ISSN 0105-8517

A Distributed Election and
Spanning Tree Algorithm
Based on Depth First Search Traversals

Sven Skyum

DAIMI PB - 232
August 1987

AARHUS UNIVERSITY W—I
COMPUTER SCIENCE DEPARTMENT - Ij—]

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK
Telephone: + 456 12 83 55 Telex: 64767 aausci dk

T
[1]
o
]
_I

A Distributed Election and Spanning Tree Algorithm
Based on Depth First Search Traversals

Abstract

The existence of an effective distributed traversal algorithm for a class of graphs
has proven useful in connection with election problems for those classes. In this pa-
per we show how a general traversal algorithm, such as depth first search, can be
turned into an effective election algorithm using modular techniques. The presented
method also constructs a spanning tree for the graph.

1. Introduction

The problems of election and constructing spanning trees distributively have been

dealt with in several papers. In general the problems require @(E+NlogN) messa-
ges to be sent ([2, 3, 5]). The best known upper bound is 2E+3NlogN ([4]) for gene-
ral networks. Better bounds are known for e.g. rings, meshes and complete net-
works ([5, 6, 7, 8]). Spanning tree algorithms have mostly been of the "Gallager"
type. That is, fragments (or kingdoms) examined and conquered by different kings
are combined into larger fragments ending up with only one fragment, which has a
built-in structure of a spanning tree. Korach, Kutten and Moran ([5]) introduced an
elegant and simple approach to the election problem, namely constructing election
algorithms from effective traversal algorithms using a modular technique. Given a
class of graphs such that each graph can be traversed using O(f(N)) messages (f a
convex function), an election algorithm using O(f(N)logN) messages was construc-

ted. Attiya ([1]) refined the technique and obtained the bound O (f(N/k)). Both

constructions yield non optimal algorithms for graphs, where only O(E) or O(NZ)
traversal algorithms are known. The purpose of this paper is to present a general
algorithm using modular technique. Depth first search is used as the underlying
O(E) traversal algorithm. By extending the technique, introducing pruning, we
obtain an election and spanning tree algorithm using only 2E+2NlogN+QO(N) mes-
sages of small size (O(log(maxid), where maxid is the maximal identity of a node).

The algorithm is based on the commonly used model. We consider an undirected
connected graph G = (V(G),E(G)) without selfloops. N is the number of nodes and
E is the number of edges. Each node corresponds to a processor with a unique iden-
tity, and each edge corresponds to a two way channel. Each channel has (input)
buffers at either endpoints organized as queues. Processors can send and receive

1

messages via channels. The computation as well as communication is asyncronous.
Messages may be arbitrarily but finitely delayed. Initially all processors are in a

sleeping state. They wake up spontaneously after a finite time and start execution of
the algorithm.

The algorithm is presented in Section 2. Section 3 contains the proof of correctness
while Section 4 contains the analysis of the algorithm.

2. Description of the algorithm

Outline of the algorithm

When a processor v wakes up, it will typically initiate its computation by creating a
token <*,0,v> at level 0 and let this token start a depth first search traversal. The
first coordinate in the token indicated with an * contains information about whether
the token is moving forward, backward or chasing another token (see below). Each
time a token makes a backward step along an edge in the depth first search traversal
(backtracking) it will either close the edge (a back edge) or declare it a tree edge,
and the edge should not be traversed any more - the graph is pruned. If a token
<*L,u> enters a processor, which has already been traversed by a token at a higher
level, the token <*,L,u> disappears. If it enters a processor traversed by a token
<*,L,w> at the same level then if u < w the token <*,L.u> stops in v and waits for
another token to catch up with it. This is done by changing the status of processor v
to be a candidate at level L. If on the other hand u > w, <*.Lu> will stop its traver-
sal and chase <*L,w> as long as it cannot be detected that this token is already being
chased by a third token at level L in which case <*,L,u> will stop again and change
the status of the processor where it stops to a candidate at level L. If two tokens at
the same level L meet, that is if a token enters a processor being a candidate at the
same level, a new token at level L+1 is created and will start a depth first traversal
in the pruned graph, while the two tokens at level L will disappear. If a token suc-
cessfully finishes its traversal, it can declare the processor as leader where it stops
and the tree edges will then form a spanning tree for G.

A formal description of the algorithm

Messages sent will be tokens of the form <M,L,v>, where M is the mode of the
token. M can be either F meaning that the token is sent forward in the traversal, B
meaning that the token is sent back along a tree edge, Cl meaning that the token is
sent back along a back edge, or Ch meaning that the token is chasing another token.

2

L 1s the level of the token. L will be an integer in [0,logN]. v is the identity of the
node which initiated the depth first search traversal of the token <*,L,v>, by which
we mean all tokens of the form <M,L,v>, where M belongs to {F, B, Cl, CH}. To-
kens <*,L,v> are ordered lexicographically by (L,v) only. The two different mea-
nings of token should hopefully not create any confusions.

During computation a node v classifies locally its adjacent edges as open, closed or
tree edges (O(v), C(v), and T(v) resp.).

The status of a node v will keep a small amount of the history of v. Only

O(log(maxid)) bits are required for the status information in each node, where
maxid is the maximal identification of a node.

The status is a five-tuple (state,level,nodeid,inedge,outedge). state can be one
of IDLE, INIT, TRAV, CH, CAND or TERM, level is an integer in [-1,logN],
nodeid is a node identification, while inedge and outedge are edges adjacent to v.
The various histories bear the following meanings:

(IDLE,-1,v,e.e): v has not started its computation yet. e is not used for any purpo-
ses. Initially all nodes have this status.

(INIT,L,v,e,e): The last action of v was to initiate a depth first search traversal at
level L by sending a token <F,L,v> along an adjacent edge e.

(TRAV,L,u,el,ez): The last action of v was to pass on token <F,L,u> along e».
<F,L,u> was received on 8.

(CH,L,u,e1,e9): The last action of v was to send a token <Ch,L,w> along ey chasing
the token <*,L.,u>. v will have had the status (INIT,L,u,e1,e9) where u = v and
€1 =epor (TRAV,L,u,el,eQ) preceding the present status.

(CAND,L,u,eq,e9): v has with the status (IT,L,u,e1,e9) (IT being either INIT or
TRAV) received a token <F,L,w> with w < u, or with status (CH,L,u,eq,e9)
received a token <F,L,w>. In both cases token <*,L.,w> was annihilated by v.

(TERM,L,u,eq,e9): v has no more open adjacent edges. €9 is a tree-edge along

which the last token was sent. If u = v, node v is the leader of the network and
the set of tree edges forms a spanning tree.

The initial status for a node v is (IDLE,-1,v,e,e), O(v) equals the set of adjacent
edges and

T(v) = C(v) = @. After a finite time node v initiates its computation by reading an
input (if it exists) from an input buffer, or by sending <F,0,v> along one of its ed-
ges e in O(v) and enters state (INIT,0,v,e.e).

Thereafter nodes repeatedly check their input buffers for input and act upon them
according to the following rules.

If the status of v is status(v) and v receives a token <M,L,u> along e (<M,L,u> is
read from input buffer e by v) then one of the following 13 statements is executed as
an atomic step by v:

if status(v) = (*,L1,*,*,*) & L<L then
1: noop;

if status(v) = (¥,L1,*,**) & L>L{ & e in C(v) U T(v) then
2. if e in C(v) then send <CLL,u> along e else send <B,L,u> along e;

if status(v) = (*,L1,*,*,*) & L>L1 & enotin C(v) U T(V) & e1 in O(v)-{e} then
3: send <M,L,u> along eq; status(v):=(TRAV,L,u.e.eq);

if status(v) = (*,L1,*,*,*) & L>L1 & O(v)={e} then

4: send <B,L,u> along e; O(v):=0(v)-{e}; T(v):=T(v)+{e};
status(v):=(TERM,L,u,e,e);

if status(v) = (IT,L,w,e1,e9) & IT in {INIT,TRAV} & u<w then
5: status(v):=(CAND,L,u,e1,e9)

if status(v) = (IT,L,w,e1,69) & IT in {INIT,TRAV} & u>w then
6: send <Ch,L,u> along ej; status(v):=(CH,L,w,e1,e9);

if status(v) = (T,L,u,eq,e9) & IT in {INIT,TRAV} & e#e9 then
7: send <Cl,L,u> along e; O(v):=0(v)-{e}; C(v):=C(v)+{e};

if status(v) = (IT,L,u,e1,e) & IT in {INIT,TRAV} & en in O(v)-{eq,e} then
8: send <F,L,u>along ey; O(v):=0(v)-{e}; if M = Cl then C(v):=C(v)+{e} else
T(v):=T(v)+{e}; status(v) :=(TRAV,L,u,e1,e7);

if status(v) = (INIT,L,u,e.e) & O(v)={e} then
9: O):=0W)-{e}; T(V):=T(v)+{e};
{v is the leader and the algorithm has terminated}

if status(v) = (TRAV,L,u,e1.e) & O(v)={e1.e} then
10: send <B,L,u> along eq; OW):=0(v)-{e.e1}; TW):=T(v)+{e.e1};
status(v):=(TERM,L,u,e,e1);

if status(v) = (CH,L,w,eq,e9) then
11: status(v):=(CAND,L,u,e1.e);

if status(v) = (CAND,L,w,e1,e9) & e3 in O(v) then
12: send <F,L+1,v> along e3; status(v):=(INIT,L+1,v,e3,63);

if status(v) = (TERM,L{,w.e1.e) then
13: send <B,L,u> along e;

3. Correctness of the algorithm

An edge e = {v,w} is called nonclosed if it belongs to (O(v) U T(v)) N (O(w) U
T(w)) and e is called open if it belongs to O(v) M O(w). Finally e is called a tree-

edge if it belongs to T(v) N T(w). A path is called a nonclosed path if it consists
of nonclosed edges. A path is called an open path if it consists of open edges.

Without loss of generality we may assume the time to be discrete 0,1,... .

Lemma 3.1
If a node v receives a token <B,*,*> from w along {w,v} then all nonclosed paths
from w to nodes with (locally) open adjacent edges contain {w,v} as the first edge.

Proof
Follows using structural induction.

Lemma 3.2
No cycles of tree-edges are formed during a computation.

Proof
Follows by Lemma 3.1 and the properties of depth first search.

Lemma 3.3

If a node v on reception of the token <F,L,u> from a node w along e = {w,v} exe-
cutes statement 7 above, then there is an open path from w to v not containing e and
passing nodes with status of the form (*,L1,x,*,*), where either (L,x) equals (L,u)
or Ly > L.

Proof

Since e is an open edge when v receives <F,L,u>, it follows by Lemma 3.1 that no
edges on the path from v to w traversed by <F,L,u> has been made tree-edges. That
closure of edges along that path does not affect the validity of the Lemma follows by
induction primarily on increasing time and secondarily on decreasing token size:
The first time statement 7 is executed is the first time any edge is closed. For the ca-
se in which a token of maximal size is received, the Lemma is obviously valid. As-
sume now that node v receives token <F,L,u> at time t and that the Lemma holds
true for time instances less than t and for nodes y executing statement 7 at time t on
reception of tokens <F,L',z>, where (L',z) > (L,u). If any nodes on the path from w
to v traversed by <F,L,u> have been visited by other tokens changing the status of
these nodes then the level has increased or (L,u) is still part of the status (at time t).
In the case where an edge {a,b} on the path has been closed, it is necessarily closed
by a token <M,L',x>, where L' > L. The situation is shown on Figure 1. Since by
assumption the Lemma is true for node a in that case, there is an open path from a to
b via nodes with status of the form Ly * %), where L1 =L"'>L, and the Lemma
follows.

Figure 1 Crossing of traversals

6

Corollary 3.4

During a computation the graphs consisting of the nodes V(G) together with the
nonclosed edges are all connected.

Corollary 3.5

During a computation the graphs consisting of the nodes with (locally) open adja-
cent edges together with the open edges (({v10() # @}, {{v,w} | {v,w}in O(v)
M O(w) })) are all connected.

Proof
Follows by Lemmas 3.1 and 3.3.

Lemma 3.6

If during a computation a token <Ch,L,*> is formed, then at least one token
<*L+1,*> is formed during the same computation.

Proof

For fixed L, let u be the minimal identity for which a token <Ch,L,u> is created du-
ring a computation. That token is chasing a token <*,L,v>, where v < u. Because of
the minimality of u, the token <*,L,v> cannot start chasing a third token. Thus
<Ch,L,u> will either catch up with <*,L,v> in which case a token <F,L+1,*> is
formed or be annihilated by a node with a higher level in its status. In both cases a
token <* L+1,*> will be formed during the computation.

Lemma 3.7

During a computation a token <*,L,u> either finishes its traversal by returning to
node u, which then executes statement 9 or a token at level L+1 is created during the
same computation.

Proof

If a token <*,L,u> created during a computation does not finishes its traversal it
stops traversing because it meets a node v, which has been visited by a token
<*L',w> at the same or higher level. If L' > L or the state of v is CAND, we are
done. If L' = L and u > w then a token <Ch,L,u> is formed. If ' = L and u < w then
the status of v becomes (CAND,L,u,e1,e2) for some e1,e2. In that case the token
<*L,w> cannot finishes it traversal because it before or later will return to v, in
which case a token <*,1+1,v> is created. Now repeating the argument for the token
<*,L,w> we will eventually end up with either a token at a higher level or a token of
the the form <Ch,L,*>. Thus by Lemma 3.6 the Lemma follows.

7

Theorem 3.8

Exactly one token <*,L,v> will finishes its traversal. At that time no nodes will ha-

ve open adjacent edges, the set of tree-edges form a spanning tree for the graph and
v is the leader.

Proof

Each time a token <*,L,u> is formed for L > 0, at least two tokens of the form
<*L-1,*> have disappeared. Therefore by Lemma 3.7, at least one token <* ,L,v>
will finishes its traversal by returning to node v, which then executes statement 9.
At that time no more edges are open (at either end) by Lemma 3.1, Corollary 3.4
and the fact O(v) # @ when v received <*,L,v>. When there are no more open ed-
ges, no more tokens can exists either, so statement 9 can only be executed once du-
ring a computation. Thus v can declare itself a leader. That the set of tree-edges
forms a spanning tree finally follows by Corollaries 3.2 and 3.4.

4. Analysis of the algorithm

Lemma 4.1

The total number of different tokens <* L,v> created during a computation is
bounded by 2N-1, and L is bounded by logN.

Proof

Follows again from the fact that each time a token <* L v> is formed for L. > 0, at
least two tokens of the form <*,L.-1,*> have disappeared.

Lemma 4.2

The total number of chasing tokens <Ch,*,*> sent during a computation is bounded
by NlogN.

Proof
Each node can send at most one token <Ch,L,*> for each L.

Call a step of a token sent to a node v along e, where e is in C(v) U T(v) on
reception, and the step of immediately sending the token back along e from v
(statements 2 and 13), for bad steps. Call the remaining steps for good steps.

Lemma 4.3

The total number of good steps, where tokens of the form <B,* *> or <CL*,*> are
being sent is bounded by E.

Proof
Clear since exactly one such token is sent along each edge.

Lemma 4.4

The total number of good steps, where tokens of the form <F,* *> sent, is bounded
by
E + NlogN.

Proof

For fixed L, the number of good steps where tokens <F,L,*> are sent by a node v, is

at most one more than the number of good steps after which v receives tokens
«<B. 1% or «C1.1L. %

Lemma 4.5
The total number of bad steps taken during a computation is O(N).

Proof

Bad steps are taken in connection with statements 2 and 13. The two cases are more
or less identical. Figure 2 shows a situation, where bad steps occur in connection
with statement 13. Assume that at times t; (tg < t] < < ty) tokens <F,L;,v;> are

sent from w to v and that at times si (50 < 81 < <)) tokens <B ,L{,vi> are receiv-
ed by w from v. Assume furthermore that tj < sg. For i = 0 the two steps taken by
<*,Lp,vp> are good steps while the remaining 2k-2 steps are bad. By observing,

4—— <B,Lkvk>

‘ﬁ
&

4——— <BL1vl>
<+——— <BL0VO0>

w O Qv
<F,LO,v0> ——p»
<F,L1,vl> ‘——f
o The edge is made a tree edge for
<F,LKkVk> — p v when <B,L0,v0>is sent back.

Figure 2. Example of bad steps

9

that for i < k the above mentioned steps are the two final steps of <*,L;,vi>'s

traversal, the Lemma follows since the number of different tokens are bounded by
2N-1 (Lemma 4.1).

Theorem 4.6
The message complexity of the algorithm is 2E+2NlogN+O(N).

Proof
Lemmas 4.1 through 4.5.

Acknowledgement The author would like thank his colleaque Erik Meineche
Schmidt for valuable comments and fruitful discussions.

References

[1] Attiya H.: Constructing Efficient Election Algorithms from Efficient Traversal
Algorithms. Proc. of the 2nd International Workshop on Distributed Computing,
Amsterdam 1987.

[2] Gallager R. G.: Finding a Leader in a Network with O(E+nlogn) Messages,
internal memorandum, MIT.

[3] Gallager R. G., Humblet P. A., Spira P. M.: A Distributed Algorithm for

Minimum-Weight Spanning Trees. ACM Trans. on Programming Languages and
Systems. Vol. 5. 1983, pp. 66-77.

(4] Johansen K. E., Jgrgensen U. L., Nielsen S. H., Nielsen S. E., Skyum S.: A
Distributed Spanning Tree Algorithm. Proc. of the 2nd International Workshop on
Distributed Computing, Amsterdam 1987.

[5] Korach E., Kutten S., Moran S.: A modular technique for the Design of
Efficient Distributed Leader Finding Algorithms, Proc. of 4. Ann. ACM PODC
1985, pp 163-174.

[6] Korach E., Moran S., Zaks S.: Tight Lower and Upper Bounds for some
Distributed Algorithms for a Complete Network of Processors, Proc. of 3. Ann
ACM PODC 1984 pp. 199-207. '

10

[7] Moran S., Shalom M., Zaks S.: A 1.44..NlogN Algorithm for Distributed
Leader Finding in Bidirectional Rings of Processors. TECHNION Technical
Report #389, November 1985.

[8] Peterson G. L.: Efficient Algorithms for Election in Meshes and Complete
Networks, TR-140, University of Rochester, August 1984,

[9] Santoro N.: On the Message Complexity of Distributed Problems. Int. Journal
of Comp. and Inf. Sci. 13. 1984, pp. 131-147.

11

