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Abstract

We introduce an arithmetic model of parallel computation. The basic
operations are [] and }° gates over finite fields. Functions computed are
unary and increasing input size is modelled by shifting the arithmetic base
to a larger field.

When only finite fields of bounded characteristic are used, then the
above model is fully general for parallel computations; in that size and
depth of optimal arithmetic solutions are polynomially related to size and
depth of general (boolean) solutions.

In the case of finite fields of unbounded characteristic, we prove that the
existence of a fast parallel (boolean) solution to the problem of powering an
integer modulo a prime (and powering a polynomial modulo an irreducible
polynomial) in combination with the existence of a fast parallel (arithmetic)
solution for the problem of computing a single canonical function, f(z), in
the prime fields, guarantees the full generality of the finite field model of
computation.

We prove that the function f(z) has a fast parallel arithmetic solution
for any “shallow” class of primes, i.e. primes p such that any prime power
divisor g of p — 1 is bounded in value by a polynomial in log p.



Introduction

This paper generalises and extends two previous papers [Sturtivant 87,

Boyar 88] in which arithmetic models of computation have been investi-
gated.

The first of these papers proposed a model of computation based on fan-in
two arithmetic such that every general problem (i.e. a family of functions
{fn : {0,1}* — {0,1}"}) has an arithmetic counterpart (ie. a family of
functions {f, : Fy — F,}). This counterpart is defined by interpreting a
boolean vector of length n as the binary representation of an element in
Fs». One may now compare the complexity of a boolean solution for the
original problem with the complexity of an arithmetic solution for the
corresponding field problem.

In this first paper, a boolean solution is defined to be a family of circuits
{ca : {0,1}" — {0,1}"} using {V,A,}-gates with fan-in at most two.
Similarly, an arithmetic solution is a family of arithmetic circuits {eg
F, — F.} using {+,—,,/}-gates with fan-in two. The arithmetic or
general complexity of a problem is defined as the minimal size (as function
of log g or n) of a correct arithmetic or general solution, respectively.

The arithmetic and general complexity measures were proven to be poly-
nomially related, if and only if a certain family of functions, {fp | Fyis a
finite prime field}, defined by

r — xP
ol = 5 mod p

has a polynomial size arithmetic solution.

If the finite field model is restricted to fields of bounded characteristic,
only a finite number of prime fields are involved and the arithmetic model
is then polynomially related to the general model.

All these results are inherently sequential, since fan-in two arithmetic
requires depth k circuits to compute the function z — z2° over Fyn for
1 < k < n; whereas the same function in a standard representation of Fo»

3



may be computed in depth O(log n) with fan-in two boolean circuits.

To overcome this problem, an arithmetic model identical to the one de-
scribed above, except using unbounded fan-in [ and ¥ gates, was in-
troduced in the second paper, [Boyar 88]. This arithmetic model was
compared with a boolean model using threshold gates. For characteristic
two fields, the two models have the same depth complexity measure for
polynomial size circuits within a constant factor.

In the present paper, we prove that all the sequential results about the
fan-in two arithmetic model in [Sturtivant 87] translate naturally into
sequential results about a model based on unbounded fan-in arithmetic.
Secondly, we discuss the extent to which the parallel model of computa-
tion based on characteristic 2 arithmetic [Boyar 88] can be generalised to
arbitrary characteristic finite field arithmetic.

Several problems turn up. By having [I-gates, one may obtain high powers
very fast (arithmetic depth one), but in the prime fields {F,} the compu-
tation of arbitrary powers fast in parallel (i.e. in depth (log log p)°()
with boolean operations and hence with threshold gates, is a well known
open problem.

Another problem carries over from the sequential case. A boolean solution
can exploit the direct access to the bits in the representation; whereas
these bits can be accessed fast by arithmetic if and only if the family of
functions {f,} mentioned above has polynomial size and polylog depth
circuits. We prove that the bits of the standard representation can indeed
be accessed fast in parallel by arithmetic for a family of prime fields
provided the characteristics form a shallow set of primes, i.e. primes p
such that p — 1 has only small prime power divisors.



Definition d1/1
Arithmetic problems

An arithmetic problem is a family {f,} containing one function Je:Fg—
F, for every finite field F,. The input size is defined to be n = logq.

Definition d2/2

Arithmetic circuits

An F,-circuit is an arithmetic circuit in the field F, using unbounded
fan-in sum () and product (IT) gates.

In an Fg-2-circuit, the fan-in to any gate is restricted to be at most 2.

In both cases the size is defined to be the number of gates and the depth
is defined in the usual manner.

Remark: The number of edges in a F -circuit may be exponentially larger
than the size of the circuit, since there may be many parallel wires con-
necting the output of one gate with the input of another in order to obtain
exponentiation (IT) or multiplication by a constant (%).

Definition d3/3
Arithmetic Solution

An arithmetic solution to a finite field problem {f,} consists of a family
of F,-circuits (Fg-2-circuits) {aq} such that a, and f, are functionally
equivalent.

The size and depth of a solution is measured as a function of the input
size n.



Remark: We always use unbounded fan-in arithmetic unless explicitly
stated otherwise.

Lemma 11/4

Given a family of F,-circuits of size S(n) and depth D(n), there exists a
functionally equivalent family of F,-circuits of size O(nS(n)?) and depth
O(D(n)log S(n)) satisfying that the fan-in to each II,¥ gate is at most
n, except possibly for some [I-gates (powering-gates), where all incoming
wires originate from the same source and their number (the fan-in) is
2 < q.

Proof

The difficulty lies in restricting the possibly exponentially high fan-in to
the special powering gates.

In the case of a ¥-gate, inputs from the same place are replaced by a single
input that via a [I-gate are multiplied by an appropriate constant (namely
the number of identical inputs modulo the characteristic of the field).
This process reduces the fan-in to about S(n) and a Y-gate can thus be
replaced by a tree of size O(S(n)) and depth O(log S(n)) consisting of
>-gates with fan-in at most n.

Concerning []-gates, inputs from the same place are bundled together
in a like manner: Since k inputs of a value u to a J]-gate introduces a
factor of u* into the output of the [I-gate, we can replace such a bundle
of k = 27 b;2° (k can be assumed to be at most g — 1, the order of the
multiplicative group) inputs from the same place by a single input from a
small circuit that computes the k th power of u using at most n powering
gates and an ordinary []-gate of fan-in at most n. All []-gates (except
the special powering-gates) have now fan-in O(S(n)). As in the case of
the Y-gates those [I-gates may be replaced by trees of size O(S (n)) and
depth O(log S(n)) using [I-gates of fan-in at most n.



Theorem thl/5
Unbounded fan-in versus fan-in 2

If an arithmetic problem f, : F, — F, has optimal solution of size $§ (n)
and $'(n) with unbounded fan-in and fan-in 2 arithmetic respectively.
Then S(n) and S'(n) are polynomially related.

Proof

Trivially, S(n) < S'(n) since an Fg-2-circuit is also an F-circuit. Con-
versely, an F-circuit of size S(n) may be transformed into another F,-
circuit of size O(n - (S(n))?) using ¥, [I-gates of fan-in at most n except
for special powering gates, by 1 1/4. Powering gates may be simulated
by at most n fan-in 2 gates using ‘repeated squaring’. A [] or Y -gate of

fan-in n may be simulated by n — 1 fan-in 2 gates arranged in a binary
tree.

Remark: This shows that all results in [Sturtivant 87] are also valid for
unbounded fan-in arithmetic. A corresponding result does not hold for
circuit depth since raising to the power ¢ — 2 requires depth O(n) with
fan-in 2 gates, but can be accomplished by a single []-gate.

Definition d4/6

Threshold gates and Trigger circuits

A threshold gate is a function Thy : {0,1}" — {0,1}, where a = (o, as,
..+, 0) is an integer vector of length n and k € Z is the threshold. The
effect of the gate is defined by

Thi(z1,22,...,2,) =1iff 3 ouz; > k.
k=1



A trigger circuit is a circuit over the Booleans using unbounded fan-in
threshold gates.

Remark: The usual boolean gates, i.e. and, or, ezclusive-or and unary
negation gates with unbounded fan-in, may all be simulated by constant
depth polymonial size trigger circuits. Nevertheless, threshold gates are
a physically reasonable primitive gate [Frandsen 88].

Definition d 5/7

Shallow family of circuits

A shallow family of circuits (trigger or arithmetic) satisfy that the size
and depth are polynomially bounded in respectively n and log n.

Definition d6/8

Representation

A representation of the finite fields is a tuple R = (£,{D,}, {,}, {Z,}),
where

14 is a polynomial

D, C {0,1}M4™)1 is the set of bit string representations of F,
elements.

v : Dy — Fgis the semantic function.

Zg : Dg— {0,1} is a trigger circuit satisfying Z,(d) = 1 iff

¢q(d) = 0. The whole family {Z,} is shallow.

Remark: This definition is deliberately made as broad as possible, allow-
ing multiple bit strings to denote the same field element within a single
representation. Hence the zero recognizer {Z,} is necessary in order to
interpret the output of a computation. The only other restriction is that
reasonably short bit strings must be used.



Definition d7/9
General Solution

A general solution to a finite field problem {f,} with respect to a repre-
sentation R = (£,{Dy},{p.},{Z,}) consists of a family of trigger circuits
{t,} such that the following diagram commutes.

Pq

tq

® «<—— @

® < @
"E-h

——_4
STP—
Pq

Definition d8/10
Efficiency of Arithmetic

Finite field arithmetic is said to be efficient for general parallel computa-
tions iff there exists a representation R and a polynomial p such that

(i) Every finite field problem that has an arithmetic solution of size
S(n) and depth D(n) has a general solution with respect to R of
size no larger than p (n - S(n)) and depth no larger than

p (D(n) -log(n - S(n))).

(ii) Every finite field problem that has a general solution with respect
to R of size S(n) and depth D(n) has an arithmetic solution of size
no larger than p (n-S(n)) and depth no larger than p (logn -D(n)).

Remark: The definition is in reality a weaker restriction than the natural
one, because the result of a finite field computation can not be inter-
preted unless it is in the standard representation. (Of course a clever
new “standard” may be invented, but then the argument would apply
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to that.) However, the definition has been made in this way to include
anything that might be remotely useful.

Definition d9/11

Good Representation

A good representation R = (¢£,{D,},{p,},{Z,}) has associated n + 2
shallow families of trigger circuits

{5, DY = B}
{F, : Dy — Dg}
{Pow} : D, —» D}, 1<j<mn

satisfying

@Q(SQ(SIaS%H':Sn)) = Z:?:1 SOq(Si)
(PQ‘(PQ(Sly 825+ +55n)) ITi=q ‘Pq(si)
@q(Powj(s)) Pq(5)”

Il

Remark: A good representation allows a very efficient parallel implemen-
tation of arithmetic.

Definition d10/12

Strong Representation

A strong representation R = ({,{D,},{¢,},{Z,}) has associated two
shallow families of arithmetic circuits.

{iq : Dy — F} ; ,
{Oq 2 Fg— D, (Q {Oal} () C Fq(n))}
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satisfying

iq(azl, L2y esoy, mz(n)) = goq(“:clmg ‘e ml(n)”)
iq(0g(2)) z

Remark: Note that the Boolean values 0,1 is identified with field values
0,1 in the above definition. Intuitively, a strong representation is one in
which entry to or exit from a representation can be accomplished very
efficiently by arithmetic.

Definition d11/13

Equivalent Representations

A representation R = ({,{D,},{¢,},{Z,}) translates into a representa-
tion R' = (£',{ Dy}, {5}, {Z;}) (written R < R') iff there exists a shallow
familiy of trigger circuits {T : D, — D;}, satisfying ¢, = g 0 Ty

R and R' are equivalent representations (written R = R') iff R < R' and
R < R.

Remark: In seeking to determine the parallel efficiency of finite field
arithmetic as defined in d8/10, we need only distinguish representations
up to the equivalence just defined.

Lemma 12/14

There exists a polynomial p such that every general solution of size S(n)
and depth D(n) to a finite field problem (with respect to a represen-
tation R) have a functionally equivalent family of arithmetic circuits of
size O(p(n - S(n))) and depth O(p(D(n))), provided p(n - S(n)) < g —1
(0,1 Boolean values are identified with 0,1 field values in the functional
equivalence).
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Proof

In [Boyar 88], we show that there exists a polynomial p', such that any
family of trigger circuits (of size S(n) and depth D(n)) can be transformed
into a family of circuits using majority and negation gates (of size and
depth bounded by p'(n - S(n)) and p'(D(n)) respectively) satisfying that
each majority gate has fan-in at most p/'(n-S(n)). The term majority gate
denotes the special threshold gate Thgl‘l’""l)(:ci, ..., %a2k), 1.e. a majority
gate tests whether at least half of the inputs are one.

The negation gate is easily simulated arithmetically: —(z) = 1 — z. The
simulation of an N-input majority gate is a bit more complicated. Let
1,23, ..., Ty be the inputs that will be {0,1} field values. Each input,
z;, enters a small circuit that on input 0, outputs 1; and on input 1,
outputs g, where g is a fixed primitive element [Lidl 83] in the field F,.
All of these computations occur in depth 2 and all their results are the
input to a single [[-gate. Thus, the function so far computed is given by
the expression:

N
[[ g% = g

=1

Since g is a generator for the multiplicative group of F,, the N+1 possible
powers of g that can arise from this expression are all distinct, provided
N+1<p(n-8(n))+1<q. Asthe majority function only depends on
the number of ones in the input it may be computed from this result by
table lookup. This is achieved in F, by the fact that b(1 — (z — a)?!)
computes b when z is @ and zero otherwise [Lidl 83]. The resulting family
of arithmetic circuits satisfies the condition of the lemma for p(z) =

p!(m)z'
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Lemma 13/15

For every strong representation R, there exists a polynomial p such that
whenever an arithmetic problem {fz} has a general solution of size S (n)
and depth D(n) with respect to R then {f¢} has an arithmetic solution
of size O(p(n - S(n))) and depth O(p(logn - D(n))).

Proof

Since every finite field problem has an arithmetic solution of size

O(g) = O(2") and depth 2 viz Fl) = E‘-};g a;z’, we may assume that
p(nS(n)) < ¢—1 for p being the polynomial, whose existence is guar-
anteed by 12/14. In which case, 12/14 provides a family of arithmetic
circuits {a,} functionally equivalent to the general solution. Combining
this with the shallow families {14}, {0y} that exist due to R being strong,
yields an arithmetic solution {igoag00,}, satisfying the statement of the
lemma.

Lemma 14/16

For every good representation R, there exists a polynomial p such that
whenever an arithmetic problem {f¢} has an arithmetic solution of size
S(n) and depth D(n), then {f¢} has a general solution with respect to R
of size O(p(n - $(n))) and depth O(p(log(n - S(n)) - D(n)).

Proof

First, by the use of 11 /4, the arithmetic solution is transformed into a
family of F,-circuits satisfying that the fan-in to each II, 3 gate is at
most n, except possibly for some special powering gates that raise the
input value to a power of two. All these gates can be simulated by the
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shallow families of trigger circuits {P,}, {S,} and {Pow}} respectively;
all of which are guaranteed to exist by R being good.

Lemma 15/17

Given a strong representation R and a good representation R’ it is the
case that R = R'.

Proof

R < R': If R is strong, then a shallow family of F,-circuits {7,} exists
for R. By 14/16, {i,} may be implemented using representation
R'. This gives a shallow family of trigger circuits that takes the R'
representation of the R bit string representing a field element, and
produces the R’ representation of that element. All that remains
is to choose two bit strings a,, b, satisfying that ¢z(ag) = 0 and
©q(bg) = 1, and to prefix each input to the new circuit, where an R’
representation of zero or one is required, with a small circuit that
takes a boolean zero or one and switches into the old input either
aq or by as appropriate.

R < R: If R is strong, then a shallow family of F,-circuits {o,} exists
for R. By 14/16, {o,} may be implemented as a shallow family of
trigger circuits using representation R'. The input is now the R’
representation of a field element and the output is the R’ represen-
tation of some bit string that is an R representation of the same
field element. Now, we construct a small circuit that will recognize
the R' representations of zero and one and output the corresponding
boolean value. This may be done using the circuits {Z,} that exist,
due to R’ being a representation. Appending one of the constructed
circuits to each output where a zero or one in representation R’ will
appear achieves the desired result.
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Theorem th2/18

(i) Finite field arithmetic is efficient for general parallel computation
iff there exists a representation R that is both good and strong.

(ii) If two representations R and R' are both good and strong then
R=R.

(iii) If there exists a representation R that is both good and strong, then
any representation R’ that is either good or strong is both good and
strong.

Proof

(i) only if part: We shall prove that the representation R, whose ex-
istence is implied by the efficiency of arithmetic is both good and
strong.

First, we consider goodness. The arithmetic problems =%, x;, [T% i Wiz,
and 1'[2 1 have all constant size and depth arithmetic solutions.
Hence by d8/10 (i), they also have shallow general solutions with
respect to R, which implies the goodness of R.

Second, we consider strongness. The arithmetic problems {iq} and
{04} mentioned in d10/12 have shallow general solutions with re-
spect to R. By d8/10 (ii), this implies the existence of shallow
arithmetic solutions. Hence, R is strong.

if part: The result follows by 13/15 and 14/16, when taking the
polynomial that has to exist according to d8/10 to be the sum of
the two polynomials mentioned in 13/15 and 14/16.

(ii) Follows immediately from 15/17.

(iii) We assume R’ is strong. By 15/17, R = R'. Hence there exist
shallow families of trigger circuits {T Dy — Dy} and {T}, : D, —
D,} such that {Ty0S,0T,}, {Ty0P,0T;} and {T; oPowjoT’} certlﬁes
the goodness of R/, provided S, P,, Pow certifies the goodness of
.4
The case of R’ being good is similar, but slightly more involved. It
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is here necessary to construct arithmetic analogues of T, and T’ by
following the ideas used in the proofs of 12/14 and 13/ 15

Remark: Part (i) of th2/18 shows that the very general question of
whether all problems have “same” arithmetic and general complexity re-
duces to the question of whether there exists a representation such that
five specific problems have identical arithmetic and general complexity
(the problems {F;}, {S,}, {Pow]} mentioned in d9/11 and the problems
{i¢}, {04} mentioned in d10/12).

Part (ii) shows that if arithmetic is efficient then there is essentially only
one interesting representation.

Part (iii) tells that it is enough to look for a representation that is either
good or strong.

In what follows we investigate whether the standard representation is
applicable.

Definition d12/19

Standard representation

(i) For prime fields F, (p is a prime) the standard representation is

= ({,{D,}, {¥p},{Z,}), where

£ = [log, p] (we abbreviate £(n) to £)

D, = {b € {0,1}* | b is the usual binary representation of
an integer in the range [0,p — 1]}

pp(b) = TP, bi2°

Z, — obviously a constant depth polynomial size

trigger circuit for zero recognition exists.

Zp(bo, b1, -+, bp1) = ALZH(—by)
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(ii) For extension fields F,(g = p*, p is a prime, k is a positive integer)
a standard representation R = (£,{D,},{¢,},{Z,}) is

£=Fk- [log,p| (we abbreviate £(n) to £)
Dy = D, x Dy x ... x D, (k-fold product)
pq(do,dy ..., dr_1) = TEF @p(di)pl
where p, is some generating element of the
field F,

Z4 obviously is easy, since Zy(do,dy, . . .,dr—1) = A¥$ Z,(d;)

Remark: The standard representation of prime fields is unique, whereas
the representation of extension fields depends on the choice of generating
element p,. For more background see [Lidl 83]. In the following all
references to representations allude to a standard representation unless
explicitly stated to the contrary.

Lemma 16/20

Given a generating element p, for each F (g = p*), there exist constant
depth polynomial size arithmetic circuits

{a,q : F;“, — Fq} and
{64 : F, — F;ﬁ}

such that z = i1 b, (2); P} and ay(by(z)) = =

Proof

Since p, is a generating element of F, 0 - .,p’;_l} forms a basis
for F, regarded as a vector space over F,. This basis has a dual basis
{ho,h1,...,hg_1} such that if z = k-] bipé then b; = Z?;&(him)p’-. For
details see [Lidl 83]. Hence {b,} has an arithmetic solution of depth 2 and
size O(k) < O(n). The same trivially holds for {a,}, since a,(by, by, ...,
bp-1) = Ti5g bip;,-
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Lemma 17/21

Given a standard representation R = (£, {D,},{w.},{Z,}) there exists
for each ¢ = p* a unique degree % polynomial gq(x) € F,lz] of which
pq = 94(0,1,0,0,...,0) is a root.

If a bit string d = (do,dy, ... ,dx_1) € D, is identified with the polynomial
x(d)(z) = =¥ ¢(di)a* in Fy[z] then

x(d)(z) = [x(d')(@) * x(d")(=)] mod g,(z)
iff

¢a(d) = pq(d) * pqg(d")

for * denoting plus or times.

Proof

see [Lidl 83].

Lemma 18/22

The following problems all have Constant Depth Polynomial size Trigger
Circuit solutions:

(i) Iterated integer addition
(ii) Iterated integer multiplication
(iii) Computing an integer remainder with respect to an integer modulus
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(iv) Iterated polynomial addition
(v) Iterated polynomial multiplication

(vi) Computing a polynomial remainder with respect to a polynomial
modulus

Proof

(i) Follows from [Chandra 84].
(ii) Follows from [Beame 86] combined with [Chandra 84].
[

)
)
(iii) Follows from [Chandra 84].
(iv) Follows from (i).

)

(v) This result is nontrivial, and we merely indicate the line of a proof.
The coefficients of the product polynomial are computed modulo
p; for a lot of small primes, pi,ps,...,p, in parallel. By the use of
parallel Chinese Remaindering the full coefficients are then recon-
structed [Beame 86, Chandra 84].
In order to compute the product polynomial modulo a small prime
p, one may use a generalisation of the method used in [Boyar 88]
for the special case of Fy[z].

(vi) Reduces to (iv).

Remark: If in the statement of the lemma only shallow solutions are
required, then the proof of (i)-(vi) are all trivial.

Definition d13/23

Modular Powering (MP)

(1) The integer MP-problem is a family of functions

{f@wr) : Dp = D,, where pisa prime, 0 < 7 < p—1and D, is the
binary integers in the standard representation
of the prime fields.}
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defined by
fom(x) = (2" mod p)

naturally, the input size n = logp.

(ii) The polynomial MP-problem is a family of functions

{f(q,r,pq) : Dy — Dy, where ¢ = p* for a prime p, 0 <7 < p— 1, D,
is the bit strings of a standard representation
determined by a generating element p, of A i

defined by
X(fgrp)(d)) () = (x(d)" mod go(x))
where x, go(z) is chosen according to 17/21.

Remark: The integer MP-problem reduces to the polynomial one since

powering of a constant polynomial in F,[z] is equivalent to powering in

F,.

Definition d14/24
Bit Extraction (BE)

The BE problem is the finite field problem (for prime fields only)
{bp: Fp — {0,1}" € F}},

defined by ¢,(by(z)) = x, where @, is the semantic function of the stan-
dard representation and field values 0, 1 are identified with Boolean values
M

Theorem th3/25

Standard and strong/good

(i) A standard representation is strong iff the BE-problem has a shallow
arithmetic solution.
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(ii) A standard representation is good iff the MP-problems have shallow
general solutions.

Proof

(i) if-part: A shallow arithmetic solution for the {o, : F, — {0, 1} n)}
problem may be constructed by combining the circuits {bs} (by
16/20) with a shallow arithmetic solution for the BE-problem.

In case of the {iy : {0,1}¥® — F,} problem, a shallow arithmetic
solution comes from the circuits {a,} (16/20) combined with a con-
stant depth circuit for (bg,b1,...,b,_1) — S0 b; 2%

only if-part: We assume a shallow solution for the {o,} problem
exists. This solution is specifically valid in the prime fields and is
thus also a solution for the BE-problem.

(ii) if-part: By 17/21 and 18/22 existence of shallow families of trigger
circuits for {F,} and {S,} follows. In the case of {Powj}(q =
p*), 27 is written in base p : 27 = yi- o dip'. Consequently, 2% =
g (a%)7'.

A solution to the MP-problem allows us to raise to the power d; and
the [-gate is implemented using 18/22. The only remaining problem
is conjugation, x — ', which i is an automorphism on the field F,.

Hence if 2= Zk 0 Tip’ then z? = Ek 1 acj.pj P and since there :must
exist numbers M”g € FP such that p”’ = E szgp, we obtain

z? = J = e Miap* = T3 (EJ 0 Mz;ﬁ)ﬁﬁ- Consequently,
conjugation may be implemented in constant depth by 17/21 and
18/22.

only if-part: Assume we have shallow families of trigger circuits for
powering { Pow}} and product { P,}. By writing r € {0,1,...,p—1}
in binary form, r = L.%8P ;21 it is easy to construct a solution for
the polynomial (and thus the integer) MP-problem { figrp,)} from
{Pow} and {P,} using 17/21.

Remark: For bounded characteristic both BE and MP have shallow so-
lutions and hence by Th3/25 and Th2/18(i), finite field arithmetic is
efficient for parallel computations in this case.
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Th2 and 18(iii) in connection with Th3/25 imply that if one of the prob-
lems BE or MP are known to have a shallow solution, then the other
of the two problems have a shallow solution iff finite field arithmetic is
efficient for parallel computations.

Below we shall construct a shallow solution for the BE problem in a
special case.

Definition d15/26
Shallow Primes

Given a polynomial Z, a set of primes S is shallow (with respect to £) if
any prime power 7 that divides p — 1 for p € 3, satisfies that » < £(n),
n = log p.

Remark: Given a prime p, one may decide in time polynomial in n
whether p is shallow with respect to £ by trial division.

Lemma 19/27

The BE-problem has a shallow arithmetic solution when restricted to an
arbitrary set of shallow primes.

Proof

Assume p—1 = q;-q3-. . .-g) for relatively prime prime powers g; satisfying
that g; < £(n) for a polynomial £.

F, the multiplicative group of F, has unique subgroups U;, Uy, ..., Uy of
order qi, g2, - - - , g respectively and is isomorphic to Uy x Uy x ... x U, by
the Chinese Remainder Theorem.

Actually, any = € F, may be written uniquely as ¢ = @ - 25 - ... - 2y,
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where z; € U;. Each @; may be computed by a single I] gate:

= - -1
zi =15 (where ¢; = (p
g

)~' mod g; is a constant.)

Since an x; takes at most ¢; < £(n) different values, the bits of the stan-
dard representation of z; can be found by a constant depth size O(£(n))
table lookup circuit. The multiplication = = [1¥_; #; may now be simu-
lated on the bits of z; to give the bits of . This can be done by shallow
arithmetic circuits using 18/22 and 12/14.

Theorem th4 /28

Efficiency and shallow primes

When restricting attention to a class of finite fields for which the charac-
teristics form a shallow set of primes the following is true:

The restricted finite fleld arithmetic is efficient for parallel computations
iff the MP-problem has a shallow general solution for these finite fields.

Proof

Follows by 19/27, th3/25 and th2/18.

Remark: By th2/18(ii) for a shallow set of primes the standard repre-

sentation is the only candidate (up to equivalence) for a representation
satisfying d8/10.
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When considering the efficiency of finite field arithmetic for sequential
computations only, a stronger statement can be made. The MP-problems
obviously have a polynomial size solution (using repeated squaring) and
the definition of shallow set of primes (with respect to £) may be relaxed

to include all classes of primes p for which every prime divisor r in p—1
satisfies that » < £(n).

In fact the following statement is valid: finite field arithmetic is efficient
for sequential computations, when restricting attention to a class of fields
for which the characteristics form a shallow set of primes, with respect
to the relaxed (sequential) definition of a shallow set of primes.

Definition d16/29
f? g, 71-’ O-) m
The finite field problem {f,: F, — F,} is defined by:

Lt = (E_IT‘BP mod p), where a field element z is
identified with its standard (integer) rep-
resentation, and the expression is evalu-
ated over the integers, before taking the
remainder to get a field element

Similarly {g, :F2 — F,} is defined by:

zP + yf — (z +y)?
( p

gp(z,y) = mod p)

The functions {7, JP:FI% — Fp} are the multiplicative and additive carry
respectively from the first position into the second position in base p
arithmetic, i.e.:

Wp(il?,’y)p =+ [(33 ’ y) mod p] =z Y
op(z,y)p+ [(z + y) mod p| =z +y
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The function m,, : Z,2 — Z, is the “mod p” function defined by:

mp(zp+y) =y for z,y € Z,(XF,)

Remark: A more thorough introduction to the functions f and g may
be found in [Sturtivant 87], where their importance for the BE-problem
with respect to sequential efficiency of finite field arithmetic is discussed.
Here we shall find that a similar result holds in the parallel case. Below
we present some selected identities from [Sturtivant 87].

Lemma 110/30

T, 0, g, | satisfy the following identities

(1) m(z,y) =2 - fip(y) + fol@) -y — folz - )
(i) op(z,y) = folz) + fo(y) + go(2, ) — folz + )

() gleyg) = Sfra=0y=0a+y=0
9\ T Y) = o[fp(1+ L) — fo(¥)], otherwise

Proof

See [Sturtivant 87].

Lemma 111/31

Given amodulus 7, 2 <r < p—-1. fp=s-72+t 0< t < r —1 then
rmodr =z — r[my(s,z) + 0p(x — mp(s,z)7,p — 1)) for z € Zy, (0<€ o<
p—1).
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Proof

Assume z = ar +bfor 0 < b < » — 1. Since £ mod r = b = z — ra, it
suffices to find an expression for a.

We may compute s-z = s(ar +b) = ap+ (sb — at), which combined with
the observation that | sb — at |[< p — 1 leads to two different cases.

i) T0<sb—at<p—1thena= 7p(s, ). This implies that
op(x — mp(s,z)r,p —7) = a,(b,p — 7) = 0.

(i) If —(p—1) < sb— at < 0 then a = 7,(s,z) + 1. This implies that
op(z — Tp(s,2)r,p— 1) = 0p(b+ 7r,p — ri=1

Thus in both cases, we find a = m,(s,z) + o, (z — m,(s, T)r,p —7).

Lemma 112/32

If the binary expansion of p—1isp—1 = T—0 b;27 then the following
formula is valid

Kabi2 b2k h—=1 2t 29
B n wp(:nzs—o b;2 SAErES) " 1 Wp(a: S

for F,-arithmetic.

Proof

The following formula comes from a simple transcription of 110 /30(i)

o(zy) _ () 4 Io() _ (T, y)
zy y & zy




and it gives by repeated application

332" - k 5132 332
B le) 2 mle

k
x2 x = a:z“l

Similarly, we find

k k=13 47
Fo(z?Y) = f,(zXi=ob .21 - i Fo(m™%) & T (223=0 5323,331);;2")
p 5—0 mkaIe Pt w2;=0 5,27

Now, z?~! € {0,1} and f,(0) = f,(1) = 0 by 110/30. Hence,
falw bu2 ) =0 for by = 0.

By using these fact and combining the above equations, we obtain:

2k 7, (2%, &%)

0=y b2t 2B 5 oL
= ¢ z k=0 £=0 OB g k=0

(mz" > b;2! bk2k)

3323 =0 b.? 2J

from which the lemma follows by rearrangement of terms.

Theorem th5/33

f versus the BE-problem

The BE-problem has a shallow arithmetic solution, iff {f,} has a shallow
arithmetic solution.

Proof

only if-part: We assume the BE-problem has a shallow arith-
metic solution. In this case, {m,} may be computed fast in
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parallel by arithmetic, using th3/25(i), 13/15 and 18/22. A
shallow arithmetic solution for {f,} may now be constructed
using 112/32.

if-part: We assume { f,} has a shallow arithmetic solution. By
110/30, so have {m,} and {o,}. Hence by 111/31, we may com-
pute zj = (z mod 2*) for 1 < 2% < p by shallow arithmetic
circuits. If z = £ (5;2° (2" < p < 2"t1) we find

by = (py1—z)/2%for0<k<mn
by = =z
bn = op(z,p—2")

Thus the BE-problem has a shallow arithmetic solution.

Remark: When resolving the status of the standard representation with
respect to being strong, Th3/25 and th5/33 combined tell us that we
need only consider the {f,}-function.

Theorem th6/34

The {f,}-problem has a shallow arithmetic solution iff the {gp}-problem
and the {m,}-problem both have shallow arithmetic solutions with Zy
and Z,:-arithmetic respectively.

Proof

We omit details of this proof. The proof given in [Sturtivant 87| for a
sequential version of the above theorem carries over to the parallel case,
when using the fact that [T, -gates over Z, can be simulated by shallow
circuits employing [], S, g-gates over Z, in the Witt-representation of Z,:.
(For definition and background of the Witt representation, see [Sturtivant
87]). The simulation uses the two formulas:
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i) (i 29 i
Hf:l(xt(])amg)) = ($0,33g-2,§=:1 ;éﬁ) ) where wO:Hf’:lm(())

oha(@,2f) = (20,21 + Tk, (i) 0, 27)),
Where Ty = Ei'gzl mgz) fOI‘ f = O’ 1

Conclusion

In the case of sequential computations, the following can be added to the
points argued in [Sturtivant 87].

o fan-in two gates and gates of unbounded fan-in give rise to optimal
arithmetic circuits of polynomially related sizes.

e finite field arithmetic is fully general for sequential computations,
when characteristics are constrained to a sequentially shallow set of
primes, i.e. primes p for which all prime divisors of p—1 are small.

Those findings suggest:

e When reasoning about the complexity of computations, we should
use [] and ¥ gates to avoid the combinatorics of fan-in two gates,
even in the case of sequential computations.

In the case of parallel computations, we have shown

e When restricted to bounded characteristic, finite field arithmetic is
fully general for parallel computations.

o The efficiency of unbounded characteristic finite field arithmetic is
implied by the existence of a polylog depth, poly size solution for
the modular powering problem in combination with polylog depth,
poly size arithmetic circuits to extract the bits of a prime field
element in the standard representation.

29



This problem of bit extraction has a polylog depth, poly size arith-
metic solution if and only if the prime field function f(z) = (m—;%{)
has a polylog depth polysize arithmetic solution.

The function f(z) has a polylog depth, poly size arithmetic solution
2

iff the function g(z,y) £ %;(mﬂ’ﬁ and m(z) £ (z mod p) both

have polylog depth poly size arithmetic circuits over Z, and Z,

respectively.

The problem of bit extraction has a constant depth, poly size solu-
tion, when the characteristic is restricted to a parallel shallow class
of primes, i.e. primes p for which all prime power divisors of p — 1
are small.

If unbounded characteristic finite field arithmetic is efficient for par-
allel computations, despite the bit extraction and the modulo pow-
ering problem not having shallow solutions, then there exists an ef.
ficient nonstandard representation, whose relation to the standard
representation is inherently sequential.

If finite field arithmetic is efficient for parallel computations, then

there exists only one efficient representation of the fields (up to fast
parallel conversion).
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