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Abstract

We define a new structured and general model of computation: circuits
using arbitrary fan-in arithmetic gates over the characteristic-two finite
fields (Fan). These circuits have only one input and one output. We
show how they correspond naturally to boolean computations with n
inputs and n outputs.

We show that if circuit sizes are polynomially related then the arithmetic
circuit depth and the threshold circuit depth to compute a given function
differ by at most a constant factor.

We use threshold circuits that allow arbitrary integer weights; however,
we show that when compared to the usual threshold model, the depth
measure of this generalised model only differs by at most a constant factor
(at polynomial size).

The fan-in of our arithmetic model is also unbounded in the most generous
sense: circuit size is measured as the number of ¥ and [ gates; there is
no bound on the number of “wires”.

We show that these results are provable for any “reasonable” correspon-
dance between bit strings of n-bits and elements of Fyn. And, we find
two distinct characterizations of “reasonable”. Thus, we have shown that
arbitrary fan-in arithmetic computations over Fi» constitute a precise
abstraction of boolean threshold computations with the pleasant property
that various algebraic laws have been recovered.



Introduction

The development of arbitrary fan-in boolean circuit complexity within
NCW has entailed the use of gates with fewer and fewer pleasant algebraic
properties [Chandra 84, Furst 81, Razborov 87, Smolensky 87, Hajnal
87]. In particular, the use of threshold gates does not even provide the
associative law, and it is not clear that fully arbitrary fan-in can be
allowed (cf. parity, where repeated fan-in of the same value gives no
additional computational power). Nevertheless, threshold circuits seem
to provide the most powerful physically reasonable arbitrary fan-in model
of parallel computation.

The aim of this paper is to provide a new model of parallel computation
that gives essentially the same complexity measure as threshold circuits,
whilst possessing as many pleasant algebraic properties and as few com-
binatorial restrictions as possible.

Let Fa» be the finite field with 2" elements, often implemented as polyno-
mials of degree < n where arithmetic is done modulo a fixed irreducible
polynomial of degree n, and all coefficient arithmetic is in F, ({0,1} with
exclusive-or and and as + and x). For details, see [Lidl 83].

We consider the computation of functions f : Fy» — Fy« using arbitrary
fan-in sum (¥) and product (II) gates and constants. All arithmetic is
field operations with unbounded fan-in in the truest sense — to compute
an arbitrary power of a value, that value may be fanned-in to a single []-
gate the requisite number of times. The depth of such a circuit is defined
in the usual way, and the size by the number of gates. There is no bound
on the number of “wires”.

The usual implementation of Fj» described above provides a natural cor-
respondance between field elements and bit strings of n bits and thus
between field computations and n input, n output boolean computa-
tions. As a boolean model of computation, we choose threshold circuits.
Under the above correspondance, we show that arithmetic and threshold
depth at polynomial size are essentially the same measure of complexity,
differing by at most a constant factor.



We also characterise those implementations of Fy» under which the above
result holds. Thus we have shown that the Fy» model of parallel com-
putation described above is a precise abstraction of threshold circuits.
This is particularly surprising on two counts: first, because it has been
widely assumed that field computations could not model parallel com-
putation reasonably owing to “degree difficulties”, e.g. [von zur Gathen
86]; second, and more interestingly, because of the provable inability of
simple modular operations to compute majority in constant depth and
polynomial size [Razborov 87, Smolensky 87].

On the boolean front, several threshold models of computation are possi-
ble, the main distinction being between bounded and unbounded weights
(see [Hajnal 87] or further on here for details). This corresponds simply
to whether or not unbounded fan-in from a single source is allowed, as
it is in the F» model. We show that these distinct threshold models are
all essentially equivalent.

The interest in threshold complexity, i.e. F3» complexity, is manifold.
Threshold gates are used in several models of the brain [Rumelhart 86].
Threshold functions clearly provide the most powerful symmetric gates
possible: for on the one hand, any symmetric function can be computed
by a constant depth threshold circuit of polynomial size [Hajnal 87]; and
on the other hand, if we allow circuits using arbitrary symmetric func-
tions, but also allow arbitrary fan-in from a single source, then any func-
tion may be computed using one gate.

Threshold functions can be computed by a fan-in 2 boolean circuit of
logarithmic depth (i.e. they are in NCW). Thus, it is a matter of
supreme interest whether all functions in NC) can be computed by con-
stant depth, polynomially sized threshold circuits. In an excellent paper,
[Barrington 86], showed that the word problem for any fixed non-solvable
group is complete for NC() via appropriate reductions; whilst conversely,
the word problem for any fixed solvable group of order g is reducible to
mod-g operations via appropriate reductions. The latter operations are
known not to be complete for NC!) [Smolensky 87]. Since mod-g reduces
to majority (via binary count, see [Chandra 84]), the word problem for
solvable groups has constant depth polynomial size threshold circuits.
Conversely, having majority gates can easily be seen to be equivalent, in



this context, to allowing mod-p gates for all p. This follows from the use
of integer Chinese remaindering modulo small primes to effect counting.

The problems of iterated two-by-two matrix multiplication over F, and
of iterated three-by-three matrix multiplication over F, are thus easily
seen to be complete for NCV), First, they are in NC™ since matrix mul-
tiplication is associative and therefore a tree of constant size, constant
depth matrix multiplication circuits will solve such a problem. Second,
the multiplicative group in each case is insoluble. In fact, in the case of
two-by-two matrices over F4, the multiplicative group is isomorphic to As,
which is the smallest insoluble group [Gorenstein 80]. In contrast, iter-
ated two-by-two matrix multiplication over F; involves a solvable group.
Thus some sufficiently large constant size iterated matrix multiplication
gate is the next natural arbitrary fan-in gate to consider after threshold
gates when investigating the structure of NC(), In particular, is there a
constant depth polynomial size threshold circuit to simulate such a gate?

Intuitively, threshold circuits catch all abelian problems efficiently and
the issue is whether this extends to non-abelian problems. When consid-
ered in the light of the earlier remark concerning symmetric functions,
these iterated constant size matrix multiplication problems provide the

maximum amount of algebraic properties compatible with being complete
for NC®), iff threshold is not complete for NOM,

In the event that threshold proves to be not complete for NC(), there
is some justification for regarding the classes based upon arbitrary fan-in
threshold gates to be the fundamental classes, rather than the classes
based on fan-in 2 boolean gates or on arbitrary fan-in iterated matrix
multiplication gates. It is reasonable to regard arbitrary fan-in thresh-
old gates as efficiently physically realisable. Presumably, under these
circumstances, the iterated matrix multiplication is not efficiently phys-
ically realisable. Furthermore, the classes based upon threshold circuits
correspond to the simple arithmetic model in Fg.. If it were found that
threshold is not complete for NC(), it would be an unpleasant quirk in
the relationship between arbitrary fan-in and fan-in 2 computation.

Conversely, should threshold circuits exist to solve the constant size it-
erated matrix multiplication problem in constant depth and polynomial
size, then the depths of fan-in 2 boolean circuits and threshold or Fsn
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circuits to compute a given function would be related by precisely a fac-
tor of logn (ignoring constants and with at most polynomial change in
circuit size). Furthermore, it would imply the collapse of the hierarchy
of constant depth polynomial size threshold circuits given in [Hajnal 87]

to some particular depth. We leave verification of these details to the
reader.

The idea of bringing into correspondance finite field arithmetic and boolean
computations is not a new one. In [Sturtivant 87|, we investigated arith-
metic vs. boolean computation in all possible representations of all fi-
nite fields. This was for sequential complexity accomplished with fan-in
2 arithmetic, but a connecting result in [Frandsen 88a] shows that this
holds equally well for arbitrary fan-in. It also thoroughly investigates
the parallel complexity analogue of [Sturtivant 87], which is essentially
the generalisation of the present paper to arbitrary characteristic finite
fields with more general field representations. In [Bggestrand 88], tight
characteristic 2, fan-in 2, sequential complexity results with a fixed range
of representations are described.

In the present paper, we confine our attention to the arbitrary fan-in Fan
model where representations of field elements are unique and consist of
bit-strings of n-bits. All of the results in this paper would hold in the case
of computations with more than one input or output and other various
or mild generalizations, which we ignore in the interests of simplicity.

Definitions And Results

Definition d1/1

Threshold Functions and Circuits

Threshold functions are of the form

m
TI%(wa”:ym) =1 iff glaiyz' P k



where @ = (ai,...,04,) is an arbitrary tuple of integers, and Y1y oy ¥
are boolean inputs.

m

Threshold circuits are defined as circuits in which the gates compute
threshold functions of arbitrary fan-in (i.e. in the above definition, m is
arbitrarily large). The size of such circuits is defined to be the number
of gates. The depth is defined in the usual manner.

Remark: Note that this model of computation is essentially unchanged if
we allow only positive integers but also allow negation gates [Hajnal 87],
or if we allow yy,...,ym to be integers of an appropriately bounded size,
since these integers may be represented in binary and simulated by a
threshold function of the above type. Neither of these changes alters the
measures of depth and size by more than a constant factor.

Definition d2/2
Majority /Negation Circuits

The majority function is of the form:

2k
M (y1,...,yx) = 1iff the arithmetic sum 3 y; > k

=1

Majority/negation circuits are defined as circuits using unary negation
gates and arbitrary fan-in majority gates with the restriction that any
two inputs to a majority gate must be either outputs of different gates,
distinct inputs, or an input and a gate output.

Remark: This model appears intuitively weaker than the previous model,
but in fact, this is not the case, as the following lemmas establish.

Lemma 11/3

Let (ai1,03,...,05) be an arbitrary tuple of integers. Such a tuple will
satisfy various inequalities of the form Yicr, a; > (>) Tjer, ;. We regard
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two tuples as equivalent when they satisfy the same set of inequalities.

Any tuple is equivalent to a tuple whose entries have magnitude at most
nn—i—l.

Proof

Let (o, s,...,04) be an arbitrary tuple of integers. For every two (dis-
joint) subsets Iy, I, of {1,2,...,n} precisely two of the four statements
that follow are valid:

Yicl, % — Yier, 0 = 0
Yiel, & — Yier, @ > 1
2ich O — Lien, i 2 1
Yiel, % — Xier, @; 2 0

The resulting collection of inequalities may be put into matrix form:
AB > b, where 8 = (a1, a3, ...,a,).

A is a 3" X n matrix with —1,0,1 entries (and rank n) and b is a 3"-
dimensional column vector with 0,1 entries.

Consequently the lemma is proved if we can modify an arbitrary integer
solution x = 8 to Ax > b in a way that preserves the inequality, but
diminishes the absolute values of 3’s entries sufficiently.

In the following, let mj; denote the maximal absolute value of a k x k
determinant with —1,0,1 entries.

We use the following procedure to diminish absolute values of solution
x=/01to Az > b.

Input: A,B,b such that A3 > b.
A has rank n, is 3" x n, has —1,0, 1 entries
b is 3" x 1, has 0,1 entries
B is m x 1, has integer entries

Output S’ such that AS' > b and |8} < n?.m2_, for all i.
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Method:

x =
while (Ax); > 2 for all i such that the i’th row of A is non-

singular do decrease the absolute value of some z; by 1;

fork:=1ton—-1do

INVARIANT: Ax > b,

There exists a k X n submatrix B’ of A such that B’ has
rank k£ and all entries in the vector B’ x lie in the interval
[0,7 - mp_1q].

Choose a B’ that fulfils the invariant above; We want to find
a nonzero vector d in the nullspace of B’. We can assume
without loss of generality that the k leftmost columns of B’
are linearly independent and constitute a square matrix B.
Let B; be B where the i’th column has been replaced by
the last column of B’, and form the vector

d = (detBy, detB,, ..., detBy,0,0,...,0, —detB)!

that fulfils Bd = 0 by Cramer’s rule.

Since A has rank n > k, there exists a row vector in A
linearly independent from the rows in B’ and such that
a-d # 0. Furthermore the sum of the elements in d are
bunded by (k + 1) - my < n-m,_;. These facts assure that
the loop beneath stops yielding a vector x that is still a
solution to 4 x> b:

while [for all row vectors a in A which are linearly indepen-

dent of the rows in B’ it is the case that a-x > n-m,_; +1]

do
x := x +d (where +/- is selected in order to decrease the

minimal value of a - x as in the condition);

{end of for-loop}



B = x;

INVARIANT: AS' > b,

There exists an n X n submatrix B of A such that B is
nonsingular and all entries in the vector B3’ = c lie in the
interval [0,7 - m,_1]. -

Choose B, c as in the invariant. According to Cramer’s rule
B =5 1B (detBi,detBs,...,detB,), where B; is B with the
1’th column replaced by c. Consequently, 1Bi] < |detB;| <

My 1501 S Mp 1NN My =n"-ms_,,

{end of algorithm}

To prove the lemma, we need only verify that m2_; < n™'. Ak xk
determinant with —1,0,1 entries can be regarded as the volume of a
hyperparallelipiped ea,ch of whose edges are bounded in length by vk,

implying that my < JE
O

Remark: The reader will note that this is a slight modification of the tech-
nique used to prove integer linear programming to be in NP [Hopcroft 79].

Lemma 12/4

A threshold gate computing Ty (y1,...,¥n) can be simulated by a major-
ity /negation circuit of constant depth and size polynomial in n, irrespec-
tive of the size of the integers a, k.

Proof

Given a,k, we know from 11/3 that there exists an equivalent tuple 8 each
of whose integers require at most (n 4 1)logn bits to describe (ignoring



the sign). Since g satisfies the same subset inequalities as g, it is clear
that there exists a new threshold k' < ¥ , |3;| such that:

s
T i« st ) =T s 2 53800)

Thus k' requires at most (n + 2)logn bits to describe. We then have

B 4 i
Tl oo sin) = 1 1 zjlﬁ,yz > k'

Thus Tf—, may be computed by evaluating the sum and making the com-
parison explicitly. That all of these operations can be computed in con-
stant depth and polynomial size using majority and negation gates follows
immediately from the reductions in [Chandra 84]. In fact, the negative
weights may be eliminated first by negating the corresponding y; and
adjusting the threshold value appropriately, as noted in [Hajnal 87].

O

Remark: In fact, the above lemma may be extended to the case where
the weights and threshold are arbitrary real numbers, see [Frandsen 88b].

Theorem th1/5

If there is a threshold circuit of size Cr and depth dr to compute a
given n-input function, then there is a majority/negation circuit of size
polynomial in C7 and n and depth at most ¢ - dr where c is a constant.

A similar (converse) statement holds for threshold circuits simulating
majority /negation circuits. Thus, the depth measure of complexity at
bounded size is essentially the same for both models.

Proof

The second part follows easily, since M2*(yq,...,ya%) = T&(v1, .- ., yor)
when a = (1,1,1,...,1).
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The first part follows from Lemma 1 2/4 and the observation that the
maximum fan-in of a threshold gates is about Cr + n.

Definition d3/6

Trigger Circuits

We regard the threshold circuits from definition d1/1 and remarks and
the majority /negation circuits from definition d2/2 (and any other simple
variations) as a single class of models of computation. These are equiva-
lent up to constant depth and polynomial size. We refer to this class of
models and any representative member of it as trigger circuits.

Definition d4/7
An Fj. 3,11 Circuit

This is an arithmetic circuit in the field F3» using unbounded fan-in sum
() and product (II) gates. The size is defined to be the number of gates
and the depth is defined in the usual manner.

Remark: Note that the fan-in to a []-gate may be enormous since to

compute a very high power of some value it is only necessary to use a
single []-gate.

Definition d5/8

A representation of Fj.

This is a bijection ¢, : Fo» — {0,1}". This defines which element is
associated with which bit string.
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Definition d6/9
A good representation of Fj.

This is a family of bijections ¢, : F2» — {0,1}” and n + 1 families of
trigger circuits (1 < j < n)

S, ¢ {0,17* — {0,1}"

B, : {017 — fo,1}"

ci : {0,1}" — {0,1}"

all of polynomially bounded size in n and constant depth, satisfying
Su(@n(Z1); -, $u(Zn)) = Pn(2 Z:)

Pa(@a(21)s ., $n(Z0)) = m,zﬁl Z)

Ci(9n(Z1)) = ¢u(27)

for all assignments of Fy» elements to Zi,...,Z,. Thus, ¢, defines the
semantics of the representation, i.e. which bit string represents which
field element (up to automorphism), and S, P, and C? provide constant-
depth, polynomial-size implementations of n-input field  and ] gates,
and gates computing the jth conjugate, respectively.

Remarks: It is not clear either that such a representation exists or that
such a representation is able to simulate an Fs» ¥, 1] circuit with only a
constant change in depth and a polynomial increase in size. Conjugation
is simply an automorphism of Fy- (see [Lidl 83]), and is a necessary op-
eration for efficient simulation of arbitrary fan-in Fs. circuits as will be
shown later.

Lemma 13/10

Let ¥ : Fon — Fyn be an Fye 3,11 circuit of depth d(n) and size C,.
Then there exists a corresponding trigger circuit 7, : {0,1}* — {0,1}"
of depth O(d(,)) and size (n - C’(n))o(l), with every good representation
Pn : Fon — {0,1}" such that 7,(¢s(2)) = ¢n(¥n(2)).
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Proof

We simulate the 3 and ] gates in the Fa» circuit in this representation
in such a way as to fulfil the statement of the lemma.

A basic difficulty is the unbounded fan-in of the gates. This is dealt
with easily in the case of 3 gates, where multiple fan-in of a single value
only contributes that value once or not at all to the output of the gate.
Therefore the effective fan-in to a -gate is at most about n + Cln)-

In the case of a [I-gate, a fan-in of a single value u, k times contributes
a factor of u* to the gate’s output. Here k¥ may be bounded by 2" since
any value u satisfies u>" = u within Fy. [Lidl 83]. Next, we observe that
the conjugates u,u?,u?,...,4*"" may be used to compute any power of u
using a [[-gate of fan-in at most n. Since there are at most about n+Cx)
distinct inputs to any I[-gate, if we introduce a new kind of gate that
computes the conjugates, we ensure that the fan-in to any [J-gate is at
most about n(n + C(n)), whilst at most doubling the depth of the original
circuit.

We now assume that the original Fy. ¥,I] circuit is transformed in the
above ways in order to control gate fan-in. The three kinds of gates ¥, II
and conjugation are implemented in the good representation in constant
depth and size polynomial in the fan-in by using the circuits defined to
exist in d6/9. The resulting circuit fulfils the statement of the lemma.

Definition d7/11
A standard representation of F.

Let fn € Fa[x] be an irreducible polynomial of degree n. Then Fy[x]/(f,)
is isomorphic to Fy [Lidl 83]. Thus, Fy» can be represented as all
polynomials over F; of degree less than n, with arithmetic being simulated
by polynomial arithmetic modulo f,.

13



Choosing ¢,(2) to be the coefficient tuple of the polynomial representing
the field element 2 defines the semantic function of a standard represen-
tation of Fyn .

Remark: It is not clear at this juncture whether this is a good represen-
tation.

Definition d8/12
A strong representation of F.

Here we regard {0,1} both as boolean values and as members of Fyn . A
strong representation is a semantic bijection ¢, : Fa» — {0,1}" with the
property that there are constant depth, polynomially bounded size (in n)
arithmetic circuits

Z.n : {0,1}“—>an
Onp an ___){0’1}71

satisfying

on(2z) = ®n(2)
in(pn(2)) = 2

for all field elements z.
Remark: Intuitively, a strong representation is one in which entry to or

exit from the representation can be accomplished very efficiently with
arithmetic.

Definition d9/13

Equivalent Representations

A representation ¢, : Fsn — {0,1}" translates into a representation
bn : Fon — {0,1}" (written ¢, < 6,) iff there exists a constant depth,
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polynomially bounded size (in n) trigger circuit 7T}, : {0,1}* — {0,1}"
satisfying Tn(¢n(2)) = 0n(2) for all z € Fy. . We say that ¢, and 6, are
equivalent representations (written ¢, = 6,) iff ¢, < 6, and 6, < ¢,,.

Lemma 14/14

If ¢n is a strong representation of Fy» and 6, is a good representation of
Fp , then ¢, = 6,. Thus both ¢, and 6, are good and strong.

Proof

an S Bn

If ¢, is strong then a constant depth polynomial size arithmetic circuit,
in, exists for ¢,. If i, is implemented using representation 6,, this gives
a trigger circuit that takes the 6, representation of the ¢, bit string
representing a field element, and produces the 6, representation of that
element. This circuit is constant depth, polynomial size because the
representation 6, is good. All that remains is to choose the two bit
strings a, = 6,(0) and b, = 6,(1), and to prefix each input to the new
circuit, where an 6, representation of zero or one is required, with a small
circuit that takes a boolean zero or one and switches into the old input
either a, or b, as appropriate.

O < n
¢n is strong; therefore a polynomial, constant depth circuit o, exists for
¢t If o, is implemented in representation 6,, the input is now the 6,
representation of a field element, and the output is the 8, representation
of the bit-string that is the ¢, representation of the same field element.
Now take a small circuit that will recognise the 6, representations of zero
and one and output the corresponding boolean value. Appending one of
these to each output where a zero or one in representation 4, will appear
achieves the desired result.
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Lemma 15/15

Any standard representation is strong.

Proof

Let u = ¥7°7 u;0° be the relationship between a field element u and its

bits in a standard representation (uo,...,u,_1). Then u? = y7-! TACESY
since (z + y)? = 22 4+ y? in Fy- . Thus
[ u 1 [ 140 92 93 r 17 U
u? 1 82 6* 6° ... Uy
'IL4 — 1 94 98 912 wnn ¥ U9
I uzﬂ.—l | i 11 un_l |

As observed in [Sturtivant 87], the constant matrix is invertable since the
conjugates 8,8%,6%,...,0%" are distinct. Thus (uo,...,Us_1) are com-
putable from u in arithmetic depth 2 and polynomial size. (Or, we can
merely observe that traces can be used to compute u; directly [Lidl 83].)

Conversely, u = T3 u;0* immediately yields a depth 2 arithmetic circuit
of polynomial size to compute u from its bits.

a

Remark: Note that the existence of a good representation implies that
the standard representation is good by 14/14 and 15/15. We have not,
however, shown the existence of a good representation. Clearly, a good
representation exists iff a standard representation is good.

Lemma 16/16

There exists a constant depth polynomially bounded size in n major-
ity /negation circuit to compute the n-input parity function (modulo-2
sum).

16



Proof
See e.g. [Hajnal 87].
O

Remark: Note that it is just as simple to compute the so-called mod-p
function defined in [Smolensky 87]. Equally n-input and or or gates can
be very easily simulated.

Lemma 17/17

An N-input majority gate (for IV < 2") can be simulated by a constant-
depth, N9 size Fyn 3,17 circuit, regarding {0,1} as field elements.

Proof

Let zq,...,zy be the N-inputs that will be {0,1} field values and whose
majority is to be computed. Each input, z;, enters a small circuit that
on input 0, outputs 1; and on input 1, outputs g, where g is a fixed
primitive element [Lidl 83] in the field Fy- . All of these computations
occur in depth 2, and all of their results are the input to a single []-gate.

Thus, the function so far computed is given by the expression:

N
[[ g% = g=imr™
=1

Since g is a generator for the multiplicative group of Fs. , the N + 1
possible powers of g that can arise from this expression are all distinct.
As the majority function only depends upon the number of ones in the
input, the majority function may be computed from this result by table
lookup. This is achieved in Fy by the fact that b(1 — (z — a)¥"~)
computes b when z is a and zero otherwise [Lidl 83].
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Theorem th2/18

Let 7, : {0,1}* — {0,1}" be a trigger circuit of depth d(nyand size Cy,).
Then there exists a corresponding Fy» 3,11 circuit 1, : Fon — Fan

of depth O(d(n)) and size (n - C(n))°Y), with every strong representation
$n : Fan — {0,1}" such that 7,,(¢n(2)) = én(¥n(2)). In particular, this

follows if ¢, is a standard representation.

Proof

This follows from Theorem th1/5 and Lemma17/17. The last part follows
from Lemma 15/15.

Lemma 18/19

There exist constant-depth polynomial size majority /negation circuits
for:

(a) the addition of n n-bit numbers;

(b) the addition of n degree-n polynomials over Fy;

(c) the multiplication of 2 degree n polynomials over Fs, given that one
of them is fixed;

(d) the polynomial modulo operation with a fixed modulus;

(e) the integer modulo operation with a fixed modulus.

Proof

(a) [Chandra 84].
(b) Follows from Lemma 16/16.
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(c) By long multiplication, this is just repeated addition, and thus this
follows from (D).

(d) Also follows from (b).
(e) Follows from [Chandra 84].

Lemma 19/20

The number of irreducible polynomials over Fy[z] of degree < § is at least
28 /6.

Proof

Consider the field Fys. An element of this field is a root of an irreducible
polynomial of degree less than or equal to §, and its conjugates are the
other roots of this polynomial [Lidl 83]. Since an element may have at
most 6 distinct conjugates and the field has 2° elements, the result follows.

a

Lemma 110/21

(Chinese Remaindering for polynomials in Zj[z])

Let p1,...,pr be irreducible polynomials in Fy[z] and let fi,..., fi be
any polynomials in F,[z] satisfying deg f; < deg p;. Then there exists a
unique polynomial f satisfying the conditions deg f < ©;deg p; and f =
fi mod p; for each i. Furthermore, f = ©F ,b;f; mod % p; where the
polynomials b; only depend upon the polynomials pi,...,p; and satisfy
the constraint deg b; < &; deg p;.
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Proof

The uniqueness follows from [Hungerford 74, p. 131]. It is easily verified
that choosing b; = c;d; where ¢; = [Ijzip; and d; = ¢! in the field
Z[z]/(pi) yields the correct solution. This is entirely analogous to the
integer Chinese Remaindering Theorem.

Lemma 111/22

There exist constant depth polynomial size majority /negation circuits for
the multiplication of n degree n polynomials over Fs.

Proof

In this proof, we use the phrase “table lookup” to mean computing a
function directly from its disjunctive normal form in constant depth.

The following is analogous to [Beame 86] where an iterated product of
integers is considered. To compute the product of polynomials, 2, b0,
we take the first k irreducible polynomials p®), ..., p(* from Fy[z| and
compute in parallel all the residues b®) mod p\¥) using Lemma 8/19 part

().
We then compute in parallel BY) = ([, (b@ mod p\¥)) mod p9)) in
Fy[z]/(pV)), which is a field since p¥) is irreducible.

BU) is computed by parallel table lookup of the discrete logarithms of
b mod pU) in the fields Fy[z]/(p¥)) = Fyss. Let 1Y) = log; (b mod p)),
Then log; BU) = y» | l,(j) mod (2% — 1), where integer addition is em-
ployed.

This sum is computed using Lemma 18/19 part (a) and the modulo oper-
ation using Lemma 18/19 part (e). (Some optimization is possible here,
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since the modulus simply gives rise to cyclic carrying, but we ignore this
since it merely gains a constant factor in depth.) B() is recovered from
its logarithm using table lookup.

The final step in the computation is to recover the product B = I1%, b
from the BU) values where BY) = B mod pU). This is accomphshed
in constant depth using Lemma 110/21, and the circuits to implement
Lemma I110/21 are given in Lemma 18/19 parts (c), (b) and (d).

It remains to show that the table lookups are polynomial size circuits.
This follows from Lemma 18/19, which ensures that the maximum degree
of the pl) polynomials is exponent1a.11y small.

Theorem th3/23

Any standard representation is a good representation.

Proof

Let (bo,...,bs) be the bit string representing the field element b in some
standard representation of Fy» given by the field identity b = >t b6
Here a fixed element 6 has been chosen for each field, with (1,8,8%,....8Y)
a basis over F; and f(6) = 0 where f(z) = =%, a;z¢ is irreducible. Arith-
metic on a field element b is then simulated by polynomial arithmetic
over Fy on £ b;z* modulo f [Lidl 83].

A Y-gate is simulated in a standard representation simply by using Lemma
18/19 part (b).

A Tl-gate is simulated in a standard representation (following the remark
in the opening paragraph) in two stages: First, by simulating multiple
polynomial multiplication using Lemma 111/22; and second by simulating
a modulo f(z) operation on the result using Lemma 18/19 part (d).
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A conjugation gate is simulated in a standard representation as follows.
If b = ¥ b;6%, then b = x7-1 b;(62°). But (6%")¢ has some bit repre-
sentation

2ovi _ S (o) gj
(67 = M
J:

where MJ(,Q ) is an element of a bit matrix. Thus

b2°‘ _ n—1 n—1 M(a)b gj
= > (X M;"b;)

j=0 =0

Therefore the representation of b2” is a bit vector linear in the bits rep-
resenting b, and can be computed in parallel using a number of parity
computations. These are implemented as in Lemma 16/16.

Theorem th4/24

All good representations of Fy» are strong and vice-versa, and are equiv-
alent to a standard representation.

Proof
Follows from th3/23 and lemmas 14/14 and 15/15.
8|

Remark: This shows that the only representations of interest are equiva-
lent to a standard representation. Thus we may refer to Fy» computations
without reference to any particular representation, the assumption being
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that a good, strong representation is being used to define a correspon-
dance between field elements and bit strings. In this sense, Fy» arithmetic
computations are an abstraction of bit-computations.

Consider a discrete logarithm in Fj. being a representation I, : Fopn —
{0,1}" (the log of 0 being defined so as to make I, a bijection). By slack-
ening the notions of good and strong to merely involve size constraints,
it is possible using an analogue of th4/24 to show that the complexity of
computing the discrete logarithm is essentially the same as the complex-
ity of field addition in the logarithmic representation. This follows since
field multiplication and conjugation are easy in the logarithmic Tepresen-
tation.

Theorem th5/25

Regard the elements of Fy» as bit strings (by virtue of some strong/good
representation). Then the Fy ,I] depth and the trigger circuit depth
of some n-input, n-output boolean function are related by at most a
constant factor with polynomially bounded difference in circuit size.

Proof

Follows immediately from all the preceding theorems.

a

Remark: This is an extremely robust statement as it is invariant under a
wide range of changes of representation and implementation as outlined
in the preceding definitions.

Essentially, both parallel time upper and lower bounds coincide in the
two models. Thus this theorem provides the large body of theory which
is known about finite fields and which can now be applied to the theory
of parallel computation.
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Conclusion

We have shown that:

e Threshold circuits of unbounded integer weights can be simulated
in constant depth and polynomial size by majority and negation.

e There is a natural family of boolean representations of Fa». These
representations form a single computationally interesting equiva-
lence class. Thus, one may regard Fs» as an abstraction of the
booleans.

e Unbounded fan-in Fy» computations can be simulated with only
constant increase in depth and polynomial change in size by ma jor-
ity and negation.

e An n input, n output majority/negation circuit can be simulated
by a one-input, one-output Fy circuit with only constant increase
in depth and polynomial change in size.

e The threshold, majority /negation, and Fs» models of unbounded
fan-in computation yield essentially equivalent bounds for parallel
computation.

These findings suggest that:

e Trigger circuits form a robust class of computational models.

o Existential (and thus non-uniform) statements about boolean cir-
cuits may occasionally be easier to make than constructive ones, e.g.

the use of very large integer constants in the unbounded weighted
threshold model.

e The pursuit of parallel-lower bound technology should use the arith-
metic model Fyn since there already exists a wide body of known
mathematics concerning it and provides the most structure, ele-
gance, and parsimony as a model of computation.
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