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Abstract

A number of tools in the Mjglner programming environment are metapro-
grams, 1.e. programs that manipulate other programs. The metaprogram-
ming system is grammar based in the sense that a metaprogramming tool
may be generated from the grammar of any language. For each syntactic
category of the language, a corresponding class is generated. The syntactic
hierarchy of the grammar is mapped into a corresponding class hierarchy.
This object-oriented representation of programs is further exploited by in-
cluding a set of more general classes that view a program as an abstract
syntax tree and by allowing the user to add semantic attributes in sub-
classes.

*To be presented at Hawaii International Conference on System Sciences — 21, January
5-8, 1988



1 Introduction

The highly interactive, integrated and incremental programming envi-
ronments of many Lisp systems, such as Interlisp [Interlisp|, are in many
aspects much more advanced than most environments for development of
production software. According to Abelson and Sussman [Abelson & Sussman 85]
the most significant feature of Lisp is the fact that Lisp procedures can
themselves be represented and manipulated as Lisp data. This makes
Lisp an excellent language for writing metaprograms, i.e. programs that
manipulate other programs, such as programming environments.

Lisp has mainly been successful for development of prototype systems
using the ezploratory programming style [Sheil 83]. However, Lisp is not
considered an alternative for development of production programs. Some
of the reasons are the lack of structure and security. There is currently
a number of efforts going on to include some of the advantages of Lisp
systems into environments for production programming. The Mjglner
project [Mjglner 86] is such an activity. This paper describes the princi-
ples of metaprogramming in Mjglner.

Mjglner is a programming environment that supports design, imple-
mentation and maintenance of large production programs. In such an
environment support for structure and security is essential. Mjglner is pri-
marily aimed at supporting the object-oriented programming style. Ini-
tially the environment will support Standard Simula [Simula] and BETA
[BETA 87]. In contrast to Smalltalk [Smalltalk], Simula and BETA are
mainly intended for production programming. They belong to the Algol
family with respect to block structure, type checking and lexical (static)
name binding.

All metaprogramming tools in Mjglner manipulate programs through
a common representation that is abstract syntax trees (ASTs). It was
decided that for a language supported by the system, the corresponding
ASTs should be instances of a well-defined data type. In most non-Lisp
based systems, the data types defining ASTs are internal parts of the
various tools, such as compilers, debuggers etc. This makes it almost im-
possible for a user to write a metaprogram using the same AST-definition.

There is no commonly agreed definition of abstract syntax tree, which
implies that each language implementor selects his own definition. A
context free grammar for a language induces an abstract syntax that
may be used to give an AST-definition. In Mjglner, the representation
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of a program as an AST is defined by means of a context free grammar
for the language. In addition there is a set of rules that specify how the
context free grammar is mapped into a set of data types. The context
free grammar is then part of the specification of the environment.

The ASTs defined by the context free grammar may be described as
Lisp S-expressions. An example of a Pascal statement and a correspond-
ing AST in the form of an S-expression is

while p <>gdoifp<gtheng:=gq—pelsep:=p—gq

(while (<> p q)
(f(<pq)
(:=¢(—qp))
(=2 (- 2q))

S-expressions could in fact be used for manipulation of an AST. In
order to do this in Simula, BETA, or other languages, predefined classes
(types) modelling S-expressions could be included in the environment.

Not all S-expressions do however constitute correct programs. In order
for an S-expression to be an AST, a certain context free structure must
be satisfied. E.g. the S-expression ”(while (if p) (else ¢))” does not
correspond to an AST for a Pascal program, even though it is a well
defined tree structure.

An object-oriented model of the ASTs has been developed in Mjgl-
ner. An AST is modelled as an instance of a class. There is a class
corresponding to each syntactic category (nonterminal) of the grammar.
ASTs derived from a syntactic category are then modelled as instances
of the corresponding class. The class IfImp corresponds to the syntactic
category <IfImp>. Instances of class IfImp then model ASTs that may
be derived from <Iflmp>.

The grammar hierarchy is modelled by a corresponding class hierar-
chy. E.g. if the nonterminal <Imp> may derive <IfImp>, < WhileImp>
etc., then the class Imp will be a super-class of Iflmp. The class hier-
archy is derived automatically from the context free grammar. In order
for this to work properly, the context free grammar must obey a certain
structure.

Using the metaprogramming system, there is a well defined represen-
tation of programs in the form of ASTs. This implies that the various
Mjglner tools and other metaprograms all are able to use the same rep-
resentation of programs.



The grammar based interface described above results in a set of classes
for each language. A metaprogram using the grammar based interface
will thus be language specific since it uses the set of classes generated from
the grammar of the actual language. A number of tools are language spe-
cific in the sense that usually one exist for each language. Examples of
tools that benefit from using the grammar based interface are: semantic
checkers, program analyzers, interpreters, browsers, graphical presenta-
tion tools, transformation tools.

For certain types of metaprograms it may be inconvenient to use the
grammar based interface, since it implies grammar based information to
be hard-coded in the programs. If manipulation of the AST could only
take place through this interface, it would be necessary to write such
tools for every new language. This is of course not acceptable. Examples
of such tools are table-driven parsers and syntax-directed editors.

In order to support both types of tools, the AST in the Mjglner envi-
ronment may be accessed at 3 levels.

1. Tree level. Here the AST is viewed as a tree. This corresponds to
S-expressions.

2. Context free level. This is the grammar based interface gener-
ated automatically from the grammar. This level corresponds to
S-expressions where a context free structure is imposed, together
with functions for accessing the components of the AST.

3. Semantic level. At this level semantic attributes may be added
to the AST. The attributes are tool dependent and usually reflect
context sensitive aspects of the language.

The 3 levels are also modelled by a class hierarchy. A generated
context free level is a subclass of tree level, and a semantic level is a
subclass of the context free level for the language in question.

The Mjglner metaprogramming system is mainly an application of
ideas found in Aleph [Winograd 83] and GRAMPS [Cameron & Ito 84].
Aleph is a general specification language that among others includes pre-
defined classes for the abstract syntax of Aleph. GRAMPS is a metapro-
gramming system where the grammar is mapped into Pascal types. By
using Pascal it is not possible to model the grammar hierarchy in the data
types like it is done in Aleph and Mjglner. In Mjglner an attempt has
been made to view traditional tools like editor, compiler and debugger as
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metaprograms in general. The advantage of this is that all tools including
user programs access programs through a common representation. This
lead to the integration of the grammar based interfaces with the tree level
and semantic level described above.

Like the Mjglner metaprogramming system, the Cornell Program Syn-
thesizer [Teitelbaum & Reps 81] may be used to generate part of a pro-
gramming environment for a language. The purpose of the Mjglner
metaprogramming system and the Synthesizer are however different. The
Synthesizer is a tool for implementing language-based editors. The M;jgl-
ner metaprogramming system provides a foundation for such an editor
generator. An editor generator has been implemented on top of the
metaprogramming system. The difference between the Mjglner editor
generator and the Synthesizer is that the Synthesizer takes a specification
in form of an attribute grammar whereas the Mjglner editor generator is
based on the context-free grammar formalism used by the metaprogram-
ming system. The advantage of using an attribute grammar is the ability
to specify the static semantics in a declarative style. In Mjglner the
static semantic checkers are programmed by means of the metaprograms-
ming system. In theory the metaprogramming system could be based on
attribute grammars too. This has not been done due to the requirement
that Mjglner must support production programming. However, experi-
ments with a restricted form of attribute grammar for specifying static
semantics, take place in the Mjglner project ([Hedin 86]). It is currently
an open question, if a practical system can be based on attribute gram-
mars in general. Since the metaprogramming system is based on a pro-
gramming language a large number of applications other than language-
based editors may be implemented. Of course the generality of attribute
grammars implies that in theory the Synthesizer may be used for a large
number of applications too.

In [BETA 85] a so-called descriptor algebra for manipulation of pro-
gram fragments was presented. New language constructs for expressing
the descriptor algebra were presented. The Mjglner metaprogramming
system shows that the principles behind the descriptor algebra may be
realized within an object-oriented framework without introducing new
language constructs.

The implementation language of the metaprogramming system is BETA.
This means that all metaprograms are written in BETA. Metaprograms
can manipulate ASTs of any context free language. BETA will thus be
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used in this paper to describe the metaprogramming system, and the
relevant parts of BETA will be described before use.

2 Structured Context Free Grammars

The grammar formalism used in Mjglner is a variant of context free gram-
mars. The main reason for introducing this formalism is to make it pos-
sible automatically to generate class definitions from a grammar. The
grammar formalism used in Mjglner is inspired by [Cameron & Tto 84].

There exist a number of different formalisms (see e.g. [Ngrmark 87]) that
could be reasonable alternatives.

A structured context free grammar is a context free grammar (CFQG)
where the rules (productions) satisfy a certain structure.
Each nonterminal must be defined by exactly one of the following

rules:
1. An alternation rule has the following form:
<AO> | <AI> | <A2> | .. | <An>
where <A0>, <AI>, ..., <An> are nonterminal symbols. The rule
specifies that <A0> derives one of <A1>, <A2>, ..., or <An>.
2. A constructor rule has the following form:
<AO> = wy <t1:AI> w; ... <tn:An> w,

where <A0>, <t1:A1>, ..., <tn:An> are nonterminal symbols and
Wo, W1, ..., W, are possibly empty strings of terminal symbols. This
rule describes that <A 0> derives the string

wy <AI> wy ... <An> Wy,

A nonterminal on the right side of the rule has the form <#A4>
where ¢ is a tag-name and A is the syntactic category. Tag-names
are used to distinguish between nonterminals belonging to the same
syntactic category. Consequently all tag-names in a rule must be
different. If no tag-name is provided the name of the syntactic
category is used as a tag-name.

3. A list rule has one of the following forms:
<A> 4 <B>w
<A> ¥ <B>w



where <B> is a nonterminal and w is a possibly empty string of
terminal symbols. The nonterminal < A> generates a list of <B>’s
separated by w’s:

<B>w<B>w..w<B>

The +-rule specifies that at least one element is generated; the
*-rule specifies that the list may be empty.

There exists four predefined nonterminal symbols named < NameDecl>
<NameAppl>, <String> and < Const>. These nonterminals are called
lezem-symbols. They derive identifiers, character-strings and integer con-
stants. A lexem-symbol may also has a tag-name, like < Title:NameA ppl>.

H

Example of Structured CFG
Below an example of a structured CFG is given.

Grammar Small :

<Block> ::= begin <DclPart:DclLst>
do <ImpPart:ImpLst> end

<Dcl> :: | <VarDel> | <ProcDcl>
<VarDcl> ::= var <Name:NameDecl> : < VarType: Type>
<ProcDcl> ::= proc <Name:NameDecl> < Body:Block>
<Imp> :: | <Iflmp> | <AssignmentImp> | <ProcCall>
<Iflmp> = if <Condition:Ezp>

then <ThenPart: ImpLst>

else <FlsePart: ImpLst> endif
<AssignmentImp> ::= < Var:NameAppl> := < Value:Ezxp>
<ProcCall> ::= <Proc:NameAppl>
<DclLst> :: %+ <Decl> ;

<ImpLst> :: x <Imp> ;

The nonterminals < Type> and < Fzp> will not be defined.



The limitations on the rules which can be used in a structured CFG
do not restrict the class of languages that can be described. Any context
free language may be generated by a structured CFG. It may perhaps be
awkward to be forced to follow the rules. On the other hand being forced
to structure a grammar using the rules often results in a more readable
grammar.

The syntactic categories of a structured CFG may be organized into
a classification hierarchy according to the set of strings being generated.
The hierarchy mainly derives from the alternation rules of the grammar.
The hierarchy for the example grammar is:

Cons
Block
Decl
VarDel
ProcDcl
Imp
Iflmp
AssignmentImp
ProcCall
List
DeclLst
ImpLst

The categories Cons and List generalize all categories according to
the rule type that defines the category. <Imp> is a super-category of

<IfImp> since any string generated by <IfImp> may be generated by
<Imp>.

The super-category of a given syntactic category A is defined as follows

e if <A> appears on the right side of an alternation rule of the form
<B> | .. | <4> ] . ] .
then the super-category of A is B.

o if <A> appears in a list rule in one of the forms

<A> 4+ <B> ...
ZA> ¥ < B> ...

then the super-category of A is List.

e otherwise the super-category of A is Cons.
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The inheritance hierarchy of the generated classes of the context free
level is the same as the classification hierarchy of the syntactic categories.
In general a syntactic category may have more than one super-category.
This corresponds to multiple inheritance in object-oriented languages.
Since Simula and BETA currently do not support multiple inheritance,

there is the additional restriction that the hierarchy must be tree struc-
tured.

3 The Tree Level

As mentioned in the introduction certain tools like syntax directed editors
are usually table-driven in the sense that the code is independent of the
actual grammar. The AST is manipulated as an ordinary tree. The
context free level must then be integrated with a level where the AST is
viewed as an ordinary tree. This is straight forward using subclassing.
The classes generated from the grammar are all subclasses of the general
classes Cons and List. These classes are actually subclasses of more
general classes describing ASTs as ordinary trees. In this section these
general classes are described. The general classes are called the tree level.
At the tree level an AST is modelled as an instance of the class AST.
The class AST is further specialized into a number of sub-classes. Some
of these sub-classes correspond to the rule types of a structured CFG.
The tree level corresponds to an ordinary data type for a tree. The
specialization hierarchy for the classes defined in the tree level is

AST
Rule
Cons
List
Lexem
LexemText
NameAppl
NameDecl
String
Const

The following is a verbal description of these classes:

AST describes all ASTs. Operations of this class are Symbol which re-
turns the nonterminal symbol of the AST, Father returns the father,
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Comment updates or returns an associated comment, Copy returns
a copy, and Match performs matching of trees.

Rule describes all interior nodes. GetSon returns a son at a given posi-
tion, PutSon updates a son at a given position, Suffiz Walk performs
a preorder traversal of the tree with this node as root

Cons describes all nodes derived by a constructor rule. The operations
Sonl, Son2, ... updates or returns sons. Each Son; have a local
attribute Cat describing the class of the son.

List describes all nodes derived by a list rule. ElmCat describes the class
of the elements of the list, NoOfSons returns the number of elements
in the list, Scan iterates over the elements in the list, Delete deletes
an element with a given position and Insert inserts an element at a
given position.

Lexem describes all nodes derived by one of the predefined nontermi-
nals.

LexemText describes leaves having textual contents. GetTezt returns
the textual contents, PutTexzt updates the textual contents.

NameAppl describes all name applications. GetDecl returns the dec-
laration of this name application. This information is context-
sensitive and if used it must be set up by a language specific tool.
SetDecl tells where the application is declared.

NameDecl describes all name declarations. ScanUsage iterates over the
name applications that use this declaration.

String describes all strings.

Const describes all integer constants. GetValue returns the value of the
constant, PutValue updates the value of the constant.

In addition the procedure NewAST may be used for creating an AST
instance given a syntactic category.

4 The BETA Programming Language

The metaprogramming system relies heavily on the power of the BETA
language. It is however outside the scope of this paper to give a detailed
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account of BETA. The reader is referred to [BETA 87,BETA 88]' for
a description of BETA. A brief introduction to a subset of BETA will
however be given below. The goal is that the reader should be able
to understand the principles of the metaprogramming system without
necessarily understanding all the details of the examples?.

The BETA equivalent to a class in Simula and Smalltalk is called a
pattern. The declaration of a pattern P has the following form:

P: PO (# Dcly; Delp; ... Del,
enter In
do Imp
exit Out

#)

where PO is a possible super-pattern of P. Decly, Decls, ..., Dcl, are
declarations of attributes. An attribute may be either a reference or a
pattern. In corresponds to input parameters. Imp (the do-part) is an
imperative describing actions to be executed when the object is executed
as a procedure, coroutine or concurrent process. Qut corresponds to
output parameters.

P is said to be a direct sub-pattern of P0. A pattern P' is a sub-pattern
of P" if it is a direct sub-pattern of P" or if it is a sub-pattern of a possible
super-pattern of P".

References may be either static or dynamic. A static reference denotes
an object that is generated as part of the object containing the reference
as an attribute. A dynamic reference is a variable that may denote differ-
ent objects during its lifetime. Dynamic references correspond to instance
variables in Smalltalk. In the following example R1 is declared as a static
reference to a P object and R2 is declared as a dynamic reference to P
objects.

R1:@P; {A static reference}
R2: T P; {A dynamic reference}

R2will initially have the value NONE. A major difference between Smalltalk
and BETA (and Simula) is that references in BETA (and Simula) are
qualified by a pattern name. The qualification restricts the possible ob-
jects that may be be referred to by the reference. A static reference

1[BETA 88] is included in the proceedings from this conference
2The reader may want to skip this section during a first reading and perhaps return when
forced by the details of the examples!
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denotes an instance of the qualifying pattern. A dynamic reference may
denote instances of the qualifying pattern and instances of sub-patterns
of the qualifying patterns.

An expression of the form R.z denotes the z attribute of the object
R. Such an expression is only legal if z is declared as an attribute of the
qualifying pattern of R. This may be checked at compile-time.

It is possible to test if a reference denotes an object belonging to a
sub-pattern of the qualifying pattern. The expression (R is P1) has the
value true if R denotes an instance of P1, otherwise the value is false.
The expression (R qua PI) is a so-called instantaneous qualification of
R. The value of the expression is a reference to the object denoted by R,
but qualified as a P1 pattern. If R does not denote an instance of P1,
the evaluation constitutes a run-time error.

As mentioned a pattern is the equivalent of a Smalltalk class. A
pattern is however a generalization of abstraction mechanisms such as
class, procedure, function and type. The equivalent of a Smalltalk method
will thus be a pattern attribute. A pattern attribute may however be used
for other purposes than as a method.

A pattern attribute may be declared as a wirtual pattern. A virtual
pattern declaration gives only a partial description of the pattern. The
description of a virtual pattern may be extended in sub-patterns of the
pattern of which it is an attribute. Virtual patterns will be further ex-
plained below.

The following example is the pattern List from the tree level of the
previous section.

List: Rule
(# ElmCat :< AST; {A virtual pattern}

NoOfSons: (# no: @QInteger. .. exit no#t);

Delete:
(# SonNo: @QInteger

enter SonNo
do ...

#);

Insert:

(# SonNo: QInteger; ASon: T ElmCat
enter (SonNo, ASon)

do ...
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#);

Scan:

(# ThisElm: 1 ElmCat

do (for i: NoOfSons repeat
1 — GetSon — ThisElmO;
inner

for)
#)
#)

The description of List includes five pattern attributes NoOfSons,
ElmCat, Insert, Delete and Scan. ElmCat is declared as a virtual pattern
attribute.

NoOfSons, Insert and Delete are examples of pattern attributes used
as procedures/methods. The following example shows how to call a pat-
tern attribute as a procedure/method.

L: T List; {L denotes a List object}

3 — Le.Delete; {Delete the third element of the list}
(3,T) — LeInsert; {Insert T' after the third element}

The Scan attribute is an example of a pattern used as a control ab-
straction. Consider a pattern

LScan: LeScan(# do Imp'#)

An execution of LScan will step through the elements of the list and exe-
cute Imp' for each element in the list L. The dynamic reference ThisElm
of Scanis an index variable that denotes the current element. Notice that
the super-pattern of LScan is the Scan attribute of the object denoted by
L.

The actions taking place when executing an instance of LScan is a
combination of the do-part of Scan and the do-part of LScan. Execution
starts with the do-part of Scan. An occurrence of inner implies execution
of the do-part of LScan.

It is not necessary to declare a pattern for each list to be Scanned.
The description of a pattern may be used directly as an imperative in the
following way

L.Scan(# do ThisElm.Display#)
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assuming that instances of pattern AST have a Display attribute.

As mentioned the context free level of the metaprogramming system
will contain a class corresponding to each syntactic category of the grams-
mar. Assume that there is a pattern Imp corresponding to ASTs gener-
ated from the nonterminal Imp. It is then possible to define a pattern
ImpList that classifies lists of instances of Imp. Pattern ImpList may be
declared as a sub-pattern of the general list pattern List. The description
of the virtual pattern will be extended to be an Imp. This implies that
the elements of the list must at least be instances of the pattern Imp.
Note that the virtual pattern ElmCat has thus been used as a formal
type parameter.

ImpList: List(# ElmCat ::< Imp##)
IL: T ImpList

IL.Scan
(# do {ThisElm denotes an instance of pattern Imp} #)

The declaration of ElmCat in pattern List has the form ElmCat :<
AST. This specifies that ElmCat will at least have all the properties
described for the pattern AST. ElmCat may consequently only be bound
to sub-patterns of AST. The pattern Imp thus has to be a sub-pattern of
AST.

Virtual patterns may be used to achieve the effect of dynamic binding
of methods in Smalltalk. Assume that there are patterns AssignmentImp,
IfImp and ProcCall corresponding to AST's generated from the respective
nonterminals. These patterns may be sub-patterns of the pattern Imp.
Assume that a tool for counting the number of imperatives in an instance
of ImpList is to be implemented. In addition the tool should count the
number of different types of imperatives. The tool may be implemented
by adding a virtual pattern attribute Count to the pattern Imp. The
definition of Count may then be extended in the sub-patterns.

Imp: Cons
(# Count :< (#do ImpCount.Addl;inner #)
#);

AssignmentImp: Imp

(# ...
Count ::< (# do AssignmentCount.Add1#)

#);
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IL.Scan(# do ThisElm.Count#)

Note that the description of the virtual pattern Countis given directly
instead of referring to an existing pattern as in ElmCat :< AST. The
virtual pattern Count in AssignmentImp will be a sub-pattern of the
Count pattern in Imp.

If ThisElmin IL.Scan ... denotes an instance of AssignmentImp then

ThisElm. Count will result in execution of impCount.Add1 followed by
assignmentCount. Add1.

5 The Context Free Level

The context free level has explicit knowledge about the grammar for
the language. For each nonterminal A of the grammar, a corresponding
pattern is automatically generated, depending of the defining rule for A.

For each rule type described in section 2, the list below describes the
corresponding generated classes.

1. Alternation: A pattern of the following form is generated:

A: P (# #)

where P is the pattern corresponding to the super-category of A.
The pattern P is thus the super-pattern for A.

2. Constructor: A pattern of the following form is generated:

As P

(# ti: Sonl(F# Cat ::< Al #);
ta: Son2(# Cat < A2 #);
tp: Sonn(# Cat =< An #)

#)

where P is the super-category of A. There is an attribute cor-
responding to each nonterminal on the right side of the rule. The
name of an attribute (¢;) is the same as the corresponding tagname.

If T is an instance of A then T'.t; denotes the i’th sub-AST. The
Soni patterns have enter and exit parameters such that an instance
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of the pattern Ai can be inserted as the i’th sub-ast by ... — T'.%
and will be delivered by T.ti — ...

3. List: A pattern of the following form is generated:
A: List (# ElmCat =< B #)

where B is the name of the nonterminal on the right side of the
rule. The super-pattern is List as the super-category of A is List.

Constructor rules are thus mapped into an aggregation hierarchy and
alternation rules into an inheritance hierarchy.

By using the context free level it is not possible for a programmer to
construct an AST that violates the context free syntax.

In addition patterns are generated which provide easy creation of
new ASTs from existing ones. For each nonterminal A of the grammar
a generator named NewA is generated. For nonterminals defined by a
constructor rule, NewA will as enter parameter take as many ASTs as
there are nonterminals on the right side of the rule. It will then exit an
A-ast with the enter parameters as sons.

Example of structured CFG (continued)

The patterns generated for the example grammar are:

Small : TreeLevel

(#
Block : Cons

(# DclPart: Sonl(# Cat ::< DclLst #);
ImpPart: Son2(# Cat :< ImpLst #)
#);

Dcl: Cons (# #);

VarDel: Del

(# Name: Sonl(# Cat ::< NameDecl #);
VarType: Son2(# Cat ::< Type #)
#);

ProcDel : Decl

(# Name: Sonl(# Cat :< NameDecl #);
Body: Son2(# Cat ::< Block #)

#);
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Imp: Cons (# #);

Iflmp: Imp

(# Condition: Sonl(# Cat :< Ezp #);
ThenPart: Son2(# Cat ::< Imp #);
ElsePart: Son3(# Cat :< Imp #)
#);

ProcCall : Imp
(# Proc: Sonl(# Cat < NameAppl #)
#);

AssignmentImp : Imp

(# Var: Sonl(# Cat :< NameAppl #);
Value: Son2(# Cat ::< Exp #)

#);

DclLst: List (# ElmCat ::< Decl #);
ImpLst: List (# ElmCat ::< Imp #);

{ generators for new ASTs }

NewBlock :

(# DclPart : T DclLst; ImpPart : T ImpLst;
TheBlock : T TheBlock

enter (DclPart,ImpPart)

do ...

exit TheBlock

#)

...{ more generators }

#)

6 Using the metaprogramming system

Consider the references

P 5 T ProcDel;
B : 1 Block

P.Body refers to the block of P, and after executing the assignment
P.Body — B, B will refer to this block. P.Name.GetText will return the

name of the procedure as a text.

Consider a tool for investigating the contents of a block, where part
of the investigation is to count the number of imperatives in the block.
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In addition the number of different types of imperatives will be counted.

This tool may be implemented by adding the operation Investigate to
the pattern Block. Investigate makes use of the virtual operation Count
which is added to the pattern Imp. Count is further specialized in the
sub-patterns of Imp. The attributes that are added to the context free
level are called semantic attributes.

Small : Treelevel
(# ImpCount, AssignmentCount,
ProcCallCount, I fCount : @Integer;

Block: Cons
(# -

Investigate :

(7

do 0 — ImpCount — AssignmentCount
— ProcCallCount — IfCount;
ImpPart.Scan(# do ThisElm.Count #);
... { Use ImpCount, ProcCallCount, ... }
#);
#);

Imp : Cons
(# Count :< (# do ImpCount.Addl; inner #)
#);

Iflmp : Imp
[
Count u<
(#
do I fCount.Addl;
ThenPart.Scan(# do ThisElm.Count #);
ElsePart.Scan(# do ThisElm.Count #);

#);
#);
AssignmentImp : Imp
(# ...
Count :< (# do AssignmentCount.Addl #)
#);
ProcCall : Imp
# ..
Count ::< (# do ProcCallCount.Add1 #);
#);
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B can now be investigated by B.Investigate;

In spite of the limited usefulness of the above example it gives a
flavour of how semantic attributes may be added to the generated classes.
Tools like a semantic analyzer, a code generator, a program interpreter,
a browser, presentation tools, program analyzers, transformation tools
benefit from the possibility to add semantic attributes.

The next example will demonstrate how the syntax directed editor of
Mjglner can be extended to provide the user of the editor with ¢transfor-
mations.

The editor is an ordinary syntax directed editor which presents an
AST in a window by means of a prettyprinter, it allows the user to navi-
gate in the AST and to edit it. The pattern describing the editor has the
outline

Sde :
(# Grammar :< TreeLevel;
G : @ Grammar;

Root, ClurrentSelection : T G.AST;

... { alot of other stuff }
#)

Grammar describes which grammar is actually used. An editor for
Pascal may be constructed by binding the context free level generated for
Pascal to Grammar. The reference Root denotes the program fragment
being edited by the user. CurrentSelection denotes the sub-AST which is
the current focus of the user.

To extend the editor with transformations the pattern Sde WithTrans-
formations is declared as a sub-pattern to Sde. Sde WithTransformations
declares the pattern Transformation, which has three virtual operations
Init, EnablingCondition and Perform and a static reference Name.

Sde WithTransformations keeps a list containing an instance of each
sub-pattern of Transformation. This list is created by means of initial-
ization operations not shown here.

When the user selects a new node in the tree EnablingCondition will
be tested for all transformations. The Names of those that are enabled
will be presented to the user in a menu, and if the user selects one of the
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items in this menu, Perform for the corresponding transformation will be

called.

SdeWithTransformations : Sde

Transformation :
(#
Name : @ Tezt; { to be presented in the menu}
Init :< (# do ... inner ; ... #);
{ to be called when instance is created }
EnablingCondition :<
{ virtual operation to test if transformation
is applicable for the current selection
of the editor.}
(# Enabled : @ Boolean
do inner
exit Enabled
#);
Perform :<
{ operation to be performed if the user selects
this transformation.}
(# do inner #);
#);
#);

Assume a grammar for Pascal has been written, structured as Small,
and including the rule

< WhileImp> ::= while < Condition:Ezp>
do <DoPart:ImpLst>

A syntax directed editor for Pascal with a transformation that will
allow the user to transform an IfImp into a WhileImp could be created
by the pattern

PascalEditor : SdeWithTransformations
(# Grammar =< PascalGrammar;

IfToWhileTransformation : Transformation
(# Init =< (# do 'Iflmp to Whilelmp’ — Name #)
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EnablingCondition ::<

(#

do (CurrentSelection is G.I fImp) — Enabled
#);

Perform ::<

(#

do ((CurrentSelection qua G.IfImp).Condition,
(CurrentSelection qua G.IfImp).ThenPart)
— G.NewWhileImp — ReplaceCurrentSelection;

#);
#);

{ more Pascal-transformations }

#);

Note that an instantaneous qualification (see section 4) of CurrentS-
election as an IfImp reference is made inside Perform. This is necessary
in order to access the attributes of IfImp. The pattern ReplaceCurrentS-
election used by Perform is an attribute of pattern Sde.

The IfTo While Transformation is a simple tree-match transformation.
In the same way more advanced context-sensitive transformations could
be added to the Pascal-editor. A transformation that extends a < Procedure-
Identifier> with a template for the list of actual parameters is an example
of this. This list could be generated with the correct number of param-
eters, and the parameters could be specialized such that a < Variable>-
nonterminal is inserted if the formal parameter is a < Var-Parameter>,
an < Ezp>-nonterminal if it is a < Value-Parameter>, etc.

7 The Semantic Level

As indicated by the investigation example in the previous section it is
often useful for tools to be able to add attributes (operations, data) to
the patterns of the context free level. A simple way to add semantic
attributes is to let the tool programmer textually edit the patterns of the
context free level. In a programming environment with many grammars
and tools this is not satisfactory from a maintenance point of view. If
semantic attributes have to be manually inserted into the patterns this
has to be done each time changes are made to the grammar. From a
structuring point of view it would be an advantage if the definition of
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semantic attributes could be kept separate from the generated patterns.

One solution could be to extend the grammar format to include defi-
nition of semantic attributes. But this would be inflexible since it would
mean that every time a new tool needs a new attribute, the grammar has
to be changed.

Another solution would be to let the tool programmer define sub-
patterns of the generated patterns of the context free level. The semantic
attributes could then be added in these sub-patterns. But ordinary sub-
patterns of the generated patterns will not work. Other tools that do
not know about these sub-patterns, e.g. the editor, will create instances
of the patterns they know about, and these instances will thus not have
the added attributes. This means that a tool programmer who adds new
sub-patterns cannot use ASTs generated by other tools.

The solution that has been chosen is to make further use of the virtual
mechanism of BETA. The patterns generated for the context-free level
are actually generated as virtual patters. They thus have the form

A < P (# ... #)
instead of
A Pl e #)

which was described in section 5. The context free level of the example
grammar would then look as follows:

Small : TreeLevel

# -
Imp :< Cons(# #);

IfImp :< Imp

(# Condition: Sonl(# Cat ::< Exp #);
ThenPart: Son2(# Cat :< Imp #);
ElsePart: Son3(# Cat :< Imp #)
#);

#);---

Semantic attributes may now be added by creating a sub-pattern of
Small and extend the specialization of the generated patterns.

The investigation tool of the previous section would then have the
form
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InvestigateSmall : Small
(# ImpCount,... : @ Integer;

Imp <
(# Count :< (# do ImpCount.Addl; inner #);
#);

Iflmp <
(# Count =< (# do ... #);
#);

#);

New attributes can be added by other tools using the same scheme
but declaring sub-patterns of InvestigateSmall instead of Small.

8 Status & Conclusion

A prototype of the metaprogramming system has been in use in the Mjgl-
ner project since October 1986. It has been used in a number of tools,
including a syntax directed editor [Borup & Sandvad 86|, a prettyprinter,
a mini-browser for BETA, a transformation system [Berg et al. 88], and
a Masterscope-like ([Interlisp]) system for BETA programs called Bet-
alyzer [Hagemann & Pedersen 87]. The metaprogramming system has
been integrated with a parser which creates an AST from a text.

Grammars are described by a metagrammar, and the generator which
generates the context free level for an application grammar uses the con-
text free level of the metagrammar to access the grammar.

The system has also been used for implementing a mail handler [S¢rgaard 87].
The mail handler is an example of an application that goes beyond the
original intentions with the metaprogramming system. The different
types of mail are described by a grammar. This grammar has then be
used for generating a set of classes. In general it turns out that the sys-
tem may be used for generating an implementation of classes where the
interface may be described by a grammar.

The experience with using an object-oriented framework for modelling
ASTs has so far been satisfactory. Sub-classing has made it possible to
integrate the tree level, the context free level and the semantic level into
a consistent interface to the AST. This permits tools applicable for all
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programming languages and more language specific tools to use the same
ASTs.

The context free level provides the programmer with much more struc-
ture and security than the tree level alone. Consider the declaration
P: 1 ProcDcl. The body part of P may be denoted by P.Body. If only
the tree level is used, the corresponding declaration and denotation will
be P: T AST and P.son2. This is first of all less readable. In addition
1t is the programmers responsibility that P actually denotes an AST for
<ProcDcl> otherwise P.son2 will not return an AST for <Block>. This
type of errors occurred frequently during the development of the BETA
compiler, which only makes use of the tree level. (The metaprogramming
system has been developed after the BETA compiler.)

With respect to metaprogramming, the system allows for the same
degree of flexibility as is available in Lisp. By having a unique well defined
representation of programs it is easy for a Mjglner user to implement his
own tools. Since the whole Mjglner environment is organized as a set
of classes and objects the possibilities for extended existing tools are in
general good.

Finally it may be stressed that the grammar of a given language is a
complete specification of the AST interface at the context free level. If a
programmer is familiar with the rules for generating classes from a gram-
mar, then the grammar alone may be used as an interface specification.

Further development of the metaprogramming system will take place
during the final period of the Mjglner project. This includes a better
support for specifying nonterminals that may derive the empty string.
For the time being there is an Optional rule type for this purpose, but it
needs some improvements
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