ISSN 0105-8517

PROTOTYPING REVISITED

— design with users in a cooperative setting

Susanne Bgdker

DAIMI PB - 233
September 1987

AARHUS UNIVERSITY | hﬂ |
COMPUTER SCIENCE DEPARTMENT | [T]

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK L] T
Telephone: +456 1283 55 Telex: 64767 aausci dk

ABSTRACT:

In this paper, prototyping will be discussed from the point-of-view of
user/designer cooperation in design. The starting point is that active
user participation in systems design is a way of improving the quality
of the design process as well as the product — a computer application in
use. But, to participate actively in design, users must be allowed to
experience the future use situation in the design process — to gain
hands-on experience. The ideas of various prototyping methods seem
to offer valuable help in this process.

Prototyping is, however, not one thing: we can not from an
epistemological point of view claim that all prototyping approaches
have the same aims. This advocates the necessity of distinguishing
between different types of approaches. Cooperation between users and
designers, the mutual learning process, and hands-on experiences to
reveal the triggering of proper operations is only one side of the
epistemological interests behind prototyping.

At the same time, the practical solutions of different approaches are
to some extent applicable: we can learn from e.g. 4th generation tools,
etc., but it is perhaps a good idea to reconsider the concept from the
perspective of cooperation between users and professional designers.

CONTENTS:

1. Introduction

2. Design processes of my concern

3. Theoretical and empirical grounds
4. Prototyping

5. Different prototyping styles

6. Conclusion

1. INTRODUCTION

Recent research has provided both empirical and theoretical evidence
to two types of statements which will be my points of departure in this
paper. The first statement is that active user participation in systems
design is a way of improving the quality of the design process as well
as the product — a computer application in use. The second statement is
that to participate actively in design, users must be allowed to
experience the future use situation in the design process — to gain
hands-on experience. This means that the best way for users to get
acquainted with e.g. a requirement specification is not through reading
but through use and discussion of prototypes or test examples of the
future, running computer application.

To establish a situation where this is possible, professional designers
need means of design. And not only this; perhaps the designers'
traditional way of thinking of the whole design process need to be
changed: If design is to be based on a dialogue with the users in which
prototypes are build and tried out, design should perhaps no longer be
seen as a series of steps in which more and more refined descriptions
of the computer application are produced. One tradition of systems
development/software engineering has a different, and perhaps helpful
view of the process, the prototyping tradition. In this paper I shall
examine the possibilities of applying prototyping, the way this is
thought of within the software engineering tradition, as part of the
above types of design processes. We can say that the purpose of the
paper is to discuss the following question: has the software engineering
tradition already got the answer, when we, from a human activity
point-of-view, ask for new design means? Are we philosophically or
practically trying to answer questions which have already been
answered by the prototyping tradition? I do not expect a yes or a no,
but something to get wiser from, conceptually as well as practically.

First, I will discuss in more details the type of design processes that are
of my concern and present my approach to design. Secondly, I will
discuss the relation between my approach and prototyping. This is
followed by a discussion of three different styles of prototyping, their
applicability for my purpose, and some problems that we must face.

2. DESIGN PROCESSES OF MY CONCERN

This paper takes its starting point in an understanding of design as a
special human activity that shares a number of properties with other

human activities. The approach can be characterized as a human
activity approach (Bgdker[1]) because it is based on the human activity
theory of Leontjew and others (Leontjew[2], [3]). It is focusing on the
use of computer based artifacts in human work activity. Specific for
human life, the way it is viewed here, is that human beings, as opposed
to animals or things, create artifacts to be applied in a future use
activity. By this choice of approach I deal with computer use as going
on in purposeful work, with a specific organization and division of
work, and based on a specific practice of the users.

2.1. Human activity and computer applications

Individual human work activity can be seen as part of a collective
work activity of one or more groups. In the collective activity,
language is used to coordinate work. Each individual activity consists
of communication with others human beings to organize, coordinate,
and control the activity, and of actions directed towards things which
serve as objects or artifacts in the material production. Use as well as
design is determined in a societal process, characterized by power
relations and groups of conflicting interests.

Actions are consciously conducted by human beings. They are carried
out through a series of operations. Each operation is corresponding to
the concrete physical or social conditions for conduction of the
actions, and it is triggered by the meeting with the specific concrete
material conditions. Operations are senso-motor units which a human
being performs in a specific situation, without consciously thinking of
it, to perform the action which she is consciously aware of.

The individual human being possesses a certain repertoire of
operations. This repertoire is part of the conditions of a specific
activity because they form the basis from which operations are
triggered by the meeting with concrete material conditions. For each
specific action, the human being is dependent on the triggering of a
sequence of operations. If these do not exist she must conduct different
actions consciously. Most likely, she must conduct more detailed
actions due to the lack of operations. We can consider a simple
example, writing a letter with a new word processor — we need not
only be conscious about writing the letter, but also about turning on
the computer, opening the editor, etc.

Actions can be turned into operations, i.e. they are no longer
conducted as a conscious effort but as a result of the meeting with the
physical or social conditions. This is a typical result of learning.
Operations can be brought back to the human consciousness when we

articulate for our self what is otherwise self-evident. When we use a
new word processor we know, or become conscious of, that we cannot
just operate it the way we did with the old one, and we conduct what
were formerly operations as actions. Although the operations, when
applied in a specific action are not conscious to us they can be made
conscious to us as the actions they once were, in unfamiliar situations;
we can name a specific sequence of operations, and understand and
explain reasons for their application at the level which was the level of
the former actions. In specific situations, or after conduction of a

specific activity, we can ask a person how and why she did what she
did.

One important kind of unfamiliar situations is breakdown situations,
situations in which some unarticulated conflict occurs between the
assumed conditions for the operations on the one side, and the actual
conditions on the other. Let's assume that we can use the new word
processor like the old one, and we start to write a letter. We might
succeed with this for a while, but sooner or later something will
probably be different and we are forced to see letter writing as
something which requires other operations, and thus, other actions. A
similar effect as breakdowns can however be achieved in learning
situations, through a deliberate pedagogical effort; and in teaching
situations where one is often forced to exactly articulate for one self
what was otherwise self-evident.

Human beings apply artifacts in the intercourse with the world.
Artifacts, some of which are computer applications, are not usually
applied by their user through conscious actions. The effect of this is
that the artifact is transparent in regular use situations — it is between
the user and e.g. her material, but she operates on the material. When I
apply a text editor, or even a pen, to write a letter, I do not think of
pressing the buttons on the keyboard or moving the pen on the paper,
but on the letter. Only in breakdown situations where it prevents the
execution of certain operations does the artifact become the object for
conscious actions. When I use a text editor to write this paper, I think
primarily about the content of the text that I am writing, and
eventually on the format as well. I do not think about pressing the keys
on the keyboard, neither on the commands I use or the menus I open to
get the editing done that I need. If, however, such things happen as
some keys on the keyboard not working, or I can't find the ' key; if I
do not find the command that I was expecting in the menu; a
breakdown occurs, and I start to be conscious about which keys I press
or which menus I open, and how.

2.2. Artifacts and the challenge for design

For the purpose of design it is interesting to focus on the character of
the operations and their material conditions: In design we are going to
change operations and their conditions for a specific activity, and for
that reason we will like to focus on both actual operations and
conditions, and future changed ones.

We face the problem that we cannot ask the person to predict her
future operations in a future action. She will not know these until they
are done; they are triggered by the material conditions, by the meeting
with the actual nature or culture, not by any quantifiable set of
conditions. We say that the operations are usually non-articulated. The
material conditions are often non-articulable, which gives an action a
certain character of unpredictability. Even though it is possible to get
to know something about which repertoire of operations is possessed
by the human being for some purpose, neither the person herself nor
any observer can predict which operations come into play in the
specific activity of use.

A group of human beings who conduct a collective activity with a
specific object or goal shares a practice. The practice of a group arises
from, and is carried by some common goal or object, as well as by the
conditions of the collective activity, e.g. materials and organizational
surroundings, the artifacts, languages, and ways of organizing the
collective and the individual work applied in the activity. Practice is
reflected in the repertoire of operations of the individual member of
the group, at the same time as the individual member is part of
constituting and producing the practice of the group through her
actions and operations.

Some aspects of practice can be made explicit. They can be formulated
in guidelines and theories. Cookbook recipes, text books about food
and nutrition, dictionaries for chefs, and books about organizing work
in big or smaller kitchens present examples of the explicit practice of
cooking. They represent the articulable aspects of practice.

We can, however, only through practical experience learn the
difference between a hand mixed cake or a machine mixed, the
difference of using four large eggs or four smaller ones, of an oven
which is warmer or an oven which is colder. Likewise can we learn the
exact result of asking the kitchen assistant for three ripe tomatos, or
how to know when a certain steak cooked a certain way is 'medium' as

ordered by the customer. Only through practical experience do we
turn actions into operations, so that later the "right" operations will be
triggered by the right conditions: e.g. to choose a fork or a whisk to

beat the eggs for a certain omelet. We call these aspects personal or
tacit.

When a human being learns to take part in a collective activity - gets
socialized into a practice - she learns to use the means of work of the
group, and she takes over the techniques, language, and ways of
organizing work of the group. She starts out from an unfamiliar
situation where most of the activity must be carried out as conscious or
purposeful actions. With a growing experience some of these actions
become operations, which means that they are no longer conducted
consciously, but only as part of other conscious actions. An important
part of learning is to build up a repertoire of operations.

H. and S. Dreyfus[4] give an example of how this learning takes place.
They deal with five stages of competence from novice, over advanced
beginner, competent, proficient, to expert. The novice, they say,
knows the explicit rules of the activity, but has not yet gained any
experience with the actual physical or social conditions, and thus, she
has no operations. The advanced beginner has formed some operations
which are applied in the activity. For the competent, the repertoire of
operations for conducting the activity is rather big, but there are still
many physical and social conditions which have not been met, for
which reason breakdowns occur frequently. In all of these stages and
the proficient stage, it is mainly the conduction of the activity which is
done as operations, whereas the activity is still consciously planned —
the situation is assessed on beforehand and a series of steps to be taken
are consciously planned whereas the conduction of these steps at the
proficient stage is done as operations, except in breakdowns where the
whole process will perhaps have to be re-assessed and planned. The
expert conducts even the planning as operations, she is acting in the
situation.

A fairly familiar example for most computer people is how novices
get socialized into the language of the computer world: from the
novice stage where all the words and phrases are unfamiliar, they pass
a stage where they use computer words all the time, even when talking
about totally different matters, and where they are constantly
corrected by the experts (breakdowns). Only after this, they get to a
stage where they are able to use that language as the rest of the people
around them, without constantly thinking of how to say this or that.

Human activity can, for this reason be characterized by situated action,
rather than by planning and reflection. Human beings do, of course,
plan and reflect - however, this takes place as a secondary kind of
activity in situations where we are inexperienced in different ways; in
breakdown situations. In familiar activities where the human beings
are experts, our activity is conducted unreflected as a result of the
meeting with the physical world or other human beings.

When a new artifact is brought into a practice this practice will
change. Even the most competent expert will probably have to change
her repertoire of operations, and for a while she is returning to a
lower level of competence.

2.3. An example

We can look at make-up of newspaper pages. As the basic component,
page make-up is conducted by one or more make-up persons, each
carrying out his or her own individual page make-up activity.

The individual page make-up activity, is part of the collective activity
of various groups, e.g. the make-up persons at the specific newspaper,
or the persons handling the front page of a specific newspaper. The
individual make-up activity is directed towards the newspaper page.

To organize, coordinate and control the collective activity,
communication plays a role. This means that the make-up persons
direct some parts of their activity towards other human beings, when
for instance the make-up person discusses with the editor how to have
the articles fit into the page. Other parts are directed towards objects:
the make-up person handles paper galleys, pictures, etc., to actually
create the front page.

The artifacts used in the activity are knife or a pair of scissors to
mediate his relation with the physical world, the forming of the
newspaper page. Lay-out sketches, production plans, etc. to mediate
the communication and coordination of the production.

The individual human activity is conducted through actions, which are
consciously conducted in a unity of time and space. Making-up a
specific newspaper page may consist of placing an ad in the rightmost
bottom corner, fit in some text between the ad and a picture, etc. An
action is conducted through one or more operations, which are bound
to specific material conditions. To place an ad the make-up person
picks up the photo typesetter paper, picks the knife, cuts off some of
the white area around the ad if there is too much white, without being
conscious about this. The right operation to be used in a specific

situation is triggered by the material conditions; it is not chosen
consciously by the typographer. When the typographer places an ad,
we can say that the actions are what he is consciously doing, e.g.
placing an ad in the right most bottom corner, whereas the operations
are e.g. hold knife, cut paper, try position on page ground.

What in some situations are actions can in other situations be
conducted as operations as part of other actions: e.g. placing a picture
can in some situations be something which has its own specific
purpose, whereas in other situations it has not, it is conducted as part
of placing an article on the page ground.

Through learning, in special learning activities or in daily work
activities, the person obtains a repertoire of operations to be used in a
specific activity. He gets to share the practice of typographers, at the
same time as he is part of constituting this practice: by actually doing
the make-up work the techniques, the use of tools, the language, and
the organization of work is reproduced. At the same time, if a make-
up person finds out about doing something differently, this can result
in a change of practice.

The make-up person can reflect upon what were formerly operations,
and try to perform former operations as actions, e.g. if the editor tells
him that he is not pleased with the product of the work of the
typographer. Changing the level of action means changing the object
(or subject) of the actions — instead of working on the article the make-
up person starts to think about headlines, pictures, and the like.
Unforeseen changes in the material conditions in the specific page
make-up activity may cause breakdowns.

Situations where the make-up person's knife causes a breakdown
could be:

swhile learning to use a new kind of knife,
oif the knife breaks,

«if the knife is badly suited for the kind of cutting its user wants to
achieve, a switch of knife can be necessary, or

-a special handling of the knife to achieve the intended result.

In such a situation the knife is no longer something which is handled
only through operations. Rather the knife becomes the object for the
actions, removing the focus from the real object, the newspaper page.

2.4. Design

The challenge for design of the artifact is to build on existing use
practice to avoid that all experienced users are turned into novices,
both in their more general practice of the activity and in the specific
use of the artifact. Design changes practice by introducing the new
artifact, but practice can also be influenced through learning taking
place in the design process: if expert users take part in design, their
general practice changes as does their specific practice in relation to
the future artifact. This is because in the process they encounter many
breakdowns, and teaching situations in which they are forced to
articulate for themselves their otherwise self-evident practice.

Design of artifacts is a process in which we determine and create the
conditions which turn an object into an artifact of use. The future use
situation is the origin for design, and we design with this in mind.

Use, as a process of learning, is a prerequisite to design. Through use,
new needs arise, either as a result of changing conditions of work or as
a recognition of problems with the present artifacts through recurring
breakdowns. These breakdowns are situations where the artifact, time
after time, proves to be insufficient in the activity; each time causing
breakdowns. The power relations and the division of labor are
important factors for what kind of needs eventually leads to design
activities and implemented artifacts.

Design of computer based artifacts is a meeting place for many
different practices, and sharing experiences is something which
requires a deliberate effort. Design is a process of learning, both when
viewed as a collective process and as an individual process for the
participants. The different groups involved learn about practice of the
other participating groups. For the computer experts this involves
learning about the work and prerequisites of the application domain.
For the users who participate, learning about computers is involved
together with learning about design of computer applications. For all
groups the confrontation with practices of other groups contributes to
learning about their own practice. This brings to design an innovative
character: the confrontation with different practices, and thus, with
one's own, is opening possibilities for new ways of doing things, and
transcending the traditional practice of the users. This is the reason
why design should be done with the users, not for, nor by them.
Design done by the users alone, or design by the computer experts
alone may well be very conservative, because they lack the possibility
of confronting their own practice with other ideas.

Design is based on, and may change, all aspects of the practices of the
users. The process of bringing into our consciousness the nature of our
practice takes place in different situations triggered by different
means. In design, we need means to trigger awareness of all aspects of
practice, the language, the use of artifacts, and the ways of organizing
work. At the same time, some of the personal or tacit aspects of
practice is dealt with better without explicitation, because a dealing
only with what can be made explicit reduces the physical and social
conditions to a set of quantifiable conditions. Such a set is, however,
not sufficient for knowing if and how the triggering of the operations
will occur. :

In this process two potentially conflicting goals of design come into
play: that the future users must be able to assess the artifact-to-be, and
that the programmers need a formal and detailed basis for their
programming. This potential conflict can be dealt with in two ways:
either to let the users be as detailed and explicit about their
requirements as possible, or to provide the programmers with the
needed competence to take part in design and help interpret
breakdowns into actual programs. The human activity framework tells
us that the first way is hardly feasible alone. The second way
emphasizes the need for a collective learning process among the
groups involved in design. Furthermore, to be a good designer means
to be able to facilitate the reflection and interpretation in breakdown
situations. In this conflict the interest for prototyping methods can be
found, because many prototyping methods, as I will get back to, seem
to allow us to consider both of the above ways.

To design an artifact means not only to design the artifacts for a
specific kind of activity. As the use of artifacts is part of social activity,
we design new conditions for collective activity, e.g. new division of
labor, and other new ways of coordination, control and
communication,

2.5. Better design

Good design must therefore facilitate the communication between
these different groups. This can not be done just by introducing a
common formalism or language, because such pre-supposes that the
necessary aspects of the use practice, the computer application and its
future use, can be made explicit. What human beings can make explicit
of an actual activity is, however, what can be explained through a post-
factum reflection only. The actual triggering of certain operations,
and the physical or social conditions by which they are triggered,
belong to a different domain — acting in situations. Why and when a

10

certain operation is triggered and by which conditions can not be
turned into an explicit set of conditions and rules.

Thus, good design means a mutual learning process in which also the
non-explicit aspects of use practice can be dealt with. In particular it is
important to set up situations which make it possible for the users to
somehow experience the future use activity; to gain hands-on
experience with the future computer application in use.

As compared to traditional design methods, this view on design
suggests that design is an incremental process, which is characterized
by the experts' acting in situations, rather than it is a planned process.
Furthermore, it is not possible to make the traditional distinction
between analysis/investigation on the one hand and design/construction
on the other: it is primarily in the early parts of a design process that
different ways of facilitating active user participation is needed. On
the other hand, breakdowns are encountered all the time in the
process, both in relation to the present use situation and practice, and
in relation to the new one, especially the new computer application.

3. THEORETICAL AND EMPIRICAL GROUNDS

In the above I have presented theoretical reasons for my interest in
design that allow for hands-on experience. These reasons are discussed
in detail in Bgdker[1], and are inspired by the work of Winograd and
Flores [5], Suchman [6], H. and S. Dreyfus [4], Ehn [7], and others. All
of this work has in turn been inspired by philosophical work in the
phenomenological tradition (Heidegger), the ordinary language
tradition (Wittgenstein), and the materialistic, cultural historical
tradition (Leontjew).

Seeking these theoretical reasons is, however, a result of the empirical
experience of the UTOPIA project, described in [8, 9, 10, 11] and
elsewhere. Here it became obvious that many of the traditional
description methods, known to us, failed to work in several respects.
We did not, however, choose to apply any specific method or
tradition. Instead our ad-hoc attempts lead to the different mock-ups
and simulation facilities. It is in this that we can find the reason for the
title of this paper: the idea is to go back and reexamine some of the
design methods or traditions which were once candidates for use in the
project; with the new understanding of design achieved practically as
well as theoretically.

I see in the "Knowledge and Work" project ([12, 13, 14, 15]) and the
Florence project ([16]) arguments and experiences which are also in

11

favour of a theoretical approach as the one presented here, and I see
these projects as important supplements to our research.

A theoretical framework, as the above, is not trying to describe or
explain how systems design in general takes place, and why. Instead it
presents an understanding of which role computer applications play in
human life. The understanding of this role makes us see how systems
design ought to be conducted to more certainly create computer
applications which fulfill this role. This in turn leads to an interest in
better design methods or practices to set up and support such design
situations. In short, I seek ideal cases and examples of good methods. I
hope that these can influence practical systems design, although I am
aware of the many problems involved in this: systems design is most
often not a democratic process, but a process governed by power
relations and differences in available resources among the involved
groups of interests.

4. PROTOTYPING

With the present theoretical and empirical background, I find it
important to go back to see what we can learn from more established
traditions in the attempt to consolidate the practical sides of the
approach. One school in particular comes into mind when looking for
hands-on possibilities and evolutionary, learning approaches:
Prototyping.

In her survey of prototyping, Floyd [17] tells us that "Prototyping
refers to a well-defined phase in the production process, where a
model is produced in advance, exhibiting all the essential features of
the final product, for use as test specimen and guide for further
production”. She also says that "a prototype should always be
considered a learning vehicle", and that "the overriding concern in
prototyping is a commitment to the quality of the desired product".
The latter two of the above statements show similar concerns as my
own. The definition of prototyping, however, suggests that

prototyping is perhaps a subclass of the type of methods that I am
after.

Friis[18] suggests that a precise definition of the concept prototyping is
perhaps not as important as the discussion of the possibilities of a new
view of design, based on simple "throw-away" models of the future
computer application. I agree with her in that, but I will for the
purpose of the following discussion try to give definition of the
concept. On the one hand, prototyping is a way of doing systems
design which allows the users to experience their future work/use

12

situation by allowing them to act in this. On the other hand, the goal of
the activity is different from that of the use activity: to gain
experiences about the computer application for the purpose of further
design, as opposed to the actual conduction of the work.

When I use the concept prototyping in the following it is to reveal
differences between examples of methods which we tend to cover by
the term. I propose a distinction between three different styles of
prototypes and I illustrate the styles by examples. The examples as

such serve the role of prototypes, archetypes, or paradigm cases of the
different styles.

Floyd, as well as others, suggests taxonomies of prototyping
techniques. As I am after the more fundamental perspectives behind
the techniques too, I shall apply such taxonomies together with
Bansler's taxonomy of research traditions [19] (here taken from
Pedersen[20]), with the focus on differences.

S. DIFFERENT PROTOTYPING STYLES

Bansler categorizes traditions according to what types of problems
they aim at solving (epistemological interests); what are the basic
assumptions? which are the fundamental concepts? and how are
practical problems solved? I will, in the following, interpret these
dimensions in the context of prototyping. Furthermore, I discuss some
typical characteristics of prototyping styles along these dimensions.

3.1. Epistemological interests

The epistemological interests resembles what Sol[21] calls "Why
prototyping?" Fundamental differences can be seen between seeing
prototyping as e.g. a vehicle of learning, for the designers or the users
or as a way to facilitate programming by non-professional
programmers. We find these differences in the following examples.

]

Wasserman([22, 23, 24, 25] presents a method based on a combination
of a formal specification method and prototypes based on a computer
interpretation of these. In this presentation, he points at six reasons for
his method [23]:

1. improved reliability;

2. verifiability, at least in an informal sense;

3. improved maintainability, including portability and adaptability;

13

4. system comprehensibility, as a result of improved structure;

5. more efficient management control of the development process;

6. higher user satisfaction.

In his newer paper [25] he suggest other points which are overlapping:
the suggested notation has to serve as a formal definition of the
interface, it has to be self-contained, comprehensible to designers and
users, flexible with respect to interaction styles, and executable to
support prototyping.

These points present to us three epistemological interests which are
frequent in prototyping: the aim to improve technical reliability and
verifiability of the product; the aim to improve efficiency of the
design process, and systems design as a learning process for the users.
Wasserman[23] says: " ..it lets the eventual user interact with 'the
system’ at a very early stage of the life cycle, and provides a 'feel’ for
the character of the eventual system."

To Wasserman the technical reliability of the product, and the
efficiency of the design process are the reasons for his concern — also
for the user acceptance: if the users don't accept the product, the
design process has to go into a new cycle, the sooner the users get
acquainted with the product, the less risk of extra cycles due to the
requirements of the users. Prototyping is taken into use, because the
users are not capable of reading the formal specifications without too
much help. Prototyping can be seen as a short-cut to make users
understand the specifications. It is not a matter of testing whether the
user can apply the artifacts through operations in regular use, and how
the user meets the physical and social conditions of the activity, but a
matter of having the user reflect upon the future activity through
concrete actions, and not through reading of abstract specifications
We move in a domain of reflection, although a rather concrete
reflection, not in a domain of situatedness. This type of thinking is
reflected in such titles as " A Technique for Prototyping Directly from
a Specification" (Tavendale[26]), and arises from traditional, formal
specification methods, where programs are proved or verified.

Whereas Wasserman does not deal directly with the qualifications of
the designers, other authors are more directly concerned for this.
Martin[27] in his survey of 4th generation methods deals with
prototyping by means of 4th generation methods as means for non-
professional programmers (users) to program themselves. He also
deals with this type of prototyping as means to reduce the needed

14

qualifications of the professional designers, which places in two
groups distinguishing between DP analysts and programmers.
Furthermore, prototypes are means to improve the efficiency of
design. The latter perspective is also the background for the work of
Kuvaja[28], in which he, among other issues, has compared the time
for programming of specific functions, applying different application
generators.

A different perspective is represented by Floyd[29], as well as by other
members of the German software engineering community. Starting
out from the traditional view, called product oriented, she argues for a
wider interest in the environment in which the design is taking place.
She says that with the process oriented view, quality, as an example,
must be discussed from the following point of view:

* Quality is associated with processes of using the product.

* Quality characteristics refer to the reliability, efficiency, etc, of
program use, they can be influenced by changing the work situation.

* Quality is determined by evaluation (argumentation, trial use,
critical appraisal).

* Quality is defined by looking from the users to the program (e.g.
relevance’, ‘suitability, ‘adequacy’).

The distinction between the above approaches, thus, is not only
whether users' hands-on experiences are involved or not, and whether
the learning of users is involved in the considerations. The distinction
is reaching far further: Whether the product of design is conceived
only as a technically sound computer system, or whether the product is
a changed organizational setting, in which the new computer
application has its place.

With a human activity approach in mind, the latter is of course what I
am after, rather than just efficiency of design, or technical soundness.
As most of the practical tools and methods accessible today belong to
the first category, we cannot just stop here. Instead we need to go
further into a study of details and technical aspects to find out to what
extent some of these tools and methods can be applied with the human
activity perspective.

5.2. Basic assumptions

The basic assumptions are what the school or method places itself upon
without questioning them. They concern the type of product being

15

designed, e.g. whether this is a system, a dialogue partner, a tool, or a
medium (Bgdker{1]). Furthermore, such aspects as the assumed
qualifications of the designers, and whether we deal with a process or a
product oriented approach (Floyd[29]). An important assumption to
focus on is the assumption concerning the tacit character of some parts
of human competence: does the approach assume that all aspects of
practice can and ought to be made explicit as basis for design, or does
it attempt to treat some aspects as tacit? In the light of the title of this
paper, one must also look at whether the design process is looked upon
as a collective or an individual process. Just to mention some
important assumptions.

Many of the methods that deal with prototyping from specifications
has inherited, from formal program verification, the concern only for
the correctness of the program in technical terms. This means that the
role of the program or application in use is not as such of concern. At
the same time, exactly this view puts the user in a position as input-
generator for the programs; a typical systems perspective, where it is
important that the user generates the, from the computer program's
view, correct input at the right time. In terms of the human activity
framework, the human repertoire of operations is reduced to exactly
one way of doing things in each well-defined situation. With the
according product oriented view, design is not looked upon as a
collective process, but at best as a process where the user and the
designer exchange points-of-view at certain, well-defined checkpoints.

As already mentioned in the previous section, the reason for hands-on
experiences of this type of approach is a matter of a faster way of
making explicit the parts of practice necessary in design.

Tanner and Buxton[30] list, in their discussion of the approach of
Wasserman and others (the so-called User Interface Management
Systems) the common basic assumptions of these approaches:

- that the user interface of an application can be isolated from and
designed after the functionality,

o that the ideal method render all dialog styles equally accessible.

» that the method will render complex interfaces more maintainable,
and facilitate portability.

o that the user interface design is inevitably intertwined with its
implementation, testing, and evaluation.

16

User Interface Management Systems, thus, build on the assumption
that user interface design prosper from a separation from the design of
the rest of the application, although it is part of an iterative process
where a sequence of prototypes is constructed and evaluated. This
means that design of how the computer application, is to be used is
something which can be placed in a single phase or activity. Tanner
and Buxton point at some critical questions by asking:

* Is there a point where the separation of the user interface and the
semantic functionality breaks down? How can semantic feedback, for
example, be adequately dealt with in a methodological way?

* Do the systems really push back the complexity barrier and make
user interfaces easier to implement, test, and maintain?

* The modules provided in a User Interface Management System will
affect User Interface style through the bias of the path of least
resistance. How can we exploit this bias to encourage a preferred and
appropriate style of interaction?

Due to the difference in epistemological interests between this type of
approach and the "least-programmers'-skills" approach of Martin,
there is a difference in the assumptions about the qualifications of the
programmers in the two approaches. Whereas it takes well-qualified
programmers to make specifications from which a prototype can be
derived, the ideas of the "least-programmers'-skills" approach is to get
to a situation where programs can be made without qualification
demanding advanced structuring, specification, and programming.
This in turn also forces a certain perspective both on the product of
design, and on the future use situation (see below). Martin does deal
with design as a collective approach where more groups of users and
designers are involved. He sees design as a rather mechanistic
approach which could, by better design means, be conducted by people
who have no design competence.

Floyd is viewing the product, the computer application, as something
which is under the complete control of the user: " The use of programs
should be intelligent; "intelligence’ refers to competent human dealing
with open situations, complex needs and changing goals. Programs
should support human decision-making according to actual needs and
unforeseen events." This entails viewing the computer application as
an artifact in many respects: a tool or a media, depending on the
purpose of the use of the application. The aspect which is lacking,
from the human activity point of view, is that she does not explicitly
deal with the transparency of the computer application. She does not

17

explicitly use a framework by which she can say that the important
thing about an artifact in use is that it is not noticed by the user, but
operated through operations.

Floyd sees the design process as a collective process, where prototypes
as well as different descriptions are means of communication, and
where there is a continuous learning process going on, both on the side
of the users, and on the side of the professional designers.

Compared to human activity view, this again comes close. Floyd is
inspired by the ordinary language school (Wittgenstein[31]), which
has also been an inspiration for my own framework. According to this
tradition, we can understand human ways of life as language games.
Language games are the way in which we interact with the world.
They are called language games because just like other games they are
played according to certain rules. To take part in a language game we
must know these rules. To know does not mean to be able to state or
make explicit, but that the other "experts" in the use of the rules accept
us as equals. In our intercourse we can change these rules too, as we
move along. We get to know the rules of a certain language game,
because it has family resemblances with rules of other games that we
already know how to play. The major difference relates to differences
in the view of practice. In my, material, conception of practice, this is
deeply rooted in human beings intercourse with the physical world, as
well as with each other. In Floyd's world the thinking of practice is
much more idealistic/individualistic (see discussions in Bgdker[1]).

5.3. Fundamental concepts

The fundamental concepts deal with the basic 'unit' of thinking of the
school or method, e.g. information, information flow, documents, etc.

As the ideas of the "least-programmers'-skills" approach is to get to a
situation where programs can be made without advanced
programming, this type of approach aims to provide a structure of the
prototype as well as simple mechanisms, by means of which the
prototype can be build. Martin[27] mentions the different components
of 4th generation languages (query language, report generators,
graphics language, data base, screen editors, etc.) which enforce a
certain structure on the prototype/computer application. It is, for
instance, fundamental that what can be fields to be edited or typed in
on the screen are the fields that relate to the fields in the database
records, etc. Furthermore, 4th generation languages do not deal with
general programming language concepts, but with more application
directed concepts, such as records of a file, documents, etc. This is

18

certainly a help when one keeps well within these concepts, but it also
restrains the application domain, and reduces flexibility of the design
process as well as the types of product.

The formalistic approaches apply traditional pro gramming language-
like concepts, perhaps combined with graphical means, such as
transition diagrams (Wasserman[22, 23, 24, 25]). As in the case of
Wasserman, these graphical means are used to check consistency, at
the same time as they are the basis for deriving the actual prototypes.
Again this type of framework puts a certain structure to the product,
and the way we can deal with it in design. As opposed to the 4th
generation languages, these are not application specific, i.e. they do
perhaps not enforce a similar type of perspective on the application
domain. On the other hand, it does enforce a thinking of the
application domain and the application in terms of transitions, data
base operations, and the like.

It is of course valuable to base a prototype on verifiable concepts, and
it is also valuable to have the application specific concepts of the 4th
generation languages at hand. To get to a situation where prototyping
can be done together with the users, we must, however, go further. We
must get to a situation where the computer environment, in the hands
of a skilled computer expert, can be a flexible help to build prototypes
rooted in the practice of the future users. This means that we need
support for application specific components such as documents. At the
same time these components need to be changeable to fit the exact
needs of the situation. In the hands of a skilled computer expert
flexibility, and a wide repertoire of components, is more valuable than
structuring support and easily handled components. The idea of the
formalistic approach to be able to technically verify or test the
prototype, seems to be valuable as long as one only verifies the
technical prototype. Attempts to verify on the use situation as a totality
is not possible in the same way, because it is not possible to focus on
breakdowns, triggered in the meeting between the future user and the
computer application, the materials, and human beings around the
user. And in the next step the extent to which she is capable of forming
a repertoire of operations to be applied in the use activity.

In the above approaches there has been made no systematic attempts to
experimenting or assessment. The ways of setting up use situations for
users to get hands-on experiences are rather ad-hoc. The literature on
prototyping give very little support for this type of considerations.
Card, Moran and Newell [32] deal with different models for
evaluation of user performance including one based on prototyping.
Regrettably, they do not go into further discussions about how the

19

prototypes are to be set up. Neither do they give any details about how
they suggest that one evaluates user performance based on prototypes.

5.4. Solving practical problems

The solving of practical problems can be a matter of the sequence of
prototypes, and the extent to which they cover the same or different
aspects of the computer application or the use situation: horizontal or
vertical prototyping is one distinction often made — the distinction
between whether prototypes are made to examine a major part of the
future use, although not in depth, or a small part of use in depth — or;
versioning, experimental or exploratory prototyping are other words
used for this (Floyd[17], Kammersgaard[33]), to stress different
strategies for an iterative process. Also the type of computer support
applied in the process, and other means of design fall into this
category.

The literature about prototyping falls into two categories when we get
to this level of detail about how to do prototyping. As a first group,
many case studies of how prototyping was done in specific situations
has been reported (See several contributions in Budde[34]). Most of
these do not have a theoretical background, and they are very ad-hoc
in the way the process has been structured, which tools have been
applied, etc. The second group are papers about theoretical
/philosophical reflections about the prototyping concepts (e.g. Sol[21],
Kammersgaard[33], Floyd[17, 29]). These often contain frameworks
by which prototyping can be conceived, and perhaps also
recommendations for the process at a more overall level. What they do
not contain are detailed discussions and recommendations about when
to do horizontal and when to do vertical prototyping, etc.

Martin[27] recommends that 4th generation tools are used as basis for
requirement specification (the prototype is the requirement
specification), or that they are used to create versions of the computer
application. In such situations he finds no need for professional
programmers, as opposed to the requirement specification situation.
But even Martin does not give any recommendations to when to choose
one type of prototyping for another, and how to organize the work.

With the theoretical framework in mind, it seems that exploratory
prototyping goes well with the ideas of the design process as a learning
process, because it allows for an early exploration of alternatives.
There seems to be some need, too, for experimental prototyping and
versioning to help the users get as much experience as possible with the

20

future use situation. How to, closely, simulate the future use situation,
and how far we can get are still research issues.

The organization of the project is important. We need to achieve not
only a learning process on behalf of the users, but also a mutual
learning process, where the computer experts learn about the
application domain. Again there is not much help to get from the
prototyping literature. Experiences from the UTOPIA project (Ehn
and Kyng[8], Bgdker[1, 11], Ehn[7]) and the Florence project ([16]),
show that a valuable approach is for a group of users and specialists to
work together over a long period of time. Furthermore, not only
prototyping, but also visits to work places, trying out other computer
applications, etc. are useful ways to get the work going.

As for the computer support needed, we have seen above the two types
which are today dominating the thinking. One originating from the
application domain but being inflexible, limiting both how the product
can appear to the users, and the technical possibilities of realizing
certain visions. Another applying a totally technical view of the
prototype, not taking into account the view of the users, leaving this
issue eventually to the computer experts. As there seems to be no good
computer support for our purpose, an obvious thing to do to is to
elaborate on the ideas of the 4th generation tools, but having in mind
that they are to be applied by computer experts, i.e. also to look into
the ideas of programming environments. Also, along the lines of the
UTOPIA project, there are reasons to ask if all prototypes need to be
computer based. The final thing that there are reasons to explore
further, as a research issue, is the relation in sequence of prototypes as
sequences of technically, or structurally alike computer programs: it is
clear that what prototypes need to have in common (with each other
and with the final application) is how they are used in the (future) use
situation, not whether one is programmed in Pascal and another in
Lisp. On the other hand, the structure may limit the aspects that can be
experienced by means of the prototype, for which reason several
differently structured prototypes may be needed. .Are there other
ways of making computer-based prototypes, and which computer
support is needed for this?

At present, many commercially available products are being released,
which seem to be able to support this process, but the market and their
actual usefulness is difficult to overview. Furthermore, there is a need
to explore the issue of a new view of design and its practical

implications. With there two aims a research project has been set up.
(See Bggh Andersen[35]):

21

The purpose of this project is to do research on computer support for
the early phases of systems design, where it is important to rapidly
create and experiment with illustrations of how a future computer
application will appear to the users, with respect to the interface and
Junctionality, as well as the organizational aspects of its use.

This project on cooperative design is based on the development and use
of an Application Simulator. The Application Simulator is intended to
improve the communication among designers and users about future
use situations, based on practical hands-on and organizational
experience using the Application Simulator.

6. CONCLUSIONS

The main conclusion of the above discussion is, that although we tend
to talk about prototyping as one thing, we can not from an
epistemological point of view claim that all prototyping approaches
have the same aims. This advocates the necessity of distinguishing
between different types of approaches. Cooperation between users and
designers, the mutual learning process, and hands-on experiences to
reveal the triggering of proper operations is only one side of the
epistemological interests behind prototyping.

At the same time, the practical solutions of different approaches are to
some extent applicable despite the very different epistemological
interests. It is a open question, however, whether to include
rationalization of programming work, and technical verifiability in an
approach based on mutual learning and on an understanding of the
future computer application in use. This means that although we can
learn from e.g. 4th generation tools it is perhaps a good idea to
reconsider the concept from the perspective of cooperation between
users and computer experts, who themselves possess a practice which
includes a practical and theoretical understanding of the computer
support to be applied in the design process, ways of organizing the
design work, and of making the users active in design. Furthermore,
these experts possess knowledge about the possibilities and limitations
of computer applications in general, which is also important in the
process. One of the problems is that most means, e.g. 4. generation
tools can be used to get close to the use situation, but they are too
inflexible in the hands of professional designers.

Being a trained computer scientist, I will of course argue that technical
soundness is important; that it is important for computer experts to
reason about correctness and efficiency, also in technical terms. What

22

we must not forget is that technical soundness does not equal
applicability.

It is not of the user's primary concern whether the programs
underlying the application are correct or efficient, but that the
application works for them in the use situation. This includes that they
can form and use the needed actions and operations towards the
materials that they are dealing with and the human beings with whom
they are communicating, and that the computer application is
transparent, i.e. that it can be used through operations in regular use
situations: What is of concern of users is the extent to which they can
handle the material they are working with or communicate with other
human beings through the computer application, without this causing
breakdowns. Furthermore, the other conditions of the use situation,
such as the organization of work.

This leaves the problem for the computer expert, with the types of
approaches known today, that she must be able to assess the
implementability of the prototype. The reason for this is that if we g0
for prototyping environments that are primarily meant for supporting
the users' demands in the use situation, we move away from a step by
step realization of the final product. Structurally, and in many other
respects, the prototype can be very different from the final
application. The prototype serves as a requirement specification, and
to serve as a requirement specification it must of course have some
realism to it — it is important to go for something in design, which on
the one hand is as ideal for the purpose of the users as possible; on the
other hand, to be a useful requirement specification it must have some
amount of realism to it, concerning the possibilities and efforts of
implementing it.

Instead of the discussed practical approaches to prototyping it seems
that we must go for solutions which require more technical, as well as
social competence from the professional designers. And for computer
support which is flexible in the hands of these designers, not for
computer support which is primarily meant to structure the design
process and the product. These ought to be support which provides
good facilities for rapid prototyping in a specific setting, at the same
time as more time-consuming prototypes can be build when needed,
and the components to be applied in a specific setting can be set up

23

7. REFERENCES

1. Bgdker, S.: Through the Interface — a Human Activity Approach to
User Interface Design, DAIMI PB-224, University of Aarhus, 1987.

2. Leontjew, A. N.: Activity, Consciousness, and Personality,
Prentice-Hall 1978 (translated from Russian).

3. Leontjew, A. N.: Problems of the Development of the Mind,
Progress Publishers 1981 (translated from Russian).

4. Dreyfus, H. and S.: Mind over Machine, The Free Press 1986.

5. Winograd, T. and C. F. Flores: Understanding Computers and
Cognition: A New Foundation for Design, Ablex Publishing Comp.
1986.

6. Suchman, L.: Plans and Situated Actions: The problem of human-
machine communication, Xerox ISL-6, 1985.

7. Ehn, P.: Human Centered Design and Computer Artifacts, Aarhus
forthcoming.

8. Ehn, P. and M. Kyng: A tool perspective on design of interactive
computer for skilled workers, in M. S#iksjarvi, ed.: Proceedings from

the Seventh Scandinavian Research Seminar on Systemeering, Helsinki
1984.

9. Bgdker, S. and K. H. Madsen: More or Less Systems Description, in
Lassen, M. and L. Mathiassen, ed.: Report of the Eighth Scandinavian
Research Seminar on Systemeering, University of Aarhus 1986.

10. Bgdker, S. et al.: A Utopian Experience, in Bjerknes, G. et al., ed.:
Computers and Democracy — a Scandinavian Challenge, Gower 1987.

11. Badker, S: UTOPIA and the Design of User Interfaces, in
Precedings of the Working Conference on Development and Use of
Computer-based Systems and Tools, University of Aarhus, 1985.

12. Eriksson, I.: Learning Processes in the Context of Using ISs, in P.
Jdrvinen, ed.: The Report of the 10th IRIS (Information systems

Research seminar In Scandinavia) seminar, University of Tampere,
1987.

24

13. Hellman, R.: A Fictitious HIS-Reconstruct of an Information
System (A Case Study), in P. Jirvinen, ed.: The Report of the 10th
IRIS (Information systems Research seminar In Scandinavia) seminar,
University of Tampere, 1987.

14. Nurminen, M.: How to work with Paradigms?, in P. Jirvinen, ed.:
The Report of the 10th IRIS (Information systems Research seminar
In Scandinavia) seminar, University of Tampere, 1987.

15. Niemeld, J.: Informal Organization, Coordination of Work and the
Use Situation of ISs, in P. Jirvinen, ed.: The Report of the 10th IRIS
(Information systems Research seminar In Scandinavia) seminar,
University of Tampere, 1987.

16. Bjerknes, G. and T. Bratteteig: Florence in Wonderland. Systems
Development with Nurses, in Bjerknes, G. et al., ed.: Computers and
Democracy — a Scandinavian Challenge, Gower 1987.

17. Floyd, C.: A Systematic Look of Prototyping in R. Budde et al.
[34].

18. Friis, S.: Prototyping — En ny metod eller ett uttryck for ett nytt
synsatt?, in H.-E. Nissen, ed.: Systemutveckling — av Vem, for Vem
och Hur?, Lund University, 1984 (In Swedish. Prototyping — A new
method or an expression of a new perspective).

19. Bansler, J.: Systemarbejdets teorihistorie — i skandinavisk
perspektiv, Studentlitteratur, 1987 (In Danish. The History of the
Theory of Systems Work — a Scandinavian Perspective).

20. Pedersen, J.: Karakteristik af Human Factors traditionen, DIKU
1987 (In Danish. A Characteristics of the Human Factors Tradition).

21. Sol, H. G.: Prototyping: A Methodological Assessment, in Budde
et al. [34].

22. Wasserman, A. L: Software Tools and the User Software
Engineering Project, in Riddle, W. E. and R. E. Fairley, ed.: Software
Development Tools, Springer Verlag 1980 , pp. 93-113.

23. Wasserman, A. L: Software Tools in the User Engineering
Environment, IEEE 1981.

25

24. Wasserman, A. I.: USE: a Methodology for the Design and
Development of Interactive Information Systems, in Schneider, H.-J.,
ed.: Formal Models and Practical Tools for Information System
Design, North-Holland 1979, pp. 31-50.

25. Wasserman, A. L: Extending State Transition Diagrams for the
Specification of Human-Computer Interaction, IEEE Transactions on
Software Engineering, vol. SE-11, no. 8, 1985.

26. Tavendale, T. D.: A Technique for Prototyping Directly from a
Specification, TEEE 8th International Conference on Software
Engineering, 1985.

27. Martin, J.: Fourth-generation Languages. Vol. L. Principles,
Prentice-Hall, 1985.

28. Kuvaja, P.: Experimental Research on Application Generators in
Finland, overheads from talk at DAIMI, J anuary 1987.

29. Floyd, C.: Outline of a Paradigm Change in Software Engineering,
in Bjerknes, G. et al., ed.: Computers and Democracy — a Scandinavian
Challenge, Gower 1987.

30. Tanner, P. and W. Buxton: Some Issues in Future User Interface
Management System (UIMS) Development in Pfaff, G., ed.: User
Interface Management Systems, Springer Verlag 1985.

31. Wittgenstein, L.: Philosophical Investigations, Oxford University
Piess 1953,

32. Card, S. K. et al.: The Psychology of Human Computer
Interaction, Lawrence Erlbaum 1983.

33. Kammersgaard, J.: A Discussion of Prototyping within a
Conceptual Framework, in Budde et al. [34].

34. Budde, R. et al., ed.: Approaches to Prototyping, Springer Verlag
1984.

35. Bggh Andersen, P. et al.: Research Programme on Computer

Support in Cooperative Design and Communication, University of
Aarhus 1987.

26

