ E,_;H_l B2i 2> 1. These two inequalities
imply in combination the truth of (i).

The proof of (ii), ] > fn41 and the case of n being odd may
be treated similarly.

Page 6, line 8: The reference

7]

is replaced by

[Hajnal 87]

Page 8, line 14: Add a new item to the list of references
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