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Abstract

In the object-oriented perspective a program execution is viewed as a
physical model of some real or imaginary part of the world. A program-
ming language supporting the object-oriented perspective must therefore
contain comprehensive facilities for modelling phenomena and concepts
from the application domain. In object-oriented programming objects
model physical material and classes model concepts. By means of sub-
classing and virtual attributes it is possible to model a hierarchical classi-
fication of objects. Many applications in the real world consist of objects
carrying out sequential processes. Coroutines may be used for modelling
objects that alternate between a number of sequential processes. This
paper describes coroutines in BETA.

*Presented at Hawaii International Conference on System Sciences — 21, January 5-8, 1988



1 Introduction

The most common language construct associated with object-oriented
programming is subclassing, often called inheritance. Subclassing sup-
ports a hierarchical classification of objects by making it possible to iso-
late common properties in general superclasses. Together with the no-
tion of virtual attributes (similar to methods in Smalltalk [Smalltalk 84])
these mechanisms have been recognized as useful in a large number of
applications.

There is however more to object-oriented programming than just in-
heritance. In the object-oriented perspective a program execution is con-
ceived as a physical model of some real or imaginary part of the world.
Many applications in the real world consist of objects that carry out
individual action sequences. That is, an application often consists of a
collection of objects, each carrying out a sequential process. When creat-
ing models of such applications it is therefore desirable that objects with
individual action sequences can be described in the programming lan-
guage in use. Consequently a language that supports the object-oriented
perspective should have constructs for describing objects with individual
action sequences.

Simula 67 [Simula 68] supports quasi-parallel sequencing by means of
coroutines. In Smalltalk it is to a limited extent possible to model this
by means of the classes Process, Semaphore and ProcessScheduler.

In BETA [BETA 87b], objects with individual action sequences may
be modelled in two ways, either as objects being executed concurrently
or as objects being executed in alternation.

Objects are “state machines” in the sense that the result of a remote
procedure call (method invocation) may depend on the state of the vari-
ables of the object. For objects that are coroutines, the state may include
a point of execution. In general such an execution state involves a stack of
procedure activations currently called. The possibility of saving the state
of execution makes coroutines useful for a large number of applications.
These applications may be grouped as follows:

e Coroutines may be used to create an illusion of concurrency. A
major example of this is discrete event simulation ([Simula 68]).
In Modula-2 ([Wirth 82]) coroutines are directly used to simulate
concurrent processes. The basic scheduling of coroutines is usually



explicit, since a coroutine relinquishing control names the coroutine
to take over. In Simula and Modula-2 it is possible to eliminate
the explicit scheduling by construction of a coroutine scheduler.
By using coroutines, mutual exclusion is always guaranteed!. The
order of scheduling may however by difficult to predict.

e With respect to modelling of real life phenomena the main moti-
vation for coroutines is to model objects that perform alternating
activities. The alternation between activities may be deterministic
in the sense that sequencing is decided by the object itself. The
shifts between activities may be triggered by events performed by
other concurrent objects leading to nondeterministic alternation.

o Coroutines are useful whenever an algorithm is best understood and
described as a set of interlocked partial algorithms ((Wang & Dahl 71)),
including backtracking and pattern matching.

o A generatoris a coroutine that is capable of producing a sequence
of values. A value is produced for each invocation of the corou-
tine. Such a coroutine is characterized by always returning to its
caller. Icon ([Griswold et al. 81]) is an example of a language that
supports generators.

In [Marlin 80] a distinction is made between two types of coroutine
sequencing. The first kind of coroutine, the implicit sequencing kind,
communicates only via first-in-first-out queues and there is no explicit
transfer of control between the coroutines. Call-by-need parameters,
lazy evaluation, streams (as in [Scheme]) and the system described in
[Kahn & MacQueen 77] are examples of this kind of coroutines.

For the second kind of coroutine, the explicit sequencing kind, it is
possible to transfer control explicitly from one coroutine to another.

Only few programming languages support explicit coroutine sequenc-
ing. Simula is one of the few languages that offers an advanced de-
sign. In Simula there is a distinction between semi-coroutines and sym-
metric coroutines. A semi-coroutine is executed by means of the new-
or call-imperative; a subsequent detach returns execution to the caller.
Symmetric coroutines are always explicitly scheduled by means of the
resume-imperative.

1This is not the case with Modula-2 coroutines used as interrupt handlers.



Unfortunately, the details of coroutine sequencing in Simula are very
complicated. The problem is to understand how semi-coroutines, sym-
metric coroutines and prefixed blocks are integrated. This means that
even experienced Simula programmers may have difficulties in figuring
out what is going on in a program using coroutines. The details of Sim-
ula’s coroutines sequencing is described in [Simula 68].

A simplified version of Simula’s coroutine mechanism has been pre-
sented in [Dahl & Hoare 72]. A formal description of part of the coroutine
mechanism has been presented in [Wang & Dahl 71]. This formalization
has been further elaborated in [Lindstrom & Soffa 81]. In [Wang 82] it
was shown that the semantics of Simula’s coroutine mechanism was in-
consistent. The problem was that deallocation of block instances could
not be performed as stated by the original language definition. It is ar-
gued that the simple model of [Wang & Dahl 71] cannot cope with full
Simula. Wang presents a detailed analysis of Simula’s coroutine mecha-
nism and gives certain proposals for changes to Simula. These proposals
have since then lead to a change in the semantics of Simula ([Simula 87)).

Explicit coroutine sequencing in the form of symmetric coroutines
is also present in Modula-2. According to [Henry 87] there are several
problems with the definition of the coroutine mechanism in Modula-2.

For a further discussion of the history and motivation for coroutines
see [Marlin 80] and [Horowitz 83]. |

The purpose of this paper is to present the mechanisms for coroutine
sequencing in BETA. Coroutines in BETA are similar to semi-coroutines
in Simula. The BETA constructs are simpler and more general than those
of Simula. In addition BETA offers the possibility of including parameters
when calling coroutines. The BETA constructs for semi-coroutines may
be used to define a set of attributes that model Simula’s symmetric corou-
tines. For people with a background in Smalltalk, and Lisp extensions
such as Flavors and Loops this paper may also be read as an introduction
to the basic principles behind coroutine sequencing in Simula and BETA.

Since this paper only treats coroutine sequencing in BETA there are
major parts of BETA which will not be described. Certain parts will be
used without a detailed explanation. For a more detailed account, the
reader is referred to [BETA 87b].



2 The Wang and Dahl Model

The approach suggested by Wang and Dahl for characterizing coroutines
will be used as a basis. The formulation below is highly influenced by
[Lindstrom & Soffa 81]. A program ezecution consists at a given moment
of a set of objects®, S, augmented by a special element, P*, representing
the executing environment (the processor). Each object may execute a
sequence of actions. Objects may execute other objects giving rise to a
relation called the dynamic link. The dynamic link relation may change
during the program execution. In order to represent this relation, each
object contains a hidden variable named SC (sequence control). These
notions may be summarized as follows:

S the set of objects in existence at any moment.

z.SC, for z € S the return link of z, a pair of the form

[ip: return code pointer, ep: calling object]
D a function S — S denoting dynamic enclosure with D(z) = z.SC.ep.

P* the processor, in S by extension. By special convention, P*.SC.ep =
D(P*) = the currently operating object, and P*.SC.ip = the program
counter of P*.

— a binary relation on S, defined to be z — y = = # P* A D{z) = y
the transitive closure is denoted —™; the transitive and reflexive
closure is denoted —*.

OC the set of instances dynamically linked from D(P*), that is, {z|D(P*) —*

Yy}, is termed the operating chain (OC). An object z is said to be
active iff x € OC.

It is now possible to define a class of possible control events: This
includes creation of objects, invocation of objects, termination of objects,
and the control exchange actions swap(z) and rotate(z,y).

1. Invariant: Initially D(P*) = P*. At any time during execution
there are one or more lists of objects linked by the dynamic link.
An object is a member of exactly one such list. The list linked

*Wang and Dahl consider the set of dynamic procedure instances (activations). In BETA
there is no distinction between instances of a procedure and instances of a class (objects).
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Figure 1: Execution state

Figure 2: Creation

from P* describes the active objects. P*.SC identifies the currently
executing object. The remaining lists describe currently suspended
objects. The state of execution is described in Figure 1: y is the
currently executing object and z is the outermost object.

. Creation: Let C be a class as in Simula. The result of creation of
an instance of C is an object z, where z.5C = [z. first Action, z].
z.5C saves the first action of z to be executed. See Figure 2.

. swap(z): This event causes the SC variables of z and P* to have
their values interchanged.

#5C P*.S5C
N~

If z € OC, the effect of swap(z) is a return of control to its caller
without termination of z (i.e. = temporarily suspends execution).
x.S5C saves the reactivation point of x.

Ifz ¢ OC, the effect of swap(z) is the establishment of D(P*) as the
current caller of z and the resumption of z at its reactivation point
(i.e., z is “called”). Figure 3 illustrates the effect of swap(z). The
transition from state (a) to state (b) or vice versa is accomplished
by the same action.



Figure 3: swap(z

N RN |

Figure 4: rotate(z,y)

4. rotate(z,y): This event causes the SC variables of z, y, and P* to
have their values permuted as indicated below:

(P*.SC
2 S yl

~_ A
The effect of rotate(z,y) is equivalent to swap(z) followed imme-

diately by swap(y) in an indivisible action. See Figure 4.

5. Termination: Assume D(P*) = z # P*. The termination of z
causes the event swap(z) to appear. In addition #.5SC.ip = abort.
A subsequent swap(z) will then result in an abort event, which
terminates the program execution.

3 Components

The BETA construct corresponding to a class in Simula and Smalltalk is
called a pattern. A declaration of a pattern has the form:



P: PO(# Delys Delys oo Del,
enter In
do Imp
exit Out

#)
where P(is the super-pattern of P. Dcly, Dcls, ..., Dcl, are declarations
of attributes. An attribute may be either a reference to an object or a
pattern. In corresponds to input parameters. Imp (called the do-part) is
an imperative describing actions to be executed when the object is exe-
cuted as a procedure, coroutine or concurrent system. Out corresponds
to output parameters.

The pattern is an abstraction mechanism, which is a unification of
classes, procedures, functions and types. Instance of a pattern, called
objects, may be used as variables, data structures, procedure/function
activations, coroutines and concurrent systems. BETA has three kinds
of objects: system, component and item. The kind of an object specifies
how the object can be used. Objects of kind component may be used
as coroutines. In the following it is described how to create and exe-
cute components. The term object will be used whenever we describe
something that is true for all three kinds of objects. When a kind, like

component, is explicitly mentioned, the explanation is only valid for that
kind of objects.

Creation: The declaration
R: Q| P;
describes that a component instance of P is created, giving rise to a

creation event. R is a so-called static reference that will constantly
denote the newly created P-component.

Attachment: An imperative like:
R
where R ¢ OC implies that the event swap(R) takes place. The
component executing R is said to attach R.
Suspension: Assume that R € OC and that R is the currently operating
component (D(P*) = R). The imperative

suspend



(executed by R) implies that the event swap(R) takes place. R is
now sald to be suspended.

Termination: If the currently operating component finishes execution
of the imperative in its do-part, termination of the component will
take place. This implies execution of an implicit suspend. A sub-
sequent attachment will result in an abort event.

A swap event gives rise to either coroutine attachment or suspension.
As it appears these two cases are denoted differently in BETAS.

Attachment of R implies that the component denoted by R will be
executed. This means that the actions described by the imperatives in
the do-part of R are executed. The execution of the component continues
until the component executes a suspend imperative. This will return the
control to the point of the attachment. A subsequent execution (attach-
ment) of the component will resume the component after the suspend
imperative. This pattern may be continued until the component has
completed execution of its do-part.

Consider the example in Figure 5. TrafficLight describes components
that when executed alternate between two states red, green. The Con-
troller component initializes the state of North to red and the state of

South to green. It then repeatedly waits for some time, and then switches
the lights.

In the following a few more BETA constructs are explained in order
to understand the details of the example.

o The component Controller is described directly without referring
to a pattern. An object being described directly is called a singular
object.

e The main program itself
(# ...do Controller#)

describes a singular component which is the outermost component
being attached by the processor P*.

e The “variable” state is a static reference denoting an instance of the
pattern Color. The Colorinstance is an object of kind item whereas

3This is also the case in Simula where attachment is denoted call(R) and suspension is
denoted detach. In Simula, creation of a coroutine is followed by an immediate attachment.
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(#
TrafficLight: {a pattern declaration}
(# state: @Color
do Cycle {execute forever}
(# dored — state; {assign red to state}
suspend ;
green — state;
suspend ;
#) {end Cycle}
#);

North, South: @ | TrafficLight
{declaration of two component}

{instances of TrafficLight}

Controller: Q |

{declaration of a singular component}

(#
do North; {attachment of North}

{North.state = red}
South; South; {two attachments of south}
{South.state = green}
Cycle
(#do {wait some time}
South; North; {switch the states}
#)7#)

do Controller {attachment of Controller}
#)

Figure 5: Example of components

all the other objects mentioned so far are components. An item is
not a coroutine. In this example the Color instance is used as an
ordinary variable. Below the role of items will be further explained.

e The construct
Cycle(# do Imp'#)

implies that the imperative Imp’ * is executed forever. Cycle is an
example of a pattern used for defining a control structure. For a fur-
ther description of combining action parts in BETA, see [BETA 87a).

“The construct Cycle(# do Imp'H##) is similar to a prefixed block in Simula. In Simula prefixed
blocks play a major role in quasi-parallel sequencing. This is not the case in BETA.
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o Comments are enclosed by {...}.

Components with parameters

Components may have enter/exit parameters. Prior to the attachment of
a component, a value may be assigned to the enter part of the component,
When a component suspends execution or terminates, a value may be
assigned from its exit part. If R is a component having enter/exit parts,
then attachment of R with parameter transfer has the form:
X—>R->Y

where X may be an expression or a list of expressions and Y may be a
“variable“ or a list of variables. The value of X is assigned to the enter-
part of R. Then the component R is attached — that is, execution of
R 1s resumed. Finally, when R suspends execution the exit part of R is
assigned to Y.

In Figure 6 an example of a component having enter /exit parts is
given. The component Factorial computes N!. A call of the form E —
Factorial — F returns E!in F. A subsequent call Factorial — F returns
(E + 1)!. At any time a new enter parameter may be given. Factorial
values computed previously are saved in a table. That is, each factorial
value is only computed once. Factorial is an example of a generator that
computes a sequence of values.

4 Components and Items

The examples so far have showed coroutines that do not execute proce-
dures as part of their actions. Such coroutines may be simulated using
simple variables, since there is only a finite set of suspension points. If
coroutines are combined with (recursive) procedure calls it is much more
complicated to simulate the state of execution at suspension points. In
this section the BETA constructs for combining coroutines and proce-
dures are described.

A pattern may be used to create objects that behave like procedure
activations. Such objects are of kind item. Below the semantics of cre-
ation and execution of items is described.

Creation and attachment: The imperative

X—-&P Y
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(#

Factorial: @| {a singular component}
(#T: [100]@Integer;
{an array TT[1], ..., T[100] of integer items}

N, Top: @Integer;
enter V
dol — Top — TJ1];

Cycle

(#do

(if (Top < N)// True then
{Compute and save (Top + 1)! ... N}
(for 7 in[Top + 1, N] repeat

(T —1]= (i — 1)1}
T[i —1] %% — T[4
{Th] = i1}
for);
N — Top
if);
N+1-N;

suspend {suspend and exit T[N — 1]}
{A new value may have been assigned}
{to N through enter }

#)
exit T[N — 1]
#);
F: @QInteger

do4 — Factorial — F; {F = 4!}
{This execution of Factorial will result in}
{computation of 1!, 2!, 3! and 4!}

Factorial — F; {F = 5!}
{Here 5! was computed}

3 — Factorial - F; {F = 3!}
{No new factorials were computed by this call}

#)

Figure 6: A generator for factorials

describes creation and execution of a P-item. A P item, say F, is
created by a creation event as described in section 2. The value
of X is then assigned to the enter part of E; a swap(F) event
is executed; finally when FE is terminated, the exit part of F is

12
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Figure 7: Before and after suspend

assigned to Y.

Termination: Termination of an item takes place as for a component.

Suspension: An item may not be suspended like a component. In sec-
tion 2 the notion of currently operating object is defined. In section
3 the semantics of suspend is defined relative to the currently oper-
ating component. These definitions shall be made precise here:

e The currently operating objectis the object denoted by P*.SC.
The currently operating object may be either an item or a
component.

The currently operating componentis a component C satisfying

z, =" C A P*.SC.ep =z,
A if 2 T 2 ¥ C

then x; 18 an item

Le. the currently operating component is the “leftmost” com-
pounent in OC.

Consider Figure 7. Assume that C' and C1 are components
and that zi,...,z, and y are all items. C is the currently
operating component and z, is the currently operating object.
According to the definition of suspend in section 3, an execu-
tion of suspend by z, will then imply a swap(C) resulting in
a transition from state (a) to state (b).

The execution states described in Figure 7 may be generated by the
BETA program in Figure 8.
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(#
X: (#
do {if i = n then execution state}

{is described by Figure 7(a)}

suspend ;

&X;
{create and execute an item z;}
{this is a recursive “call” of X'}

;o
C: Q| (#do...;&X...#);

C1: Q|
(#¥:

(#do (for 7 : in[1,n] repeat C for)

{execution state corresponds to Figure 7(b)}

#)
TR LT )

#)
do ...CLl...
#)

Figure 8: A program corresponding to Figure 7

The example in Figure 9 is a classical example of using coroutines.
The program describes a merge of two binary search trees. The attribute
Traverse performs an inorder traversal of the tree. Traverse is a compo-
nent that will suspend and exit the elements in the nodes visited during
the traversal. The main program starts by executing Traverse for each of
the trees b1 and 2. The smallest element of b1 will then be delivered in
el and the smallest element of b2 will be delivered in e2. The merge loop
will then print the smallest of the two elements. If e.g. el is the smallest
then el is printed and b1. Traverse will exit the next element of b1. This
continues until there are no more elements in the two trees.

A few more parts of BETA need to be explained:

e A declaration of the form
bl: @QBinTree

describes creation of a BinTree-item. b1 is a static reference denot-
ing this newly created item. Notice the similarity with creation of

14



static components.

e A declaration of the form

root: T node

describes a dynamic reference to an item. A dynamic reference may
denote different objects during the program execution. Initially a
dynamic reference has the value NONE, i.e. no object is denoted.
A dynamic reference is similar to a qualified reference in Simula
and an instance variable in Smalltalk.

e A dynamic reference may be given a value in the following way: °
&noded — rootO

The expression &nodeO describes creation of an instance of node
and the value of the expression is a reference to this instance.

e Objects are in general denoted by references and in general ex-
pressions of the form R describe the object denoted by R. If the
reference itself is denoted, a box (O) is appended to the expression
as in RO.

5 Abstract Super-Patterns

A major design goal for BETA has been to design a language with a small
number of basic, but general primitives. In addition much emphasis has
been put into design of powerful abstraction mechanisms. In this way it is
possible to define more specialized constructs. Object-oriented languages
provide powerful constructs for defining abstract super-patterns® that
describe the general properties of a class of (partial) program executions.

Class Simulation of Simula is a classical example of an abstract super-
class. It introduces the notions of processes and event notices along with
a scheduling mechanism. Simulation programs may then be expressed as
specializations of class Simulation.

In this section examples of defining abstract super-patterns in BETA
will be given. This will include modelling of symmetric coroutines in the

®Corresponding to root «— node New in Smalltalk.
®In Smalltalk terminology, an abstract super-pattern (super-class) is a pattern (class) that is
only used as a super-pattern. That is, no instances are created.

15



style of Simula and illusion of concurrent programming. First a short
description of sub-patterns and virtual patterns will be given.

Consider the two patterns in Figure 10. PP is a sub-pattern of P.
This implies that instances of PP have attributes a, b, and m1. The
actions taking place when executing an instance of PP is a combination
of the do-part of P and the do-part of PP. Execution starts with the
do-part of P. An occurrence of inner implies execution of the do-part of

PP. Execution of an instance of PP will then result in execution of Al,
A3, and A2.

The attribute ml of P is a wvirtual pattern. The description of a
virtual pattern may be extended in sub-patterns of P. The pattern PP
extends the description of m1. m1l is extended to be a sub-pattern of
the ml pattern described in P. Let X be an instance of PP. Execution
of X.m1 will then imply execution of I1, I3, and I2. Both I3 and A3
may contain an inner allowing further specialization of PP and m1. See
[BETA 87b,BETA 87a] for a more detailed description of sub-patterns
and virtual patterns.

5.1 Symmetric Coroutines

The sequencing of components as described in the previous sections cor-
responds to semi-coroutines of Simula. In this section it will be shown
how to model Simula’s symmetric coroutines.

The pattern SymmetricCoroutineSystem of Figure 11 is an abstract
super-pattern that describes the general properties of a symmetric corou-
tine system. The attribute SymmetricCoroutine of SymmetricCorouti-
neSystem is an abstract super-pattern describing the properties of a sym-
metric coroutine. It must be used as a super-pattern for all components
that are to take part in the symmetric coroutine scheduling. The at-
tribute Run is intended for initiating the first Symmetric Coroutine. Run
may be viewed as a primitive scheduler.

A SymmetricCoroutine is active until it makes an explicit transfer of
control to another SymmetricCoroutine. This is done by means of the
resume attribute. Resume implements the rotate primitive. Note that
Resume is a virtual pattern. This means that it is possible to extend the
definition of Resume in sub-patterns of Symmetric Coroutine.

A SymmetricCoroutineSystem terminates when the active Symmetric-
Coroutine terminates execution without using resume. This may happen

16



either by executing a suspend or by terminating its action part.

In Figure 12, an example of a program using the pattern Symmet-
ricCoroutineSystem is given. The problem to be solved ([Grune 77]) is
to copy characters from input to output. Any occurrence of a string 'aa’
must be converted to 'v'. Similarly a string 'sv’ must be converted to
'c’. The latter includes 'a’'s converted to 'v's. A string 'sbcaadbveasvt’ will
thus be converted into ‘abcvacect’. The Converter terminates by means of
suspend when a newline character (nl) is recognized at the outermost
level of DoubleBtoC. Notice that the description of the Resume attribute
has been extended to include an enter parameter in DoubleBtoC.

5.2 Quasi-parallel Systems

In this section it is shown how to simulate concurrency by means of corou-
tines. The example is inspired by the Process module in [Wirth 82]. In
Figure 13 an abstract super-pattern for defining quasi-parallel sequencing
is presented. A QuasiParallelSystem defines an abstract super-pattern,
Process, for defining coroutines that may take part in the quasi-parallel
sequencing. A coroutine that is to take part in the scheduling must be
a specialization (sub-pattern) of the pattern Process. Instances of sub-
patterns of Process are hereafter called processes.

The pattern ProcessQueue defines a queue of processes. All active
processes are placed in an instance of ProcessQueue called Active. Each
time a process suspends execution, a new process is selected from this
queue.

Communication among processes is synchronized by means of signals
(c.f. [Wirth 82]). A process may send a signal and it may wait for (some
other process sending) a signal. In the example a signal is implemented
as a ProcessQueue.

In Figure 14, the classical producer/consumer system is implemented
as a quasi-parallel system. Patterns describing the behavior of producers
and consumers are defined. Producers and consumers communicate by
means of the buffer B and the signals notFull and notEmpty. A producer
component PI and a consumer component CI are declared.
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6 Conclusion

More than 15 years of experience with Simula has demonstrated that
coroutines are an important mechanism in their own right. And since
Simula is an object-oriented language, coroutines are certainly useful
within an object-oriented framework. A major difference between Simula
and Smalltalk is that Smalltalk classes do not have a do-part. It should
however be straight forward to reinvent the do-part of Smalltalk classes
and thereby allowing Smalltalk objects to be active coroutines.

The experience with Simulas coroutine mechanism has been the start-
ing point for the BETA design. As mentioned in the introduction the
details of Simulas coroutine mechanism are very hard to understand and
inconsistencies in the semantics have been detected recently. However, in
most Simula programs these problems do not show up. Another problem
with Simulas coroutine mechanism was the inability to transfer param-
eters when calling a coroutine. The lack of parameters makes it clumsy
to implement generators in Simula, since parameters must be transferred
by means of global variables.

In the design of BETA, it has been attempted to include a simple
and general coroutine mechanism that keeps the advantages of Simula.
The simple mechanism together with a powerful abstraction mechanism
makes it possible to implement a wide variety of sequencing schemes.
The symmetric coroutines and quasi-parallel systems in section 5 are
examples of this. BETA adds nothing to the basic principles of coroutine
sequencing used in Simula. However, the technical details of coroutine
sequencing in BETA are much simpler than those of Simula. In addition,
coroutines in BETA may have parameters. This makes it easier to use
BETA coroutines as generators. Coroutine (components) calls appear
like procedure calls (items) whereby a high degree of uniformity between
procedures and coroutines is obtained.

The arrival of Modula-2 has resulted in a renaissance for coroutines.
However, coroutines in Modula-2 are considered low-level facilities for
implementing concurrent processes. According to [Henry 87] this has
implied that the status of coroutines in Modula-2 is unclear. In BETA
coroutines are a well integrated part of the language.

A major reason for introducing coroutines in BETA is for modelling
objects that alternate between a number of sequential processes (tasks).
Alternation should not be confused with true concurrency, where a num-
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ber of tasks take place at the same time. In alternation at most one of
the tasks takes place at a given time.

Deterministic alternation is the situation where the object decides
by itself how to alternate between the different tasks. Nondeterministic
alternation is the situation where external events cause the ob ject to shift
to another task.

Consider a bureau with a number of agents. Each agent serves a
number of costumers and has a file for each costumer. A task for an
agent is to process a costumer file. During a work day the agent alternates
between the tasks processing the costumer files. The agent will most of
the time decide the order of the tasks. However, external events such as
telephone calls, may force the agent to shift task.

Coroutine sequencing as treated in this paper supports modelling
of deterministic alternation. In [BETA 87b] it is shown how to model
nondeterministic alternation in the context of truly concurrent ob jects.
Modula-2 coroutines used as interrupt handlers may be viewed as non-
deterministic alternation.

The BETA coroutine mechanism has been presented in terms of the
Wang and Dahl model. The model is operational and may be viewed
as an abstract implementation. In fact the current implementation in
BETA follows this model very closely. It may be argued that a more
abstract and less operational model should be used for explaining the se-
mantics. However, from an object-oriented perspective, where coroutines
are viewed as models of alternating sequential processes from the real
world, th model appears quite natural. The model has not been selected
for its mathematical properties.
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(# ...
BinTree:
(#

Node: {The nodes of the binary tree}

(# elem: @Integer;

left, right: T Node;
#);
root: T Node;

Traverse: @ |
(# nezt: @Integer;

Scan:
(# current: T Node;
enter currentd

do (if (currentD = NONE)// false then
currentesleft0 — & Scan;
current.elem — next;
suspend ;
currenterightd — & Scan;
if) #);
doroot0 — &Scan;
mazInt — next; Cycle(# do suspend #);
{exit maxInt hereafter}
exit next

#) {Traverse}
do ...

#); {BinTree}

b1,02: @QBinTree;

el,e2: @QInteger
do ...

bl.Traverse — el;

b2.Traverse — €2;

merge: Cycle
7 —
do (if (el = MazInt) A (e2 = MazInt)
// True then leave merge if);
(if (el < €2)
// true then
el — print;bl.Traverse — el
// False then
e2 — print; b2.Traverse — €2
if);
#);
21
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P: (# a: QInteger;
ml :< (#doIl;inner; I2#)
do Al;inner; A2
#);
PP: P(# b: QInteger
ml < (# doI3#)
do A3
#)

Figure 10: Sub-pattern and virtual pattern
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SymmetricCoroutineSystem:
(#
SymmetricCoroutine: {Abstract super pattern}
(#
Resume :<
(# do thisSymmetricCoroutineD — nextO;
{save “self” in next}
{for subsequent attach by ScheduleLoop}
suspend {suspend caller}
#)

do inner

#);

Run: { start of initial SymmetricCoroutine }

(#

enternezt0 {global reference declared below}
do ScheduleLoop :
Cycle
(# active: T | SymmetricCoroutine
{Currently operating component}
do (if (next0 — activeD)
// NONE then leave ScheduleLoop
if);
NONE — neztO;
active {attach next SymmetricCoroutine}
{terminates when active executes}
{resume, suspend or terminates}

#)#);

next: T | SymmetricCoroutine;

{next SymmetricCoroutine to be resumed }
do inner
#); { SymmetricCoroutineSystem }

Figure 11: A general symmetric coroutine system
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Converter: @ | SymmetricCoroutineSystem
(#
DoubleAtoB: @ | SymmetricCoroutine
(# ch: QChar
do Cycle
(# do GetChar — ch;
(if ch
//'a’ then
GetChar — ch
(if ch
//'a’ then
"o’ — DoubleBtoC + Resume
else
‘a’ — DoubleBtoC's Resume;
ch — DoubleBtoC« Resume
if)
else
ch — DoubleBtoC« Resume

if) #)#);

DoubleBtoC: @ | SymmetricCoroutine
(# ch: @QChar;
Resume ::< (# enter ch#)
do Cycle
(# do (if ch
//'®' then
DoubleAtoB.Resume;
(if ch
//'®' then
‘¢’ — PutChar
else
v’ — PutChar;
ch — PutChar
if)
//nl then suspend
else ch — PutChar
if);
DoubleAtoB . Resume

if) #)#)
do DoubleAtoBO — Run

#);

Figure 12: A Symmetric CoroutineSystem

24



QuasiParallelSystem:
(# ProcessQueue:

do
#)

(# Insert: {Insert a process}
{Insert of NONE has no effect}
Next: {Exit and remove some process}
{If the queue is empty, NONE is returned}
Remove: {Remove a specific process}
)i

Active: @ProcessQueue; {The active processes}

Process: {General quasi-parallel processes}
(#
Wait: {Make this Process wait for a send to S}
(#8S: 1 ProcessQueue
enter SO
do this ProcessO — §.Insert;
this Process0 — Actives Remove;
suspend

#);

Send: {Activate a process from S}

(#S: T ProcessQueue

enter SO

do S.Next — Active.Insert;
suspend

#);

do inner

#); {Process}

Run: {The scheduler}
(#Ap: T | Process
{currently active Process}
do ScheduleLoop :
Cycle
(#
do (if (Active. Next — ApD)
// NONE then leave ScheduleLoop
if);
ApD — Active.Insert; {Ap is still active}
Ap {Attach Ap}
#)#)

inner

Figure 13: A general quasi-parallel system
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ProducerConsumer: @ | QuasiParallelSystem
(# B: @Buffer;
notFull, notEmpty: @ProcessQueue; {Signals}

Producer: Process
(# Deposit:
(# E: QBufferElement
enter £
do (if B.Full // True
then not FullD — Wait if);
E — B.Put;
notEmpty0 — Send
#)

do inner

#);

Consumer: Process
(# Fetch:
(# E: QBufferElement
do (if B.Empty // True
then not Empty0 — Wait if);
B.Get — E;
not Full0 — Send;
exit £

#)

do inner

#);

P1: @| Producer(# ...El — Deposit;... o Ji
C1: @ | Consumer(# ... Fetch — E1;... #);

do P10 — Active.Insert; C10 — Active.Insert;
&Run

#)

Figure 14: A producer/consumer system
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