ISSN 0105-8517

Transformations and
Abstract Presentations

in a Language Development Environment

Kurt Ngrmark

DAIMI PB - 222
February 1987

AARHUS UNIVERSITY — h—ﬁ |
COMPUTER SCIENCE DEPARTMENT —

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK
Telephone: +456 128355 Telex: 64767 aausci dk

=Nl
T

|
Y
-
— -
——

Contents

Abstract

Summary in Danish

Acknowledgements

1

Introduction

1.1 The Author’s Background
1.2 Methodological Remarks
1.3 Outline of this Thesis
1.4 Summaryof Results

Overview of Structure-Oriented Editing

2.1 Editors for Structuring Text

22 LispEditors
2.2.1 Editors in Residential Environments
2.2.2 Editors in Source File Environments

2.3 Syntax-Directed Editors
281 EBHY 4 5 05 55 5 ¢ td i mmmemes s cmmmmn
23.2 Mentor
233 Gandalf
2.3.4 The Cornell Program Synthesizer
235 OtherEditors

Muir Background

3.1 Hierarchical Grammars
3.1.1 Phyla and Phylum Hierarchy

3.1.2
3.1.3
3.1.4

Formal Hierarchical Grammars
Special Phyla
Multi-formalism Grammars

i

vii

ix

CO Ot W QO =

10
10
12
13
15
16
17
20
21
23
25

3.1.5 Abstract Syntax Trees
3.1.6 Comparison with Other Grammar Models
3.2 The Muir Environment
3.2.1 Realization of Hierarchical Grammars
3.2.2 The Uniform Representation Approach

3.2.3 Separation Between Presentation and Representa-
tion

.....

3.2.4 Co-existence with the Interlisp Environment . . .
3.2.5 Initiation of Actions
3.3 Summary

Transformations and Edit Operations
4.1 The Transformation Framework
411 HowitWorks
4.1.2 Representation of Transformations
4.1.3 Limitation of Pattern-Based Transformations . .
4.1.4 Applications of Transformations
4.2 Structure-Oriented Edit Operations
4.2.1 Primitive Edit Operations
4.2.2 Insertion of Composite Templates
4.2.3 Transformational Edit Operations
4.2.4 Structure-Oriented Search Operations
4.2.5 Edit Operations on Lists
4.2.6 Programmed Edit Operations
4.2.7 Major Systematic Modifications
4.3 Summary

...........

Keeping ASTs Consistent with the Grammar
9.1 A Priori Limitations

9.3.1 Version Overhead
9.3.2 Versions of Categorical Phyla
5.4 Structure vs. Text-Oriented Solution
5.5 The Solutionin Muir
5.5.1 Operator Modifications

............

........

.....

11

57
57
57
60
61
63
64
65
68
70
72
74
76
77
79

9.5.4 Modifications of the Phylum Hierarchy
5.6 Summary

6 Multi-Formalism Transformations
6.1 Motivation
6.2 Overview
6.3 Grammatical Foundation

6.3.1 The Source-Target Relation :

6.3.2 The Multi-Formalism Subphylum Relation
6.3.3 Pascal Modula-2 Cases

6.4 The Transformations
6.4.1 Semi-automatic Creation of Transformations
6.4.2 Examples of Transformations

6.4.3 Context Dependencies

6.5 The Translation Process

6.5.1 Application of the Transformations
6.5.2 Manual Completion
6.6 Summary

7 Abstract Presentations

7.1 Traditional Presentation Techniques

7.2 Abstract Presentation Techniques
7.2.1 Objects and Relations
7.2.2 Presentation of Relations
7.2.3 Compositional Tree Presentations
7.2.4 Transverse Graph Presentations

7.3 Editing an Abstract Presentation
7.3.1 Compositional Tree Presentations
7.3.2 Transverse Graph Presentations

7.4 Environmental Support

7.5 Related Work

7.6 Summary

.........
..........
...................
.........................

8 Conclusions

A Proof of Correctness Theorem

1ii

100
101
103
104
104
106
108
i |
113
114
115
120
126
130
130
132
134

136
137
139
139
141
144
147
154
154
155
157
162
164

166

170

B Modula-2 Presentation Rules 172
C Guided Tour in Muir Woods 176

Bibliography 198

v

Abstract

Muir is a syntax-directed editing environment whose primary purpose
it is to support the development of artificial languages. The focus of
this thesis is twofold. First, it is demonstrated how simple, pattern-
based transformations can be used to improve the functionality of the
environment. Second, and somehow orthogonal to this, it is shown how
abstract and systematically produced screen presentations can improve
user interface of the environment.

For the syntactic description of artificial languages, a new formalism
for definition of context free syntax has been developed. The formalism
1s a variant of the grammar definition formalisms based on operators and
phyla. To model the specialization /generalization hierarchy of syntactic
domains, the phyla are organized in a directed acyclic graph. The phylum
hierarchies of multiple languages are connected into a single-rooted graph
structure.

A simple tool that automatically solves the majority of a task seems
to be an interesting alternative to a complicated and fully automatic tool.
A semi-automatic facility that helps keep documents updated when the
underlying grammar is modified has been designed and implemented in
Muir. As part of a grammar modification the tool creates a transforma-
tion template, which typically must be refined manually. The resulting
transformation can be used to update instances of newly modified gram-
matical constructs in the documents that depend on the grammar.

A semi-automatic tool has also been created to ease the conversion of
documents from one formalism to documents in another formalism. A re-
lation among the syntactic domains in the source language and the target
language is the fundamental basis of this tool. Some manual work should
be expected during the creation of the transformations, and during the
application of the transformations on the source documents. However—
depending on the conceptual difference between the languages—the ma-
jority of the work can be done automatically. The multi-formalism trans-
formation facility has been tried out on a pair of programming languages.
The transformation framework has finally been used for the implemen-
tation and interpretation of nearly all structure-oriented edit operations
in the environment.

The effectiveness of the interactive manipulation of grammars, pro-
grams, and other documents in an environment like Muir depends crit-

v

ically on the way these documents are presented on the screen. In the
same way as textual presentations can be generated systematically via
grammar-related presentation rules it is demonstrated that more abstract
presentations can be defined in similar ways. Two particular presenta-
tion formalisms are introduced, one for showing the overall compositional
structure of a document, and one for showing selected, transverse rela-
tionships on graph form. The two presentation formalisms have both
been implemented. Because the setting is a structure-oriented editing
environment, it is also discussed how documents can be edited and oth-
erwise manipulated through such abstract presentations.

vi

Dansk Resumé

Emnet for denne licentiatafhandling er transformationer og abstrakte
prasentationer i et sprogudviklingssystem. Et sprogudviklingssystem
er et specialiseret editeringssystem, der understgtter udviklingen af nye
formelle sprog, for eksempel programmeringssprog. I afhandlingen beskri-
ver vi et sadant system, som hedder Muir. Hovedvagten er centreret
omkring anvendelsen af transformationer og generering af overordnede,
abstrakte skeermpraesentationer. De fleste af emnerne, som beskrives i
afhandlingen, er ligeledes relevante for syntaks-dirigerede editeringsom-
givelser, d.v.s. editorer der opbygger et dokument af grammatiske bygge-
klodser i modseetning til enkelt-tegn.

Indledningsvis introduceres en ny formalisme til definition af kontekst-
frie grammatikker. I denne nye formalisme, som kaldes hierarkiske gram-
matikker, beskrives hierarkiet af syntaktiske domaener som et generalise-
rings /specialiserings hierarki i stil med klassehierarkier, som bl.a. kendes
fra programmeringssprogene Simula og Smalltalk. I Muir behandles der
typisk flere sprog ad gangen. Begrebsmassigt modelleres dette ved at
hierarkierne, der syntaktisk set definerer disse sprog, er sammenkoblet i
ét hierarki. Ligeledes tillades tvaergdende relationer mellem hierarkierne,
hvilket betyder, at det er muligt at hindtere multi-formalisme doku-
menter.

Internt i Muir repraesenteres grammatikker og dokumenter som ab-
strakte syntakstraer. Til manipulation af sidanne abstrakte syntaks-
traeer anvendes der transformationer. En transformation lokaliserer en
reekke instanser af et givet menster i et abstrakt syntakstrae, og disse
instanser udskiftes med kopier af et andet trze, hvori delstrukturer af
de fundne instanser kan indgd. Det demonstreres, hvordan de fleste
editeringsoperationer i en syntaks-dirigeret editor kan forstis og imple-
menteres som transformationer. Ligeledes vises det, hvordan s3danne
editeringsoperationer kan tilknyttes “punkter” i grammatikhierarkiet, og
derved defineres pa givne syntaktiske konstruktioner.

I et sprogudviklingssystem m3 det forudses, at der relativt ofte zendres
pa de sprog, der defineres. Efter sidanne sendringer kan der opstd uov-
erensstemmelser mellem allerede eksisterende dokumenter og gramma-
tikken, der definerer dokumenterne. I afhandlingen beskrives, hvorledes
transformationer kan anvendes til at opdatere de allerede eksisterende

vii

dokumenter. Grundideen er at generere en eller flere transformationer for
hver enkelt grammatikandring. Systemet kan kun i de fzerreste tilfaelde
generere disse helt automatisk. Typisk m& brugeren, der zndrer en gram-
matik, ogsa “afpudse” den transformationsskabelon, som systemet har
skabt. Nar dette er sket, kan systemet principielt opdatere dokumenterne,
sd de stemmer overens med den nuvaerende grammatik.

Konvertering mellem forskellige, men beslzegtede sprog er et andet
typisk anvendelsesomrdde for transformationer. Vi beskriver en facilitet,
som tillader direkte transformation af abstrakte syntakstreeer i én for-
malisme til abstrakte syntakstraeer i en anden formalisme. Systemet er
bl.a. interessant derved, at en meget vaesentlig del af transformationerne
kan genereres automatisk af Muir. Grundlaget for dette er en relation
mellem de syntaktiske elementer i kilde- og malsprogene. Denne relation,
savel som de hierarkiske grammatikker for de to sprog, skal naturligvis
defineres manuelt. En given meengde af transformationer kan anven-
des pd et kildedokument, hvorved der typisk produceres et dokument, i
hvilket der stadig findes nogle uoversatte konstruktioner. Disse uover-
satte konstruktioner kan elimineres manuelt ved hjalp af normale edite-
ringsoperationer.

Som det sidste emne i afhandlingen beskrives der teknikker til de-
finition af sdkaldte abstrakte prasentationer. I et system, hvor gram-
matikker og dokumenter er reprezsenteret som abstrakte syntakstreeer,
ma disse traeeer pa en eller anden made afbildes p& skzermen. Tradi-
tionelt producerer sddanne afbildninger et detaljeret, tekstuelt billede.
En abstrakt praesentation resulterer derimod i et mere overordnet billede
af dokumentet, som ikke ngdvendigvis er tekstuelt. Vi beskriver to
generelle praesentationsteknikker, en som er velegnet til at producere
et trae, der beskriver den overordnede opbygning af et dokument, og
en anden som tillader praesentation af mere tvaergiende sammenhange
1 et dokument. Falles for disse to przesentationsteknikker er, at de
beskrives af regler, der tilknyttes de grammatiske elementer af sprog-
et. Abstrakte praesentationer kan bl.a. anvendes til at vise en hierarkisk
grammatik som en graf, hvis knuder repraesenterer syntaktiske domaner.
Det diskuteres ogsd i afhandlingen, hvordan det underliggende dokument,
som er repraesenteret som et abstrakt syntakstree, kan modificeres gennem
en sadan grafpraesentation.

viii

Acknowledgements

I am grateful to Terry Winograd for hosting me for two years in
the System Development Language Group (SDLG) at the Center for
the Study of Language and Information (CSLI) at Stanford University.
Terry’s competent guidance and support have been extremely valuable
for this work, and beyond.

I am also grateful to Ole Lehrmann Madsen for his help before and
in the course of the work on the thesis. Without his support, this thesis
would never have been written.

Furthermore, I want to thank the people who are working, and who
have been working in the SDLG group at Stanford. They are Raul Duran,
Bradley Hartfield, Olaf Henjum, Mary Holstege, Birgit Landgrebe, Greg
Nuyens, Liam Peyton, and Kaizhi Yue.

Also thanks to Brian Mayoh, Peter Mosses, and Jgrgen Lindskov
Knudsen, all at the Computer Science Department at Aarhus Univer-
sity, for comments on the thesis.

This research has received support from a grant by the System Devel-
opment Foundation to CSLI, which provided the computing facilities for
this research. Without this support from CSLI it would not have been
possible for me to carry through this work.

1X

Chapter 1

Introduction

The present thesis is the result of a two and a half years Ph.D. (licentiat)
study at Aarhus University, Denmark. The study started in July 1984,
and it was completed in January 1987. Two of the years, however, were
spent at Stanford University in California, and nearly all the research
reported in the thesis has been carried out at the Center for the Study
of Language and Information (CSLI) at Stanford University.

The general topic that has been studied is aspects of structure-oriented
editing environments. An edstoris a tool in a computer system that allows
some kind of information to be created and modified. The most common
kind of information is text, but editors for information such as technical
drawings, VLSI designs, Petri nets, etc. are also viable. An editor may
be a separate tool, or it may be applied in connection with other tools.
An editing environment includes the functionality of an editing tool, but
it also allows people to carry out a wider application entirely inside the
system. In this thesis, we will especially focus on an editing environment
for language development.

We are only interested in editing of documents that belong to arti fi-
cial languages such as programming languages, specification languages,
grammar definition languages, and other kinds of formal notation. Tradi-
tionally, such documents have been considered as text strings that satisfy
a given set of constraints. Consequently, they have been—and are still
to a large extent—edited by the same kind of text editors that are used
for editing of natural language documents. However, we prefer to look
at documents such as programs, specifications, and grammars as struc-
tures, whose surface form very well may be textual, but whose primary
representation reflect their inherent structure, first of all their basic com-
position. In a structure-oriented editor, the primary document represen-

1

2 INTRODUCTION

tation therefore models this structure, and documents can be created,
modified and otherwise manipulated in terms of their structure. If, in
addition, the documents are constrained by a formal grammar, some of
the editing primitives may be derived from the grammar, and grammat-
ical constructs may be referred to from the documents. In this case, we
say that the editor is syntaz-directed. Many different structures can be,
and have been used to represent documents in structure-oriented editors.
Because we mainly are interested in the compositional structure of the
document, as opposed to structures that make explicit more complicated
and transverse relationships, we will restrict ourselves to study only tree-
structured representations.

Although structure-oriented editing has been known for a couple of
decades, the use of structure-oriented editors is very limited outside uni-
versities and research labs. The main reasons are undoubtedly that (1) it
is hard to break old editing habits, (2) the performance of existing tools
is too bad and their capacity is too small, and finally (3) the potential
of the technology has not yet been fully explored. Seen from our per-
spective, time must resolve the first two points. The general goal of this
thesis work has been to contribute to the third point. Le., we hope that
the results of this thesis will help convince people that a more structure-
oriented approach to editing of formal language documents is superior to
purely textual approaches. More specifically, we will demonstrate how
more “power” can be added to a structure-oriented editing environment
by incorporating a pattern-replacement based transformation framework
into the environment. We will focus on three major applications of the
transformation framework: Implementation of structure-oriented editing
operations, a technique to keep documents updated w.r.t. to a gram-
mar that is under development, and a transformation facility among
different—although similar—formalisms. Besides this, we will show how
abstract and high level screen presentation techniques can improve a
structure-oriented editing environment. In an abstract presentation, se-
lected aspects of a document are projected onto the screen while other
aspects are left out of consideration in the presentation.

The thoughts and ideas in this thesis have been implemented and
make up the kernel of a system we call Muir. Muir is a language de-
velopment environment, i.e., an editing environment that supports de-
velopment of new artificial languages and documents belonging to these
languages. The language development aspects of Muir are stressed in [70].

1.1. THE AUTHOR’S BACKGROUND 3

It is also reasonable to consider Muir as a contemporary syntaz-directed
editing environment that in particular emphasizes creation of grammars,
and which in various ways supports the relationships between grammars
and dependent documents. All the proposed facilities are grammatically
general. lLe., they are not directed towards specific languages or for-
malisms.

Our basic orientation is to provide tools and support facilities, not
to solve the user’s problems by automatic means. Moreover, our work
is primarily directed towards support of experienced and skilled users.
When possible, we seek to automate frequently occurring routine tasks.
More specialized and intellectually demanding tasks should in our opinion
be carried out by the user in interaction with the system. To support
both automatic facilities and manual routines it seems to be attractive to
integrate the automatic facilities into an interactive editing environment.
The borderline between the routine tasks and more intellectual tasks is
of course fuzzy, and it will undoubtedly move over time. Our orientation
is different from so-called automatic programming [6], where also more
intellectually demanding tasks are attempted to be automated.

The contents of this thesis is affected by the author’s previous work
in the field. After these words, the author’s background w.r.t. syntax-
directed editors will therefore briefly be described. Next, a couple of
methodological remarks are given. Following this, we outline the contents
of the rest of the thesis. Finally, the main results are summarized.

1.1 The Author’s Background

My interest in syntax-directed editing started back in 1980 at Aarhus
University, Denmark, where I as a student—together with three other
people—designed and implemented a syntax-directed editor called Ea-
gle [67]). Eagle was inspired by a similar locally developed system called
Treed [13], which in turn was inspired by Hansen’s Emily editor [39,40].
The purpose of Eagle was to make a syntax-directed editor available for
experiments on our Dec-10 system via ordinary terminals. (Treed was—
as Emily—designed for a vector-oriented graphic screen.) In that respect
we succeeded, but Eagle never reached a state where it was realistic to
use it for practical program editing. One of the reasons was poor per-
formance characteristics on the time-shared Dec-10 system. So when the

4 INTRODUCTION

computer science department in Aarhus received its first powerful per-
sonal workstation in 1982, an ICL Perq, it was evident that it should
be possible to design and implement a better system based on the new
equipment. At the same time I was looking for a masters thesis area
together with Karen Borup and Elmer Sandvad. It was not hard to
decide that we would design a program development system that took
advantage of the facilities on a modern graphical workstation. The result
of these efforts was EKKO [10,69], a design of a program development
system for a “Pascal-like” language. As a part time programmer in the
department, I implemented the syntax-directed editor-part of EKKO on
the Perq. EKKO was clearly better than Eagle, but it was also appar-
ent that it needed additional design/performance improvements to be a
realistic tool, most noticeably related to screen updating when working
with big programs. Besides demonstrating that syntax-directed editing
is feasible when implemented on proper hardware, EKKO was used to
carry out a minor experiment, in which four people used the system one
week each to solve small programming tasks. By August 1984 I entered
a Ph.D. study at Aarhus University, and I was lucky enough to be able
to spend two years at Stanford University in California, where I worked
in Terry Winograd’s System Development Language Group at CSLI. At
the outset, the plan was for me to take part in the development of an
environment, including a structure-oriented editor, for Winograd’s spec-
ification language called Aleph [99]. Aleph was at that time, and is still
(as of January 1987), in active development. As time went by, the goal
became to construct a more general language development environment,
which we call Muir in honor of John Muir, the great Californian environ-
mentalist and explorer of the Sierra Nevada. This thesis documents my
activities in the Muir project.

1.2 Methodological Remarks

If a single word should be used to characterize the method used in this
thesis work it must be the word ezperimental. In the area of computer
systems and “environments”, the ultimate test of an idea is achieved
through an implementation of the idea on a suitable computer. An im-
plementation can be used to judge if the idea is feasible, and equally
important, users can through the implementation try the idea out in

1.3. OUTLINE OF THIS THESIS)

practice, and user-reactions can be collected.

At the beginning of the study, a collection of problems with syntax-
directed editors was apparent. Due to our background in the area (see
section 1.1), we also had some weak ideas of how to solve these problems.
During the course of the thesis work, the problems were clarified through
an interaction between analysis and experiments. The analysis identified
areas, in which practical work was necessary and realistic in the scope
of the already existing system. The experiments quite often provoked
re-thinking of the topics, or they identified the need for work in other
areas.

The analysis resulted in working papers, most of which are edited
into this thesis. The result of the experiments is the system—or more
correctly—the prototype system, which we call Muir. The prototype has
been used to convince ourselves and others that our approach is feasible.
We have not used the system to gather empirical results outside the re-
search group. The purpose of Muir is to support a language development
process. That is a new and an interesting topic in itself. However, from
the point of view of this thesis, the prime importance of Muir is its role
as a system, in which certain ideas have been tried out. The ideas are
reflected by the main chapters of this thesis.

1.3 Outline of this Thesis

The thesis is organized in eight chapters. Following the introduction
in this chapter we give an overview of the area, and we describe the
grammar definition formalism that has been developed for Muir. Chap-
ter four through seven are the main chapters of the thesis. They are
on applications of pattern-based transformations and on abstract screen
presentations. In chapter eight we summarize the conclusions. In the
rest of this section we describe the contents in more details.

Chapter two gives an overview of structure-oriented editing. We de-
scribe some of the main developments in the areas of structure-oriented
text editors, Lisp editors, and syntax-directed editors.

In chapter three we describe the fundamental grammatical framework
used in Muir. This chapter is the key to a deep understanding of the
rest of the thesis. Muir is based on so-called hierarchical grammars,
a formalism that has been developed in the Muir project. Hierarchi-

6 INTRODUCTION

cal grammars originate from grammars based on operators and phyla.
An operator describes the abstract syntax of a primitive construct in a
language, for example that an assignment has two constituents, a left-
hand side variable and a right-hand side expression. Phyla describe syn-
tactic domains, possibly in terms of more primitive syntactic domains.
Variable and expression are examples of phyla. The reason we call our
grammar formalism hierarchical is that the phyla are organized in a gen-
eralization /specialization hierarchy, more sp ecifically in a directed acyclic
graph. Typically, however, the hierarchy happens to be a tree. Interior
nodes in the phylum graph are called categorical phyla, and leaf nodes
are called terminal phyla. There is a one-to-one correspondence between
the terminal phyla and the operators. A hierarchical grammar can cross
language boundaries by referring to phyla in other grammars. This fa-
cilitates creation of multi-formalism documents. The phylum hierarchies
of the different languages supported by Muir are connected into a single
phylum hierarchy, whose root is the most general phylum in the Sys-
tem. In chapter three we also compare hierarchical grammars with BNF
grammars and with grammars based on operators and phyla. Finally,
we describe the most important principles and mechanisms in the Muir
environment,.

The following three chapters describe various applications of a pattern-
replacement based transformation framework. In chapter four, we first
introduce the transformation framework. A general transformation-step
applies a pattern on an abstract syntax tree, and the resulting matches
are substituted by replacements, in which substructures of the matches
may occur. A pattern is a multi-formalism abstract syntax tree in the
transformation language and some object language. Next in chapter four,
we demonstrate how structure-oriented edit operations can be under-
stood and/or implemented as transformations. Finally, we describe how
transformations can be used to assist in carrying out major systematic
modifications to a program.

Chapter five describes another application of the transformation frame-
work. The problem we deal with is how to keep a set of documents
updated with respect to a grammar that is under development. This
has proven to be a problem in most environments where documents are
represented and stored as abstract syntax trees. In particular, it is a
problem that needs attention in a language development environment.
Our solution is based on a notion of operator-versions. The basic idea is

1.3. OUTLINE OF THIS THESIS Z

to create a transformation template for each new version of an operator.
In the most simple cases the transformation template is complete, but
typically the user must refine the transformation manually. The environ-
ment supports identification of outdated constructs. Application of the
created transformations will bring the outdated constructs up-to-date.
We also discuss how modification of the phylum hierarchy can affect de-
pendent documents, and how the system can support the updating of the
documents after such grammar modifications.

Chapter siz demonstrates how multi-formalism transformations can
be incorporated into an editing environment. If the environment sup-
ports two languages, such as two programming languages, we demon-
strate how transformation capabilities between these two languages can
be made part of the environment. A relation among phyla in the source
and the target languages is the only extension to the hierarchical gram-
mar framework. This relation, called the source-target relation, allows
us to consider transformation from one language to another as multi-
formalism structure editing. The most trivial (identity) transformations
can be created automatically by the system, and templates for the rest
can be supplied automatically too. All in all it becomes a reasonable task
to create a relatively complete set of transformations between (not too
distant) languages. Application of the set of transformations on a source
document typically produces a mixed-formalism result. During normal
structure editing, plus a few additional supporting mechanisms, the user
must eliminate the remaining source constructs. We illustrate the ap-
proach with transformation from Modula-2 to Pascal and vice versa.

Whereas the previous chapters all have treated manipulation of the
internal representation, chapter seven is about the projection of the in-
ternal representation into a window on the screen. Traditionally this
process has been called unparsing or pretty printing; we find it more cor-
rect and neutral to call it a presentation process. This thesis will only
treat what we call abstract presentations, i.e., presentation where certain
objects and relationships are emphasized, and where the remaining are
left out. We will furthermore apply graphical (non-textual) means in
abstract presentations, partly to challenge the widespread understanding
that documents such as programs are textual. (However, many abstract
presentations can be made with textual means as well.) We develop an
abstract presentation, by which the overall composition of a document
can be presented as a tree. More generally, we also develop a graph pre-

8 INTRODUCTION

sentation style by which more “crossing” relationships in a document can
be illustrated. Both the tree presentations and the more general graph
presentations are defined by presentation rules, which are associated with
the operators in the grammar. As a topic that links this chapter together
with the remaining part of the thesis, we discuss what constitute “natu-
ral” edit operations on tree and graph presentations. Finally we discuss
so-called overlapping presentations, i.e., two or more presentations that
illustrate aspects of the same abstract syntax tree. It turns out that over-
lapping presentations are likely to occur in a system that applies abstract
presentations together with more “concrete” presentations.

1.4 Summary of Results

In this section we will briefly point out what we find are the most inter-
esting achievements of this thesis work.

In many application areas, the so-called generalization /specialization
hierarchies have been used successfully to model a part of “the real
world.” We apply generalization/specialization hierarchies, called phy-
lum hierarchies, to model the syntactic domains in a grammar. Very
general as well as very specific syntactic domains are made explicit in
this framework. Various qualities can in a natural way be made subject
to inheritance in the phylum hierarchy. We find the proposed grammar
model particularly interesting and useful in a language development en-
vironment.

One of the most important results is probably our proposal for keep-
ing documents updated when the underlying grammar is modified. The
power of the proposal is not based on advanced and automatic facilities.
Rather, the novelty of the approach lies in the interaction between the
user and the system. In this interaction the system creates a template
of a transformation that is intended to update the documents, and the
user refines this transformation based on his or her knowledge about the
modification of the grammar.

Also with regard to translation between similar languages, the use of
semi-automatic facilities has been successful. Most interesting, perhaps,
is the system’s capability to create a set of transformation templates from
a relation among the syntactic domains in the grammars. Theoretically,
it is of interest how the relation among the syntactic domains is used to

1.4. SUMMARY OF RESULTS 9

define a multi-formalism relation among the syntactic domains in both
the source grammar and the target grammar. The semi-automatic nature
of the system is repeated in the actual translation process. The appli-
cation of the transformations is expected to create a mixed-formalism
document, in which both source constructs and target constructs are
represented. It is demonstrated how, through syntax-directed editing,
this mixed-formalism document can be converted to a “pure document”
in the target formalism.

Our work in the screen presentation area is a contribution to making
better, overall presentations of big documents that are represented as
abstract syntax trees. We find it important that abstract and non-textual
presentations can be defined through grammar-related presentation rules.
Our work can be seen as a generalization of the well-known techniques
for generation of detailed, textual presentations of abstract syntax trees.
As an interesting application of the general presentation framework, it is
demonstrated how it can be used to present and manipulate our grammar
definition formalism as a generalization /specialization hierarchy.

We also feel that we have been successful in comprehending and real-
izing a wide variety of edit operations as pattern-based transformations.
Inheritance in the phylum hierarchy is used as a means for defining the
constructs on which an edit operation can be applied. In a realistic
syntax-directed editor, the necessity of a flexible repertoire of editing op-
erations cannot be satisfied by grammar-induced edit operations alone.
A general, pattern-based transformation framework seems to be a good
vehicle for extension of the set of edit operations.

Chapter 2

Overview of Structure-Oriented
Editing

This chapter is meant to provide an overview of the area of structure-
oriented editing. It is not our intention to give a comprehensive survey of
the area.! The primary aim is here to trace the “roots” of the tools and
the environments that have been influential on the work described in this
thesis. Secondary, this chapter could be a reasonable starting point for
readers with little or no background in the field. We cover the whole area
of structure-oriented editors, from the general text-oriented structuring
tools, via Lisp editors to syntax-directed editors. The main emphasis,
though, will be directed towards editors for artificial languages.

2.1 Editors for Structuring Text

In most traditional text editors there are very few, if any mechanisms
that support the overall and logical structuring of documents. Despite
that nearly all documents are divided into sectional units, which again
are divided into smaller units, it has not been common for text editors
to support such hierarchical structures. As far as most text editors are
concerned, all what there is to text editing is characters that form words,
and words that can be composed into lines and sentences. It is up to
the user to follow a discipline that makes it possible to manage the over-
all structuring problems in one way or another. In this section we will
describe some existing systems that directly support a hierarchical doc-
ument structuring.

1We are not aware of any specific survey of structure-oriented editors. However, a survey
covering the whole area of interactive editing systems can be found in [63].

10

2.1. EDITORS FOR STRUCTURING TEXT 11

One of the first systems in the field was NLS?, a system developed
at SRI International in the mid-sixties [26]. NLS was envisioned as a
system for augmenting the human intellect, and its software as well as its
hardware concepts were pioneering in the field. (The pointing device now
broadly known as “a mouse” was invented in the NLS project.) One of
the key facilities in NLS is a writing tool based on an explicit hierarchical
structure of the documents. A textual unit is in NLS called a statement,
which may or may not contain sub-statements. This hierarchical struc-
ture makes it flexible and fast to navigate around in the documents, and
it becomes possible to show an outline presentation of the documents on
the screen. (The importance of this aspect of NLS is elaborated further
in chapter 7.5 on page 162 of this thesis.) In addition to the hierarchical
structure, NLS also provides for arbitrary cross linking between state-
ments, both inside and outside the actual document. In that respect
NLS is an early hypertext system [66].

In 1978 the company Tymshare took over the development of NLS,
and they also renamed the system to Augment. Reference [26] by En-
gelbart and English contains a description of NLS, written in 1968. A
decade later the Seybold Report on Word Processing devoted an entire
issue to a description of Augment and its history [83]. NLS/Augment is
also briefly described in the survey paper by Meyrowitz and van Dam
[63].

The basic ideas of NLS have also been tried out in other systems. ED3
[88,89] is a structure-oriented text editor from Linkoping, Sweden, which
has been used extensively for several years. XS-1 from ETH in Ziirich
is another example of such a tool [12]. The structuring of documents in
ED3 is accomplished by two kinds of nodes, text nodes and tree nodes.
Text nodes contain a piece of text, and they terminate the tree. Tree
nodes also contain a piece of text, and in addition they refer to one or
more subnodes. Both ED3 and XS-1 are intended for more general ap-
plications than text editing. Information in a very broad sense (pictures,
diagrams, etc.) is found to have a hierarchical structure, and editors like
ED3 and XS-1 can be used for the overall structuring and organization
of such information. The idea of structure-oriented editors for general
data structures is also described by Fraser in [32,33]. In recent years
some of the concepts originally proposed in NLS have found their way

?NLS is an acronym for “oNLine System.”

12 OVERVIEW

to commercial products, such as Thinktank [41,95]. In the commercial
area the editors and environments are known as, for example, “outlining
tools” and “idea processors.”

Artificial language documents, for example programs belonging to a
programming language, constitute another example of information that
has a hierarchical structure. Therefore editors like NLS, ED3, and XS-
1 are well-suited for editing of such documents as well. In [88] it is
for example described how ED3 has been used to impose a structure
on large programs, and how this structure is encoded into the program
text as comments. The regular composition of artificial language doc-
uments makes it possible to apply structure-oriented editing techniques
uniformly, both at the overall level and at the detailed level. To some
degree, a similar regularity exists at the detailed level in natural language
documents, but for most people, this regularity is of secondary impor-
tance when natural language documents are worked out. For artificial
language documents, on the other hand, the language user has to be very
conscious about the structure of the detailed units.

In the following two sections we will look at a variety of systems whose
primary focus it is to support structure-oriented editing at the detailed
as well as at the overall level. As we shall see, there is no general agree-
ment on whether structure-oriented editing at the relatively fine-grained
level is good or bad. It has been argued that text-oriented techniques
are equally well-suited, or perhaps even preferable to structure-oriented
techniques. We are first going to discuss structure-oriented editors for

Lisp, a programming language for which structure-oriented editors have
been used for many years.

2.2 Lisp Editors

One might ask why the discussion of Lisp editors and editors for “more
conventional languages” is separated. The fundamental reason is the ba-
sic differences between the syntax of Lisp and the syntax of languages like
Fortran, Cobol, Algol, and their descendants. The basic data structure
and program structure in Lisp is called S-expressions. For our purpose
it can be thought of as nested parenthesized list structures. Lisp gains
much of its power, simplicity, and elegance by not distinguishing between
various kinds of syntactic categories of lists. Editors for Lisp should con-

2.2. LISP EDITORS 13

sequently be well-suited to manipulate the structure of such lists. The
exact form of the list and the syntactic domain to which the list belongs
are of secondary importance.

One of the primary purposes of a Lisp editor is to encourage or enforce
a discipline that makes the parentheses balanced at any time. Without
any support of that it turns out to be syntactically very error-prone to
program in Lisp. So Lisp programmers have, to a much higher degree
than programmers in “more conventional languages”, felt an urgent need
to adapt the editors to the peculiarities of the programming language.
Fortunately for them, it turned out to be a reasonable job to do so within
Lisp, because Lisp programs in a natural way can handle other Lisp
programs as data.

A Lisp environment can roughly be characterized as either a resi-
dential environment or a source file environment [82]. In a residential
environment, one and only one copy of a Lisp program exists in the
environment, and this structure is manipulated directly by the editor.
(Outside the environment, however, Lisp expressions are represented as
text on files.) In a source file environment, a copy of the program is edited
by a text editor, typically more or less outside the Lisp environment, and
it is re-loaded into the Lisp environment when it has been changed. In-
terlisp is the most dominant residential environment, whereas MacLisp
systems are prototypical examples of source file environments. We will
first discuss several generations of editors in the Interlisp environment,

and thereafter we briefly touch on editing of Lisp programs in a source
file environment.

2.2.1 Editors in Residential Environments

In principle, it is possible to use the basic Lisp functions (CONS, CAR, CDR,
RPLACA, RPLACD, etc.) to edit Lisp structures. But in order to speed
up the editing process, a special “edit mode”, in short known as Edit
in Interlisp, was introduced [48]. In this “mode” a variety of terse com-
mands are provided to modify Lisp structures, and to navigate around in
Lisp structures. These edit commands implicitly operate on an expres-
sion called the current expression. Moreover, pattern-based search and
replace capabilities add a considerable amount of power to the editor.
Because the editor facilities were designed to work on TTY terminals, an
explicit “pretty-print” command is necessary to present the resulting Lisp

14 OVERVIEW

expression on the output medium. Via the pretty-print command, the
effect of the changes is typically presented every time a few modifications
have been made to the current expression.

With the emergence of CRT screens it became possible to improve
the TTY-based editor. Instead of asking for explicit pretty printing of
the Lisp expression after a number of modifications, it is possible for the
environment “continuously” to show an up-to-date picture of the Lisp
expression. DED is an example of such an editor [8]. DED divides the
screen into three regions: A prettyprint region in which the Lisp expres-
sion is presented, an interaction region in which the same edit commands
as mentioned above can be issued, and a menu region, via which some
frequently used commands can be initiated (by typing a number on the
keyboard.) An automatic zoom facility is central to DED. If a Lisp list is
too long or too deep, some details are left out, and only the expressions
around the current focus are fully presented. The zoom facility can be

seen as a compensation for the lack of screen space on a character and
line-oriented terminal.

Following the next major improvement of output and input devices,
namely with the emergence of the graphical workstation [94], it became
possible again to improve the Interlisp editor. The display-oriented Lisp
editor on the Interlisp-D workstations from Xerox is known as Dedqt [48].
Compared with DED, the major advantage of Dedit is that it no longer is
necessary to master the “complicated” TTY-oriented editing commands.
The navigation in Dedit is done by selecting structures via the mouse,
and the modification of the Lisp expression is done via a few (typically
less than 10) different and intuitively simple commands. The commands
are initiated from a menu, again via the mouse. The structure of the Lisp
expression being edited can be modified via the main editing window. The
contents of existing expressions, and entirely new expressions, must be
entered in a buffer window as text. Only when the parentheses have been
balanced, it is possible to exit the edit buffer. The new expression can
then be inserted in various ways in the main editing window. Zooming
is not used in Dedit. The Lisp expression is shown in full detail, and if
it is too large to fit into the Dedit window, the window can be scrolled.
Most people feel that Dedit is much easier to use than the T'T'Y-oriented
Edit. However, it is also the case that Dedit, as explained above, is
less powerful than Edit. Therefore the whole functionality of Edit (for
example the pattern matching and replacement) is made available in

2.2. LISP EDITORS 15

Dedit as well. This is possible because Dedit actually is implemented on
top of the existing TTY-oriented editing tool.

At the time of this writing, Dedit is the editor in current use on the
Interlisp machines from Xerox. However, a new Lisp structure editor
called Sedit [22,101] is currently being developed at Xerox Parc, and
it will probably be available in a subsequent release of the Interlisp-D
system. It is attempted to make the user interface of Sedit resemble
that of Tedit [46], the text editing and formatting tool in Interlisp-D.
It is also a goal to facilitate editing of other languages by the new tool,
for example Prolog and Loops. Compared with Dedit, the most notable
difference is that Lisp expressions in Sedit can be modified in the main
editing window. Le., the edit buffer is not needed any more. One of
the purposes of having the separate buffer window in Dedit is to enforce
the Lisp expression to have balanced parentheses. (As already noticed,
it is simply not possible to exit the Dedit buffer without satisfying this
constraint.) One of the major concerns in Sedit is therefore to maintain
the balanced parenthesis structure via other means—by always inserting
and removing pairs of parentheses. In Dedit, it is quite annoying to be
forced to correct details, such as the spelling of an atom, in the edit
buffer. In Sedit, such details can be corrected “at location”, and in a
more natural way. Finally, meta-commands on the keyboard constitute
the primary way to initiate editing commands in Sedit. However, it is
possible to ask for a menu of editing commands as in Dedit.

2.2.2 Editors in Source File Environments

Although our topic is structure-oriented editors, i.e., editors whose pri-
mary internal representation reflects the compositional structure of the
programs, it is also interesting and relevant to study how text-oriented
editing techniques can be adapted to work well for Lisp. One of the most
refined systems in that respect is Emacs [85,86] and its descendants.
Text-oriented editors for Lisp programs do usually not enforce bal-
anced parentheses, but they typically provide mechanisms that help the
user convince himself or herself that the parenthesis structure is correct.
When typing a closing parenthesis in Emacs, the corresponding opening
parenthesis is highlighted for a second, or so. This makes it quite easy
during the editing to maintain the structural understanding of the Lisp
expression. This can be extended to also include manipulation of struc-

16 OVERVIEW

tural units as opposed to textual units. Furthermore, some editors, for
example Zwe: of the Lisp Machine from MIT [37], provide for formatting
(“pretty-printing”) of the Lisp expression while it is entered, and some
amount of cross referencing support.

If a source file system is combined with (automatic) incremental load-
ing of changed functions (as it is the case on the MIT Lisp Machine) the
real difference in functionality and flexibility between structure-oriented
and text-oriented editors for Lisp is probably very minimal. It turns out
that it is a matter of background, taste, and (one could be tempted to
say) “religion”, which kind of editor the individual programmer prefers.
(For a discussion or pros and cons, see Sandewall’s survey paper on Lisp
[82], and the subsequent discussion with Stallman—the implementor of
Emacs. Both Sandewall’s paper and Stallman’s comments are reprinted

in [7].)

2.3 Syntax-Directed Editors

The basic idea in syntax-directed editing is to create and modify docu-
ments in terms of syntactic templates instead of single characters. The
templates can be understood as building blocks or toy bricks, which only
can be assembled in certain ways. Le., each kind of brick only goes well
together with certain kinds of other bricks. Typically, a syntax-directed
editor presents the range of possible templates that can be inserted at
a given location in the document, and the editing is carried out by re-
peated selection of such templates from a menu. The most basic kinds
of templates together with their composition rules can be defined by a
context free grammar for the language.

The following list summarizes what we find are the most important
advantages of syntax-directed editors:

e Violations of the context free syntactical rules can be prevented.

e It is possible to create and modify a document without being famil-
iar with the syntax of the language, to which the document belongs.

e Fewer key strokes (and other input actions) are needed to enter a
document.

e Structural well-defined constructs as opposed to arbitrary text in-
tervals are manipulated during the editing of the document.

2.3. SYNTAX-DIRECTED EDITORS kg

e By representing a document in tree form at any time during its
development there is a potential of doing more powerful operations
on the documents than if the document is represented as text. Fur-
thermore, no time consuming parsing is ever needed.

As with structure-oriented Lisp editors, there is no general agreement
on what to prefer: A syntax-directed editor or a good text-oriented editor
(perhaps augmented with special language-oriented features.) The follow-
ing points of view reflect commonly heard arguments for text-oriented
editing, or a hybrid approach:

e Some modifications can be done very easily via text-oriented edit-
ing, whereas the corresponding structure-oriented modifications are
complicated and tedious to carry out. This is especially the case
for expressions and similarly detailed structures, but there are also
some higher level constructs, for which this is true.

e In general, most people in the field feel comfortable with text ed-
itors, but some feel “claustrophobia” in a syntax-directed editor,
because the “freedom” can be, and typically is, rather limited in
such an editor.

e Unless a parser exists that can produce the internal representation
of the syntax-directed editor, the new tool is incompatible with
existing tools.

In [96] it has been argued that a hybrid approach, i.e., editors that sup-
port both text editing and syntax-directed editing should be preferred.

In the rest of this section we will first describe some of the major,
and well-documented contributions to the field: They are Emily, Mentor,
Gandalf, and the Cornell Program Synthesizer. The ordering of the de-
scription of these systems reflects the chronological ordering of the start
of the respective research projects. In the last section, we take a broader
look at the most interesting qualities of other syntax-directed editors that
we are aware of.

2.3.1 Emily

Emily is the first syntax-directed editor to be described in the literature
[39,40], and it is dated back to 1971. It was primarily designed to support
creation of PL/I programs. Emily is for syntax-directed editing what NLS

18 OVERVIEW

is for structure-oriented text editing (see section 2.1.) Many of the ideas
and the principles that have been put into syntax-directed editors in the
seventies and the eighties can somehow be traced back to Emily. There
are several “cornerstones” in the Emily efforts:

e The basic idea: Most important is the basic idea that a context free
BNF grammar can be used constructively in an editor.

e The hierarchical hypothesis: This hypothesis says that “people think
in terms of hierarchies and systems that manipulate hierarchies are
better suited to creative work than systems that treat information
as unstructured text.”

e The hardware basis: The hardware, for which Emily was designed,
is a vector-oriented graphic display (IBM 2250), a light pen, a pro-
gram function keyboard, and an ordinary keyboard. The IBM 2250
was attached to a time-shared IBM 360 computer model 75.

e The user engineering principles: The design of the Emily editor
was driven by four basic user engineering principles: (1) Know the
user, (2) minimize memorization, (3) optimize operations, and (4)
engineer for errors.

The basic idea and the hierarchical hypothesis have not been changed
significantly since they were formulated. The hardware basis for Emily
and “modern” syntax-directed editors is different. Vector technology
screens with light pens have by and large been replaced with bit-mapped,
raster-graphical screens and “mice.” Some of the problems with Emily
(such as the awkward interaction via the lightpen, and slow display of the
legal set of productions in the menu) are clearly caused by qualitative or
quantitative difficulties with the hardware. The Emily user engineering
principles reflect “common sense”, and they have not changed signifi-
cantly either. However, since 1971 there has clearly been a movement
towards some standard and proven interaction techniques (e.g., windows
and popup menus), from which interactive tools like syntax-directed ed-
itors have been able to benefit.

Besides the four cornerstones that were mentioned above, a wide range
of ideas were touched on in the Emily work. Let us briefly summarize
what we find are the most important of them:

2.3. SYNTAX-DIRECTED EDITORS 19

e Emily is not an editor for a single fixed language. Rather it is a
generator that accepts a context free grammar in a special format.
The abstract syntax and the concrete syntax are defined together in
a BNF-like formalism, but it is concluded that a separation of the
abstract syntax specification, the concrete syntax specification(s),
and the syntax for the menu items is desirable. Emily supports its
own grammar definition language.

e The notion of so-called holophrasts was introduced in Emily. A
holophrast is a cover name of a substructure of a program which
is presented instead of the structure itself on the screen. Emily,
and not the user, generates the holophrast names, but the user
is requested to select the structures to be elided. However, it is
possible to change the expansion depth, which specifies the level
in the tree where to “cut off and make holophrasts.” In addition
to the holophrast facility, Emily also supports a “safe and restore”
facility for screen images. It makes it possible to switch between
places in the document rather quickly.

o A facility that supports named fragments is supported by Emily.
Fragments can be edited, and they can be inserted into other frag-
ments. The “main text” that is edited in a session is just a fragment

called *MAIN TEXT*,

e The idea of initiating a special routine when certain actions occur
is also proposed. This has later been called action routines [59]. As
an application, it is proposed during the creation of a procedure
call to insert templates of the procedure arguments automatically,
based on the declaration of the procedure.

e The observation that syntax-directed editors seem to be better
suited for novices than for expert users has already been made dur-
ing the use of Emily. The special problems with expressions is also
noticed, and it is proposed to integrate a parser into the system.
Of special interest for this thesis it is noticed that syntax-directed
editors are well-suited for the language designer, because programs
can be created immediately, even without knowledge about the syn-
tactic details of the language.

e As a future direction it is observed that “it would be possible for
an Emily-like system to be the primary interface between the user

20 OVERVIEW

and the system.”

(see section 2.3.3.)

This is, for example, a major point in Gandalf

2.3.2 Mentor

The Mentor project was initiated at INRIA (France) in 1974 [23,24].
With Mentor, a new formalism for the definition of abstract syntax was
introduced. Instead of nonterminals and productions the formalism is
based on so-called operators and sorts. A sort is a name of a set of terms.
A term is represented as an abstract syntax tree, but theoretically, a
term 1s thought of as an element of a carrier of a sorted algebra. An
operator is an n-ary function (n > 0) that maps n sorted terms into a
new sorted term. Nullary operators represent constant terms. The set
of operators with ranges of sort S characterize (and essentially define)
the sort S. With regard to the grammar definition formalism, Gandalf,
the Synthesizer Generator (both described below) as well as Muir (see
chapter 3) are all inspired by Mentor.

One of the most interesting aspects of Mentor is its special-purpose
tree manipulation language called Mentol [23]. Mentol serves as an in-
teractive editing language as well as a programming language, which
especially is well-suited for tree manipulation. To be well-suited as a
command language for the editor, the language is terse and concise. One
of the most important concepts in Mentol is the tree pattern matching
and instantiation. Also at this point, Mentor has had a profound influ-
ence on the work described in this thesis. More recently, a meta language
called Metal has been designed for Mentor (see [24].)

In some sense, editing in Mentor and editing in the Interlisp environ-
ment using the most primitive Edit tool (see 2.2.1) has many similarities:
Both systems are based on special purpose command languages and pow-
erful pattern matching facilities. Furthermore, none of the editors are
screen oriented. It is up to the user to ask for a fresh, “pretty-printed”
picture of the current editing focus. As argued in [23], this approach
makes transportation to other systems much easier, and the consistency
problems between the screen and the internal program representation
vanish. However, the non-screen oriented approach has not been adapted
by “younger systems.” It seems as though the direct manipulation and
the visuality is “a must” in more recent syntax-directed editors.

The so-called gates and annotations are also central to Mentor [24].

2.3. SYNTAX-DIRECTED EDITORS 21

A gate is a mechanism that allows a document in one formalism to be
a substructure of a document in another formalism. Files in a directory
structure, and assembly language code in a high level program are given
as examples of the use of gates. In many situations, the inner document
may be considered as “atomic”, when seen from the outer document.
The gate mechanism is a static structuring mechanism. ILe., at gram-
mar definition time, the possible places for gates must be determined.
Annotations, on the other hand, are dynamic. Typical annotations are
comments, larger pieces of documentations, and assertions about the doc-
ument. In Mentor, an annotation frame has associated a formalism, to
which the annotation must belong. So typically, an abstract syntax tree
in one formalism can annotate an abstract syntax tree in another for-
malism. There are many similarities between annotations in Mentor and
properties in Lisp [47].

A programming environment for Pascal has been developed in Mentor.
Le., the syntax of Pascal has been defined in the meta language, and a
large amount of Mentol procedures have been made to facilitate creation,
refinement, and transformation of Pascal programs. The development of
Mentor itself has been done in this environment.

2.3.3 Gandalf

The Gandalf project [68] was initiated at Carnegie-Mellon University in
1976. The overall emphasis of the project is to construct and generate
software development environments, i.e., environments that support the
whole software development process. As examples of tools that have
been created and integrated into a Gandalf prototype can be mentioned
a project management tool (briefly described in [68]), a version control
tool [51], and a tool for incremental programming [29]. A syntax-directed
editor called Aloe® (A Language Oriented Editor) [25,59,60] is the primary
interface to the tools in Gandalf software development environments. In
this section it will be described what we find are the most interesting
features of Aloe.

As Emily and Mentor, Aloe is not a fixed, syntax-directed editor,
but an editor generator. As input it accepts a context free grammar

3 A note on the chronology: The work on Aloe has been done in the beginning of the eighties,
Le., after and concurrent with the work on the Cornell Program Synthesizer, which is described
in the following section.

22 OVERVIEW

in a particular formalism, and a set of so-called action routines, which
are activated before and after certain events in the editor. There are
some similarities between the grammar definition of Gandalf and that
of Mentor (see 2.3.2.) In Gandalf a class represents a set of operators,
and it roughly corresponds to a sort in Mentor. Gandalf also deploys
the notion of operators, not as functions, but more as right-hand sides of
productions. Two kinds of operators are distinguished: Terminal opera-
tors, which have no offspring, and non-terminal operators, which either
have a fixed number of offspring, or a variable number of offspring (list of
elements.) Action routines were originally formulated in an imperative
programming language, namely C, but recently a special action routine
language (ARL) has been created, together with a more systematic tech-
nique for activation of such routines [3].

One of the key capabilities of Aloe-based editors is the separation
of abstract and concrete syntax, and the possibility to formulate several
concrete syntaxes for a language, so-called unparse schemes. Certain
kinds of constructs can furthermore be designated as scemes. When a
scene construct is entered, a new window is opened, and the construct is
presented in this window.

As opposed to, for example, the Cornell Program Synthesizer (see
below), an Aloe editor instance is intended to be used to generate the en-
tire program structure, including the expression and variable structures.
As mentioned in section 2.3.1, the experience of many people seems to
indicate that this is problematic. One of the problems is that expres-
sions must be entered according to a prefix style (+ a b), whereas most
people like to think of expressions in infix style (a + b). To enhance the
structure-oriented editing of expressions and similar constructs, a tech-
nique has been developed that allows expressions to be entered in infix
style. When the “4” is entered in the expression “a + b”, the already
existing operand “a” is nested into a template for the plus-operator. This
technique is described in detail in [52].

In Medina-Mora’s thesis [59] a tree partitioning mechanism called file
nodes is proposed. The substructures of a node that is designated as a file
node are not necessarily present in the memory of the computer. Rather,
the “file node” refers to a file, on which its substructures are stored.
There are some similarities between file nodes and the virtual memory
mechanism based on paging, as described, for example, by Tanenbaum
in [90]. Aloe is also one of the first editors to have nest and transform

2.3. SYNTAX-DIRECTED EDITORS 23

edit operations, in addition to the more simple expansion and reduction
operations.

Originally, the Gandalf editors and environments were designed for or-
dinary, line-oriented terminals. I.e., no advanced window and mouse sup-
port was provided. Recently, however, an Aloe-like editor called Gnome
[15] (or MacGnome) has been implemented on the Apple MaclIntosh.

Large volumes of literature are available on Gandalf. One of the best
ways to approach the work is through the collection of Gandalf papers
in The Journal of Systems and Software, vol. 5, number 2, May 1985.

The last paper in this collection contains a bibliography of the Gandalf
literature.

2.3.4 The Cornell Program Synthesizer

The Cornell Program Synthesizer [91,92] is a syntax-directed program-
ming environment for a particular programming language, namely PL/CS
(a “instructional dialect” of PL/I.) The work on the Synthesizer was initi-
ated in 1978. Based on the experience with this work, an editor generator
called the Synthesizer Generator[78,80] is being developed at Cornell Uni-
versity. As the name indicates, the Synthesizer Generator is not specific
to any language. Rather, it accepts an attribute grammar in a particu-
lar formalism, and it generates an editor from this description. In this
section we will first describe the most important lessons learned from the
original synthesizer. Next, a description of the Synthesizer Generator is
given, together with a brief survey of the work on attribute grammars.

In the Cornell Program Synthesizer, a new terminology was intro-
duced: templates, placeholders, and phrases. Templates correspond to
the right-hand sides of productions and placeholders correspond to non-
terminals. Phrases are short textual units, which are modified via simple
text editing instead of using template manipulation. Phrases are parsed
after they have been created or modified, and in this way, errors in phrases
are immediately revealed. The phrases reflect a choice of what to edit
textually, and what to edit structurally. Expressions, assignments, and
lists of names are examples of syntactic constructs that could be edited
as phrases.

Comments in the Cornell Program Synthesizer are syntactic (and
not lexical) units, and they are coupled to a facility for syntactic eli-
ston (which corresponds to holophrasting, see section 2.3.1.) A comment

24 OVERVIEW

may be associated with certain kinds of templates, and the user can
switch between seeing the comment, and the template together with the
comment,

The Cornell Program Synthesizer is designed for ordinary CRT ter-
minals. As in the Mentor and the Aloe editors (see 2.3.2 and 2.3.3), the
cursor must consequently be moved via special cursor control commands
(typically bound to special keys on the keyboard.) A great variety of such
cursor control commands are available in the Synthesizer. Some special
cursor moving commands cause templates to be inserted in the middle of
a list, and some make templates for optional constructs visible.

Not only the context free syntax of the programs is enforced. Also the
more context sensitive rules of the language are checked, and whenever
an error occurs, the faulty constructs are marked on the screen. The
Cornell Program Synthesizer also supports execution and debugging of
PL/CS programs. Selected variables can continuously be monitored, the
point of control can be followed in the editing window, single stepping is
possible, and a simulated reverse execution facility is also provided for.

As already described above, the Synthesizer Generator is meant to
be a generalization of the Cornell Program Synthesizer. Editors to be
generated by the Synthesizer Generator are specified in a language called
SSL (the Synthesizer Specification Language.) Conceptually, the abstract
grammar is defined in a similar way as in Mentor (see section 2.3.2.) A
set of sorted terms is called a phylum. The phylum structure is flat, i.e.,
there is no notion of named phyla that contain named subphyla.

A phylum declaration states that a set of named operators—or more
correctly, terms that are rooted by these operators—belong to the phy-
lum. The operators themselves are defined as part of the phylum decla-
ration. In essence, a phylum declaration does not differ very much from a
set of productions in a context free grammar, all of which have identical
left-hand side nonterminals. A variety of other declarations can be given.
Most important, perhaps, there are declarations that define attributes of
the phyla, and attribute equations of the operators. It is also possible to
declare unparse rules, parse rules that define the concrete input syntax,
and pattern-based transformations.

SSL does not enforce a particular strong ordering of the declarations.
It implies that declarations in an SSL specification can be grouped to-
gether such that various aspects (for example abstract syntax, unparse
rules, and attributes) are declared together, as opposed to being mixed

2.3. SYNTAX-DIRECTED EDITORS 25

with the definition of other aspects.

SSL owns much of the expressiveness of a “general purpose program-
ming language.” The phyla play the role of data types in SSL, and the
primitive data types, such as boolean and integer, are considered as pre-
defined phyla. It is possible to define term-valued functions in SSL, there
are variables, and there is a specialized conditional expression construct.
All in all, an SSL editor specification can be quite complicated.

As indicated above, the use of attribute grammars plays a key role in
the Synthesizer Generator. Attribute grammars can be used to check that
the static semantic rules are fulfilled (e.g., that a variable is declared in
the surrounding of its use) and to detect certain anomalies in programs
(e.g., that a variable has to be initialized before it can be used). To
allow incremental updating of attributes during interactive editing, con-
siderable efforts have been put into the development of an incremental
attribute updating algorithm [77,79]. The overall goal is to minimize the
time needed to establish a fully attributed tree following one or more
changes to the abstract syntax tree. There is still active research going
on in this area [81,44] that elaborates Reps’ results from [79].

2.3.5 Other Editors

The editors mentioned in the previous sections probably represent some
of the more well-known contributions to the field. However, there exists
many other structure-oriented editors for artificial (programming) lan-
guages: SED (2], PSG [4], EKKO [10], Magpie [20,21], Poe [31], R™ [42],
Syned[43], Eliot [50], GLSE [55], MUPE-2 [57], Cépage [61], PECAN
[75,76], and SUPPORT [103]. Of these editors and environments, only
few are limited to the pure syntax-directed editing technique, in which
every construct is inserted via selection of templates in a menu. In this
section we will discuss the diversity of textual, structure-oriented editing
techniques found in various systems.

Several editors adhere to a hybrid approach. Le., they support syntax-
directed as well as textual editing. PSG [4], Syned [43], PECAN [75,76],
and SUPPORT [103], are examples of hybrid editors or hybrid editor
generator systems. Also the Synthesizer Generator (see 2.3.4) is able to
generate hybrid editors. Typically, a hybrid editor allows text entered via
the keyboard to replace the currently selected template (placeholder), of
which the syntactic category is known. When the entering of text is com-

26 OVERVIEW

pleted, the text is parsed using the already known syntactic category as
a goal symbol, and the resulting tree substitutes the original template.
If the entered text cannot be parsed, the user is requested to correct the
input, or some kind of automatic error correction can be attempted (as
in Poe [31].) Following the insertion of the syntax tree resulting from the
parse process, portions of the screen image is usually regenerated from
the syntax tree. This makes formatting and fonting correct and homoge-
neous, and it also makes it easier to deal with the mapping between the
screen and the internal tree structure. If an already existing construct
is edited as text, it is typically too time consuming to reparse the whole
construct. If one or more of its subconstructs are unaffected by the modi-
fication, a partial re-parsing can be done, and the unaffected subtrees can
be grafted into the resulting tree directly. A more limited, and somewhat
strange hybrid approach is found in SED [2], where programs are created
as text, but modified in terms of their structure.

After having discussed the hybrid approach, we will now look at some
systems, for which textual editing is the only means. In Poe [31], a con-
struct is inserted by typing one or more tokens that characterize the con-
struct. It is not always necessary to enter the full textual representation
of the construct, because automatic completion is provided. Moreover,
automatic error-repair is attempted if the user-specified tokens do not
immediately make sense. This framework can be considered as advanced
parsing. It can also be considered as an alternative way to select the
desired templates in the purely syntax-directed approach. Anyway, the
net effect is that context free errors are prevented.

In Magpie [20,21], which is a Pascal programming environment run-
ning on an experimental Tektronix workstation, incremental parsing is
used to construct the syntax tree while the program text is entered via
the keyboard. A dedicated processor in the workstation continuously
performs syntax analysis and compiling while another processor supports
activities closer to the user interface of the system. The basic structure
of a Pascal program is reflected by the code browsers in Magpie. Code
browsers are alternatives to templates with placeholders. A code browser
enumerates the basic constituents in one pane of an editing window, and
in another pane the selected constituent (called a fragment) can be edited.
The browsing technique is inspired by the Smalltalk-80 environment [35].
Incremental and immediate parsing becomes more manageable when it
1s known that only well-defined and minor fragments are affected, as op-

2.3. SYNTAX-DIRECTED EDITORS 27

posed to large portions of a program.

Finally, Eliot [50] is a text editor for Pascal, in which the overall struc-
turing of the program (procedures, functions, and statements) is repre-
sented structurally, whereas other program structures are represented as
text. Although the context free syntax of programs is checked, the more
detailed program constructs are never converted to a syntax-tree repre-
sentation. In addition to the textual editing commands it is also possible

to create the overall program structure in a syntax-directed style, i.e., via
pre-defined templates.

Chapter 3

Muir Background

In this chapter we will describe the grammar model that we have devel-
oped in the Muir project, and after that, principles and mechanisms in
the Muir environment will be highlighted. The work described in this
chapter is joint work, to which contributions have been made by several
people in the SDLG group. However, the elaboration and the formaliza-
tion of the grammar model, as reflected in this chapter, is entirely the
responsibility of the author of this thesis.

3.1 Hierarchical Grammars

The abstract grammar model and the document representation that we
are about to describe in this section are results of a “refinement” of
the grammar framework based on so-called operators and phyla. The
operator phylum model was introduced by the Mentor group [23], and
we briefly introduced the formalism in section 2.3.2 where the Mentor
system was described.

The main emphasis in the hierarchical grammar model has been di-
rected towards a description of general syntactic domains in terms of more
specific syntactic domains. In, for example, a programming language the
syntactic domain statement can be described as being either a simple
statement or a structured statement, and each of these can be described
as more specialized syntactic domains, such as assignment statement and
repetitive statement respectively. We also use this simple principle to
classify all constructs of a language into a single syntactic domain, and
in turn, to classify all constructs of all supported formalisms into a uni-
versal “root domain” of the environment. The primitive constructs of the
languages are associated with the most specialized syntactic domains in

28

3.1. HIERARCHICAL GRAMMARS 29

the hierarchy.

The hierarchical organization of the syntactic domains is similar to
the organization of Simula and Smalltalk classes in generalization /spe-
cialization hierarchies ([18] and [34] resp.) As in these languages, it is
also tempting in the hierarchical grammar framework to make use of
inheritance as a means to define the qualities of the elements in the
hierarchy. In section 4.2.3 it is described how edit operations can be
made subject to inheritance in the phylum hierarchy. In addition, one
could imagine that other qualities, for example presentation rules and
attribute equations, could be defined via inheritance.

We feel that the hierarchical grammar model reflects a natural and an
intuitive simple way to think of the grammatical elements of a language.
The model has a clear conceptual separation between structures that
describe syntactic domains (or-structures) and structures that describe
constructs of the language (and-structures.) This is not the case in a
pure BNF grammar, in which the production concept is used for both
purposes. As we will discuss in more detail in section 3.1.6, this weakness
has been alleviated in some variants of BNF. A hierarchical grammar
should be considered as an operator/phylum based grammar (as found,
for example, in Mentor [23] and in the Synthesizer Generator [80]), in
which the main emphasis is to model the hierarchy of syntactic domains
in an explicit way. Every “classical” operator/phylum-based grammar
can be formulated directly in the hierarchical grammar framework.

In section 3.1.1 we describe the most important concepts of the hi-
erarchical grammar framework. In the following section, 3.1.2, this is
made completely formal. Next, in section 3.1.3, some special phyla are
introduced, among others the universal phyla, and in section 3.1.4 we de-
fine what we mean by multi-formalism grammars. Our notion of abstract
syntax trees is defined in section 3.1.5. In particular it is emphasized how
nodes in abstract syntax trees are associated with phyla in hierarchical
grammars. Finally, in section 3.1.6, the hierarchical grammar model is
compared with BNF and BNF-like formalisms, and with the “classical”
operator phylum formalism.

3.1.1 Phyla and Phylum Hierarchy

According to the The Shorter Oxford English Dictionary, a phylum is a
word from biology that means “a tribe or race of organisms, related by

30 MUIR BACKGROUND

descent from a common ancestral form”. Webster’s New World Dictionary
states that a phylum in addition can signify a “language family”. In
computer science, the word “phylum” has been used to designate a set of
terms [80], for example a set of constructs from an artificial language, and
this is the meaning of the word that we adopt in this thesis. A phylum
name is often called a sort, and one frequently talk about “sorted terms.”
When working with artificial languages, terms are typically represented
as abstract syntax trees.

We organize the phyla in a hierarchy. This, we feel, is in the spirit
of the biological meaning of the word “phylum.” Concretely, a phylum
hierarchy is a directed acyclic graph whose nodes represent phyla. We
distinguish two kinds of phyla in a phylum hierarchy: Categorical phyla
and terminal phyla. A categorical phylum corresponds to an interior node
in the graph, and a terminal phylum corresponds to a leaf. The edges in
the graph represent phylum /subphylum relations among the phyla. Le.,
if P is a descendant of Q in the graph, the phylum represented by P is
a subphylum of Q. We prefer the interpretation that a phylum hierarchy
represents generalization /specialization relations among the various con-
structs in a language. The terminal phyla correspond to constructs, for
which no specializations are described in the syntax of the language. The
categorical phyla, i.e., the super phyla of the terminal phyla, correspond
to various classifications of the constructs in a language.

Before we go further, let us look at the example in figure 3.1, which
shows a phylum hierarchy for the statements in Pascal [49]. For-down-
to, for-to, repeat, etc. represent terminal phyla, and statement, labelled,
unlabelled, etc. represent categorical phyla. The hierarchy shown in figure
3.1 happens to be a tree. In general, however, there may exist nodes in
the hierarchy that have more than one ancestor.

An operator is a function that maps n terms into a new term. For
example, the if-then-else operator from Pascal is the function:

if-then-else: expression X statement X statement — statement.

Each of the operands of an operator belongs to a sorted phylum from
the phylum hierarchy. In the hierarchical grammar framework there is a
one-to-one correspondence between operators and terminal phyla in the
phylum hierarchy. Thus, the if-then-else operator mentioned above is
associated with the identically named phylum in figure 3.1.

In the framework described above there is an obvious inspiration from

3.1. HIERARCHICAL GRAMMARS 31

with for-downto
for <
for-to

repetitive repeat
structured .
; while
labelled begin..end
statement < case
unlabelled conditional < . < sl
i
empty-statement if-then
goto
simple

procedure-call

assignment

Figure 3.1: Phylum hierarchy for statements in Pascal.

many-sorted algebras (see, for example, [36].) A slightly different termi-
nology has been adopted when talking about abstract grammars, but
basically, we are working with algebras. The phylum hierarchy that we
introduced above is a concrete manifestation of a partial ordering among
the sorts of the algebra. In the following section the concepts that have
been introduced in this section will be further formalized. We also intro-

duce some convenient notation that will be used throughout the rest of
the thesis.

3.1.2 Formal Hierarchical Grammars

In this section we give a formal account of hierarchical grammars. The
meaning of “phyla” and “operators” from above will not be changed.
However, we start by defining a formal structure with different, although
related concepts, and it is then shown in a rigorous way how these con-
cepts define the phyla and the operators. It should be noticed that the
formalization described in this section is one out of many possible. We
do not claim that it is “the best” or “the most natural” one. It has been
chosen because it is quite similar to the well-known formal definition of
context free grammars (see, for example, [1]), and because it reflects the
actual objects in the implementation of the framework (to be described

32 MUIR BACKGROUND

in section 3.2.1.)

Definition. Hierarchical grammar
A hierarchical grammar is a tuple G = (P,C,T,D) where

1. P is a finite set of phylum symbols.

2. Cis asubset of P x PT. An element in C is called a categorical
phylum declaration.

3. T is a subset of P X P*. An element in T is called a terminal
phylum declaration.

4. D is a three-tuple of distinguished phylum symbols, each of
which belongs to P.

The distinguished phylum symbols will be discussed in section 3.1.3
and in section 3.1.5.

We require that the first component of a phylum declaration identifies
it, and furthermore that the set of “terminal phylum symbols” and the
set of “categorical phylum symbols” are disjoint. Ie.:

1. If both (P,(P; ... P,)) and (Q,(Q; ... Q) belong to C U T and if
P = Q then n =m and P; = Q; for ¢ € [1..n].

2. {P| (P,(...) € T} and {P| (P,(...)) € C} are disjoint.

Because of these restrictions we can talk about the phylum declaration
of a phylum symbol.

The phylum declarations in C are production-like structures that de-
fine the phylum hierarchy of a hierarchical grammar:

Definition. Phylum hierarchy
Let G = (P,C,T,D) be a hierarchical grammar. The phylum decla-
rations in C define a directed graph § = (P,E). If (P,(P; ... P,)) is
an element in C, the edges (P,Py), ..., (P,P,) belong to E. Nothing
else is in E. § is called the phylum hierarchy of G.

We see that a categorical phylum declaration defines a node together
with its immediate descendants in the phylum hierarchy.

Having defined formally what a phylum hierarchy is, we are able to
formulate two additional restrictions on hierarchical grammars. Besides

3.1. HIERARCHICAL GRAMMARS 33

restriction 1 and 2 from above we require that
3. The phylum hierarchy of a hierarchical grammar must be acyclic.

4. If L is a leaf in the phylum hierarchy then there must exist exactly
one phylum declaration (P,(P; ... P,)) in T such that L = P.

Restriction 3 prohibits recursively defined phyla, and restriction 4
makes sure that for each leaf in the phylum hierarchy there exists one
and only one terminal phylum declaration.

The categorical phylum declarations define a couple a very useful
relations among the phyla in P:

Definition. Subphyla and superphyla relations

Let (P,(P; ... P,)) be a categorical phylum declaration in a hierar-
chical grammar G = (P,C,T,D).

1. P; is said to be an tmmediate subphylum of P for 1 € [1..n], and
we use the notation P; C P.

2. Symmetrically, P is said to be an immediate superphylum of P;,
and we write P D P,.

The subphylum and superphylum relations are defined as the reflexive
transitive closures of C and D respectively, and we write P C* Q
if P is a subphylum of Q,and P >* Q if Pis a superphylum of Q.

The subphylum relation is similar to the subset relation from set the-
ory. The notation that we use for the subphylum and superphylum rela-
tions is therefore inspired by the corresponding notation from set theory.

It can be confusing to use the same notation for categorical phylum
declarations and for terminal phylum declarations. We therefore intro-
duce the following notation, which will be used in the rest of the thesis:

Notation. Phylum declarations

If (P,(P; ... P,)) is a categorical phylum declaration and (Q:(Q1 .
Qx)) is a terminal phylum declaration in a hierarchical grammar then

1. (P,(Py ... P,)) will be denoted P = {P; ... P,}, and
2. (Q,(Q1 ... Q,)) will be denoted Q: Q; ... Q...

34 MUIR BACKGROUND

If n =0 in a terminal phylum declaration, we call it a nullary phylum
declaration. Notice that n cannot be 0 in a categorical phylum declara-
tion. We now relate a hierarchical grammar to the definition of phyla
and operators as given in section 3.1.1:

Observation
Let G = (P,C,T,D) be a hierarchical grammar.

1. A phylumis a set of terms. The set of phylum symbols P is the
sort set (phylum names) of the phyla. If a phylum symbol is a
leaf in the phylum hierarchy of G, its corresponding phylum is
called a terminal phylum, else it is called a categorical phylum.

2. An operator is a function that maps n sorted terms into a new
sorted term, n > 0. If P: Py ... P, is a terminal phylum
declaration in T then there exists an operator that we here will
call P, and which is defined as P": P; X ...x P, — P.

A given term ¢ belongs to one and only one terminal phylum, say of
sort T. Non-composite terms come from nullary operators, and they can
be considered as constants. If P': P; X ... X P, — P is an operator
derived from the terminal phylum declaration P: P; ... P, then the 7’th
argument of P’ can be the term ¢ if T is a subphylum of P

Whenever we have a hierarchical grammar, we will talk about the
phyla, the operators, and the phylum hierarchy of the grammar. In doing
this we formally refer to the sets, functions, and graphs defined above.

3.1.3 Special Phyla

In this section we will describe two of the distinguished phylum symbols

of a hierarchical grammar. If G = (P,C,T,D) is a hierarchical grammar,
we will in this section assume that

D = (StartPhylum,Anything,Always).

Anything is the most general phylum in a grammar and Always defines
general applicable constructs. The role of StartPhylum will be discussed
in section 3.1.5.

A phylum hierarchy of a hierarchical grammar is seldom strongly con-
nected. However, we now force the phylum hierarchy to be strongly con-

3.1. HIERARCHICAL GRAMMARS 35

A
" TS
T~ N\
P B C D X ¢
X Anything E F E F
(a) (b) (c)

Figure 3.2: Syntax trees that illustrate the use of Anything and Always.

nected by defining a phylum of which any other phylum is a subphylum.
We call this phylum Anything (or sometimes G.Anything if the grammar
we are working with is G.) Anything can be used in operators to define
places where every possible fragment of the document is legal. Anything
is an implicitly defined phylum. Le., the immediate subphyla of Anything
need not to be defined explicitly.

The other special phylum that we define in this section is called AL
ways (or G.Always where G again is the name of a hierarchical grammar.)
The grammar definer should explicitly declare the subphyla of Always.
Always is considered to be a subphylum of any other phylum in the gram-
mar. Thus, the effect of defining P as a subphylum of Always is that P-
constructs® can substitute any other construct defined by the grammar.
Because Always is a special phylum, the terminal status of the terminal
phyla will not be affected by the fact that Always is a subphylum of the
terminal phyla. Symmetrically to the phylum Anything, the immediate
superphyla of Always are implicitly defined.?

Let us look at an example where Anything and Always are used (see
figure 3.2). In a given grammar we want to define a P-construct, in
which it is possible to nest any construct into its second constituent.

1A “P-construct”, where P is a phylum symbol, is a formalized notion. An if-then statement
can be called an “if-then-construct” or a “statement-construct”, because if-then is a subphylum
of the phylum statement. See section 3.1.5 for the formal definition of a P-construct.

2If the subphyla of Always participate in the phylum hierarchy, cycles among the phylum
symbols cannot be avoided. If, for example, P is a terminal phylum symbol for which P c* Al-
ways, the definition of Always implies that Always C* P. One could require that the subphyla of
Always do not participate in the phylum graph. However, because Always (as well as Anything)
are special phyla, the cycles in the phylum “hierarchy” do not harm, and they will not cause
difficulties. We therefore accept cycles caused by Always.

36 MUIR BACKGROUND

Such a P-construct is shown in figure 3.2(a). If we nest the C-construct
in figure 3.2(b) into the second constituent of the P-construct, we get
the tree shown in figure 3.2(c). Independent of the explicitly defined
phylum-subphylum relations, this operation is guaranteed to be syntac-
tically legal if P is a subphylum of Always, and if “the phylum of the
second constituent” of the P-construct is Anything. A practical example
that illustrates the same aspects will be encountered in section 4.1.2.

3.1.4 Multi-formalism Grammars

Using the definitions from the previous sections it is possible to define a
set of independent hierarchical grammars. We will now introduce the
notion of so-called multi-formalism grammars in which certain inter-
dependencies are allowed among grammars.

Definition. Gate phyla and multiformalism grammars
Let Gy = (P1,C1,T1,01) and Gy = (P2,C2,T2,D2) be two hierarchical
grammars, and let P = {P; ... P,,} be a categorical phylum declara-
tion from C;.

1. If P; € P, (as well as P; € P;) then P; is called a gate phylum
from Gy to Gy in P (7 € [1..n].)

2. A multi-formalism grammar is a grammar that contains one or
more gate phyla.

Intuitively, a gate phylum in a categorical phylum declaration links
the phylum hierarchies of the two hierarchical grammars together. Be-
sides the gate phyla in categorical phylum declarations, it is also conve-
nient to allow gate phyla in terminal phylum declarations. If P: P, ...
P, is a terminal phylum declaration from Ty, and if P; is a phylum that
belongs to Pg, then P; is called a gate phylum from G; to Gy in P. 3

Multi-formalism grammars can be used to separate a grammar into
several sub-grammars that are linked together with gate phyla. In other
words, gate phyla can be used as a means for making a grammar more

3Gate phyla in terminal phylum declarations are not strictly necessary, because we can always
declare a “categorical helping phylum” H = {P;} in Cy, in which P; is a gate phylum from G,
to Gz. In that case, the terminal phylum declaration P: Py ...P;... P, should be replaced by P:
P; ..H... Pa.

3.1. HIERARCHICAL GRAMMARS 37

modular. When working on a big grammar, the advantages of splitting a
grammar into several grammar modules can be compared with the well-
known advantages of modularizing a program. In the Muir environment
we have used this facility to factor separate issues of a grammar into sub-
grammars. We have sub-grammars for an attribute grammar extension
and for the presentation formalism.

Until now we have developed a grammatical framework where the
syntax for each formalism is described by a single-rooted phylum hierar-
chy, and we allow the phylum hierarchies to be inter-connected via gate
phyla. We finally enforce a single root of all phylum hierarchies. This
absolute root of the phylum hierarchy we consider as a universal phy-
lum in a special system grammar. Formally, if an environment supports

the grammars G;, Gy through G,, we declare System.Anything in the
following way:

System.Anything = {G;i.Anything G,.Anything ... G,.Anything}.

Figure 3.3(a) sketches the top level of the phylum hierarchy for an en-
vironment that supports Pascal, Modula-2 and a grammar definition
formalism. Dotted links in figure 3.3 are implicitly defined phylum-

subphylum relations, i.e., they are not defined in any categorical phylum
declaration.

In some situations it turns out to be convenient to attach qualities to
the phylum System.Anything and have them inherited to any phylum in
the system, independent of the language to which the phylum belongs.
Also, it is sometimes necessary to use the phylum System.Anything as
a gate phylum in an operator to describe a place where any possible

construct in the system is allowed. We will see an example of that in
section 4.1.2.

In section 3.1.1 we described that the phylum Always is considered to
be a subphylum of any other phylum in a grammar. The system gram-
mar also contains a phylum System.Always that is considered to be a
subphylum of G.Always for any other hierarchical grammar G supported
by the environment. It means that a P-construct, for which P is a sub-
phylum of System.Always, can substitute any construct, independent of
the language. Figure 3.3(b) illustrates the role of the Always-phyla in
the phylum hierarchy of a grammar G.

38

< il
-

-

Pascal. Anything Modula-2.Anything

G.Always

\'\
-
-
~
~

.
System.Always

(b)

MUIR BACKGROUND

ho TV
-
-
~—

-~

GrammaﬂAnything

Figure 3.3: Top level of phylum hierarchy (a), and the role of Always (b).

3.1. HIERARCHICAL GRAMMARS 39

3.1.5 Abstract Syntax Trees

In section 3.1.1 the notion of terms was introduced. Loosely, an abstract
syntax tree is a term in which so-called unexpanded nodes are allowed.
To be more precise, we give the following definition.

Definition. Abstract syntaz trees
Given a hierarchical grammar G = (P,C,T,D). An abstract syntax
tree T is an ordered tree (see, for example, [1]) whose nodes are

labelled with symbols in P U {NIL}. In addition, the following con-
ditions must be fulfilled:

1. If N is a leaf node in T, either

(a) N is labelled NIL, and it is called an unezpanded node, or

(b) N is labelled P where P is the phylum symbol of a nullary
terminal phylum declaration in T.

2. If N is an interior node, N is labelled P, where P: P; ... P, is a
terminal phylum declaration in 7', and n > 0. In this situation,
the node N is required to have n sons.

In the following, “abstract syntax tree” will be abbreviated to “AST.”
We sometimes call an AST, all of whose nodes are phylum symbols in
a grammar G, an AST w.r.t. G. When we have developed some more
machinery, syntactically valid ASTs will be defined.

According to the definition given above an AST is an ordered tree.
One could alternatively define an AST as an un-ordered tree, whose nodes
are labelled (tag,P), where tag is an operator defined tag-name of the phy-
lum symbol P. Figure 3.4 shows a fragment of a Pascal program together

with its AST.

If B is a subtree (see [1]) of an AST A, B will be called a constituent
of A. B is an tmmediate constituent of A if the root of B is a son of A.
In figure 3.4 the if-then-else statement is an immediate constituent of the
while statement, and the assignment statement is a constituent of the
while statement. Notice that each constituent of an AST also is an AST.
We introduce the following notation for ASTs:

40 MUIR BACKGROUND

while

7N\

NIL if-then-else

NIL assignment procedure-call
while <expression>
do if <expression>
then V := <expression> name NIL name empty

else Pr

(2) (b)
Figure 3.4: A Pascal statement (a) together with its AST (b).

Notation
If A is an AST whose root is labelled T, T # NIL, and if Cy ..., C,
are the immediate constituents of A (complete, from left to right),
then we will use the notation T(Cj ... C,) for A.

We are now in a position where we can define two important phylum
symbols that characterize an AST and its context.

Definition Identification phylum
Given an abstract syntax tree A w.r.t. a hierarchical grammar G =

(P,C,T,D). The identification phylum of A is defined in the following
way:

1. If A =T(Cy ... C,), the identification phylum of A is the
phylum symbol T.

2. If A is an unexpanded node, the identification phylum of A is
undefined.

The identification phylum of A will be denoted ©w(A).

3.1. HIERARCHICAL GRAMMARS 41

Definition Choice phylum
Let A = T(Cy ... C,) be an abstract syntax tree w.r.t. the hierarchi-

cal grammar G. Let the terminal phylum declaration of the phylum
symbol T be T: P, ... P,.

1. For 7 € [1..n] the choice phylum of the abstract syntax tree C;
is the phylum symbol P,.

2. The choice phylum of the root of an AST is undefined.
The choice phylum of an AST A will be denoted w(A).

The identification phylum is the most specific phylum that identifies
a construct, and consequently it is always a terminal phylum symbol.
In figure 3.4(b) the identification phyla of the interior nodes are shown
directly, and the identification phyla of the three unexpanded nodes are
undefined. The choice phylum of a construct describes the set of possible
alternative constructs that can fill it. In figure 3.4, the choice phyla of
the if-then-else statement, the assignment, and the procedure-call are all
statement. The choice phylum of the while statement is undefined, be-
cause it is out of context. In Muir, we do not represent the choice phyla
explicitly in the ASTs. Rather, as the definition of the concept suggests,
we look the choice phylum of a node N up in the terminal phylum dec-
laration of the “supertree” of N. For example, the choice phylum of the
assignment in figure 3.4 is the second phylum symbol in the declaration
of the if-then-else terminal phylum.

Analogous to classes and instances of classes in object-oriented pro-
gramming languages, an AST may be interpreted as nested instances of
phyla from the phylum hierarchy. Using this analogy, an unexpanded
node corresponds to an instance of a categorical phylum. An expanded
AST-constituent corresponds to an instance of a terminal phylum. Such
an instance is characterized by a reference to its context, by a given num-
ber of immediate constituents, and of course by the class of which it is
an instance. Using this interpretation, the identification phylum of an
AST-node corresponds to a class, of which the choice phylum of the node
corresponds to a superclass, the qualification of the node.

Having the concepts of identification phyla and choice phyla, we can
now easily define what we mean by a syntactically valid AST:

42 MUIR BACKGROUND

Definition. Syntactically valid AST
An AST A is syntactically valid if, for any constituent C of A, ©(C)
C* w(C), whenever both ¢(C) and w(C) are defined.

For notational convenience, we will in the rest of the thesis use the
term “AST” to mean a syntactically valid AST.
Earlier in this chapter, we have several times in an informal way used

the notation “a P-construct”, where P is a phylum symbol. This is now
made precise:

Definition. P-construct
A P-construct is an AST A for which p(A) c* P.

A context free grammar generates a language, which is a set of strings
over some alphabet. The corresponding concept in a hierarchical gram-
mar is that of a formalism:*

Definition. Formalism
Given a hierarchical grammar G = (P,C,T,D), and let D =

(S,Anything,Always). The formalism defined by G is the set of syn-
tactically valid S-constructs.

Notice that this definition defines the role of the distinguished start
phylum symbol. If every fragment is considered to belong to the formal-
ism, S = Anything can be used. Also notice that a tree in a formalism is
allowed to have unexpanded nodes as constituents.

In section 3.1.4 we defined multi-formalism hierarchical grammars and

gate phyla. In this section we finally define what we understand by gates
and multi-formalism ASTs.

Definition. Gate
Let Gl = (Pl,Cl,Tl,Dl) and G2 = (Pz,Cg,Tz,Dg) be two hierarchical
grammars, and let Q be a gate phylum from G; to G, in some phylum
declaration from C;. If A is an AST and if Q C* w(A), then A is called
a gate (from Gp to G,.)

Thus, a gate is (a constituent of) an AST, for example an unexpanded
node, that can be, but not necessarily is refined to an AST in another

*Our formalism notion is inspired by a similar notion in Mentor, see [24].

3.1. HIERARCHICAL GRAMMARS 43

formalism. A multi-formalism AST in an AST that actually contains
nodes belonging to two or more different formalisms.

3.1.6 Comparison with Other Grammar Models

In this section we will compare the hierarchical grammar model that has
been developed above with other formalisms for definition of abstract
syntax. For this comparison we choose the following formalisms:

e The BNF formalism [65].

e GRAMPS [14], which is a BNF-like formalism in which the produc-
tions are classified as construction rules, alternation rules, repetition
rules, and lexical rules.

e The grammar definition formalism based on operators and sorted
phyla, as defined in Mentor (see section 2.3.2.)

e The hierarchical grammar definition formalism, as defined in this
chapter.

We are only concerned with the definition of abstract syntax. The
BNF and GRAMPS grammars that we talk about in this section should
therefore only contain nonterminal symbols. In other words, these gram-
mars are stripped for terminal symbols. All the four grammar definition
formalisms are variants of context free grammars [1]. Given a grammar
in one of the formalisms mentioned above, it is straightforward to con-
struct a similar grammar in one of the other formalisms. “Similar” means
here that the two grammars generates the same (abstract) language, but
not necessarily the same formalism. This is the difference between weak
equivalence and strong equivalence, as drawn, for example, by Winograd
in [97]. We have already in section 3.1.2 described how a hierarchical
grammar is related to a pure operator/phylum based grammar. Let us
in a similar way relate our grammar definition formalism to BNF®:

®In the original formulation of the BNF formalism [65] a production was called a metalin-
guistic formulae. A nonterminal was called a metalinguistic variable.

44 MUIR BACKGROUND

Observation
Let G = (P,C,T,D) be a hierarchical grammar.

1. To each phylum symbol P corresponds a nonterminal symbol.
Let us here call it P’.

2. If P: Py ... P, is a terminal phylum declaration in T then P’ ::=
Pj ... P} is a production in the BNF version of the grammar.

3. A categorical phylum declaration P = {P; ... P,)} in C gives n
productions P’ ::= P} through P’ ::= P! in the BNF grammar.

It should be noticed that both categorical phylum declarations and
terminal phylum declarations are “converted” to productions in the BNF
grammar. In a similar conversion to the GRAMPS formalism, a terminal
phylum declaration would derive a construction rule, and a categorical
phylum declaration would give an alternation rule.

The structure of the syntax trees is important for the comparison
in this section, because it affects the syntax-directed editors, which are
based on the grammar. Unnecessary and redundant levels should be re-
moved from the document structure, as presented for the editor user. A
natural way to do this is to make the syntax trees “as flat as possible.”
This is difficult to achieve in a pure BNF grammar, if also intermedi-
ate syntactic domains (as shown, for example, in figure 3.1 on page 31)
have to be represented as ordinary nonterminals in the grammar and as
nodes in the ASTs. Similarly, it is awkward to share a syntactic con-
struct between two or more nonterminals without introducing interme-
diate nonterminals that make the syntax trees deeper. (The only way to
accomplish the sharing without introducing intermediate nonterminals is
to duplicate some productions, but this is clearly awkward with regard
to grammar maintenance.)

What is needed to solve the problems mentioned above is a separation
between alternation rules and construction rules, exactly as in GRAMPS.
With this separation, only the construction rules should affect the syntax
trees. The alternation rules define the syntactic domains of the languages.
In the hierarchical grammar definition formalism we have the same sep-
aration, namely as categorical phyla and terminal phyla. The main dif-
ference between the GRAMPS formalism and the hierarchical grammar
formalism is that GRAMPS follows the BNF traditions, whereas hierar-

3.2. THE MUIR ENVIRONMENT 45

chical grammars originate from formalisms based on operators and phyla.
Moreover, the “main structure” of a hierarchical grammar is the phylum
hierarchy, which captures the whole alternation structure of a GRAMPS
grammar. -

Compared with a pure operator phylum grammar, a hierarchical gram-
mar emphasizes the classification of phyla in a generalization /specializa-
tion hierarchy. As far as it can be figured out from [23], this is also
possible in the operator phylum formalism in Mentor (via ordered sorts),
but it is by no means a central mechanism. In the Synthesizer genera-
tor and in Gandalf, the phylum hierarchies are “flat.” In addition, the
hierarchical grammar model introduces a phylum for each operator. In
other words, each operator has its own “type.” Hereby it becomes mean-

ingful to consider the hierarchy of phyla, without even referring to the
operators.

3.2 The Muir Environment

Muir is an environment for development of and experimentation with arti-
ficial languages such as programming languages, specification languages,
grammar formalisms, and logical notations. The kernel of the system is
a structure-oriented editing environment that supports uniform manip-
ulation of hierarchical grammars and documents derived in these gram-
mars. The central facility in Muir is its capability to support instances
of a structure-oriented, syntax-directed editor, which we call Sedst8 (for
Structure editor.) As mentioned earlier, an editor is structure-oriented
if the primary representation of the documents reflects their structure
as opposed to their surface form. Typically, documents are represented
as abstract syntax trees. If, in addition, the structural building blocks
provided by the editor are defined by a grammar, we call the editor
syntaz-directed. Syntax-directed editing seems to be especially attractive
in a language development environment. The reason is that in a language
development situation, the documents we work with belong to formalisms
that are unfamiliar to most people. Le., the support and guidance offered
by a syntax-directed editor can really make a difference, not least if it is
compared with textual editing techniques.

61t should be pointed out that Sedit in Muir has nothing to do with the Lisp editor of the

same name (see 2.2.1.) Our use of the name “Sedit” can be traced back to an early phase of the
Muir project [58].

46 MUIR BACKGROUND

As mentioned in the introduction of the thesis, Muir is being de-
veloped in the SDLG group at CSLI on the Xerox 1100-series Interlisp
machines. Earlier in the SDLG project, there has been developed more
specialized environments for the specification languages Aleph [99] and
Dao [102]. The description given in this section reflects version 1 of Muir.
After the author left Stanford, work on version 2 of the environment was
initiated. In this section we will review the fundamental principles and
mechanisms in the environment. In appendix C a “guided tour in Muir
Woods” is given. Many of the aspects that are discussed in this section
are illustrated in the appendix.

3.2.1 Realization of Hierarchical Grammars

In section 3.1 we formally defined the concepts of hierarchical grammars,
abstract syntax trees, and their multi-formalism variants. The aim of
this section is to describe how these concepts actually have been realized
in the Muir environment.

When making a hierarchical grammar in version 1 of Muir, the gram-
mar definer creates objects that are closely related to the categorical and
the terminal phylum declarations of a formal hierarchical grammar.” The
terminal phylum declarations contain the presentation rules. These are
the rules that determine how an AST is presented on the screen. The
constituents of a terminal phylum declaration are named (using so-called
tag names), and these names are used in the presentation rules to refer
to the “abstract constituents.”

In version 1 or Muir, a hierarchical grammar is roughly a long, linear
sequence of phylum declarations. This is by no means ideal. Much of the
research in the Muir project has therefore been aiming at a more natural
interface to a hierarchical grammar. Our vision is that it should be possi-
ble to create and modify a hierarchical grammar via its phylum hierarchy.
The phylum hierarchy imposes an overall structure on the grammar, and
from this presentation of the grammar more detailed aspects should be
accessed. However, in practice, this goal has not quite been reached. Let
us briefly mention the way we intend to realize the vision. As we shall

"Actually, a terminal phylum declaration consists of two declarations, a “dummy terminal
phylum declaration” and a so-called operator declaration. However, in most grammars that have
been made, there is a one-to-one correspondence between the terminal phylum declarations and
the operator-declarations. Therefore in the thesis we consider these as a single declaration.

3.2. THE MUIR ENVIRONMENT 47

see in the following section, a grammar is just an AST, which is defined
and constrained by a so-called meta grammar. The user interface to the
grammar strongly depends on the way the grammar-AST is presented on
the screen. At present, the list of phylum declarations is presented in a
rather straightforward manner. Our goal has been to provide presenta-
tion mechanisms that make it possible to present the grammar-AST as a
graph similar to the phylum hierarchy. There is of course no reason why
this presentation mechanism should be limited to grammar-ASTs. As we
shall see in chapter 7 of this thesis, there are many other interesting ap-
plications of such a powerful graph presentation framework. Currently,
we are able to generate a phylum hierarchy from a grammar-AST via
general graph presentation rules, but we have not implemented natural
graph edit operations. In section 7.3 a general solution to this problem
is proposed.

Nodes in an AST can be decorated with properties, exactly as it as
possible to associate properties with atoms in Lisp [47]. l.e., an arbi-
trary number of data-structures can be put onto an AST-node as named
tree properties. The tree properties of ASTs have been extremely useful
in the Muir environment. They have, for example, been used for at-
tributes (in an attribute grammar extension), for comments, to condense
the information in grammar trees such that they can be used to drive
the syntax-directed editors (see chapter 5), and to store relations among
pairs of grammars (see chapter 6.) Furthermore, literal constants such
as names, numbers, and strings can also be considered as properties of
certain leaf nodes in an AST. The leaf nodes that can associate these
properties are determined by a special leaf phylum.®

The representation of linear list structures in ASTs is an important
issue that we also will touch on in this section. The most natural way
to represent linear list structures in operator/phylum based grammars is
probably through homogeneous, variable arity operators. A variable arity

8We have not included the leaf phylum as a distinguished phylum symbol in the formal
description of the grammar framework, because this aspect is not central to the issues that we
discuss in this thesis. Let us, however, here describe the mechanism that we use. The leaf phylum
LeafPhylum is a distinguished phylum symbol in the same way as, for example, the start phylum.
Let us assume that a phylum symbol T is a subphylum of LeafPhylum, and that T represents a
terminal phylum. If that is the case, it is assumed that the phylum declaration associated with
T is a nullary phylum declaration, and furthermore that it is possible to associate leaf properties
to AST-nodes, whose identification phylum is T. Muir recognizes four different phylum symbols
nameApl (applied occurrences of names), nameDcl (defining occurrences of names), string, and
number, each of which may be a subphylum of the leaf phylum of a grammar.

48 MUIR BACKGROUND

x-list
X x-list
X x-list

b ¢ x-list
%\ /

() (b)

e

Figure 3.5: A flat and a binary list representation.

operator is an operator that can have an arbitrary number of immedidate
constituents, and it is homogeneous if all constituents belong to the same
phylum. Figure 3.5(a) shows such a list representation. In Muir, however,
we have chosen to represent lists as binary nested trees of heads and tails,
as shown in figure 3.5(b). It is the representation that can be derived by
the following right-recursive production and its “completing production:”

x-list—x x-list
x-list—e

Using this representation, list structures do not require any special atten-
tion at the AST-level of the system, because they are aggregated via fixed
arity operators, as are all other constructs. At the user interface level,
however, it is not natural to manipulate lists directly in this representa-
tion. Therefore, we have defined special edit operations for creating lists,
adding elements before and after existing elements, and deleting elements
from a list. They are basically nest and unnest AST transformations, and
they will be described in section 4.2.5.

The environment supports so-called list-operators, which describe the
characteristics of a list (mainly presentation elements such as separators
between elements, the prefix string in front of the first element, etc.)
A list-operator is a description that allows the necessary operators and

3.2. THE MUIR ENVIRONMENT 49

phylum declarations to be generated by the system. In that way, the
language definer does not need to do this manually. As an alternative
to our approach, it seems to be more flexible to supply the information
now contained in the special list-operators at the places in the operators
where a list can be filled in.

Based on the experience with Muir, we are not convinced that the
binary list representation should be preferred to the more flat represen-
tation. In some sense, the binary representation is not abstract enough.
During the work on Muir we have experienced several peculiarities that
can be blamed on the binary list representation. If, for example, we add
an element in front of the first element in the list, we get a new root of
the list. A tree property of the former root of the list is therefore not
located at the root of the extended list. Selection and manipulation of
sublists are not natural either. So, although flat lists require extra atten-
tion in several parts of the editor (for example in the presenter, in linear
file representations of ASTs, etc.), the flat representation might in the
long run be the best choice.

Finally, to deal with multi-formalism ASTs and versions of gram-
matical elements, an AST-node N contains the following three pieces of
information:

(9rammar-identification version termanal-phylum-name).

Grammar-identification is an abbreviated name of the grammar (such
as PA for Pascal and MO for Modula.) Terminal-phylum-name is the
identification phylum of the node, and it belongs to the grammar that is
designated by grammar-identification. Terminal-phylum-name is NIL for
unexpanded AST-nodes. Versionrefers to a specific version of a terminal
phylum. We will defer the discussion of grammar versions, and hereby
the version field, to chapter 5.

3.2.2 The Uniform Representation Approach

Every document that can be manipulated by Muir is represented as an
abstract syntax tree, and it is constrained by a hierarchical grammar. The
most important document in the system is the so-called meta grammar,
l.e., the grammar for grammars. This grammar defines and constrains
existing and future grammars supported by the environment, including
itself. It also defines the basic functionality of the syntax-directed editor,

50 MUIR BACKGROUND

¥ Document,

. Grammar,
l I e . Document; ,

L~ Document,,
Meta Grammar ¢—— Grammar, -
- Document, ,

_____]\ l ‘L—h—- Documentg
: Grammarg$—— Documents,

ft‘m DOCIIIIleIlt3,3

Figure 3.6: Schematic diagram of documents and their grammars.

by which it is possible to create new hierarchical grammars. The seman-
tics of the meta grammar—which includes the account given in section
3.1—is deeply reflected in the implementation of the environment. For
any other grammar supported by Muir, the environment only has syntac-
tic knowledge. The first version of the meta grammar, or more precisely,
the AST representation of the first version of the meta grammar, was
partially hand crafted using Interlisp tools and the Bobs parser genera-
tor [27]. Succeeding versions of the meta grammar have been, and will
be created via the current meta grammar in bootstrapping processes. In
order to adapt the environment to a new meta grammar some changes in
the Interlisp code, which realizes the system, must be anticipated. The
meta grammar is therefore expected to be stable for a relatively long
period of time.

The representation of grammars is conceptually identical to the rep-
resentation of the meta grammar. As an example, we could create a
hierarchical grammar for a programming language, say Pascal. Similarly,
the hierarchical Pascal grammar in turn defines the basic functionality of
a Pascal editor. The representation of Pascal programs, created via the
Pascal editor, is conceptually identical the representation of the Pascal
grammar. The three levels of grammars and documents are illustrated
in figure 3.6. An arch from x to y means that ¥ is a grammar, and that
the document x is constrained by, and is dependent on the grammar y.

The uniform document representation is a cornerstone in the environ-
ment, because it allows any possible document to be stored, retrieved,
edited, presented, etc. by the same means. As an example, it is possible

3.2. THE MUIR ENVIRONMENT 51

to apply transformations (see chapter 4) both on grammars and on the
documents derived from the grammars. It is even possible to transform a
transformation, because a transformation is represented in the same way
as other documents (see section 4.1.2.)

The idea of having a meta language is not new. Already in Emily
this idea was deployed [39]. In Muir, however, the only realistic way to
create a new grammar, and hereby a supporting environment for a new
formalism, is through the meta grammar. In other words, there exists
no alternative (textual) input format, from which a functional editing
environment can be generated. During the course of this thesis work
we have created hierarchical grammars for the programming languages
Pascal and Modula-2, together with a small set of sample programs in
these languages. Besides these, considerable parts and subgrammars of
the meta grammar have been created in the environment,

3.2.3 Separation Between Presentation and Repre-
sentation

In the Muir environment a screen image of a document is called a presen-
tatron of the document. To a large extent, document representation and
screen presentation of documents are separate issues. From the user’s
point of view, the document is identified with its presentation, and every
action on the document must be understood through the presentation. It
means that the user should not care about representational details. Sim-
ilarly, when discussing the AST representation of documents, it should
not be necessary to care about presentation issues.

A presentation is defined through a so-called presentation scheme. A
presentation scheme belongs to a certain presentation style, and it con-
sists of a set of presentation rules that are associated with the operators
of the grammar. In version 1 of Muir we support text style presentations
and graph style presentations. For a given grammar and a given presen-
tation style, an arbitrary number of presentation schemes can be defined.
Some of these can be used to produce traditional textual presentations of
ASTs, whereas others can produce more detailed or more abstract pre-
sentations. As a key feature of the environment, the user can at any time
select which presentation style and which presentation scheme to apply
on a given document. The fundamental operation that makes this possi-
ble is called Re-present. The Muir presentation framework is described

52 MUIR BACKGROUND

in detail in [73].
There are two important motivations for providing the above men-
tioned presentation framework:

e It should be possible to emphasize certain objects and relationships
among the objects in a presentation, and suppress the presentation
of “irrelevant” details. Such presentations, which we call abstract
presentations, are discussed thoroughly in chapter 7 of this thesis.

e We consider it as a goal at any time to be able to work with small,
well-defined, and relatively self-contained presentations as opposed
to “arbitrary slices” of large and detailed document images.

The two goals are not independent because many abstract presen-
tations tend to be much smaller and clearer than their monolithic and
textual counterparts. A typical way of working with Muir is initially to
present a document at a relatively high abstraction level, and later when
necessary, to open more detailed presentations of selected sub-documents
in a browsing-like manner.

Several presentations of the same internal AST structure can exist on
the screen. We say that two presentations are overlapping if some mod-
ification of the shared AST structure affects both presentations. Over-
lapping presentations are essential in the Muir environment because an
overall, abstract presentation in general presents some of the same as-
pects that will be shown in more detailed presentations. Muir attempts
to keep overlapping presentations consistent in the sense that modifi-
cations carried out through one of the presentations, say P, immediately
will be reflected in the remaining presentations that overlap with P. More

details about our approach to overlapping presentations will be given in
section 7.4.

3.2.4 Co-existence with the Interlisp Environment

As already mentioned, the Muir environment is implemented in the Inter-
lisp-D environment. Following the tradition in the Interlisp community,
Muir is not a subsystem of the Lisp environment, but a co-existing com-
ponent and an augmentation of the system. In this section, we will take
a closer look at how Muir fits into the Interlisp-D environment.

A standard Interlisp-D environment contains two important editors:
Tedit [46] and Dedit [48]. Tedit is a “What You See Is What You Get”

3.2. THE MUIR ENVIRONMENT 93

(WYSIWYG) text editing and formatting system. Dedit is non-syntax-
directed structure-editor for Lisp expressions (see section 2.2.) Sedit,
on the other hand, is a syntax-directed structure editor for formalisms,
which have been defined by hierarchical grammars. While using Muir, it
is possible to activate both Tedit instances and Dedit instances. As we
shall see in the following chapter (section 4.2.6), the Muir environment
has been tied together with its “host environment” in a simple way (it is
possible to activate Dedit from Sedit.)

There is an even closer, although a more implementation-oriented
connection between Sedit and Tedit. Text style Seditors are namely im-
plemented entirely via the so-called hooks and the functional interface
provided by Tedit [46]. This is based on the observation that a text
style syntax-directed editor at the user interface level can be simulated
by disciplined use of a text editor. This discipline is programmed into
the system, and thereby enforced by Muir. The hooks in Tedit provide
for execution of user supplied functions upon certain interactions. The
functional interface makes it possible in a programmatic way to carry
out any sequence of editing actions that can be done interactively. The
functions that are supplied as hooks typically change the state of Tedit
via calls to the functions that comprise the functional interface. Besides
being an interesting implementation technique, at least for people with
a static Pascal background, it implies that presentation-oriented editing
(text editing) in Sedit would be relatively easy to integrate, and trivial
to make consistent with text editing in Tedit. However, in version 1 of
Muir, presentation-oriented editing is not available, because no parser
has been properly integrated into the environment.

3.2.5 Initiation of Actions

Finally in this chapter, we will describe how various kinds of actions can
be initiated in Sedit instances. Basically, two kinds of actions exists:
Selection of constructs, and execution of edit operations. As it is nearly
standard in so-called modeless systems, the command syntax is postfix.
Le., first an argument is selected, and next an operation is executed on
the argument. We will now describe the various options for making sub-
document selection, and for initiating edit operations.

The currently selected sub-document in an Sedit instance is called the
focus of the Seditor (or the focus of the presentation.) The focus of the

54 MUIR BACKGROUND

Z i Edit Operations
perat

e B S
--------------------------------- Install AsText Y
install s ‘
Analyze Ahalyze AaTree =
StartEditor StartEditor AsGraph b
Rootinfo Rootinfo OnStack
"""""""""""""""""""""""""""""""""""" IdPhylum
Copy » Co ChoicePhylum
Re-present » He-prese 4 Operator
DoEditOp b DoEditO b
Reduce ¥ Reduce 2
Undo Undo
Search » Search »
Holophrast b Holophrast . b
Attribute Analysis AttributeAnalysis
*gr‘ammar *grammar

(a) (b)
Figure 3.7: Examples of Muir popup menus.

current Seditor (i.e., the Seditor instance to which the latest interaction
has been directed) is called the current focus. The primary way to change
the current focus is via the mouse. The selection technique is basically
independent of the already existing selection. However, if the same po-
sition is selected more than once, the current focus will be the minimal
enlargement of the already existing focus. (In terms of the internal AST
representation, the focus is moved one level up in the tree.) To a limited
degree, it is also possible to move the current focus via the keyboard (us-
ing a so-called static command, see below.) In version 1, this is limited
to moving the cursor “forward” to the next placeholder.

The primary way to initiate edit operations is through a popup menu,
where the operations are grouped into a fixed number of (possibly empty)
segments. Figure 3.7 shows examples of popup menus for the top-con-
struct of a grammar. The upper section in figure 3.7(a) contains edit
operations derived from the operators of the grammar, and they are also
called primitive edit operations. (In figure 3.7 there is only one edit
operation in this segment.) Section two contains transformational and
programmed edit operations specific to the current focus. Section three
contains edit operations that always make sense, independently of the
current focus. (It is the edit operations that are associated with the

3.2. THE MUIR ENVIRONMENT 55

phylum System.Anything, see section 3.1.4 and section 4.2.3.) Section
four makes available so-called composite templates, and also these depend
on the current focus. Finally, a fifth section may contain operations on
lists. In figure 3.7 the list-section is empty. All the different kinds of edit
operations will be discussed in more detail in chapter 4.

The menu items that contain small arrows have sub-menu items as-
sociated with them, and these can be reached by “rolling” the menu out
one or more levels. This is a standard facility in the Interlisp-D environ-
ment. Figure 3.7(b) shows the pop-up menu rolled two levels out. The
operation that is just about to be initiated in figure 3.7(b) will be de-
noted Re-present>AsTree>InOtherScheme. We primarily use sub-menus
for specialization of operations. Re-present>AsTreerIn OtherScheme, for
example, re-presents the current focus in a new Seditor window using a
tree style presentation scheme chosen by the user.? Secondary, we use
sub-menus as a grouping facility in order to improve the clarity and in
order to minimize the size of the popup menus.

In addition to activation of edit operations via popup menus, Muir
also supports what is called static and dynamic keyboard commands. A
static keyboard command is activated via a single control character, and
therefore only a few, but essential functions are made available in this
way. For example, control-Z (1Z) moves the current focus to the next
placeholder, and control-E extends a list with an additional element. A
dynamic keyboard command is interpreted w.r.t. the current focus, and
it is activated as the static command control-X followed by an operation
name. The operation name should be one of the names in the popup
menu for the current focus, but only a prefix that determines the oper-
ation uniquely is necessary. If, for example, the current focus gives the
popup menu in figure 3.7(a), the keystrokes ‘X ¢ CR’ will activate a
copy operation. As a limitation in version 1 of the environment, only
edit operations at the outer level of the popup menu can be activated via
dynamic keyboard commands.

There is also an edit operation called DoEditOp, which allows the user

to activate an edit operation that somehow is presented on the screen.
Finally, it is of course possible to activate any edit operation via a Lisp

°It would have been more natural to let the third level determine the tree presentation
scheme directly. However, to make the creation of popup menus more efficient, Re-present -
AsTree >InOtherScheme prompts the user for the desired presentation scheme in yet another
menu.

56 MUIR BACKGROUND

function call, but normally this possibility is only used programmatically,
and not interactively from a Lisp listener window.

3.3 Summary

The hierarchical grammar framework is based on the operator/phylum
model. Hierarchical grammars encourage the understanding of a gram-
mar as a generalization /specialization hierarchy of syntactic domains, the
phylum hierarchy. In the formal description of hierarchical grammars the
so-called phylum declarations define the operators as well as the phylum
hierarchy. We consider the phylum hierarchy as the primary interface to a
hierarchical grammar. Multi-formalism grammars are introduced via the
gate phylum concept, and gate phyla induce gates in the corresponding
multi-formalism ASTs. It is straightforward to interpret a hierarchical
grammar as an abstract BNF grammar where two kinds of productions
exist: Construction rule and alternation rules.

A great deal of flexibility is gained from the use of the special phyla
Anything and Always and their multi-formalism variants. Without the
conventions built into Anything and Always it is difficult to create very
general syntactic domains, and it is awkward to allow a specific construct
to be used anywhere in a document.

The uniform representation of the meta grammar, other grammars,
and their derived documents is of prime importance for the environment.
The ability to have an arbitrary number of editor instances is another key
characteristic of the environment. Each of the editor instances presents
a document in a given style, and by using a given presentation scheme.
Both the presentation style and the presentation scheme are selected by
the editor user.

Proper environmental support is crucial for the success of the hierar-
chical grammar model. An environment that allows creation and modi-
fication of a hierarchical grammar by direct manipulation of its phylum

hierarchy seems to provide a good basis for a language development en-
vironment.

Chapter 4

Transformations and Edit
Operations

In this chapter we will first introduce a pattern-based transformation
framework on abstract syntax trees. Following that it is demonstrated
how this transformation framework can be used to implement a variety
of structure-oriented edit operations in a syntax-directed editor. As-
sociation of edit operations with the constructs, on which they can be
applied, is an important aspect of the implementation of edit operations.
It is shown how inheritance in the phylum hierarchy can be used for

this purpose. In chapter 5 and 6 we will study other applications of the
transformation framework.

4.1 The Transformation Framework

The transformation framework in Muir is based on tree-pattern matching
and replacement. Basically, a pattern can be applied on a list of ASTs
to produce a list of matches, and all the matches will be replaced by a
replacement-AST, in which (copies of) substructures of the matches may
occur. Many other systems, for example, Mentor [23], PDS [16], and
TAMPR [11], use similar transformation mechanisms.

4.1.1 How it Works

We will now describe the functionality of the Muir transformation frame-
work. To avoid confusion, we will call the abstraction that we are about
to describe a transformation. The process of applying a transformation
on a document, which also could be called a transformation, will in this
thesis be called a transformation step.

97

58 TRANSFORMATIONS & EDIT OPERATIONS

A transformation obeys the following syntax:

Transformation name (parameter-list)
Explanation explanation

Pre-condition pre-condition
Transformation-class transformation-class
Focus-modification focus-modifier
Pattern pattern

Replacement replacement

The first argument passed to a transformation must be a list of ASTs
that determines on which parts of a document the transformation is ap-
plied. We call this argument the transformation focus. An arbitrary num-
ber of additional arguments may follow the transformation focus. The
ezplanation is intended to contain a helping text that describes the effect
of applying the transformation on a document. The environment can use
the explanation field to guide the user in various ways. The transfor-
mation class allows us to vary the effect of the pattern matching and the
replacement. This is explained below. The focus modifier makes it possi-
ble to redefine the transformation focus before the pattern/replacement
mechanism is activated. Hereby a transformation can be carried out on
an enclosing construct or on a sub-construct of the original transforma-
tion focus. This is sometimes useful when a transformation is applied as
an edit operation (see section 4.2.5.)

A pattern is an AST that matches instances of that AST in the trans-
formation focus. An unexpanded node in the pattern matches any con-
struct C, for which the identification phylum of C is a subphylum of
the phylum indicated in the unexpanded node. Textual patterns with
wild cards can be associated with the leaves in the pattern-AST. In ad-
dition, special patterns that match any transformation focus (ANY), any
P-construct (ANY of SyntaxCategory P), and any unexpanded construct
(ANY Unexpanded) are supported. Most of the mechanisms can be com-
bined such that quite versatile patterns result. Any constituent of a
pattern may be named such that the corresponding constituents of the
matches can be referred to in the replacement and in the pre-condition.!
A given name should only be applied once in a pattern. Alternatively, we

In the current version of the system, named constituents of matches cannot be referred to
in the pre-condition.

4.1. THE TRANSFORMATION FRAMEWORK 99

could have allowed identically named pattern constituents and hereby re-
quire that these constituents should be identical (in some sense.) This is
the interpretation that has been adopted in, for example, the Synthesizer
Generator [80).

The pre-condition is an assertion, which may refer to the transfor-
mation focus and to the matches found by the pattern matcher. In the
pre-condition, a match is referred through the name $Match. A pattern
only matches a constituent of an AST if the pre-condition is fulfilled.
The replacement is substituted for all the matches. As described above,
named constituents of the pattern can be related to constituents of the
replacement. If the pattern constituent Cp in this way is related to
the replacement constituent Cg then the construct matched by Cp is
copied and substituted for Cp. Cpg is usually an unexpanded node in
the replacement. A special replacement called “MATCH?” indicates that
the replacement is equal to the match; i.e., no “real” replacement takes
place, and the transformation is therefore trivial. This feature makes it
possible to implement structural search operations in terms of transfor-
mations (see section 4.2.4.) Finally, the list of replacements is returned
as the result of the transformation. If the replacement is “MATCH?”, the
list of matches is consequently returned.

There are two basic transformation classes: General and primitive. If
the transformation is of class general, the transformation is recursively
applied on the replacements. This is not the case for primitive transfor-
mations. These two transformation classes also have variants, general-by-
reference and primitive-by-reference that do not copy the substructures of
the matches when they are transferred to the replacement. Rather they
are inserted directly?. Finally, the transformation class primitive-expand
provides an efficient way to insert templates (represented in the replace-
ment part of the transformation) into a document. A primitive-ezpand
transformation can, however, be implemented as a less efficient primitive
transformation as well.

When a transformation is applied interactively, as, for example, in an
edit operation, the presentations on the screen must be updated follow-
ing the completion of the transformation. Unless explicitly decoupled,
the screen updating is handled automatically by Muir. When, during the
realization of a transformation step, it is identified that a tree T is going

2This, of course, precludes use of overlapping sub-matches and duplication of sub-matches in
the replacement.

60 TRANSFORMATIONS & EDIT OPERATIONS

to substitute a tree S, a request for screen updating is issued. In order
to collect details about the position and the extent of the presentation
of S, and hereby to facilitate incremental screen updating, it is impor-
tant that the request is issued before T actually substitutes S. All the
screen updating requests are queued, and after the transformation step
is completed, they are realized. The realization naturally depends on the

presentation style in the affected windows. This subject is discussed in
more details in section 7.4.

4.1.2 Representation of Transformations

Transformations in the Muir environment are represented as multi-for-
malism abstract syntax trees (see section 8.1.5.) The outer level of a
transformation, the name, the explanation, the pre-condition, the trans-
formation class, and the focus modifier belong to the meta grammar of
Muir. The pattern and the replacement constituents are gates that allow
any possible construct from any supported formalism to be pattern and
replacement respectively. ILe., the choice phyla of the pattern and the
replacement are System.Anything.

In order to give a substructure S of the pattern (or the replacement)
a name we nest it into a special naming construct that belongs to the
meta grammar. As an example of that, let us assume that the pattern
is a Pascal ifthen-else statement, and that the then-statement and the
else-statement must be named “first” and “second” respectively. The
standard presentation of this pattern together with a tree presentation
that reflects its AST representation are shown in figure 4.1. The boxed
nodes in the AST representation belong to the meta formalism, the others
are Pascal nodes.® In order to make the subPatName-constructs syntac-
tically valid, the terminal phylum symbol subPatName is a subphylum
of System.Always (see section 3.1.4.)

The representation of a transformation as a multi-formalism AST al-
lows us to manipulate (edit, present, store, and even transform) a trans-
formation like any other document supported by Muir.* It also saves us

*Both figure 4.1(a) and figure 4.1(b) can be generated as presentations of ASTs in Muir. The
boxes in 4.1(b), however, are added by hand.

*A meta problem may occur if we want to transform a transformation. Let us assume that
we, as part of a transformation, want to match all subPatName-constructs (see figure 4.1) in a
collection of transformations. The system will consider the subPatName-construct in the pattern
as a naming construct, and process it in a special way. It will not be considered as a construct

4.1. THE TRANSFORMATION FRAMEWORK 61

if-then-else

/l\

<expression> |subPatName| |subPatName|
if <expression> /\ /\
then [first: <statement> |
else [second: <statement> | <statement> SEfaEmEnLs

(a) (b)

Figure 4.1: A textual and a tree presentation of a pattern.

the effort to come up with a special denotation for program fragments,
such as “if-then-else(<expression>, first, second)” for a reference to an
if-then-else statement where the first statement is named ‘first’ and the
second statement is named ‘second’ (as used in the Synthesizer Generator
[80].) Moreover, the distinction between abstract and concrete program

fragments, as drawn in [54], becomes a question of presentation (and not
representation.)

4.1.3 Limitation of Pattern-Based Transformations

The pattern matching capabilities of the transformation framework, as
described above, clearly suffers from some limitations. It 1s, for example,
not possible to define a pattern as a union of more primitive patterns, or
as a negative pattern. Consequently, it is difficult to specify that any con-
struct C that matches a pattern Py or a pattern P, should be replaced by
a construct C’, and that any construct C that does not match a pattern
P should be replaced by a construct C’. It would be relatively straightfor-
ward to extend the pattern matching framework to include unions of pat-
terns, negative patterns, and other options, but there remain translations
that are hard and awkward to realize via pattern-based transformations.
We will now take a closer look at that.

Basically, a pattern-based transformation causes one or more con-
stituents of a document, which have been captured by the pattern and the

for which to search. To alleviate this problem, a construct like a subPatName-construct can be
marked in a special way—using a tree property—in order to override its special meta meaning
in the processing of the pattern and the replacement.

62 TRANSFORMATIONS & EDIT OPERATIONS

pre-condition, to be replaced by a given replacement. The constituents
of the matches that explicitly have been enumerated through the pat-
tern can be inserted into the replacement. This model for changing a
document makes it difficult to move a construct from one place in a doc-
ument to another. In order to do that in a single transformation, the
“from-place” and the “to-place” must be captured by the same pattern.
Le., the pattern must match a structure of the document, of which both
the “from-place” and the “to-place” are sub-structures. Furthermore,
both of the places must be enumerated explicitly, and the gap in between
these places must somehow be matched too. If the distance between the
“from-place” and the “to-place” is great, typically if they belong to differ-
ent structural levels, it may be difficult to formulate a sufficiently broad
pattern.

Because it sometimes is difficult and awkward to move a construct
from one place in a document to another, sorting and other kinds of
re-organizations are also difficult to carry out via pattern-based transfor-
mations. As an example of a hard reorganization, we will later on in the
thesis study the translation of a Modula-2 declaration part (which is a flat
list of mixed declarations) to a Pascal declaration part (in which the dec-
larations are grouped into constants, types, variables, and procedures.)
(See section 6.4.4.)

It should be noticed that we are not claiming that certain translations
are 1mpossible to implement via pattern-based transformations. More
powerful pattern-matching capabilities, and the use of multi-pass trans-
formation processes with intermediate documents could alleviate many
of the shortcomings. However, in order to solve the moving problem, the
sorting problem, and the re-organization problem, we find that it is more
natural and understandable to apply already well-known programming-
oriented techniques. I.e., we will not insist on applying pure pattern-
based transformations in situations where it is easier to write a proce-
dure in a “general-purpose” programming language that solves the prob-
lem. This approach is also advocated in the work from Irvine [87] and in
GRAMPS [14]. In GRAMPS a set of specialized procedures and functions
(generated from a grammar) are used for so-called meta programming.
What is called meta programming in GRAMPS includes the applications
that we are discussing in this thesis. Notice though that the primitive
actions in a meta program very well may activate the pattern-matcher
several time to solve sub-problems.

4.1. THE TRANSFORMATION FRAMEWORK 63

4.1.4 Applications of Transformations

Pattern-based transformations along the lines described above have nu-
merous applications. Many of these are described in Partsch and Stein-
briiggen’s survey “Program Transformation Systems” [72]. In an overall
classification of these applications, various kinds of optimizations are far
the most dominant in the literature. This is made very clear by Balzer
and Cheatham in the introduction to a special issue on program trans-
formations in IEEE Transaction on Software Engineering:

“... the transformation field has focused on altering the
performance characteristics of programs while preserving their
“semantics” |...]. Thus, transformations are simply a method-
ology for improving program efficiency.” [5].

Let us take a closer look at some typical sub-classes of optimizations,
first optimization of a program that results in a semantically equivalent
program in the same language [19,87]. Among such optimizations, re-
moval of recursion, substitution of (non-recursive) procedure calls by their
bodies, and removal of redundant code and redundant variables are com-
mon. To do these kinds of program manipulations, certain pre-conditions
must be fulfilled. Assertions like “the function F is commutative”, “the
value of variable V is independent of the value of W”, and “the fragment
F is side-effect free” are typical examples of enabling pre-conditions of
transformations. Such pre-conditions require knowledge about the ob-
Jects in the program, a knowledge that goes beyond the simple syntactic
knowledge of Muir. In many cases the necessary knowledge can be fig-
ured out from some kind of analysis of the program, for example, from
data flow analysis.

Transformations can also be used to convert a program in an ineffi-
cient programming language to an equivalent program in a more efficient
language. A good example of that is translation of Lisp programs to
Fortran in TAMPR [11]|. A similar application is transformation of spe-
cial and unimplemented notation to already implemented constructs in
the programming language. PDS [16] is an example of a system that
deploys that technique. Finally, transformations are frequently used as
an aid in realizing high level specifications in terms of programs in im-
plemented programming languages. Transformational implementation of
the specification language Gist is an example of that [28]. It is a major

64 TRANSFORMATIONS & EDIT OPERATIONS

point in this work that it isn’t possible with today’s technology to com-
pile high level specifications to machine executable representations. In
other words, high level specifications cannot be translated automatically
to an efficient program. A semi-automatic translation, though, in which
a transformation facility is used as a tool, is attractive.

With appropriate extensions along the lines described in section 4.1.3,
and with the availability of semantic information, it would be possible to
use the Muir transformation framework for most of the optimization tasks
described above. However, the transformational applications described
in this thesis have nothing to do with optimization. What we are going
to describe in this and the following two chapters could be characterized
as use of transformations in software engineering, or more specifically,
use of transformations in construction and maintenance of grammars,
programs, and other formal documents.

4.2 Structure-Oriented Edit Operations

In the rest of this chapter we will discuss an application of the Muir
transformation framework, namely structure-oriented edit operations. A
structure-oriented edit operation modifies the internal document repre-
sentation. Immediately following a structure-oriented edit operation the
environment must update the external screen representations in such a
way that they are consistent with the modified document representation.
If the screen presentation is textual, the screen updating process is similar
to so-called pretty printing [71].

As an alternative to the structure-oriented model we will briefly touch
on another possible model, the presentation-oriented edit operations. Edit
operations following this model manipulate the elements in the screen
presentation. Subsequently the environment must modify the internal
document representation such that the presentation and the represen-
tation are consistent. For textual presentations, a presentation-oriented
edit operation typically inserts or deletes a text string at a given position
in the document, and the internal representation is kept up-to-date via a
process known as parsing [1].

In this thesis we will only discuss structure-oriented edit operations
on documents whose internal representations are abstract syntax trees.
More specifically, it will be discussed how the transformation framework

4.2. STRUCTURE-ORIENTED EDIT OPERATIONS 65

that was introduced in the previous section can be used to implement a
variety of structure-oriented edit operations. In an environment based
on structure-oriented edit operations, the tendency seems to be that a
large amount of specialized edit operations are defined and accumulated,
and that most edit operations only make sense on certain types of con-
structs. Consequently, it is important to relate the edit operations to
the constructs, on which they can be applied. In this section we will
therefore also discuss how, through inheritance in the phylum hierarchy,
edit operations can be associated with the constructs on which they make
sense.

We begin by considering edit operations that can be derived directly
from a grammar. Following that, the definition and application of more
composite templates, edit operations of transformational nature, struc-
ture-oriented search operations, and edit operations for manipulation of
lists will be treated. It will also be discussed how to deal with edit oper-
ations that cannot in a natural way be implemented as transformations.
Finally, it will be exemplified how the transformation framework together

with a few other means can be used to carry out major systematic mod-
ifications to a document.

4.2.1 Primitive Edit Operations

We define a primitive edit operation as one that inserts a template de-
fined by an operator (or a BNF production) into a document. Recall
that in the hierarchical grammar framework an operator is defined by a
terminal phylum declaration. As an example, the AST representation of
the template defined by the terminal phylum declaration

while: expression statement

from Pascal is shown in figure 4.2(a). Such a template is always a “two
layer template.” The operation that inserts it into a program could be
implemented by the transformation shown in figure 4.2(b). The impor-
tant part of this transformation is the replacement, in which the while-
template is contained. The pattern matches any transformation focus.
The way we associate primitive edit operations with phyla in the grammar
assures that the edit operation only can be applied when it syntactically
makes sense. (We will elaborate that below.) No explicit definition of
the primitive edit operations exists in Muir. The primitive edit opera-

66 TRANSFORMATIONS & EDIT OPERATIONS

Transformation PrimitiveWhileEditOp(Opfocus)
Explanation “Replaces the current focus by a
while while template.”

Pre-condition “T”
/\ Transformation-class Primitive-expand

<expression> <statement> Focus-modification NoChange
Pattern ANY
Replacement while <expression>
do <statement>

(2) (b)

Figure 4.2: A template and a primitive edit operation.

tions are implicitly defined by the terminal phylum declarations of the
grammars.

Given the notion of primitive edit operations, we now define on which
constructs these edit operation can be applied:

A primitive edit operation E induced by a terminal phylum dec-
laration T: Py ... P, can be applied on any construct N, whose
choice phylum C is a superphylum of T.

We say that the grammar associates the primitive edit operation E with
the terminal phylum symbol T, and that E is associated with every su-
perphylum of T. We also say that E is applicable on the construct N.
The primitive while edit operation, for example, is applicable on the con-
structs whose choice phylum is statement, unlabelled, structured, repeti-
tive, or while due to the phylum hierarchy shown in figure 3.1 on page 31.
Figure 4.3 illustrates the association of a primitive edit operation with a
terminal phylum and all its super phyla.

In terms of classes in an object-oriented programming system, each
of the most specialized classes induces a primitive edit operation that
inserts an instance of itself into an AST. Such operations are applied
on unexpanded nodes, which correspond to instances of more general
classes. Somehow the primitive edit operations must be made applicable
on instances of all the super classes of the classes from which they are
induced. This can either be achieved by a general “expand operation”
that takes a parameter, or via bottom-up propagation of operations to
super classes in the class hierarchy.

4.2. STRUCTURE-ORIENTED EDIT OPERATIONS 67

Ast Phylum hierarchy

Association
of an AST node
with its choice phylum

E—
\ Bottom-up

propagation of
an edit operation
in the phylum hierarchy

A terminal
phylum declaration
induces an edit operation

Operator

Figure 4.3: Association of a primitive edit operation.

Every document can be constructed exclusively by using primitive
edit operations. However, creation and modification using only the set of
primitive edit operations is clearly too restrictive for practical editing en-
vironments. We even claim that satisfactory and realistic syntax-directed
editors cannot be generated automatically from a grammar of a language.
Typically, certain combinations of constructs are used so often that it is
waste of time and tedious for the user to create them via primitive edit
operations every time they are needed. Furthermore, some frequently
occurring changes require several primitive edit operations to be carried
out. In such situations a single transformational edit operation, which
does the same manipulation as the sequence of primitive edit operations,
greatly improves the editor. Thus, the need for more elaborate and “ad-
vanced” edit operations is pressing, but it seems nearly impossible to
define a sufficient set of non-primitive edit operations once and for all.
Practical use of the editor should reveal the demands, and it should be
easy to extend the set of edit operations while the editor is in use.

In the following sections we will discuss how a flexible repertoire of
edit operations can be implemented in terms of the Muir transformation
framework, and how such edit operations can be associated with the
constructs on which they make sense. We start with a discussion of how

68 TRANSFORMATIONS & EDIT OPERATIONS

(a) Procedure <nameDcl>(<parameter-list>);
<block>

(b) Procedure <nameDcl>(<nameDcl>: <type-name>);
<constant-declarations>
<type-declarations>
Var <nameDcl>,<nameDcl>: <type>;

<nameDcl>,<nameDcl>: <type>
<routine-declaration-list>

Begin
<statement>;
<statement>;

<statement>
End

Figure 4.4: Primitive and composite template for a procedure definition.

to handle more composite templates than the two level templates defined
by the terminal phylum declarations.

4.2.2 Insertion of Composite Templates

Typically, some composite templates are needed more frequently than
others during creation of a document. As an example, compare the tem-
plate in figure 4.4(b) with the template in figure 4.4(a), which is induced
by the operator Procedure in the Pascal grammar. It can probably be
proved empirically that most procedure declarations contain at least one
parameter, some local variables, and a few statements. Instead of creat-
ing such frequently used templates by combining primitive edit operations
every time they are needed, composite templates should be made directly
available as a supplement to the primitive edit operations. If some of the
constituents of the composite template are superfluous, they are easy to
remove or eliminate. In fact we believe that most people find it easier to
remove something existing, than to insert something that does not exist
yet. Moreover, many unexpanded placeholders can be eliminated auto-
matically if they remain unrefined. (In the Muir environment we have
an edit operation called Reducer>UnexpandedPlaceholders that does this.
In the Synthesizer Generator [80], the notion of “completing terms” may
help eliminate unexpanded placeholders.)

In Muir, an arbitrary document or substructure of a document can
be declared as a composite template. In doing that the system defines a

4.2. STRUCTURE-ORIENTED EDIT OPERATIONS 69

Transformation *procedure(Opfocus)

Explanation “Replaces the current focus by a template”
Pre-condition “T”

Transformation-class Primitive-expand
Focus-modification NoChange

Pattern ANY

Replacement Procedure <nameDcl>(<nameDcl>: <type-name>);
<constant-declarations>
<type-declarations>
Var <nameDcl>,<nameDcl>: <type>;

<nameDecl>,<nameDcl>: <type>
<routine-declaration-list>

Begin
<statement>;
<statement>;

<statement>
End

Figure 4.5: A Transformation that inserts a composite template.

transformation as the one shown in figure 4.5, in which the replacement
is identical to the selected substructure of the document. This trans-
formation is in principle similar to the one shown in figure 4.2(b). The
user is asked to give the template a name. A composite template is legal
whenever the primitive edit operation induced by the identification phy-
lum of the root of the template is applicable. If a procedure is a legal
alternative during editing of a Pascal program, the system will also make
the transformation *procedure available in the menu. (For an example
of a menu that contains composite templates, see section 3.2.5.) If ap-

plied, the replacement of the transformation is simply substituted for the
current focus.

We have found the composite template facility very useful in the Muir
environment, and at present, approximately 50 such templates have been
defined for the formalisms that we support. As a modest extension, it
would be useful to allow the user to augment the system’s template list
with a personal set of templates. Also, one could imagine application-
specific templates that could be brought into the environment whenever
a document belonging to a given application area is edited.

70 TRANSFORMATIONS & EDIT OPERATIONS

(a) Transformation NestIn-if-then(Opfocus)
Explanation “Nests a statement into an if-then construct”
Pre-condition “T”
Transformation-class Primitive
Focus-modification NoChange
Pattern ANY of SyntaxCategory statement
Replacement if <expression>

then MATCH

(b) Transformation Unnest-if-then(Opfocus)
Explanation “Unnests an if-then construct”
Pre-condition “T”

Transformation-class Primitive
Focus-modification NoChange
Pattern if <expression>

then [S: <statement>]
Replacement [S: <Anything>|

(¢) Transformation procedure—function(Opfocus)
Explanation “Converts a procedure to a function”
Pre-condition “T”

Transformation-class Primitive
Focus-modification NoChange

Pattern Procedure [N: <nameDcl>]([PL: <parameter-list>]);
[B: <block>]
Replacement Function [N: <nameDcl>|([PL: <parameter-list>]): <type-name>;
[B: <block>]

Figure 4.6: Examples of transformational edit operations.

4.2.3 Transformational Edit Operations

In the previous sections we have described edit operations that create new
constructs. In this section we will discuss edit operations that modify ex-
isting constructs. Such edit operations can loosely be classified as nest
operations, extract operations, and proper transformations, all of which
can be implemented in terms of the transformation framework described
in section 4.1. Figure 4.6 shows examples of transformations that belong
to these three classes. The nest operation in figure 4.6(a) makes a state-
ment in a Pascal program conditional. The pattern matches a statement,
and the “M ATCH” indication in the replacement causes the match to be
copied into the then-part of the if-then statement. The transformation
in figure 4.6(b) is the inverse operation of NestIn-if-then. If applied on

4.2. STRUCTURE-ORIENTED EDIT OPERATIONS 71

an if-then statement, the statement called “S” will be substituted for the
if-then construct. The phylum Anything in the replacement reflects that
the choice phylum of the replacement is System.Anything (see section
3.1.4.) Finally, in the procedure-to-function conversion in figure 4.6(c)
the pattern enumerates the three constituents of a procedure such that
they can be copied into the function template.

Edit operations for modification—Tlike those in figure 4.6—should also
be associated with the phyla of a grammar, and it should be possible to
tell on which constructs the transformational edit operations are appli-
cable. The definer of an edit operation must associate the operation with
one or more phylum symbols from the phylum hierarchy, and the system
will then use the following propagation rule:

If an edit operation E is associated with a phylum symbol P, E
will in addition be associated with all the subphyla of P in the
phylum hierarchy.

The edit operation E is applicable on a node N if E is associated with
the identification phylum of N, i.e., if the identification phylum of N is
a subphylum of the phylum symbol, to which E was associated directly.
Compared with object-oriented programming systems, the transforma-
tional edit operations are inherited down in the class hierarchy, which
corresponds to the phylum hierarchy defined by a hierarchical grammar.
Figure 4.7 illustrates the association of an edit operation to a phylum
and the top-down inheritance.

The nest operation in figure 4.6 is associated with the phylum state-
ment. The unnest operation is only meaningful on if-then statements,
so it is associated with the terminal phylum if-then. The procedure-to-
function conversion only makes sense on procedures, and therefore it is
associated with the terminal phylum procedure. Notice that in all three
cases the pattern-expressions suggest the association of the edit opera-
tions. (The patterns are essential in all but the nest transformation in
figure 4.6(a). The pattern in the nest transformation could be “ANY?,
as long as the transformation only is applied on a statement. The pat-
tern “ANY of SyntaxCategory statement” matches any statement in the
focus.)

72 TRANSFORMATIONS & EDIT OPERATIONS

Ast Phylum hierarchy Asssctation of
an edit operation
with a phylum symbol Eo
cl N\, T EEEERel
N Edit operation
V Inheritance of
an edit operation
in the phylum hierarchy
T
> <
Association

of an AST node with
its identification phylum

Figure 4.7: Top-down inheritance of an edit operation in a phylum hier-
archy.

4.2.4 Structure-Oriented Search Operations

It is well-known that some search operations can be made more power-
ful on an abstract document representation than on a textual document
representation (see, for example, [23].) In an abstract representation it
is possible to distinguish some structures that cannot easily be distin-
guished in a textual representation. In terms of the Muir transformation
framework a structure-oriented search operation can be understood as a
transformation, in which the pattern and the pre-condition specify the
objects for which to search, and in which the replacement equals the
matches (see section 4.1.1.)

As an example of how to use the structure-oriented search facilities in
Muir, let us assume that we in a Pascal program want to locate all acti-
vations of the standard procedure “Write” with two or more arguments,
of which the first is “F”. Thus, we want to match the procedure calls
“Write(F,a)”, “Write(F,a,b)”, but not “Write(F)”. Furthermore, we do
not want to match the string “Write(F,a)” in a context in which it isn’t

a procedure call. The following steps represent a possible way to solve
this problem:

1. Select an example of a construct in a Pascal program that should

4.2. STRUCTURE-ORIENTED EDIT OPERATIONS 73

(2) Transformation StructureSearch(Opfocus)
Explanation “Searches for the pattern described in the pattern part.”
Pre-condition “T”
Transformation-class Primitive
Focus-modification NoChange
Pattern Write(F,a)
Replacement MATCH

(b) Transformation StructureSearch(Opfocus)

Explanation “Searches for the pattern described in the pattern part.”
Pre-condition “T”

Transformation-class Primitive

Focus-modification NoChange

Pattern Write(F,<expression>,< expression-list>)

Replacement MATCH

Figure 4.8: Transformations that implement search operations.

be matched by the structure-oriented search operation. We could,
for example, select the procedure call “Write(F,a)”.

2. Activate the operation Search on the selected construct. This op-
eration opens a new Sedit instance with a structure-oriented search
operation, which matches the construct selected in 1. The structure-
oriented search operation is shown in figure 4.8(a).

3. Refine the pattern of the search operation, if necessary. In the

example we refine the pattern, and we get the search operation
shown in figure 4.8(b).

4. Finally, activate the search operation on the desired program frag-
ment. (This can be done with DoEditOp, see section 3.2.5.)

If, at a later time, the matches located by the search operation in figure
4.8(b) need to be modified, it is easy to turn the search operation into a
“real” transformation.

Showing the actual matches located by a structure-oriented search
operation is not always straightforward in Muir, because a document can
be presented in such a way that some details are left out. If we initiate
a search operation from an abstract presentation where the matches are
not presented, either the nearest enclosing constructs in the abstract

74 TRANSFORMATIONS & EDIT OPERATIONS

presentation can be highlighted one at a time, or a set of new and more
detailed Seditor instances can be set up around each of the matches. If
the matches happen to be presented in the presentation from which the
search was initiated, they can naturally be shown one at a time.

The structure-oriented search operations shown in figure 4.8 are both
of class primitive. It means that matches inside a match are not located.
It should be possible to locate all matches by using the transformation
class general. However, in version 1 of Muir, it will cause the pattern
matcher to loop, because it immediately will find the match again, acti-
vate itself on this match, find it again, etc. Notice that this functionality
sometimes is useful in transformations if the replacement is different from

the matches. It might be worthwhile to support “in depth” structure-
oriented searching as a special case.

4.2.5 Edit Operations on Lists

As described in section 3.2.1, linear list structures are in Muir represented
as nested binary trees of heads and tails. If only primitive edit operations
are used, this representation is awkward for editing. In this section we
will describe how a set of generic and more adequate list manipulation
operations have been implemented in terms of the transformation frame-
work. These include an operation that creates a list, operations that
insert list elements before and after an existing element, and an opera-
tion that deletes a list element. To be concrete we will take a closer look
at the operation that adds elements in front of an existing list element.

Adding an element E’ in front of an existing element, say in front of
E; in figure 4.9, can be done by nesting the father of E, into the second
constituent of the tree rooted R (see the figure.) A transformation that
implements this nest operation for a given list type, say for a list of
names, is straightforward to create. Such an operation is quite similar to
the nest operation shown in figure 4.6(a). However, we want to implement
a generic operation, i.e., an operation that can do the job independent
of the syntactic type of the list. Thus, the operation we are looking for
should be able to extend a list of names, a list of statements, etc. To
obtain this generality the replacement constituent of the transformation
must necessarily depend on the construct, on which the transformation
1s activated. Figure 4.10 shows such a transformation.

The transformation in figure 4.10 is intended to be activated on an

4.2. STRUCTURE-ORIENTED EDIT OPERATIONS 75

S1
/\
E, Sa
/\
E; S3 R
/\
Es e E’ MATCH

() (b)

Figure 4.9: Illustration of ASTs for adding E’ in front of E,.

Transformation AddElementBefore(Opfocus)
Explanation “Adds a list element in front of the current focus”
Pre-condition “(LISTELEMENT? Opfocus)”
Transformation-class General
Focus-modification “(SUPERTREE Opfocus)”
Pattern ANY
Replacement
“(PROG (R)
(SETQ R (OPERATORAST (OPERATORDEFINITION Opfocus)))
(ASTREPLACE
(SUBTREE R 2)
(OPERATORAST (GRAMMARREFERENCE ’match MT 1))
'NOCHECK)
(RETURNR))

Figure 4.10: A generic list-adding transformation.

76 TRANSFORMATIONS & EDIT OPERATIONS

existing list element, for example on E, in figure 4.9. First, it moves
the transformation focus to the father of the list element (from E, to
Sy in figure 4.9.) The pattern and the pre-condition matches any list
element. The replacement is a Lisp expression. In general, the pattern
and the replacement of a transformation are allowed to be AST-returning
Lisp expressions. Such a Lisp expression is evaluated in the context of
the parameter bindings of the transformation. In the example the Lisp
expression returns the template shown in figure 4.9(b). The Lisp code
has access to the transformation focus Opfocus, and through this, to
the syntactic type of the list. The already described functionality of
the transformation framework, especially the meaning of “MATCH?” (see
section 4.1.1) implies that E’ is inserted in front of E,.

Edit operations like AddElementBefore must be applicable on all list
elements in a document. However, list elements are typically not dis-
tinguished syntactically from non-list elements. For example, a Pascal
statement is in some contexts a list element, but in others it is not. So it
is the context of the construct rather than its identification phylum or its
choice phylum that determines whether the list operation makes sense. It
would be possible to elaborate the abstract grammar in such a way that
list elements syntactically could be distinguished from non-list elements.
The phylum statement in Pascal, for example, should be split into single-
statement and statement-in-list. Edit operations on list elements could
then be associated with a common superphylum of the z-in-Iist phyla,
where z is a phylum, for which there exists list structures. However, we
think that a clean abstract grammar is more important than one that
facilitates an elegant and a simple association of list-oriented edit oper-
ations to phyla. So in Muir we have chosen to accept the association of

list edit operations to phyla as a special case. In other words we use ad
hoc association of list edit operations to phyla.

4.2.6 Programmed Edit Operations

Although the majority of the structure-oriented edit operations can be
implemented as pattern-replacement based transformations, there is a
“rest group” of operations that cannot in a natural way be realized as in-
stances of Muir transformations. Some of these are of “transformational
nature”, but because of limitations in the expressiveness of the trans-
formation framework (see section 4.1.3), they cannot be implemented as

4.2. STRUCTURE-ORIENTED EDIT OPERATIONS 77

transformations. Other edit operations, such as copy operations and re-
present® operations are not of transformational nature. Finally, it is often
useful to define generalized “edit operations” that support other purposes
than editing.

In order to deal with the “rest group” of transformations, we allow
certain Lisp functions to be activated as edit operations. A Lisp func-
tion can be used as an edit operations if (1) its first parameter accepts
a list of ASTs (the operation focus), (2) it returns a list of ASTs, and
(3) the name of the function is of the form grammar.editOpName, where
grammar is the name of the grammar, to which the edit operation be-
longs. In addition, the function must explicitly request screen updating,
such that the screen can be properly updated after the edit operation
has been completed. (See section 4.1.1 and section 7.4 for a discussion of
our approach to screen updating.) Edit operations that obey these rules
can be activated in exactly the same way as a transformation. As with
transformations, we declare functional edit operations in the grammar,
and it is also possible to associate them with phyla in the grammar. Like
transformational edit operations, programmed edit operations are inher-
ited in the phylum hierarchy, and hereby associated with all subphyla of
the phyla, to which the operation explicitly has been associated.

The declaration of a functional edit operation merely consists of the
name of the edit operation and an explanation. However, “meta edit
operations” on such a declaration make it possible to create and present
the Lisp function that corresponds to it. In a simple way this ties together
the Muir environment and Dedit [48] in the Interlisp environment.

4.2.7 Major Systematic Modifications

Our approach to definition of edit operations is based on creation of many
specialized transformations or Lisp functions, and association of these op-
erations with the phyla, on whose elements the operations make sense.
This is in contrast to other structure-oriented editors that provide a few
but general structure-oriented operations. Dedit from the Interlisp-D en-
vironment [48] is an example of such an editor.® There is clearly a limit

SRe-present presents the selected fragment of a document in another window, using the same
or another presentation scheme and/or style.
6In Dedit, however, it is also possible to apply a wide variety of specialized and powerful

commands. These commands were originally defined in Edit, the teletype-oriented predecessor
of Dedit.

78 TRANSFORMATIONS & EDIT OPERATIONS

for how far our approach can be, and should be pushed. At some level,
the user must “combine” the elementary operations and the elementary
mechanisms that the system provides. Combination of elementary oper-
ations is in Muir straightforward syntax-directed editing. Combination
of elementary mechanisms, however, is more like an idiom that has to
be learned. In this section we will exemplify how the transformation
mechanism, the structure-oriented search mechanism, and the so-called
AST-stack (explained below) in combination can be used to relieve the
burden of carrying some major systematic modifications to a document.

The example that we will consider is adding an extra parameter to
a set of procedure declarations and their activations. This involves at
least the following manual decisions: (1) Selection of the affected proce-
dures, (2) selection of the position of the new parameter, (3) choice of
the formal name and the type of the parameter, and (4) choice of the
actual parameter expressions in the procedure activations. If only a few
declarations and activations are involved, it is probably easiest to carry
out the modification by hand using “standard edit operations.” If, on the
other hand, tens of procedures and hundreds of procedure activations are
involved it is clearly time-saving and less error prone to apply a more

systematic modification technique. In Muir we would do the following to
carry out the task:

1. Collect the affected procedure declarations. Concretely we select
the procedures one after the other, and in order to “hold on to
them”, we push references to them onto the AST-stack.

2. Apply a transformation on the collection of procedures. The trans-
formation should add the formal parameter.

3. Collect the affected procedure activations. The procedure activa-
tions can be collected manually (by selecting them one at a time and
pushing references onto the AST stack), or they can be collected

by repeated application of structure-oriented search operations (see
4.2.4.)

4. Apply a transformation that adds an argument template (or, if
possible, the argument itself) to the collected set of procedure calls.

5. If necessary, visit each of the modifications and adapt them appro-
priately. This is straightforward because references to all modifica-
tions are left on the stack by step 4.

4.3. SUMMARY 79

As can be seen, the AST-stack is central to the described technique.
An element on the AST-stack is a list of (references to) ASTs. The
ASTs can be referred to from other contexts as well; for example, they
can be sub-structures of documents, which currently are manipulated in
the environment. Push, pop, copy, and re-present operations (among
others) are available on the stack. The result of a transformation or a
structure-oriented search operation can also be pushed onto the AST-
stack. Furthermore, if the top of the stack is a transformation, this
transformation can be executed on the ASTs referred to by the stack
frame next to the top. Hereby the AST-stack is popped twice, and the
result of the transformation is pushed onto the stack.

We believe that a wide variety of systematic modifications can be
carried out interactively using transformations, structure-oriented search
operations, and the AST-stack, in ways similar to the example described
above. In appendix C, we describe and illustrate in great detail another
example of a systematic modification. Once a task has been completed
it is easy to carry out a similar task in the future if the involved trans-
formations and search operation templates are filed.

4.3 Summary

In the first section of this chapter we described the capabilities and the
limitations of the pattern-based transformation framework. One of the
things that distinguish our work from other’s is the way we represent
transformations as multi-formalism ASTs. This contributes to the uni-
formity of the system, because transformations can be handled in the
same way as any other piece of information by the environment.

As a major application of the transformation framework, we have de-
scribed how most structure-oriented edit operations can be understood
and/or implemented in terms of pattern-based transformations. We have
argued that besides the primitive two-layer templates defined by the op-
erators, more composite templates should be made available. We find
that Muir provides a particularly elegant solution to the definition and
use of composite templates. Transformational edit operations, such as
nestings and extractions, are obviously straightforward to implement as
pattern-based transformations.

Edit operations that insert primitive templates are implicitly defined

80 TRANSFORMATIONS & EDIT OPERATIONS

by the terminal phylum declarations, and they are propagated up in the
phylum hierarchy to all their superphyla. Such edit operations are made
available through the choice phylum of a construct. Edit operations that
modify already existing constructs are also associated with phyla, but
they are inherited top-down in the phylum hierarchy, and they are made
available through the identification phylum of a construct.

We have also seen that structure-oriented search operations can be
implemented in the transformation framework, namely by considering
the replacement as equal to the matches. More dynamic edit operations,
in which the pattern or the replacement depend on the transformation
focus have been exemplified through generic list edit operations. Fi-
nally, we have discussed the concept of ‘major systematic modifications’,
a technique to carry out some “tedious” modifications by systematic,
interactive, and transformational means.

Chapter 5

Keeping ASTs Consistent with the
Grammar

In chapter four we described an application of transformations that is
relevant for every editing environment, namely how to implement edit
operations in terms of transformations. In this chapter we will focus on
an application of particular importance for a language development en-
vironment. The problem we will study is how to keep a set of documents
consistent with a grammar that is under development. We are only con-
cerned with modification of the abstract grammar. Modification of the
concrete grammar, which in Muir is a matter of presentation, can be done
at any time without affecting any existing documents inside or outside
the environment (see section 3.2.3 and chapter 7.)

As an example of a problem we will deal with, let us assume that an
extra argument is added to an operator of a grammar (or equivalently
that an extra constituent is added to a terminal phylum declaration.)
After this grammar modification, all existing documents that apply the
operator are inconsistent, and the documents need to be updated in order
to reestablish their syntactic integrity. During a language development
process we frequently want to carry out such grammar modifications. In
DOSE! [30], an environment for language design by Feiler et al., only
detection of inconsistencies is supported. DOSE does not support updat-
ing of existing documents. I.e., ASTs are discarded if they are found to
be inconsistent with the grammar. We find it crucial that the document
updating process is supported by the environment in a systematic way.
A manual updating process of the documents via some kind of editing is
typically overwhelming.

!'DOSE and Muir have been developed independently of each other.

81

82 KEEPING ASTs CONSISTENT

Although the problem is of special importance in a language devel-
opment environment, there seems to be widespread agreement among
people who work with syntax-directed editing that similar problems ex-
ist in any syntax-directed editor. Very few grammars, even grammars for
well-known and stable programming languages, have been implemented
“just right” at the first try in a syntax-directed editor generator. We will
in this chapter discuss a transformational approach to the consistency
problem.

5.1 A Priori Limitations

Before we dive into the problems, we will describe a few limitations that
reflect our ambition level, and which therefore have a profound effect on
the rest of this chapter. The facilities for keeping a hierarchical gram-
mar and its dependent documents consistent are intended to deal with
grammar perturbations rather than major changes. If extensive grammar
modifications have taken place, the resulting grammar should probably
be considered as describing a new language, and other means should be
used to transform existing documents. The multi-formalism transforma-
tion facility, which will be described in chapter 6 of this thesis, is relevant
in dealing with more extensive grammar modifications.

We will assume that there exists a relatively straightforward, legal,
and context free substitution for constructs in documents that become
outdated because of grammar modifications. If that is not the case, it is
difficult or impossible to formulate a transformation that remedies the in-
consistencies between the grammar and the documents. It should also be
noticed that we are not about to propose a facility that always preserves
the semantic correctness of documents that depend on the grammar. Qur
approach only deals with syntactic aspects.

The grain-size of the grammar modification steps is of importance for
the following discussion. We will restrict a grammar modification step
to either (1) add a new phylum to the phylum hierarchy, (2) modify an
existing terminal phylum declaration (operator), or (3) delete an existing
phylum from the phylum hierarchy. Every grammar modification can
be carried out as a sequence of such primitive modification steps. For
example, a replacement of a phylum symbol with another phylum symbol
can be accomplished by a deletion followed by an addition.

9.2. THE BASIC APPROACH 83

We will not assume that it is possible at a given time to process all
documents that depend on a grammar. In other words, there are no
“pointers” from a grammar to the set of documents that depend on the
grammar (but the opposite links are of course present.) It means that
the effect of the grammar modifications (basically the transformations)
must be stored until we are confident that all dependent documents have
been processed.

5.2 The Basic Approach

We mentioned in the introduction that our basic approach in dealing with
the consistency problem between grammar and documents is transforma-
tional. Let us now describe in more detail what we mean by that.

After the grammar definer has performed a grammar modification
step on a grammar G, the modification must be brought into effect in
the editing environment. The grammar modifications must, for exam-
ple, be reflected in the functionality of the syntax-directed editor for
G-documents. We will assume that it is well-defined when this happens,
for example that the grammar definer explicitly tells the environment
when the grammar modification should be effective. As a side effect of
this process, the system will create one or more transformation templates
for bringing dependent documents up to date. The transformations will
be presented for the grammar definer, who then can refine the transfor-
mations if necessary. Whenever, in the future, a document with outdated
constructs is encountered, the environment can automatically locate the
relevant updating transformations, and it can attempt to apply them on
the obsolete constructs, hereby bringing them up to date. This grammar
modification and document updating model is shown schematically in
figure 5.1.

It is instructive to compare the basic grammar modification and doc-
ument updating technique, as described above, with commonly found ad
hoc solutions. A 100% manual identification and updating process is of
course the most primitive ad hoc solution one can think of. If that is too
big a task, it can be attempted to write a specialized piece of program
that searches for outdated constructs, and which updates the document
representation appropriately. This solution is very tedious if the docu-
ments are represented as text. Even if the documents are represented as

KEEPING ASTs CONSISTENT

Grammar

1 ' _ : Documents

.........

.........

W/ Transformation

V.

Precond.
pattern. | . =
Rep. | | e

3.

.........

AN

1. The user modifies an element in a grammar.
The system creates a transformation template.

The user refines the transformation template.

e

The system applies the transformation to update
the documents, which depend on the grammar.

Figure 5.1: Grammar modification and document updating.

5.3. VERSIONS OF GRAMMATICAL ELEMENTS 85

ASTs the AST “patching code” must be written on a case-by-case basis.
Le., a future modification of the grammar will probably demand a new
pice of document-updating program.

Techniques for identification of outdated constructs in documents play
a key role for the proposed solution of the problem. We will in the
next section discuss how a fine-grained version concept of grammatical
elements can be used to identify outdated constructs.

5.3 Versions of Grammatical Elements

Because each construct in a document refers to a phylum symbol in a
hierarchical grammar, a version concept for grammatical units seems
to provide an efficient way to identify outdated constructs. The basic
idea is to register a version number for each terminal phylum declaration
(operator)® of a grammar. When a construct is created in a document,
the version number of its identification phylum should be stored in the
construct. Each AST-node contains a field in which the version number
of the construct can be stored (see section 3.2.1.) If the grammar at some
time in the future is modified in such a way that the operator is affected,
the version number of the operator will be incremented. If the operator
is eliminated, it will be marked in a special way. A comparison of the
stored version number of the construct with the version number of the
operator will immediately unveil the inconsistency.

For our purpose, thus, a fine grained version concept for phyla is a
key to the solution of the consistency problem. A more total version con-
cept for grammars would not be very helpful, because we want to deal
with grammar perturbations like those described in section 5.1, and not
more coarse grained grammar modification steps. It is not immediately
clear, however, how much overhead, in terms of information about older
versions of phylum declaration, the version administration requires. Fur-
thermore, handling of the terminal phyla, as discussed above, seems to
be relatively unproblematic, whereas a similar notion of versions for cat-

egorical phyla is harder to deal with. We will now in turn discuss each
of these subjects.

?Because there is a one-to-one correspondence between terminal phylum declarations, leaf
phylum symbols in the phylum hierarchy, and operators, we will also talk about “versions of
operators” and “versions of phylum symbols.”

86 KEEPING ASTs CONSISTENT

5.3.1 Version Overhead

Let us assume that we keep track the current version of a terminal phylum
declaration, and that we in the AST nodes register the version of the
phylum symbol that was used during the creation of the construct. This is
the idea already sketched above. If the terminal phylum T is a subphylum
of P, all the future versions of T will be considered as subphyla of P.
Le., the version of a terminal phylum T does not affect T’s placement
in the phylum hierarchy. The version mechanism allows us to identify
outdated constructs in documents. If, however, we for some reason want
to manipulate a document before it is updated w.r.t. its grammar, it is
a reasonable requirement that the environment should be able to handle
the outdated constructs properly. Most important, the system should be
capable of presenting outdated constructs in a satisfactory way until they
have been eliminated. If the presentation rules are associated with the
operators, and if some operators are modified, the environment will not
be able to present instances of older-version operators. In order to do
that, at least the presentation rules of the older-version operators must
be kept around in the environment.

If we furthermore want to support editing, in which obsolete con-
structs can be inserted into a document, we also have to store information
about the abstract structure of outdated operators. However, we consider
the grammar modifications to reflect development steps of a single lan-
guage, as opposed to a whole sequence of language versions. It means
that only the most up-to-date constructs are relevant during editing of
“normal documents.” The documents that are exceptions in that respect
are the transformations that keep “normal documents” up to date. The

pattern-parts of such transformations are normally instances of obsolete
constructs.

The preceding argumentation apparently indicates that the version
administration of the terminal phylum declarations imposes a consider-
able storage overhead on the grammars. However, by relaxing the re-
quirements a little bit, it is possible to get rid of nearly all the overhead.
We will now take a closer look at how this can be done.

An accurate presentation of outdated constructs in documents is clearly
desirable, but it is possible to present any AST structure in a standard
way, without using stored presentation schemes at all. As an example,
figure 5.2(a) shows the standard presentation of a Pascal program frag-

5.3. VERSIONS OF GRAMMATICAL ELEMENTS 87

if-then-else
Pointer < StackMaxSize
begin..end
statement-list
assignment
Pointer
plus
Pointer
1

if Pointer < StackMaxSize Staten‘TlEIlt—list
then Begin assignment

Pointer := Pointer + Store[Pointer]
1 El

Store[Pointer] := El procedure-call

End
else StackError StackError

(a) (b)
Figure 5.2: Standard and “skeletal” presentation of a fragment.

ment, and figure 5.2(b) shows the presentation of the same fragment in
the alternative “skeletal” way. The latter presentation has been created
without use of any stored presentation schemes. The skeletal presentation
scheme can be used for outdated constructs, and the normal presenta-
tion schemes should only be used to present constructs that are up to
date. “Normal” presentation and skeletal presentation will typically be
used side by side in the presentation of a document. We think that the
skeletal presentation scheme is sufficiently readable, and in addition, it
is sufficiently separable from other presentation schemes, so that it high-
lights outdated constructs as a contrast to the constructs that are up
to date. (The environment, or more specifically, the presentation frame-
work, could of course support this highlighting in another way.)

Instead of supporting insertion of obsolete constructs, such constructs
can be copied from already existing documents to, for example, the trans-
formations, where they are required. The problem is furthermore reduced
because the system in most cases is able to construct templates of trans-
formations, and hereby to insert old-version constructs in the pattern-

part of the transformations, just before the grammar modification is car-
ried out.

88 KEEPING ASTs CONSISTENT

In summary, the proposed solution does not cause much storage over-
head on the grammar. It is of course necessary to store the transfor-
mations that result from the grammar modification steps. On the other
hand, each node in an AST must store the version number of the con-
struct, and it means that each document, both in internal and external
representation, requires more storage space. The increased size of the
ASTs seems to be impossible to avoid in our approach.

5.3.2 Versions of Categorical Phyla

The categorical phylum declarations describe the interior of the phylum
hierarchy. If the interior of the phylum hierarchy is modified, the syn-
tactic validity of constructs in dependent documents may be affected.
The question is whether it is relevant, meaningful, or helpful to deal with
versions of categorical phylum declarations, i.e., versions of the syntactic
rules that determine if constructs are valid in their contexts.

Let us first notice that versions of categorical phylum declarations are
more fuzzy than versions of terminal phylum declarations. If the categor-
ical phylum declaration of P is modified, say an immediate subphylum
of it is deleted, it affects all the superphyla of P in the phylum hierar-
chy. The reason is that the equation ©(C) C* w(C), which describes the
syntactic constraints imposed on the construct C, involves the transitive
closure of the immediate subphylum relation. So it is hardly meaningful
to talk about the version of a categorical phylum declaration. We should
rather talk about versions of a sub-hierarchy of the phylum hierarchy.
This, we feel, will be too circumstantial, and we therefore try to avoid
it all together. To do this, let us now discuss how modifications of the
interior of the phylum hierarchy can be reflected at the terminal level of
the hierarchy.

If a categorical phylum declaration of P is modified, i.e., if the imme-
diate subphylum relation between P and other phyla is changed, the so-
called operator-set of P may be (and typically is) affected. Operator-set(P)
is defined as the set of operator names that can be reached from P via the
phylum-subphylum relation. More formally, if P is a categorical phylum
symbol then

Operator-set(P) = Uycp Operator-set(p).
If P is a terminal phylum symbol, Operator-set(P) = {P}. If, after a

9.3. VERSIONS OF GRAMMATICAL ELEMENTS 89

ey
NN

Figure 5.3: Pruning a phylum hierarchy (a) to that in (b).

modification of the categorical phylum declaration of P, Operator- set(P)
is restricted compared with its value before the phylum modification,
documents that refer to P may be affected. If, on the other hand, the
operator set of P is extended, the grammar modification will not affect
any document. As an example, let C be a construct in a document,
and let us assume that the phylum hierarchy rooted by w(C) is modified
such that ¢(C) no longer belongs to Operator-set(w(C)). In that case, the
construct C is invalid ¢n the given contezt, but in other contexts C may
be perfectly valid.

Let us consider a more concrete example to illustrate the effect of a
phylum restriction. We will assume that the phylum hierarchy in figure
5.3(a) is modified to the phylum hierarchy in figure 5. 3(b). The categor-
ical phylum P has been pruned such that Q no longer is a subphylum of
P.If A is an AST, and if w(A) is a superphylum of P (i.e., it is either L,
M, or P), then A might be syntactically invalid. More specifically, A is
invalid if it is either a T-construct or an S-construct. T-constructs and
S-constructs are nonetheless valid if applied from a context whose choice
phylum is either N, Q, T, or S. So T-constructs and S-constructs are not
globally invalid, as it would have been the case if they had been elimi-
nated at the terminal level of the phylum hierarchy. It means that we
cannot mark them as deleted. Only T-constructs and S-constructs whose
choice phyla are superphyla of P should be transformed to something
else.

It is interesting to notice that the phylum hierarchy can be re-organized

90 KEEPING ASTs CONSISTENT

without affecting any dependent document, as long as the operator-set
of each categorical phylum isn’t restricted. This is because the choice
phylum of a construct C is defined via the context of C. There are strong
bindings between an AST and the identification phyla of the nodes in
the AST, all of which are terminal phylum symbols. Between the AST
nodes and the categorical phyla, on the other hand, there are no strong
bindings.

5.4 Structure vs. Text-Oriented Solution

We have until now solely discussed the inconsistency problem for structure-
oriented environments. Before we continue with a more detailed ac-
count on the elaboration of the facilities in Muir, we will briefly compare
structure-oriented and text-oriented environments w.r.t. the subject.
Let us assume that we work with a grammar-based tool in a text-

oriented environment, and that we in a similar way as discussed above
modify the grammar while there exist some textual-represented docu-
ments that depend on the grammar. The tool could be a compiler, a
pretty-printer, or a syntax-directed editor. Because the environment is
text-oriented, the documents are represented as text and parsed before
they are manipulated by the tool. In such a setting, the grammar can
be modified arbitrarily as long as it describes the same language, (i.e., as
long the modified grammar is weakly equivalent with the old grammar.)
A proper extension of the language does not harm either. The parse
process will always create the most up-to-date parse tree. Even in a
structure-oriented environment that stores documents as ASTs it would
be possible to cope with such grammar modifications by doing pretty
printing of documents, grammar modifications, and finally re-parsing of
the documents. If, on the other hand, the grammar modification changes
the language (beyond proper extension), we have the same kinds of prob-
lems in text-oriented environments as described above for environments
that are based on AST-representation of documents. In fact, the prob-
lems are even worse, because the textual document representation in
addition is sensitive to changes of the concrete syntax of the language.
As already mentioned, this is not the case for the AST representation of
documents. So all in all, we find that AST-based environments are supe-
rior to text-based environments in dealing with the grammar/document

5.5. THE SOLUTION IN MUIR 91

consistency problem.

9.5 The Solution in Muir

Based on the analysis in the previous sections we have implemented a
prototype facility, which is based on versions of terminal phylum dec-
larations. As explained in section 3.2.2, a hierarchical grammar is in
Muir represented as an AST in a meta formalism. Before a grammar G
can be used to support editing of G-documents, the grammar-AST of G
must be installed. During the installation, some of the information in the
grammar-AST is condensed such that the editing environment is able to
use it efficiently. No grammar tables are generated as the result of the
installation. In a terminal phylum declaration, for example, the presen-
tation rules are compiled and stored as tree properties of the declaration.
Also the AST-template defined by the operator is constructed and stored
as a tree property of the corresponding terminal phylum declaration. In
version 1 of Muir, terminal phylum declarations can be installed incre-
mentally, but changes to the categorical phylum declarations must be
brought into effect via a total installation. This corresponds roughly to
incremental and total compilation of a program.

In order to deal with versions of operators, we have introduced two
new operations on terminal phylum declarations: InstallNew Version and
MarkAsDeleted. Application of these operations signals that grammar
modifications should be brought into effect. InstallNew Version incre-
ments the version number of the phylum declaration, and as a side effect,
a transformation-template is created and stored as part of the gram-
mar. MarkAsDeleted marks the terminal phylum as deleted, and it also
produces a transformation-template in which the elimination can be pro-
grammed. In addition to these two operations, we have found it useful to
have an operation MakeCategorical that supports the process of turning
a terminal phylum into a categorical phylum. Finally, we have an oper-
ation PhylumRestriction that can report on “phylum restrictions” after
the interior of the phylum hierarchy has been modified.

To add more concreteness to the discussion we will now look at some
examples. All the examples in this chapter are somewhat artificial and
imaginary modifications of a Pascal grammar [49]. We do not claim that
these modifications are typical, but we feel that they are representative

92 KEEPING ASTs CONSISTENT

Terminal phylum case:

caseExpression : expression Transformation case.version.1.t0.2(Opfocus)
caseListElement : caseElement-list Explanation “Transforms version 1 of a case
otherwiseClause : statement statement_to version 2.”

{Class 1 transformation.}
presentation-rules Pre-condition “T”
PA TextPs: Transformation-class Primitive
Focus-modification NoChange

. Pattern case
“Case ” caseExpression “ of” CR

“ ” caseListElement CR [CL: <expr§ssion>])
. Otherwise * atherwiseClaude R Replacemel[lctz(.]azga[sgl-162;?1?};52;19] of
“end” -

[C2: <caseElement-list>]

Expl S " Otherwise <statement>
planation: “Case statement end

() (b)

Figure 5.4: The phylum declaration of case and a transformation.

of modifications to a language in a development process, and that they
illustrate our points in terms that are familiar to most people.

9.5.1 Operator Modifications

We will first look at the simple, but nevertheless frequently occurring case
where an extra argument is added to an operator. (As mentioned before,
this corresponds to adding an extra constituent to a terminal phylum
declaration.) Let us assume that we are about to augment the Pascal
case statement with an otherwise clause. We modify the abstract syntax,
and the resulting terminal phylum declaration of case, which defines the
case operator, is shown in figure 5.4(a). Next we apply InstallNew Ver-
sion on the terminal phylum declaration whereby the version number of
the case statement is incremented (say, from 1 to 2), and the system
defines the transformation template shown in figure 5.4(b). Because we
append an argument to the operator, the system-created transformation
template is a complete transformation, i.e., it needs no manual modifica-
tions to be executable. In other situations, the user must establish the
right correspondence between the constituents of the pattern and the con-
stituents of the replacement. Executable transformations are called class
1 transformations, whereas class 2 transformations—and higher classes—

5.6. THE SOLUTION IN MUIR 93

are non-executable transformation templates. The user confirms that the
transformation is OK by upgrading it from a class 2 transformation to a
class 1 transformation. Notice that the presentation of the pattern in fig-
ure 5.4(b) is inaccurate. As discussed in section 5.3.1, we do not store the
presentation rules of outdated operators, but instead we use a so-called
skeletal presentation scheme.

Now let us assume that we start to edit a program in which case
constructs of version 1 are used. The system can easily discover that
outdated constructs are referred to by comparing the version numbers
in the AST with those in the operators. Furthermore, it can apply the
confirmed class 1 transformations on the outdated constructs. In the cur-
rent setup, we have an explicit check function VCheck (Version check)
that searches for constructs that belong to old versions, and a function
VUpdate, which applies the confirmed transformations on outdated con-
structs. Each transformation updates an operator instance from version
v to version v + 1. VUpdate attempts through repeated application of
transformations to obtain as high a version number as possible. The func-
tionality of VCheck and VUpdate could with relative ease be integrated
better into the environment, such that outdated constructs would be iden-
tified and brought up to date as soon as they somehow were processed.?

In the actual example, the transformation case.version.1.to.2 appends
an unexpanded statement placeholder to each case construct in the pro-
gram. The transformation could of course have been refined such that
the otherwise clause was elaborated, for example to an empty statement.

As new aspects have been added to the meta grammar in Muir, gram-
mar modifications like the one described above have often occurred.
We have earlier dealt with the problem by writing special Lisp code
to “patch” the affected ASTs appropriately. The transformational ap-

proach, as exemplified above, seems both to be more convenient and less
error prone.

In automatic updating of obsolete documents, the handling of the transformations that
update documents again constitute a special case. A transformation is, like the other documents
supported by the system, represented as an AST. We should of course be careful not to update
the pattern-part of these transformations!

*In Muir it is legal for a document to contain unexpanded placeholders. No component of
the system will try to eliminate unexpanded placeholders against the will of the user.

94 KEEPING ASTs CONSISTENT

5.56.2 Operator Modification and Deletion

We will now look at a more complex grammar modification, in which
an operator is eliminated. Let us assume that a grammar for standard
Pascal is modified in the following way:

1. The begin-end statement is eliminated.

2. Structured statements in which a begin-end construct can appear
(if-then, if-then-else, while, for, with, and case) are modified such
that a list of statements can occur directly, instead of convoluting
the list into a begin-end construct.

In other words, Pascal is modified towards a Modula-2 style [100]. This
is an example of a relatively radical modification of the Pascal grammar,
which we successfully have carried out in Muir. We mark the begin-end
operator as deleted, and we modify the other operators to the new con-
ventions. As a side effect, Muir creates a set of transformation templates.
The transformation template for the “deleted” begin-end construct will,
if applied as it is, tell the user that an application of a deleted operator
has been encountered. However, we refine this as well as the other trans-
formations manually. Two of the refined transformations, the transfor-
mation for begin..end and that for if-then, are shown in figure 5.5(a)-(b).

The function VUpdate updates the document bottom up. Let us de-
scribe how the simple program fragment in figure 5.6 is updated. First
the innermost if-then statement is updated by the transformation in fig-
ure 5.5(b). The pre-condition of this transformation ensures that the
statement part of the if-then statement isn’t a statement list (i.e., no
begin..end statement has been eliminated in the statement part of the
if-then statement.) Although it is not particularly clear from the presen-
tation of the replacement of the transformation in figure 5.5(b), it nests
the statement in the then-part into a statement list.> Next, the transfor-
mation in figure 5.5(a) is applied to eliminate the begin..end statement.
The transformation unnests the statement list of the begin..end construct.

The begin..end eliminating transformation leaves the outer if-then
construct in an inconsistent state. The problem is that the statement

SWhen working with the transformation in the environment, hidden layers, such as the
statement-list, are easier to detect, because the identification phylum, the choice phylum, the
formalism, and the version number of the current focus can be displayed.

5.5. THE SOLUTION IN MUIR

(a)

(c)

Transformation begin..end.version.1.eliminate(Opfocus)
Explanation “The operator begin..end has been marked as deleted.”
{Class 1 transformation.}

Pre-condition “T”

Transformation-class Primitive

Focus-modification NoChange

Pattern begin..end

[C1: <statement-list>]
Replacement [C1: <Anything>]

Transformation if-then.version.1.to.2(Opfocus)

Explanation “Transforms operator if-then from version 1 to version 2.”
{Class 1 transformation.}

Pre-condition “(NOT (EQUAL ’statement-list

(NAMEOFTREE (SUBTREE $Match 2))))”
Transformation-class Primitive

Focus-modification NoChange
Pattern if-then
[C1: <expression>]

[C2: <statement>]
Replacement if [C1: <expression>|

then [C2: <statement>] fi

Transformation if-then.version.1.t0.2.1(Opfocus)

Explanation “Transforms operator if-then from version 1 to version 2.”
{Class 1 transformation.}

Pre-condition “(EQUAL ’statement-list

(NAMEOFTREE (SUBTREE $Match 2)))”
Transformation-class Primitive

Focus-modification NoChange
Pattern if-then
[C1: <expression>]

[C2: <statement>]
Replacement if [C1: <expression>|

then [C2: <statement-list>] fi

Figure 5.5: Begin..end eliminating transformations.

if OK
then Begin
L= 1y
if Alright
then P(I)
End

Figure 5.6: Sample program fragment.

95

96 KEEPING ASTs CONSISTENT

part of the outer if-then construct is transformed to a list, namely the
list consisting of the assignment and the inner if-then statement. In
order to repair the inconsistency, the outer if-then statement needs to be
transformed too. The transformation in figure 5.5(c), which structurally
is trivial, does that. The pre-condition assures that the transformation
only is applied if the second constituent is a statement list. ILe., it is only
applied if the begin..end eliminating transformation in figure 5.5(a) has
been applied on the then-part of the statement.

The example illustrates that in general, more than one transformation
is needed to update instances of an operator. In addition to applying
if-then.version.1.to.2 the system also looks for transformations named if-
then.version.1.to.2.i, fori=1, 2, 3 etc. The first of these transformations,
whose pattern and pre-condition matches the outdated construct will be
applied. Notice that because the pattern refers to a specific version of the
outdated construct, at most one version ¢ to 441 updating transformation
can actually be applied on any given operator instance in a document.

5.5.3 Terminal Phylum to Categorical Phylum

Our next example illustrates an extension of a grammar, by which a
terminal phylum is turned into a categorical phylum in the phylum hi-
erarchy. In terms of the grammar modification steps that we described
in section 5.1, the grammar modification consists of deletion of the ter-
minal phylum, addition of the categorical phylum, and re-introduction
of the terminal phylum as a subphylum of the categorical phylum. This
pattern is typical because it reflects the situation where an existing “ter-
minal concept” is extended, and therefore we have chosen to provide
special support for it in the environment.

Let us again look at a concrete example from an imaginary extension
of Pascal. The existing assignment statement is described by an opera-
tor called assignment. We extend the assignment concept with a “multi-
assignment”, i.e., an assignment of the form V1,V2, ... Vn := E1,E2,En
(see, for example, [93].) We choose to keep the normal assignment opera-
tor unchanged, and we include a new terminal phylum multi-assignment
in the grammar. In terms of the phylum hierarchy, the grammar can be
modified in two ways, both of which are illustrated in figure 5.7.

Categorical phylum symbols and terminal phylum symbols exist in
the same name-space, and therefore the new categorical phylum and the

5.5. THE SOLUTION IN MUIR 97

assignments assignment
assignment multi-assignment single-assignment multi-assignment

() (b)

Figure 5.7: Two extensions of the assignment concept.

existing terminal phylum cannot have the same name. Figure 5.7(a)
reflects a case where the categorical phylum symbol is a brand new name,
assignments (plural.) Because the operator-set of all existing phyla are
not restricted, this grammar modification does not affect existing ASTs.
However, phylum declarations that before the modification referred to
assignment must now refer to assignments. Notice that this in general is a
non-local grammar modification, because the existing phylum assignment
may be referred to from several other phylum declarations. In figure
5.7(b), on the other hand, the categorical phylum inherits the name of the
original terminal phylum, and therefore the terminal phylum (operator)
needs to be renamed. So if this technique is used, the system must
generate a renaming transformation (in this case the name assignment
must be changed to single-assignment.) Such a transformation is trivial,
and it can be created automatically by Muir. In return, the grammar
modifications are of local nature.

Muir supports an operation named MakeCategorical that turns a ter-
minal phylum into a categorical phylum in the same way as in figure
5.7(b). The system prompts the user for another name of the terminal
phylum, and in addition it pops up an editor for the new categorical
phylum declaration such that the user can elaborate it appropriately. As
explained above, it also defines a renaming transformation.

Returning to the example, the user should call MakeCategorical on
the terminal phylum declaration of assignment if he or she wants the
modification as illustrated in figure 5.7(b). The categorical phylum dec-
laration, which the system presents for the user as a side effect of this op-
eration, should be refined to have single-assignment and multi-assignment
as subphyla. Furthermore, a new terminal phylum declaration for multi-

98 KEEPING ASTs CONSISTENT

Transformation for-to.version.2.eliminate(Opfocus)
Explanation “*Eliminate an instance of for-to in the document.”

{Class 1 transformation.}
Pre-condition “(NOT (MEMBER (IDPHYLUMNAME $Match)

(SubPhyla (GetDef (CHOICEPHYLUMNAME $Match)) T))) ”

Transformation-class Primitive

Focus-modification NoChange

Pattern for [C1: <nameApl>| := [C2: <expression>]
to [C3: <expression>]

do [C4: <statement-list>] od
Replacement MATCH

Figure 5.8: The transformation template for elimination of for-to.

assignment should of course be defined.

5.5.4 Modifications of the Phylum Hierarchy

In the previous sections we have discussed modifications of operators and
modifications of the phylum hierarchy at the terminal level. We have also
argued that the phylum hierarchy can be restructured safely as long as
the operator-sets of the phyla are not restricted. In this section we will
discuss how we in Muir deal with changes to the phylum hierarchy that
cause restrictions of the operator-set of some phyla.

Muir provides a query operation PhylumRestriction, which can be
applied on a categorical phylum P, and which returns the names of the
operators that have been taken out of the operator-set of P, since the
categorical phylum declaration of P last was installed. As an option,
the system can create a transformation template for each operator in
the “phylum restriction.” As a concrete example, let us assume that we
eliminate the categorical phylum for from the phylum repetitive in figure
3.1 on page 31. It means that a repetitive statement now only can be a
repeat or a while statement. If PhylumRestriction is applied on repetitive
after this modification of the phylum hierarchy, it will report that for-
down-to and for-to no longer are valid repetitive statements. Moreover,
it can produce a transformation template for each of these. The trans-
formation template for for-to is shown in figure 5.8. “MATCH” in the
replacement indicates that the replacement is identical to the match, and
consequently, if the transformation template is applied as it is shown in

5.6. SUMMARY 99

figure 5.8, it will merely print out the text in its explanation.® However,
the user can refine the replacement to another iterative construct, for
example to some while construct that semantically is equivalent to the
for-statement. The pre-condition ensures that the transformation only is
applied if the for-to-statement actually should be eliminated in the given
context, i.e., if the for-to-statement is not a subphylum of its choice phy-
lum. The transformation is, for example, applied if the choice phylum
of the for-to-statement is statement, because for-to is not a subphylum
of statement in the modified grammar. VUpdate will apply the transfor-
mation in figure 5.8 when a for-to-construct (of version 2) is encountered

by VCheck.

5.6 Summary

We have described a technique to keep documents updated with respect
to their grammars in an AST-based environment. The prototype im-
plementation in Muir keeps track of operator-versions, and it supports
semi-automatic creation and application of syntactic transformations that
bring the documents up to date. If an operator is modified or elimi-
nated, the system creates transformation templates, which, after man-
ual refinement, can update/eliminate instances of the operator from the
documents. The system provides special support for turning a terminal
phylum into a categorical phylum. If the operator-sets of the categorical
phyla are not restricted, the phylum hierarchy can be modified without
invalidating existing documents. If the phylum hierarchy is pruned, the
system can figure out how the operator-set of a phylum is restricted,
and it can create context-sensitive transformation templates, which later
must be refined by the user.

The hierarchical grammar model that we use in Muir seems to be
well-suited in dealing with the AST consistency problem, because cat-
egorical phyla only are referred to indirectly from ASTs. The concrete
implementation only causes a minimal storage overhead on the AST rep-
resentation of grammars. The AST representation of the documents, on
the other hand, requires more space to hold the version numbers.

®If the first character of the explanation in a transformation is “*’, the explanation will be
displayed for each match encountered.

Chapter 6

Multi-Formalism Transformations

A set of transformations define a translation, i.e., a relation among source
documents and target documents [1]. In this chapter we will examine how
pattern-based transformations can be used to implement some transla-
tions. We primarily aim at a facility that supports conversions from one
formalism to another. Such a facility is useful in a variety of situations.
In a programming environment, for example, it would be valuable to have
a tool that helps convert a program from one programming language to
another. In a language development environment, the facility could be
used to convert documents from a newly developed formalism to “similar”
documents in an already existing formalism.

The conceptual distance between the source and the target formalisms
is clearly of importance when discussing multi-formalism transformations.
We will loosely distinguish the following cases:

1. Language dialects. The target language is derived from the source

language, and there is a great overlap of identical constructs and
concepts.

2. Stmalar languages. The source and the target languages are dif-
ferent, but the purpose of the languages are the same, and there
is a significant conceptual and structural overlap between the two
languages.

3. Different languages. Covers all other cases where the conceptual
and structural differences between the two languages are great.

As examples, we consider UCSD Pascal [17] as a dialect of Standard
Pascal [49], and we consider Modula-2 [100] and Pascal as similar lan-
guages. Pascal and Snobol [38] are in our interpretation examples of

100

6.1. MOTIVATION 101

different languages. It should be noticed that it does not influence the
translation process if the target language is “an extension” of the source
language, whereas the opposite situation may cause problems.

In this chapter we are primarily interested in supporting multi-for-
malism transformations between languages whose conceptual difference
is little. Le., the tools and techniques that we will describe work best
for language dialects and stmilar languages. Throughout the chapter our
points will be exemplified with transformations from Pascal to Modula-2
and vice versa. We have made hierarchical grammars for both Pascal (as
defined by Jensen and Wirth in [49]) and Modula-2 (as defined by Wirth
in [100]), and except for the grammatical structures of expressions, the
grammars are complete. All the transformations that we are going to
discuss in this chapter have been created and tested in the environment.

Pascal and Modula-2 seem to be well-suited to illustrate our points in
terms of concepts that are well-known to many people. However, Pascal
and Modula-2 are probably too closely related to be representative of
“typical translation needs.” Therefore it would be desirable to carry out
additional experiments on other pairs of languages. This has not been
done yet.

We will attack several problems in this chapter. First, we will show
how to provide a theoretical basis for multi-formalism transformations in
a setting where hierarchical grammars are used. Next, we will demon-
strate how to ease the process of creating a set of transformations, and
finally, we will discuss how to support and integrate the translation pro-
cess itself in a structure-oriented editing environment. Before we go into
details with these issues, we will more carefully motivate why a multi-
formalism transformation facility is desirable in an environment like Muir.

6.1 Motivation

To motivate our approach, let us look at two extremes in the set of
possible multi-formalism translation tools:

1. An automatic, complete, and semantic preserving tool.

2. A Semi-automatic tool that cannot carry out the entire transla-

tion, and which not necessarily preserves the meaning of the source
document.

102 MULTI-FORMALISM TRANSFORMATIONS

A transformation tool in the first of these categories tends to be special-
ized and complicated, and therefore such a tool is rarely constructed and
used. If the tool is used on language dialects or similar languages, the
majority of the complexity typically stems from a few incompatibilities.
It could, for example, be the case that 90% of the complexity handles
only 10% of the translations. We find it interesting to investigate much
simpler tools in which the difficult cases are left for “manual completion.”

As an example of a tool in the second category we will look at trans-
lation accomplished by variation in the presentation of the document.
Translation tools based on this principle has been proposed by Hansen
[39] and by Medina-Mora [59] in his thesis on Aloe. A tool that carries
out a translation by applying an alternative presentation scheme is sim-
ple to realize in a syntax-directed and AST-based environment, because
it only involves creation of a presentation scheme that mimics the con-
crete syntax of the target language. From a theoretical point of view, we
talk about a translation that can be accomplished by a syntax-directed
translation schema [1]. The weakness of the approach is that the result
is represented as text, and moreover, the translation probably has to be
completed via textual manipulations. Essentially, a subset of the abstract
syntax of the source language is identified as being equal to the abstract
syntax of the target language. The corresponding part of the language
can be translated by formulating target-like presentation rules. Despite
the weaknesses, the method has, for example, been used successfully to
speed up the conversion of a large Pascal program to Ada [89].

We believe that a simple tool in between these two extremes is a
viable alternative in an environment like Muir. The tool we have in
mind converts a source AST to an AST in the target formalism. Thus,
the tool operates solely on the abstract representation of the documents.
Consequently, we consider a translation to be a relation among ASTs
belonging to the source formalism and the target formalism respectively
(and not a relation among textually represented documents.) Because we
base our tool on the pattern-based transformation framework described in
section 4.1, we are able to handle some context dependent translations,
which cannot be handled in the approach described above. However,
it must expected that some aspects cannot be translated (due to the
argumentation in 4.1.3), and these aspects are left for manual completion
in a syntax-directed editor. Finally, because AST constructs in different
formalisms can be distinguished, we are able to identify which constructs

6.2. OVERVIEW 103

have been translated, and which have not. This is clearly an advantage
during the succeeding manually performed translation process.

Even if we had an entirely automatic translation tool, some human
“post transformation processing” is often desirable. This is at least the
case if the target document is required to be readable and “natural” for
humans. Automatic, pattern-based transformations frequently produce
badly structured target documents because the transformations fail to
identify relations that immediately would have been apparent for a “hu-
man transformer.” In some sense, the pattern matching capabilities of a
programmer are superior to even the most advanced computerized pat-
tern matching we can imagine. This observation indicates that a manual
trimming of the resulting document is desirable anyway.

6.2 Overview

Our starting point is two existing formalisms, a source formalism and a
target formalism. We will assume that the environment supports both
of the formalisms, i.e., syntactically they are described via hierarchical
grammars, and the environment provides Sedit facilities for both of them.

We connect the two grammars by defining a relation among the phyla
in the source grammar and in the target grammar. It means that we can
consider the two grammars as a single hierarchical grammar during the
translation process. The relation among the source and the target phyla
1s a constraint that limits the “freedom” during the process, and conse-
quently it prevents some kinds of errors. In some situations, however,
it is desirable or necessary to violate the rules induced by the relation
among the phyla.

The relation between the source phyla and the target phyla also eases
the creation of a set of transformations that translates from the source
formalism to the target formalism. Muir is able to produce the most
trivial transformations automatically, and templates can be created for
the vast majority of the remaining transformations. The user is expected
to refine the transformation templates, and if necessary, the already cre-
ated transformations. Depending on the similarities between the two
formalisms, it may not be possible to create a set of transformations
that defines a 100% translation from the source formalism to the target
formalism.

104 MULTI-FORMALISM TRANSFORMATIONS

In a metamorphosis-like process, the source document is gradually
turned into a target document. First, the transformer applies the set
of transformations on the source document, and it typically returns a
mixed-formalism document, i.e., a document in which both source con-
structs and target constructs are present. In order to obtain a pure tar-
get document, the user must thereafter complete the translation process
via syntax-directed editing in the target language. Besides the already
described functionality of Sedit (see section 3.2), we support a search
operation that locates source constructs in the mixed-formalism docu-
ment, and a special edit operation that makes it easy to eliminate source
constructs that contain constituents from the target formalism.

6.3 Grammatical Foundation

In this section the grammatical foundation for multi-formalism transfor-
mations will be described. We start by defining the so-called source-
target relation among the phyla in the source and the target grammars.
Next, this relation is used to define a multi-formalism subphylum relation,
which is the counterpart to the subphylum relation c* defined in 3.1.2.
Finally, the transformation framework is formalized a little bit in order
to be able to formulate a sufficient condition that ensures the correct-
ness of the multi-formalism transformations w.r.t. the multi-formalism
subphylum relation.

6.3.1 The Source-Target Relation

Given two grammars Gg = (Ps,Cs,Ts,05) and Gr = (Pr,Cr,T1,D7),
which are called the source grammar and the target grammar respectively.
When working with either Gg-documents or Gp-documents, the syntac-
tic constraints, as formulated in the respective grammars, limit the set
of legal edit operations. We want something similar to be the case for
the transformations. I.e., we seek some rules that define what constitute
valid transformation steps during the conversion of the source document
to a target document. Gate phyla from the source grammar to the target
grammar could be used to achieve this, but it seems wrong to incorporate
these relationships statically into the source grammar. We prefer a some-
what looser association between the constraints and the source grammar.
Therefore a separate relation among the phyla in the two grammars is

6.3. GRAMMATICAL FOUNDATION 105

S phyla T phyla

ST
Py ————— g

Qs Qr

Figure 6.1: Diagram that illustrates a regular phylum Pg.

now introduced, and in the following section this relation will be used to
define a multi-formalism subphylum relation.

The source-target relation ST is a relation among the phylum symbols
in the source grammar and the phylum symbols in the target grammar.
Le., ST C (Pg,Pr). Notationally, Pg %2 Pr means that (Ps,Pr) 6 ST.
The ST relation is restricted to be a partial functlon and if Pg 28 Py
then Pr is functionally referred to as ST(Ps). Pg % Pr is intended
to mean that a Pg-construct corresponds to a Pr-construct. If both Pg
and Pr are terminal phylum symbols, Pg ! Pr in addition means that
a Pg-construct can be transformed to a Pp-construct. In other words,
if the terminal phylum symbol Pg is related with the terminal phylum
symbol Pr then it must be possible to devise a transformation of the

Pg-construct, as defined by the operator of Pg, to the Pr-construct, as
defined by its operator.

If a source phylum P fulfills the condition
VQe Ps: QC*P = ST(Q) c* ST(P)

P is said to be regular w.r.t. the ST relation. Figure 6.1 illustrates what
it means for a phylum to be regular. In the figure, Py = ST(Ps) and Qr
= ST(QS) The horizontal links reflect the ST relation, i.e., Pg % Py
and Qg 4 Qr . The vertical links are part of the subphylum relations in
the two languages. It means that Qg C* Pg in the S-grammar and that
Qr C* Pr in the T-grammar.

It would be too restrictive to assume that every phylum of the source
grammar is regular. It is possible, and even likely that there exist some
irregular phyla in the source hierarchy. However, for dialects and similar
languages it will typically be the case that a significant subset of the
source phyla fulfill the condition. If a given categorical phylum Py is
irregular w.r.t. the ST-relation, and if Pg o Pr then there exists a Pg-

106 MULTI-FFORMALISM TRANSFORMATIONS

construct for which the similar target construct is not a Pp-construct. It
might, for example, be the case that the source language and the target
language are structured in different ways w.r.t. Pg-constructs and Prp-
constructs.

Returning for a moment to a more practical aspect, the ST-relation
is defined interactively by selecting pairs of phylum declarations in Sedit
instances for the source grammar and the target grammar. While creating
the ST-relation the system will report if a source phylum symbol becomes
irregular.

6.3.2 The Multi-Formalism Subphylum Relation

The ST relation allows us to define an immediate multi-formalism sub-
phylum relation among the union of phyla from the source grammar and
the target grammar. The new relation, which we denote C , is a coun-
terpart to the immediate subphylum relation C (see 3.1.2.) If P and Q
are phyla that belong to Pg¢ U Py then P C Q if and only if (case 3 and
4 are easier to understand by looking at figure 6.2)

1. PePs, Qe Ps=>PcCQ
2.PePr,QePr=PcCcQ

3. Pe Ps, Qe Pr =
AP ePs:PcP,PP¥Q v
IQerP:PEQ,QcqQ

4. Pe Pr, Qe Pg =
IQeP:QcQQelp v
AP ePr QP PCP

The multi-formalism subphylum relation C=* is defined as the reflex-
ive, transitive closure of = . Here the reflexive case should be understood
such that A % B implies that A C* B and B =* A. Intuitively, A, C*
A, if A; equals A,, A; g A, , or if one can come from A; to A, by
following the edges up in the phylum hierarchies and by following the
crossing relations defined by the ST relation (see figure 6.3.)

The starting point of a translation process is a source document, which
is represented by a syntactically valid AST entirely in the source formal-
ism. The ultimate goal is to create a target document, which in turn

6.3. GRAMMATICAL FOUNDATION

S phyla T phyla S phyla T phyla

ST ST
PP — Q B =——— P

¥ Q’ Q’ F

case 3 case 4

Figure 6.2: Two situations where P C Q.

S phyla T phyla

AIO

\

Ag Ay
A7 ——— A,
Ay As
A, A,
A,

Figure 6.3: A; C* A, for n € [1..10].

107

108 MULTI-FORMALISM TRANSFORMATIONS

1s represented by a syntactically valid AST whose nodes all refer to the
target formalism. During the translation process the document is rep-
resented as a multi-formalism AST, i.e. an AST in which both source
constructs and target constructs are present. An AST A is a syntacti-
cally valid multi-formalism AST if for every constituent C of A ©(C) c*
w(C), whenever both ¢(C) and w(C) are defined. Notice the similarities
between this criterion and the criterion for a syntactically valid AST in
the single formalism case (see section 3.1.5.)

Every transformation step (see 4.1.1) performed on a valid multi-
formalism AST should produce a new and valid multi-formalism AST.
This is at least the ideal, and we want the environment to maintain this
constraint, and to warn the user if it is violated. As we will discuss in more
details in section 6.3.4, it is sometimes useful to go through invalid multi-
formalism ASTs. In that case it is entirely the responsibility of the definer
of the transformations to make sure that the succeeding transformation
steps remedy the violations.

Let us assume that Cr is a target construct, and that the immediate
context of Cr also is a target construct. It means that both ©(Cr) and
w(Cr) are phyla in the target formalism. If the constraint o(C) =* w(C)
is kept as an invariant for every construct C during the entire translation
process then we can be sure that it also holds for Cg. However, we
cannot be sure that ¢ (Cr) C* w(Cr) in the target grammar. To see why,
assume that Ay = ¢(Cr) and that Ay = w(Cr) in figure 6.3. In order
to ensure that ¢(Cr) C* w(Cr) in figure 6.3 we must require that the
phyla A4 and Ag are regular (see section 6.3.1.) Regularity of A, and Ag
namely implies that Ag C* Ag and A, c* As. So unless all the involved
source phyla are regular, we must check explicitly if the resulting target
document is syntactically correct w.r.t. the target grammar.

In the next section we will look at some practical cases of irregu-
lar phyla w.r.t. the Pascal-Modula-2 relation and the Modula-2—Pascal

relation, and we will discuss the consequences for the multi-formalism
subphylum relations.

6.3.3 Pascal Modula-2 Cases

Difficulties in relating source phyla to target phyla, and irregular source
phyla reflect quite well how close the source and the target formalisms
are related. To add more concreteness to the discussion, we will in this

6.3. GRAMMATICAL FOUNDATION 109

section describe some situations encountered in relating Pascal phyla to
Modula-2 phyla and vice versa.

6.3.3.1 Source Concept does not Exist in the Target Language

If a source phylum represents a concept for which no counterparts exist
in the target language then the source-target relation is undefined on the
source phylum. As an example from the Modula-2 to Pascal case, it is
not possible to relate the ModuleExport and ModuleImport phyla to any
Pascal construct, because there is no module concept, and consequently
no notion of export and import in Pascal.

In other situations, a source concept does not have a direct counter-
part in the target language, but nevertheless, the target language sup-
ports the source concept in another way. The by-clause of the Modula-2
ForStatement! provides and example of this (again from Modula-2 to Pas-
cal.) The by-clause cannot be related to a single, similar Pascal construct.
In two special cases (“BY 1” and “BY -1”), however, the by-clause can be
dealt with by its immediate context in the target language (via the for-to
statement and the for-downto statement respectively.) In the opposite
transformations, from Pascal to Modula-2, the goto statement? causes
similar problems. Also the begin-end construct® in Pascal does not have
a separate counterpart in Modula-2. In this case, the immediate target
context of the statement-list takes care of the “bracketing.”

Let us finally consider a similar example, in which the problems cause
a source phylum to be irregular. In Modula-2, a CaseLabel in a case
statement can be a constant expression, or it can be a range whose limits
are defined by two constant expressions. In Pascal, a case label must
be a constant. The involved phyla are illustrated in figure 6.4. Dotted
lines represent the source-target relation, and ordinary lines represent
the immediate subphylum relation. Modula-2 is more general than Pas-

In Modula-2, it is possible in the by-clause to specify how much to increment the control
variable in each iteration of a ForStatement. Pascal, on the other hand, has two different for
statements: A for-to and a for-downto with fixed increment/decrement.

2There is no explicit and general goto statement in Modula-2, as there is in Pascal. However,
Modula-2 provides explicit mechanisms to jump out of a loop-statement and to jump out of a
procedure.

In Pascal, begin-end constructs are used in structured statements, e.g., in if-then state-
ments, to assemble several statements into a single compound statement. This is not necessary

in Modula-2, because the structured statements themselves are allowed to contain a list of
statements.

110 MULTI-FORMALISM TRANSFORMATIONS

Modula-2 Pascal
CaseLabel = = — — - — = —— e — — — CaseLabel
Range ConstExpression=— = =~ - Expression

Const String Name tht

Const String Name

Figure 6.4: Phylum hierarchies for case labels.

cal w.r.t. case labels, and we have no transformational solution to this
problem. Here we are only interested in how this affects the source-target
relation. Like import and export clauses, a range does not have a coun-
terpart in Pascal, and the programming of a case statement, in which the
more general case labels are used, must be re-thought and re-arranged
in the Pascal version. A constant expression does have a counterpart
in Pascal, represented by the more general phylum Expression. But the
phylum Expression is too general to be a subphylum of CaseLabel in

Pascal, so the Modula-2 phylum CaseLabel becomes irregular (see figure
6.4.)

6.3.3.2 Different Structuring of the same Concept

If identical concepts are structured differently in the source and the tar-
get grammar, it typically implies that one or more phyla in the source
grammar become irregular. In the Pascal to Modula-2 case, the phyla
constant-declarations, type-declarations, and variable-declarations become
irregular because each of these can be empty in the source language (Pas-
cal), but this is not the case in the target language. Figure 6.5 illustrates
that for constant-declarations. In Modula-2, all the declarations (con-
stants, types, variables, etc.) are organized in a single list, and therefore
empty declarations are not necessary. The empty phyla in the Modula-2
grammar and in the Pascal grammar are “generic” and shared, and they
represent the empty alternative in a variety of situations. The empty
phyla of the two grammars are therefore related via the source-target

6.3. GRAMMATICAL FOUNDATION 111

Pascal Modula-2
Constant-declarations = - — Conﬂant-deﬁnitiy
Constants empty = = = — — = — — — empty

Figure 6.5: Phylum hierarchies for constant declarations.

relation. In the situation shown in figure 6.5 it implies that the Modula-
2 phylum empty is a multi-formalism subphylum of a Pascal constant-
declarations. l.e., an empty Pascal declaration can legally be transformed
to an empty Modula-2 declaration. So the relation between the empty
phyla makes the multi-formalism subphylum relation too broad, and it
makes the Pascal phylum Constant-declarations irregular.

A slightly more complicated example of the same phenomena occurs in
the translation of records in the two languages. Especially w.r.t. variant
records, the two languages adhere to a different structuring.

6.3.3.3 Inadequate Phylum Hierarchies

If the target grammar fails to define an adequate phylum hierarchy, some
source constructs must be related to a more general target phylum than
necessary. This makes the multi-formalism subphylum relation less useful
than if a better categorization of the target phylum hierarchy existed.
As an example, the Modula-2 ForStatement covers both the Pascal for-
to and for-downto statements. Le., ForStatement (in Modula-2) cannot
be related to only a single one of these. The natural thing to do in
the Modula-2 to Pascal relation is to relate the Modula-2 phylum to a
categorical phylum in Pascal, of which both for-to and for-downto (and
nothing else) are subphyla. If such a categorical phylum did not exist in
Pascal, the Modula-2 phylum had to be related to a more general Pascal

phylum, for example, structured-statement or statement (see figure 3.1
on page 31.)

6.3.4 Transformation Correctness

In this section we will formulate a condition on transformations that guar-
antees that the transformation, when applied, produces a syntactically
valid multi-formalism document. In order to ease the formulation of this

112 MULTI-FORMALISM TRANSFORMATIONS

condition, we will first formalize the transformation framework a little
bit.

A transformation (see section 4.1) will be considered as a triple r =
(P,R,PR) where P is the pattern, R is the replacement, and PR is the
relation among the constituents of P and R (see 4.1.1.) For simplicity
it will be assumed that PR is a one-to-one function?, and if a pattern
constituent Cp is related to a replacement constituent Cz we write C R
= PR(Cp). If A is an AST then 7(A) denotes the application of the
transformation 7 on A.

Given a transformation r and a syntactically valid multi-formalism
AST A, it is not possible to formulate a necessary condition such that
7(A) is syntactically valid. In order to do that we need to know the actual
matches (as opposed to the pattern), or more precisely, we need to know
the identification phyla of those constituents of the matches that corre-
spond to unexpanded nodes in the pattern. However, a sufficient con-
dition can be formulated, which especially is useful for multi-formalism
transformations:

Theorem. Correctness of a transformation
Given a syntactically valid multi-formalism AST A and a transfor-
mation 7 = (P,R,PR). Let CL, ..., C% denote the AST-constituents
of P that are related to AST-constituents of the replacement R. If

1. ¢(R) C* ¢(P) and
2. w(C%) C* w(PR(C%)) for s € [1..n]

then 7(A) is a syntactically valid multi-formalism AST.

The proof of the theorem is given in appendix A. If a transformation
7 satisfies the correctness theorem then 7 can be applied on a syntacti-
cally correct document without violating the syntactic constraints. If an
“incorrect” transformation is applied on a syntactically correct document
the result may or may not be syntactically correct. It should be noticed
that the theorem guarantees multi-formalism syntactic correctness if the
pre-conditions are fulfilled, but as already discussed in section 6.3.2 it
does not necessarily mean that the target document is syntactically valid
w.r.t. the subphylum relation defined by the target grammar. In order for

4The results in this thesis are valid for PR being a one-to-many relation.

6.4. THE TRANSFORMATIONS 113

that to be true, “critical” phyla in the source grammar must be regular.

A translation process is carried out as a sequence of transformation
steps. The ideal situation is that each transformation step results in a
syntactically correct document. However, as argued in section 6.3.2, this
is not always the case. So we must be able to deal with situations where
certain transformation steps result in documents that are syntactically
invalid. We have in several situations found it useful to apply a sequence
of transformations, say i, 7, and 73 where r; introduces syntactically
invalid constructs, and where 7, and 73 “makes it good” again. Seen
in isolation, 71, 7, and 73 are “bad”, but if it can be proved that they
as a whole preserve the syntactic correctness of documents it is OK to
apply them in the given sequence. We can specify that a transformation
should be applied in unchecked mode. If such a transformation introduces
syntactic violations, it is the responsibility of the user to convince himself
or herself that the syntactic violations only are temporary. In section
6.4.3 we will encounter a practical example of that.

6.4 The Transformations

It can be a tedious task to create a set of transformations from one lan-
guage to another. Especially if the languages are similar to each other it
is a non-challenging routine task to create the majority of the transforma-
tions. Due to our basic philosophy (“simple routine tasks should be done
by the system, and more intellectually demanding tasks should be under
control of the user”, see section 1) the system should therefore create the
most trivial transformations automatically, and it should assist the user in
creating the remaining ones. In section 6.4.1 we will demonstrate how the
information contained in the source-target relation can be used for that
purpose. We will illustrate our approach by showing some of the trans-
formations from Pascal to Modula-2 and vice versa. The system-created
transformations are all context-free, but often more context dependent
transformations are necessary. In section 6.4.3 we will discuss and exem-
plify context dependent elements in the transformations. Even with some
context-dependent transformations, there are some transformation tasks
that are hard to carry out via the pattern-replacement based technique.
In section 6.4.4 we give an example of that, and we describe how such
a transformation can be programmed as an Interlisp function, in which

114 MULTI-FORMALISM TRANSFORMATIONS

the most significant functionality still comes from pattern-based search
operations.

6.4.1 Semi-automatic Creation of Transformations

By relating a terminal phylum symbol Pg from the source grammar to a
terminal phylum symbol P7 in the target grammar we have stated that
a Pg-construct can be transformed to a Pr-construct (see 6.3.1.) Thus,
the system can create a transformation template in which the pattern
is the construct defined by Pg, and the replacement is the construct
defined by Pr. In order to refine such a template to a complete and
an operational transformation, the pattern, the replacement, and pos-
sibly the pre-condition must be elaborated appropriately. In general,
this process is hard to automate. But in the cases where neither the
pattern nor the replacement need real refinement, and where a trivially
true pre-condition is sufficient, the system can attempt to complete the
transformation-creation process by relating constituents of the pattern
to constituents of the replacement. Let us now describe how this can be
done.

Let Pg: P{ ... P and Pr: PT ... PT be terminal phylum decla-
rations in the source and in the target grammars respectively, and like
above, we assume that Pg e Pr . The system can then generate a trans-
formation in which the pattern is a Pg-construct, and the replacement
is a Pp-construct. The immediate constituents of both the pattern and
the replacement are unexpanded nodes. The unexpanded pattern con-

stituent that corresponds to P# will be related to the unexpanded target
constituent corresponding to P? ip

3 & [1.am) s PE = P,

In addition we require that no other pattern constituent has been related
to P?. If all the pattern constituents in this way can be related to a
constituent of the replacement, the transformation is complete. Notice
that the technique used to automatically relate pattern constituents to
replacement constituents is of heuristic nature. Le., it cannot be guar-
anteed to do what an intelligent agent (a programmer) would have done.
However, in the vast majority of the cases we have been through, the

% Actually, in the current version of the system a slightly less general relation than C* is
used.

6.4. THE TRANSFORMATIONS 115

automatically completed transformation templates turned out to be ad-
equate.

As already described in section 5.5.1, executable transformations are
called class 1 transformations, and non-executable transformation tem-
plates have assigned higher class numbers. If a terminal phylum symbol
Py is related to a terminal phylum symbol Pz, the transformation that
contains a Pg-construct as the pattern and a Pr-construct as the replace-
ment is called a class 2 transformation. If, in addition, all the relevant
pattern constituents can be related to constituents of the replacement
then the transformation is upgraded to a class I transformation. The
relation among pattern constituents and replacement constituents can
be done manually, or it can be done entirely or in part by the system
through the heuristic technique described above. If instead the terminal
phylum symbol Py is related to a categorical phylum symbol in the target
grammar then a class 8 transformation template is created, in which the
replacement part is unspecified.

In Muir we can activate an Interlisp function ConstructTransforma-
tions on the source and the target grammars together with their source-
target relation and have it deliver a list of class 1, class 2, and class
3 transformations. The user should manually look through the list of
transformations in order to make sure that the class 1 transformations
actually are OK. Furthermore, the class 2 and class 3 operations can be
upgraded to class 1 transformations once their replacement, pattern, and
pre-condition have been elaborated. 100% manually created transforma-
tions can also be added to the list of transformations. The organization
of the list of transformations depends on the transformation strategy, and
this is discussed further in section 6.5.

6.4.2 Examples of Transformations

The purpose of this section is to clarify the previous section through
concrete examples of transformations from Pascal to Modula-2 and vice
versa. The table in figure 6.6 shows how many transformations and trans-
formation templates there have been created to carry out the transfor-
mation tasks. The upper section of the table gives information about the
automatically produced transformations before any manual refinement.
The lower section shows the actual number of executable transformations,
automatically produced and manually refined all together. It should be

116 MULTI-FORMALISM TRANSFORMATIONS

PA—-MO | MO—PA
Automatically | class 1 40 22
produced class 2 22 18
class 3 8 32
Refined class 1 63 60

Figure 6.6: The number of created transformations.

noticed that the class 1 transformations in the table—both the auto-
matically produced and the refined transformations in both directions—
include approximately 20 transformations for translation of linear list
structures. Recall that we represent linear lists as binary trees of list-
heads and list-tails (see section 3.2.1.) To translate such list structures we
need a specific transformation for each list-element type.® These transfor-
mations are, of course, trivial, and they can be generated automatically
by the system.

In the rest of this section we will give examples of both class 1, class 2,
and class 3 transformations. Let us start by considering a couple of class
3 transformations. Figure 6.7 shows two (automatically produced) trans-
formation templates that belong to class 3, one from Pascal to Modula-2,
and one in the other direction. In general, the transformations are named
S.Cs—T.Cr, where S and T are abbreviations for the source formalism
and the target formalism names respectively. Cg is a name of the source
construct, which is translated to the target construct named Cr. In fig-
ure 6.7 the target constructs are indeterminable, and they are therefore
denoted by question marks in the transformation names. As described
above, class 3 transformation templates originate from terminal phyla in
the source grammar that are related to categorical phyla in the target
grammar, and class 3 transformations are not executable without further
elaboration. The terminal phylum begin..end in Pascal is related to the
Modula-2 phylum Statement because there is no separate begin-end con-
struct in Modula-2. The user could refine the transformation template
in figure 6.7(a), but in this case it turned out to be more attractive to

8The chosen list representation in fact requires two transformations for each list type: One
that translates the list structure, and another that translates the empty list indication, which
is located at the end of the list. In our list-representation, each kind of list has its own nullary
“empty list” operator. It means that we distinguish between, for example, empty statement

lists and empty expression lists. None of these entirely trivial transformations are included in
the table shown in figure 6.6.

6.4. THE TRANSFORMATIONS 117

(a) Transformation PA.begin..end—MO.?(Opfocus)
Explanation “Explanation”
{“Class 3 transformation.”}
Pre-condition “T”
Transformation-class General-by-reference
Focus-modification NoChange
Pattern Begin

[C1: <statement-list>]

End
Replacement MATCH

(b) Transformation MO.ForStatement—PA.?(Opfocus)
Explanation “Explanation”
{“Class 3 transformation.”}
Pre-condition “T”
Transformation-class General-by-reference
Focus-modification NoChange
Pattern FOR [C1: <nameApl>] := [C2: <expression>]

TO [C3: <expression>] [C4: <ByClause>]

DO [C5: <statement-list>] END
Replacement MATCH

Figure 6.7: Class 3 transformations.

118 MULTI-FFORMALISM TRANSFORMATIONS

(a) Transformation MO.IfStatement—PA.if-then-else(Opfocus)

Explanation “Explanation”

{“Class 2 transformation.”}

Pre-condition “T”

Transformation-class General-by-reference

Focus-modification NoChange

Pattern IF [C1: <expression>] THEN [C2: <statement-list>>]
[C3: <elsif-list>]
[C4: <ElseStatement>] END

Replacement if [C1: <expression>]

then <statement>
else <statement>

(b) Transformation PA for-to—MO.ForStatement(Opfocus)
Explanation “Explanation”
{“Class 2 transformation.”}
Pre-condition “T”
Transformation-class General-by-reference
Focus-modification NoChange
Pattern for [C1: <nameApl>] := [C2: <expression>] to [C3: <expression>
do [C4: <statement>]
Replacement FOR [C1: <nameApl>| := <expression> TO <expression>
<ByClause> DO <statement-list> END

Figure 6.8: Class 2 transformations.

deal with the transformation of begin-end constructs from their context.
The transformation in figure 6.7(b) is a class 3 transformation because
the terminal phylum ForStatement in Modula-2 is related to the cate-
gorical phylum for-statement in the Pascal grammar (of which for-to and
for-downto are subphyla.) In this case, we actually refined the transfor-
mation to three separate class 1 transformations that cover typical “and
easy cases” (namely “BY 1”7, “BY -1”, and no BY-clause at all.) These
transformations are not shown here.

The class 2 transformation templates in figure 6.8 are also generated
automatically by Muir, but they could not be upgraded automatically
to class 1 transformations. In figure 6.8(a) the pattern constituents
<statement-list>, <elsif-list>, and <ElseStatement> cannot immedi-
ately be related to any of the constituents of the replacement via the
heuristic technique described in 6.4.1. The Modula-2 if-statement is more
general than the counterpart in Pascal, and this complicates the Modula-2
to Pascal conversion. We will take a more detailed look at these prob-

6.4. THE TRANSFORMATIONS 119

(a) Transformation PA.for-to-begin—MO.ForStatement(Opfocus)

Explanation “Explanation”
{“Class 1 transformation.”}
Pre-condition “T”
Transformation-class General-by-reference
Focus-modification NoChange
Pattern for [C1: <nameApl>| := [C2: <expression>]

to [C3: <expression>]

do Begin

[C4: <statement-list>]

End
Replacement FOR [C1: <nameApl>] := [C2: <expression>]
TO [C3: <expression>] BY 1
DO [C4: <statement-list>] END

(b) Transformation MO.ArrayType—>PA.arra.y—type(Opfocus)
Explanation “Explanation”
{“Class 1 Transformation.”}
Pre-condition “T”
Transformation-class General-by-reference
Focus-modification NoChange
Pattern ARRAY [C1: <SimpleType-list>| OF [C2: <type>]
Replacement array [[C1: <index-type-list>]] of [C2: <type>]

Figure 6.9: Class 1 transformations.

lems in section 6.4.3. The class 2 transformation template for the Pascal
for-to statement in figure 6.8(b) is easier to upgrade to class 1. Notice
that Muir does not relate any of the two expressions in the pattern to
the expressions in the replacement, because there exist more than one
constituent in the replacement to which the source expressions could be
related.

Figure 6.9(a) shows the manually produced refinement of the class 2
transformation template from figure 6.8(b). By comparing figure 6.8(b)
with figure 6.9(a) it can be seen that the statement in the pattern has
been refined to a begin-end block, the by-clause of the replacement has
been elaborated, and the relation among the pattern constituents and
the replacement constituents has been completed. Also the name of
the transformation has been changed to reflect the modifications. All
of the modifications have been done manually. After these refinements
the transformation is executable, and it can be upgraded to class 1. The
transformation in figure 6.9(b) is an example of a class 1 transformation

120 MULTI-FORMALISM TRANSFORMATIONS

that has been created without manual interference. (The outer level of

the double brackets in the replacement of figure 6.9(b) stems from the
Pascal syntax of arrays.)

6.4.3 Context Dependencies

In its most simple form, a transformation specifies that (1) a primitive
(two-layer) replacement construct must substitute all occurrences of a
primitive pattern-construct, and (2) that certain sub-structures of the
matches should be “re-used” as substructures of the replacement, Apart
from permutation, duplication, and deletion of constituents, such trans-
formations preserve the abstract structure of the documents on which
they are applied. Frequently, however, more intricate transformations
are required, and the greater the structural and conceptual difference
between the source and the target language, the more we need context
dependent transformations. We will in this section discuss and exemplify
how, and to which degree context dependencies are supported in the Muir
transformation framework.

Our points are illustrated quite well by the translation of Pascal if-
then statements to similar statements in Modula-2 (and vice versa.) We
will therefore start by summarizing the differences between the two lan-
guages w.r.t. these constructs. Modula-2 differs from Pascal in two signif-
icant ways w.r.t. if-then-else statements. First, the Modula-2 if-statement
is designed to handle an if-then-else chain rather than only one condition
and two alternative statements. In Pascal, if-then-else chains must be
modelled by nested if-then-else statements. Secondly, Modula-2 allows a
sequence of statements to occur in the then-parts and in the else-part,
whereas Pascal only allows a single statement at these places. Figure
6.10 shows similar if-then-else chains in the two languages.” The Pas-
cal construct consists of three nested if-then-else statements, whereas
the Modula-2 construct is a single statement with two elsif-clauses and
an else-clause. If we assume that every “then-clause” and every “else-
clause” in the Pascal construct are enclosed in begin-end constructs, it
is trivial to create a transformation that defines a correct translation

"The use of if-then-else chains in Pascal is often signalled by a “flat”, un-indented pretty-
printing instead of the nested pretty printing used in figure 6.10. However, in a structure-
oriented environment the pretty-printing is not controlled by the user on a case-by-case basis,
and therefore a general set of rules determines the screen presentation of the if-then-else chains.

6.4. THE TRANSFORMATIONS 121

(a) if <expressionl>
then begin
<statement-list1>

.end .
else if <expression2>

then begin
<statement-list2>

.end .
else if <expression3>

then begin
<statement-list3>

end
else begin
<statement-list4>
end

(b) IF <expressionl> THEN <statement-list1>
ELSIF <expression2> THEN <statement-list2>
ELSIF <expression3> THEN <statement-list3>
ELSE <statement-list4> END

Figure 6.10: Equivalent Pascal (a) and Modula-2 (b) if-then-else chains.

122 MULTI-FORMALISM TRANSFORMATIONS

Transformation PA.if-THEN-ELSE-begin—MO.IfStatement(Opfocus)
Explanation “Explanation”
{“Class 1 transformation.”}
Pre-condition “T”
Transformation-class General-by-reference
Focus-modification NoChange
Pattern if [C1: <expression>]

then Begin

[C2: <statement-list>]

End
else Begin

[C3: <statement-list>]

End
Replacement IF [C1: <expression>] THEN [C2: <statement-list>]
ELSE [C3: <statement-list>]
END

Figure 6.11: A context free transformation of an if-then-else structure.

of Pascal if-then-else chains to nested if-statements in Modula-2. Fig-
ure 6.11 shows such a transformation. The assumption about begin-end
enclosement can be fulfilled through a preceding normalization of the
source document (see section 6.5.) However, the transformation in figure
6.11 fails to take advantage of the special facilities for the definition of
if-then-else chains in Modula-2. Application of the transformations cre-
ates a nested if-then-else structure quite similar to the structure of the
if-then-else chain in Pascal. In order to produce a better translation more
context dependency must be built into the transformation.

The easiest way to add context dependency is to broaden the pat-
tern. In the concrete situation, a sequence of transformations like the
one in figure 6.12 could be defined to capture all the relevant source
constructs and their desired replacements. The transformation shown
in figure 6.12 only handles if-then-else chains of length two, and similar
transformations must be defined to handle chains of length 3, 4, 5, etc.
This solution clearly suffers from lack of generality because an infinite
number of transformations are needed to cover all possible cases.

Figure 6.13 shows two alternative transformations that do a somewhat
better, although not a perfect job. The transformation in figure 6.13(a)
converts an if-then-else statement, which is in the context of an else-part
of another if-then-else statement, to a Modula-2 elsif-list. The context
requirement is formulated in the pre-condition of the transformation. In

6.4. THE TRANSFORMATIONS 123

Transformation PA.if-then-else-chain2— MO.IfStatement (Opfocus)
Explanation “Explanation”
{“Class 1 transformation.”}
Pre-condition “T”
Transformation-class General-by-reference
Focus-modification NoChange
Pattern if [C1: <expression>]

then Begin

[81: <statement-list>]

End
else Begin

if [C2: <expression>]
then Begin
[S2: <statement-list>]

End
else Begin

[S3: <statement-list>|
End

Replacement I¥ [C1: <expression>] THEN [S1: <statement-list>>]
ELSTF [C2: <expression>] THEN [S2: <statement-list>>]
ELSE [S3: <statement-list>]
END

Figure 6.12: A transformation of an if-then-else chain of “length” two.

124

MULTI-FORMALISM TRANSFORMATIONS

(a) Transformation PA.if-then-else-chain-1—+MO(Opfocus)

Explanation “Explanation”

{Translation of the inner if-then-else statement. The whole
pattern is a Pascal statement list, of which the head is an
if-then-else statement. The replacement is a Modula-2 elsif-list.
The pre-condition says that this statement-list must be in an
environment of the else-part (3) of an if-then-else construct. Take
at most 2 levels above $Match into consideration. Or (because the
transformation is done outside-in), the statement-list must be in

the context of an already produced Modula-2 elsif-list. }
Pre-condition “(OR (InEnvironment? $Match *PA.if-then-else 2 3)

(InEnvironment? $Match "MO.elsif-list 2 2))”
Transformation-class General-by-reference

Focus-modification NoChange
Pattern if [E: <expression>|

then Begin
[TS: <statement-list>]
End
else Begin
[ES: <statement-list>>]
End;

<statement-list>
Replacement ELSIF [E: <expression>] THEN [TS: <statement-list>]

[ES: <elsif-list>]

(b) Transformation PA.if-then-else-chain-2—MO(Opfocus)

Explanation “Explanation”
{Translation of the outer if-then-else statements.}
Pre-condition “T”
Transformation-class Primitive-by-reference
Focus-modification NoChange
Pattern if [E: <expression>]

then Begin

[S1: <statement-list>|

End
else Begin

[EI: <elsif>
<elsif-list>]

Replacemeni]:a ?F(‘i [E: <expression>] THEN [S1: <statement-list>]
[EL: <elsif-list>]
<ElseStatement>
END

Figure 6.13: Transformation of inner and outer if-then-else constructs.

6.4. THE TRANSFORMATIONS 125

terms of the example in figure 6.10, the “if <expression2>” statement
will first be transformed, and next the “if <expression3>” statement
will be treated. The transformation in figure 6.13(b) takes care of the
outer level of the if-then-else chain. Notice that the pattern is a multi-
formalism construct, and furthermore that the pattern is not a valid
multi-formalism AST. The Modula-2 elsif-construct in the pattern assures
that the transformation in figure 6.13(a) has been applied on the else-part
of the if-then-else construct before the application of this transformation.

The only part of the if-then-else chain that is not dealt with properly
by the two transformations in figure 6.13 is the trailing else statements,
<statement-list4> in figure 6.10. In Pascal, the trailing else-statement is
the deepest construct in the structure, whereas in the equivalent Modula-
2 statement, the trailing else statement is part of the outer level of the
if-statement. In order to extract the trailing else statement it must be
possible to formulate a pattern that matches the whole if-then-else chain
and that contains the trailing else statement as an explicit constituent.
This is not possible without an extension of the transformation frame-
work in Muir. What is needed is a structural wild card that matches the
maximum number of a given kind of constructs in between two other
constructs. We have not designed such a wild card for Muir, so in the
concrete situation the translation of the trailing else-statement will be
placed in the tail of the Modula-2 elsif-list. It must then manually be
moved to the outer level of the resulting Modula-2 if-statement.

The transformation in figure 6.13(a) illustrates how the function In-
Environment? makes it possible for super-constructs of the match can-
didates to affect the transformation. InEnvironment? returns whether a
given construct (for example the match) is in the context of a given type
of construct (identified by an identification phylum symbol.) The condi-
tion can be narrowed by specifying how far up in the AST to look, and

from which constituent the identification phylum must be approached.
For example the call

(InEnvironment? ’$Match *PA.if-then-else 2 “else-part)

returns whether the match is two levels (or less) below the else-part? of
a Pascal if-then-else statement. If it is, a reference to the if-then-else

8In the actual implementation, the fourth argument to InEnvironment? should be a
number—and not an atom such as else-part. This number is a constituent number in the
construct determined by the second argument. In the concrete example, the else-part is the
third constituent of the Pascal if-then-else construct.

126 MULTI-FFORMALISM TRANSFORMATIONS

construct is returned. Symmetrically, sub-constructs of the match can-
didates may affect the transformation through activation of the pattern
matcher in the pre-condition.

One of the main observations in this section has been that it is difficult
to define general enough patterns in the Muir transformation framework.
This is in accordance with the remarks about the inherent limitations
of the pattern-based transformation framework, as discussed in section
4.1.3. Also the replacement mechanism seems to be too weak. This
can be illustrated if we consider the transformations that implement the
translation of Modula-2 if-statements to if-then-else chains in Pascal (i.e,
the opposite of the transformation that we studied thoroughly above.)
They are shown in figure 6.14, and they work in roughly the same way as
the two opposite transformations shown in figure 6.13. The problem here
is how to embed the trailing else statement, i.e., the statement named
“E” in the pattern of the transformation in figure 6.14(a), deeply into
the target construct. The replacement in this transformation does not
contain the proper place for the trailing else statement, and it would be
tricky to elaborate the transformations in such a way that the desired
translation would be defined.

6.4.4 Procedural Transformations

As already discussed in section 4.1.3 it is possible to extend the pattern-
based transformation framework such that more and more cases can be
handled in a satisfactory way. As another direction, we can chose to es-
cape to procedural solutions when pattern-based transformations are too
awkward or perhaps even impossible for a given task. It is sometimes
tempting to store a given construct C, do something else, and then insert
the translation of the construct C at another place. In general, this is not
possible in the pattern-based paradigm, but it is clearly easy to do in a
solution where the transformation is programmed in a “general program-
ming language.” In this section we will show how we have dealt with a
difficult transformation problem by writing an Interlisp transformation
function.

We choose to illustrate procedural transformations with the transla-
tion of Modula-2 declarations to similar Pascal declarations. In Modula-
2, different kinds of declarations can be mixed freely in a declaration list.
In Pascal, on the other hand, declarations are grouped into label declara-

6.4. THE TRANSFORMATIONS 127

(2) Transformation MO .IfStatementELSE—PA.if-then-else-chain(Opfocus)

Explanation“*You must move the else clause of an IfStatement to the

innermost Pascal if-then-else statement.”
{“Class 1 transformation.” }

Pre-condition “T”
Transformation-class General-by-reference
Focus-modification NoChange

Pattern IF [C: <expression>] THEN [T: <statement-list>]
[EI: <elsif>
<elsif-list>]
ELSE [E: <statement-list>]

Replacement if [C: <expression>]
then Begin
[T: <statement-list>]

End
else [EL: <statement>|

(b) Transformation MO.elsif-list—PA.if-then-else(Opfocus)
Explanation “Explanation”
{“Class 1 transformation.”}
Pre-condition “T”
Transformation-class General-by-reference
Focus-modification NoChange
Pattern ELSIF [E: <expression>] THEN [SL: <statement-list>]
[RL: <elsif-list>]
Replacement if [E: <expression>]
then Begin
[SL: <statement-list>]

End
else [RL: <statement>]

Figure 6.14: Modula-2 to Pascal transformations of if-statements.

128 MULTI-FORMALISM TRANSFORMATIONS

(a) VAR i, j: INTEGER;
CONST Lower = 7;
Upper = 14;
TYPE T = [Lower .. Upper]
VAR TV: T;
CONST C = 55;

(b) Const Lower = 7;
Upper = 14;

=55
Type T = Lower .. Upper
Var i, j: Integer;
TV: T

Figure 6.15: Equivalent Modula-2 (a) and a Pascal (b) declarations.

tions, constant declarations, type declarations, variable declarations, and
declaration of procedures and functions. Figure 6.15 shows an example of
a source fragment and the desired target fragment. In essence, the trans-
formation must collect and merge constants, types, variables, and proce-
dures. Furthermore, knowledge about scope rules is necessary to avoid
collection of local declarations from procedures and local modules. Figure
6.16 shows a simplified Interlisp function in which the procedural steps
are programmed. First, all the Modula-2 blocks are located, and each of
them are then transformed (in the outer for-statement.) During the trans-
formation of a single block the various kinds of declarations are collected.
(CALL ’ConstsInBlock Block) activates a pre-defined structure-oriented
search operation ConstsInBlock (not shown here), which returns a list of
constant declarations. A pre-condition in the search operation ensures
that there does not exist any blocks in between the Block passed as an
argument to ConstsInBlock and the matches, i.e., the matches do not
belong to local blocks. The other kinds of declarations are collected in
similar ways. The lists of declarations are then joined into groups of dec-
larations that can be inserted into a template of a Pascal block. Notice
that the appropriate places to insert the declarations in the Pascal block
also are located via pattern matching. The actual translation of the var-
ious Modula-2 declarations is done by subsequent transformations. The
aggregated Pascal block substitutes the Modula-2 block, and finally the
procedure is via a recursive call repeated on local blocks, for example,
belonging to local procedures.

6.4. THE TRANSFORMATIONS 129

(LAMBDA (Focus)
(* * Transforms Modula-2 declarations to Pascal declarations)

(* * First locate the Modula-2 blocks:)
(SETQ Blocks (CALL *BlockSearch Focus))

(for Block in Blocks do
(PROG (Consts PaBlock ...)

(* * Collect all constant declarations in the block:)
(SETQ Consts (CALL ’ConstsInBlock Block))

(* * Collect types, variables, procedures, modules, and the statements
in the same way it was done for constants.)

(* * Join all the constant declarations just collected:)

(SETQ JoinedConsts empty-list)

(for Dcl in Consts do (ADDSUBLIST JoinedConsts Dcl ’After))
(* * Handle the other kinds of declarations stmilarly.)

(* * Create a template of a Pascal block:)
(SETQ PaBlock (Template ABlock PA))

(* * Insert the Modula-2 declarations into the Pascal block:)
(ASTSUBSTITUTE (PatternMatch PaBlock ’constantDecl-list)
(if JoinedConsts then JoinedConsts else empty))

(* * Insert the other declarations too, and insert the statements.)

(* * Replace the Modula-block with the Pascal block:)
(ASTSUBSTITUTE Block PaBlock)

(* * Apply the transformation recursively on the the local blocks:)
(MO.block.to.PA.block PaBlock)))

(* * Return the list of Pascal blocks))

Figure 6.16: Sketch of Interlisp transformation function.

130 MULTI-FORMALISM TRANSFORMATIONS

6.5 The Translation Process

The purpose of the translation process is to create a target document sim-
ilar to the source document, which is supplied as input to the transformer.
The actual translation process consists of two phases: (1) application of
the executable (class 1) transformations, and (2) manual completion of
the translation task. In both phases, each transformation step changes
one or more source constructs to target constructs in a metamorphosis-
like manner. Ie., the source document will disappear during the process
(unless the transformer is applied on a copy of the source document.) We
will now in turn look at each of the two translation phases.

6.5.1 Application of the Transformations

The class 1 transformations that have been created partly automatically
from the source-target relation and partly manually by the user, can
be applied on a source document in a “batch-like” process. This is the
process carried out by the transformer. The result delivered by the trans-
former is in most cases a mized-formalism document, which later must be
edited to a “clean target document.” Apart from various transformation-
messages, there is no interaction with the user during the automatic
translation process.

The transformations are organized in a linear list, from which those
transformations that belong to class 1 are executed (and the others are
skipped.) The transformations are applied one after another in the se-
quence they are defined in the list. The ordering of the transformations
is therefore significant in the cases where more than one is applicable.
Thus, the most specific transformations (those with the most elaborate
patterns and the strongest pre-conditions) should precede the more gen-
eral transformations.

The environment will refuse to execute a manipulation on a document
that violates the multi-formalism subphylum relation. If such a manip-
ulation is attempted, it will be logged and reported to the user. It is,
however, possible to specify that a transformation should be executed in
“non-checked” mode in order to suppress any kind of syntax-check. This
makes it possible to violate the multi-formalism subphylum relation, as
already discussed in section 6.3.4.

In the current version of Muir, the algorithm for application of the

6.5. THE TRANSLATION PROCESS 131

transformations is rough and time consuming. Each transformation is
applied on the whole document. I.e., for each transformation the pat-
tern matcher is activated on the entire source document in order to lo-
cate the relevant constructs to transform. If the transformer has to be
used for real translation—and not only on toy programs—a more efficient
transformer must be implemented. An improved transformer should only
attempt to traverse the source document once, and for each construct vis-
ited during the traversal, it should only apply those transformations that
have a chance to succeed.® As a more technical issue, unnecessary and
time consuming copying should also be avoided during the translation
process. The prototype transformer, which we have used for our exper-
iments, copies each of the match constituents that have to be inserted
into the replacement construct defined by the transformation (see sec-
tion 4.1.1.) When possible, it would clearly be more efficient to mowve the
match constituents into the replacement construct. In the general case
it is necessary to copy, because a match-constituent may be inserted at
more than one place in the replacement. However, in a more efficient
transformer, we should only pay for this generality when it actually is
used.

In some situations it is useful to normalize the source document before
the multi-formalism transformations are applied. During the discussion
of the translation of if-then-else chains in section 6.4.3 we made the as-
sumption that both the then-part and the else-part of Pascal if-then-else
statements are begin-end blocks. This is of course not always the case.
But rather than have transformation variants for all the combinations
of begin-end and “no begin-end”, it is an advantage to normalize the
source document such that all statements inside structured statements
are embedded into begin-end structures. In general, a normalization of
this kind may reduce the number of required multi-formalism transforma-
tions considerably. Symmetrically, some post-normalization of the target
document may also be worthwhile. In the Modula-2 to Pascal case, elim-
ination of begin-end blocks around single statements is an example of
such a post normalization.

Some readers might at this place miss some quantitative results about
the completeness of the Pascal Modula-2 transformations that we de-

°The alternative transformation strategy works in most, but not in all situations. Special

care is necessary if a pattern refers to a construct that has been inserted by an already performed
transformation.

132 MULTI-FORMALISM TRANSFORMATIONS

scribed in section 6.4. We have two reasons for not including such results
in the thesis. First, we have only translated a few programs with our
transformer. Quantitative results based on these translations would not
be interesting and representative. A more carefully prepared set of source
documents would be needed to make quantitative conclusions. Secondly,
it has not been a primary goal for us to produce high quality transformers
between Pascal and Modula-2. Rather, we wanted with the two exam-
ple languages to illustrate a semi-automatic translation approach. In a
succeeding project, however, it would of course be interesting to test the
practical value of our proposal through a series of quantitative measure-
ments of the resulting transformers.

6.5.2 Manual Completion

The result of the automatic phase of the translation, the mixed-formalism
document, is left in an Sedit instance in order for the user to complete
the translation process. To visualize the mixed-formalism document, it
can be presented with the source constructs and the target constructs
shown in different fonts. Figure 6.17(a) shows a fragment of a Modula-2
program, and figure 6.17(b) contains the result delivered by the Modula-
2 to Pascal transformer (before any post normalization.) Recall that
we only have implemented translations of Modula-2 for statements with
increment 1 and -1 (see section 6.4.2.) The constructs in normal font
are source constructs (Modula-2), and the italic constructs are target
constructs (Pascal.)

To eliminate the remaining source constructs, the user is supposed
to use ordinary syntax-directed edit operations for the target formalism.
However, to make the elimination process easier, a couple of special facil-
ities will be introduced. The first of these is an edit operation that identi-
fies and collects the remaining source constructs in the mixed-formalism
document. The collection of source constructs produced by this operation
can be used to visit each source construct in the document. During the
traversal, arbitrary editing operations can be carried out on the visited
constructs. In order not to invalidate the collection of source constructs
produced by the search operation, the source constructs are visited in a
postorder manner (bottom up in the AST.)

Let us assume that we have identified a source construct in the docu-
ment, and that we want to eliminate it. Figure 6.18 sketches three cases

6.0. THE TRANSLATION PROCESS 133

(a) IF ok
THEN FORi:=1TO 100 BY 5
DO IF even(i)
THEN suml := suml + i
ELSE sum2 := sum?2 + i

END END
END

(b) if ok
then begin
FORi:=1TO 100 BY 5
DO if even(i)

then begin
suml := suml + 1
end
else begin
sum2 := sumf2 + 1
end END

end

Figure 6.17: A Modula-2 fragment (a), and its partial translation (b).

that must be considered. The hatched areas in figure 6.18 symbolize tar-
get constructs, and the white areas are source constructs. Figure 6.18(a)
contains two source constructs that each are located inside a target con-
struct. It means that the choice phyla of the source constructs are target
phyla, and therefore primitive target edit operations as well as compos-
ite templates belonging to the target formalism can be used directly to
overwrite the source constructs with target constructs.

Figure 6.18(b) depicts a more typical situation, namely a situation
where the two remaining source constructs in turn contain one or more
target constituents. To deal with this situation, we introduce the other
special facility, the edit operation that we call split. If the split opera-
tion is applied on one of the source constructs in figure 6.18(b), a copy
of the source construct will be presented in a new Sedit window on the
screen, and in addition a menu with meaningful target edit operations
will be set up. (As in the earlier case, this is possible because the con-
text of the source constructs are target constructs.) A target construct
can hereby easily overwrite the entire source construct, and the already
existing target constituents can be copied back into the document from
the window produced by the split operation. Figure 6.17(b) shows a
practical example of the situation in figure 6.18(b). In this case the split

134 MULTI-FORMALISM TRANSFORMATIONS

S/ e F I
v/
7

oy

/]
FFT 77

NN

Y

ANNNN
N
\

LA L

AANNNN\N

7

AN\
\\

ANANN
NN
NN

P

(a) (b) (c)

Figure 6.18: Three situations in mixed-formalism documents.

operation should be executed on the Modula-2 for-statement, which re-
mains in the mixed-formalism program, and which therefore should be
eliminated. The already translated constituent of the for-statement—
the Pascal if-then-else statement—can in this way easily be put into the
manually created translation of the for-statement.

Finally, figure 6.18(c) represents a case where the source construct is
at the outer level of the document. One way to deal with this situation
is to start a new Sedit instance for the target language, and then to
transfer the already existing target constituents from figure 6.18(c) to
the appropriate places in the new target document.

6.6 Summary

Implementing a multi-formalism translation tool can be a very work-
intensive process. This is probably unavoidable if the differences among
the source and the target languages are great. In this chapter we have
developed techniques that reduce the workload when translating between
more closely related languages. The user is required to define a relation
among the phyla in the hierarchical grammars of the two languages. This
can be done interactively by selecting pairs of phyla on the screen. The
relation contains information that makes it possible to automate a major

6.6. SUMMARY 135

part of the transformation creation process. The most straightforward
transformations can be completed by the system, whereas others require
some attention and manual refinement done by the user.

Depending on the efforts put into the completion of the set of trans-
formations, the actual translation process can be carried out more or less
automatically. In any case, however, it is possible or even likely that a
few target constructs cannot be handled by the transformations, and it
is therefore up to the user to complete this task too. We have described
how the translation process can be finished via syntax-directed editing.

The relation among the phyla in the source grammar and the target
grammar is also used to constrain the AST manipulations in a transfor-
mation step. We have demonstrated how the phylum-subphylum rela-
tions in the two grammars together with the source-target relation define
a multi-formalism subphylum relation. The ideal is that every inter-
mediate AST during the translation process should conform with the
multi-formalism subphylum relation, and that the target document fi-
nally should conform with the pure target constraints. In practice, how-
ever, things are a little bit more messy. Some times it is hard not to
violate the multi-formalism subphylum requirement, at least temporar-
ily. And for some phyla, the source-target relation is not regular enough
to ensure that multi-formalism correctness implies correctness w.r.t. the
target grammar.

The techniques that we have described in this chapter have been im-
plemented in a prototype tool, which is part of Muir. In order to try
out the prototype tool we have experimented with translation of Pascal
programs to Modula-2, and vice versa. To gain additional insight in the
translation problems, it would be interesting to carry out experiments on
pairs of other languages. Pascal and Modula-2 are probably to closely
related to put forward definitive conclusions about our approach. Some
additional work is also needed to make the automatic part of the trans-
lation process more efficient.

Chapter 7

Abstract Presentations

The separation of the internal document representation and the external
document presentation is a fundamental principle in the work described
in this thesis. The most dominant concern in the preceding chapters has
been how to manipulate the internal document representation in order
to obtain a given goal. With only a few exceptions it has been taken for
granted how to present the documents on a screen.

There are good reasons for also considering aspects of document pre-
sentation in this thesis. First, in an environment like Muir and in most
other contemporary editing environments, the user views, manipulates,
and understands the documents through the presentation. In that respect
the environment is very visually oriented. An environment with excel-
lent functionality, but with poor presentation facilities seems for us to
be in vain. Second, the characteristics of the presentations can improve
the efficiency of the whole environment considerably. For example, the
ability to present an overall diagram of a large document may make some
kinds of decisions and modifications easier than if based on traditional
and detailed presentations. Third, document representation and docu-
ment presentations are separate issues, but they are not in all situations
independent. Presentation-oriented editing operations clearly depend on
the presentation style, and, as we shall see later in this chapter, also
structure-oriented editing operations should in general be considered as
presentation dependent.

The range of realistic screen presentations depends on the chosen
internal document representation, especially if we are working in an in-
teractive setting. The reason is that the consistency between the external
presentation and the internal representation must be maintained within
narrow time limits. If, for example, a document internally is represented

136

7.1. TRADITIONAL PRESENTATION TECHNIQUES 137

as an abstract syntax tree there might exist some relationships that can-
not in a realistic way be presented in an interactive environment. The
same relationships might be much more explicitly represented in, say, a
relational data base representation (as in [56].) Until now, the thesis has
been based on the assumption that the internal document representation
is an abstract syntax tree, and this assumption will be maintained in this
chapter as well.

The primary objective of this chapter is to introduce what we call ¢b-
stract presentations and to show that it is possible to define such presen-
tations in a general, language-independent way. As a natural extension
to that, we are also concerned about how to edit a document through
an abstract presentation. In section 7.1 we first discuss the traditional
approach to presentation, and concurrently with that we motivate why
better presentation techniques are needed. Next, our abstract presen-
tation techniques will be described. We explain and exemplify in rather
great detail two general presentation techniques that have been developed
in the Muir project. In section 7.3 we examine how structure-oriented
editing can be done through abstract presentations. Again, special atten-
tion is given to the two abstract presentation techniques that have been
implemented. Following that, in section 7.4, we discuss how to integrate
presentations at various abstraction levels into an environment like Muir.
Finally, in section 7.5, we take a broad look at alternative presentation
techniques, as reflected by the available literature.

7.1 'Traditional Presentation Techniques

In an editor where the internal document representation is textual, the
screen presentation and the internal representation are closely related.
Normally, the entire document is presented in a fixed way. No variation
nor adaptation to actual needs is possible. If the internal representa-
tion differs structurally from the screen presentation, efficiency concerns,
for example during insertion of text in the middle of the existing text,
typically explain the differences. Conceptually, however, the internal
representation and the screen presentation can be considered as being
identical.

There are several factors that explain the strong textual bindings of
the presentations and the internal representations. First and foremost,

138 ABSTRACT PRESENTATIONS

the dominant form of non-verbal communication in our culture is in-
deed textual. Second, the definition of artificial languages, for example
programming languages, has traditionally been closely associated with
textual description techniques. I.e., what constitutes a legal document is
defined by a text-generating grammar, and the language definition only
allows lexical variations such as spacing and commenting in the textual
presentation of a given program. Third, the computer technology, as
reflected by CRT screens, printers, and storage devices, is primarily well-
suited to processing of text. All in all we witness a strong orientation

towards the use of textual description, representation, and presentation
techniques.

In an environment where the internal representation is a tree struc-
ture, such as an abstract syntax tree, the internal representation must
via some interpretation be projected onto the screen. Even though a
wide variety of presentation options are open in principle, the vast ma-
Jority of the current systems imitate the traditional textual presentation.
Le., the entire document is projected onto the screen as linear, formated
text, but for a big document, only a fraction of it is visible at any given
time. In such presentations it is a serious problem to maintain the gen-
eral overview of a large document. Flexible and secure manipulation of
the document, decision making, and navigation in the document, can
be greatly improved if the important, overall relationships between the
major components in the document are made readily available on the
screen.

In the same way as grammar descriptions and document representa-
tions have been raised to higher abstraction levels (abstract grammars,
hierarchical grammars, abstract syntax trees), we find that this tendency
also should be extended to the user interface of the systems. Le., we find
it highly relevant also to do research in more abstract presentation tech-
niques that are independent of the particular internal document represen-
tation. In the following section we will introduce our notion and model
of abstract presentations, and we will describe two particular language-
independent, abstract presentation formalisms that we have developed

for Muir.

7.2. ABSTRACT PRESENTATION TECHNIQUES 139

7.2 Abstract Presentation Techniques

An abstract presentation is a picture of a document, in which certain
objects and relationships are emphasized and displayed, and where the
remaining objects are left out of consideration. There are no a priori bind-
ings to any particular graphical means in abstract presentations. In many
situations it is probably hard to find better means than text. In some
situations, however, it is commonly accepted that alternative, graphical
presentations are superior to textual presentations. Who is not famil-
iar with the cliché that “a picture is worth a thousand words”? In this
thesis we will exemplify this with pictures of well-understood mathemat-
ical structures, namely graphs, but other diagrams, nets, and formalisms
would probably be valuable for some application areas as well. We do
not find the use of so-called “graphics” as a goal in itself. Non-textual
graphic means are only interesting if they convey some information that
is hard to express clearly enough by textual means.

It would be an ideal situation to have available a variety of presen-
tation options ranging from the well-known concrete ones to specialized,
abstract presentations. At any time, it ought to be possible to view a
document through the presentation that most satisfactorily meets the
instant needs. When it makes sense, it would clearly also be profitable
to be able to edit the document through concrete as well as through ab-
stract presentations. As a basis for making abstract presentations and
for editing a document through abstract presentations, we are now going
to discuss a model in which a document is a set of objects and relations.

7.2.1 Objects and Relations

A document that belongs to an artificial language defines a set of objects
together with a collection of relations among these objects. In this and
the following section we will discuss abstract presentation techniques, via
which a subset of objects and a subset of their relationships can be shown
on the screen.

To get a concrete feeling for the objects and the relations we are
talking about, we will start by considering some examples from various
programming languages. In programming languages, objects like vari-
ables, constants, classes, modules, types, and procedures are of prime
importance. All of these are named objects. In general, the phyla of a

140 ABSTRACT PRESENTATIONS

grammar define these kinds of objects together with a set of more anony-
mous object types. A great variety of relations exit among these objects:

1. Constituent: a relation between constructs and their constituents.

2. Successor: A relation among elements in a list and their successor
in the list.

3. Local procedure: A relation between procedure declarations and
their local procedure declarations.

4. Type of variable: A relation between variables and type definitions.

5. Import: A relation between modules and the modules, from which
they import facilities.

6. Superclass: A relation between classes and their superclasses.

7. Calls: A relation between procedure declarations. If P; and P, are
related, it means that the procedure P; contains a call to Ps.

8. Uninitialized variable: A relation between procedures and variables
of the procedures that are known never to be initialized.

9. Free variable: A relation between procedures and the free variable
names of the procedures.

These relations, and many others, can be elaborated in such a way that
they all are binary. The three relations mentioned first are composi-
tronal. I.e., they directly reflect the composition of a program. Relations
4 through 7 are transverse relations between more distant objects of a
program. As opposed to the first three of the relations, the transverse
relations do not reflect the actual composition of the program, but they
are quite explicitly represented via bindings between applied and defining
occurrences of names. Finally, the last two of the listed relations require
a more thorough analysis to be figured out from an AST representation.
We therefore call them computed relations.

A document can in principle be edited by adding or deleting elements
to or from one or more of the relations. This we call constructive use
of the relations. Constructive use of the relations Constituent and Suc-
cessor is indeed possible, because the primitive edit operations and the
list operations (see section 4.2.1 and section 4.2.5) can be understood

7.2. ABSTRACT PRESENTATION TECHNIQUES 141

directly in terms of these relations. I.e., addition or removal of an ele-
ment to/from one of the compositional relations correspond directly to
one of the mentioned edit operations. For some of the other relations,
there cannot in a reasonable way be established a one-to-one mapping
between a given relation and a given document. It would, for example,
be nonsense to modify a program by adding or deleting the tuple

“variable V is used freely in procedure P”

to or from the relation Free variable. The problem is of course that the
variable V can be introduced freely in a countless number of ways in the
procedure P. In the same way, adding the tuple

“module M; imports from module M,”

to the relation Import may in a given language mean that M; imports
directly from the module M,, or that M; imports from M, via a mod-
ule M3, etc. If one and only one of these possibilities can be chosen as
“the natural one”, the relation can be used constructively. Besides the al-
ready mentioned constructive applications of Constituent, Successor, and
possibly Import, it would probably be possible to use the relations Lo-
cal Procedure, Type of variable, and Superclass constructively. It seems
unrealistic to use the relation Calls constructively, and as with Free vari-
able, it would be out of question to use the relation Uninitialized variable
constructively.

The perception of a document as a collection of relations among var-
ious kinds of objects is a useful mental model, but we are still faced with
the problem of actually presenting the relations on the screen. In the
following section we will discuss various presentation options, and after
that we will study two abstract presentation techniques that we have
developed in the Muir project.

7.2.2 Presentation of Relations

A presentation style is a set of presentations using particular graphical
means and structures. Besides the well-known textual presentation style,
we will in this thesis primarily look at a graph presentation style, but
many other styles could be imagined as well. With respect to a given
presentation style, a presentation formalism defines a framework in which
to formulate presentation rules for internal structures. A set of rules in
a presentation formalism that defines the presentation of grammatical

142 ABSTRACT PRESENTATIONS

Py P,
e]
Internal Intermediate Presentation
structure structure structure
b J
N
P

Figure 7.1: The presentation function P is Py o P,

constructs is called a presentation scheme. A presentation scheme is
identified by a name that is associated with every presentation rule in
the scheme.

The component that effectuates the presentation process will be called
a presenter. The presenter can be thought of as implementing a presen-
tation function whose domain is the internal document representation,
and whose range is the actual presentation structure on the screen. The
presentation function can be decomposed into two or more functions,
whereby one or several intermediate presentation structures are defined.
Figure 7.1 outlines this situation. For abstract presentations, one of the
intermediate presentation structures is a binary relation among the ob-
jects that we choose to emphasize in the presentation. The splitting of
the presentation function is useful because it allows us to characterize
the qualities of the presentation process more carefully.

Detailed presentations that belong to the textual presentation style
are well-suited to illustrate compositional relations in minor objects. In
an environment like Muir, the textual presentation formalism allows pre-
sentation rules to be associated with the operators in the grammar. A
presentation rule determines which of the abstract constituents of an op-
erator to present, the ordering of the constituents in the presentations,
the concrete syntax (keywords, punctuations, and fonting), and the layout
(CR’s and indentation.) The compositional relations are quite naturally
visualized by the textual nesting of constructs, and by textual sequencing.

Frequently it is illustrative to present binary relations as a directed
graph structure. There is a straightforward translation of a binary rela-
tion to a graph structure, namely one where the pairs of the relation are
interpreted as edges in the graph. (If several relations have to be pre-

7.2. ABSTRACT PRESENTATION TECHNIQUES 143

Object A
. toD ..
End A
Object B
A | D
B |D
. toD ..
D|C
End B
Object C (b)
End C
B
Object D l
. to C ... A . D - C
End D (c)

(a)

Figure 7.2: A textual, a relational, and a graph presentation.

sented in the same graph, different relations can be distinguished either

by different looking edges, or via distinctions in the “from nodes” and /or
the “to-nodes.”)

We are primarily interested in using the graph presentation style for
the illustration of overall, transverse relations among objects. As al-
ready indicated in 7.1, we find that proper illustration of the overall
relationships is very important, because these relations have a tendency
to “drown” in less important details when illustrated in textual presen-
tations. Moreover, graph style presentations seem in many situations to
be particularly well-suited to present these relationships. Consider the
examples shown in figure 7.2 where we are interested in capturing the
relations among the objects A, B, C, and D. In the traditional textual

144 ABSTRACT PRESENTATIONS

presentation in figure 7.2(a) the relation is defined by the “to-clauses.”
The relation is scattered around in the text, and especially if the elisions
(marked by “...”) represent large structures, it may be difficult mentally
to grasp the relation. In figure 7.2(b), the relation is shown in table form,
and in figure 7.2(c) it is shown as a graph. We are convinced that the
graph provides the clearest! presentation of the relation. The reason is
that in the graph presentation, each object is mentioned only once, and
that a relationship between two objects is illustrated in the simplest way
we can imagine, namely via a straight line.

In the following two sections we will describe two abstract presenta-
tion formalisms that have been implemented in Muir. We start by de-
scribing a rather simple technique that allows us to present compositional
structures. Following that, we describe how to generate presentations of
transverse relations among objects.

7.2.3 Compositional Tree Presentations

It is hard to illustrate both the overall and the fine-grained compositional
relations in a single detailed textual presentation. It is, for example, dif-
ficult to capture the procedure-structure of a big program if all the more
detailed aspects have to be presented as well. As already noticed in the
previous section the overall relationships tend to “drown” in all the de-
tailed relations. However, it is not hard to write a textual presentation
scheme that filters out the disturbing details [29]. In this section we will
demonstrate that it is possible to design a special presentation formal-
ism that makes it even easier to present overall compositional relations.
We have chosen to show the overall compositional relations as tree struc-
tures, but an indented textual presentation would be equally useful in
this situation.

We decompose the presentation function into two functions whose
intermediate presentation structure is a binary relation that defines a
tree structure. IL.e., the presentation function is split into:

Select: AST — BinaryRelation
Layout: BinaryRelation — ScreenTree.

11t is of course dangerous to claim that a presentation style is “better” and “clearer” than
others without any empirical evidence. However, by looking at a collection of blackboards at
places where a group of people illustrates relationships among various objects, it will probably
be clear for most sceptics that graph-like presentation styles are very popular and widespread.

7.2. ABSTRACT PRESENTATION TECHNIQUES 145

& © O @)
© @ ® @ O &
(®) ®

(a) (b)
Figure 7.3: An AST (a) and its presentation tree (b).

The “critical part” is the function Select that selects the contributing
objects in the AST structure. The Layout function is accomplished in
Muir by the Interlisp Grapher [46], which is a package that maps graph
structures in a particular list representation onto the screen. We will now
take a closer look at a presentation formalism that allows us to define the
Select function.

The presentation technique is based on the straightforward observa-
tion that an arbitrary marking of a set of nodes in a tree defines a forest
of trees by following the original tree links between the marked nodes.
Figure 7.3(a) shows an example of an AST with marked nodes (double
circled), and figure 7.3(b) shows the derived forest, in this case only con-
sisting of a single tree. A tree presentation formalism needs to define the
marking of nodes and the text label for each node in the presentation.
Both of these are defined in so-called ¢ree presentation rules, which belong
to the operators—or equivalently, to the terminal phylum declarations—
of the grammar. A tree presentation rule is a list of presentation elements,
one for each of the operator constituents. A presentation element is ei-
ther a name of a textual presentation scheme, or one of the keywords
CONTINUE and STOP. Let us assume that the presentation rule

(PE, PE, ... PE,)

is associated with the terminal phylum declaration

146 ABSTRACT PRESENTATIONS

P; Pl P2 Pn

If PE; is a name of a textual presentation scheme, the P; constituents of
the P-constructs in the document become objects in the presentation, and
the node labels that present these object are produced by applying the
textual presentation scheme on the corresponding constructs in the AST.
If PE; is the keyword CONTINUE, the P; constituents of the P-constructs
do not contribute to the presentation, but the search continues in these
branches of the AST. The keyword STOP works in the same way, but the
searching will be terminated in this branch of the AST. Proper use of the
STOP keyword in presentation rules may reduce the time spent by the
presenter to create the tree presentation.

The primitives of the compositional tree presentation formalism, as
described above, can play together with a variety of the general presenta-
tion mechanisms in Muir, most importantly the conditional presentation
facility. See [73] and [74] for additional details.

The primary advantage of the compositional tree presentation formal-
ism is that it only needs to associate presentation rules with operators
that affect the presentations directly. So in most situations a tree presen-
tation only requires a few presentation rules in order to be fully defined.
In traditional frameworks, textual presentation rules require presentation
rules on all operators “in between real contributions.”

Figure 7.4 shows an example of a compositional tree presentation of a
Modula-2 program.? The purpose of the presentation is to illustrate the
compositional relations among procedures and modules in a compilation
unit. In appendix B we have listed an excerpt of the Modula-2 grammar
to show how the presentation schemes used in figure 7.4 are defined.
Only three presentation rules are required to define the presentation.
Among these, one is a tree presentation rule, and the two others are
text presentation rules that define the node labels. The declaration-
list operator has a tree presentation rule called MO.TreePs. In Muir,
the names of the presentation rules consist of two components: A short
name of the language, and the proper name. Essentially the Mo.TreePs
presentation rule reads “(MO.LabelPs CONTINUE)”, where Mo.LabelPs
is the presentation element that corresponds to the head of the list, and

2The presentation in figure 7.4 together with the presentations in figure 7.5 on page 149, and
figure 7.8 on page 159 illustrate aspects of a Modula-2 implementation of the Muir environment.
However, no such implementation exists. The document which is presented in the figure 7.4,
7.5, and 7.8 is only refined to such a degree that these presentations can be generated.

7.2. ABSTRACT PRESENTATION TECHNIQUES 147

Tree Seditor (+)

_—PROCEQURE InitAttentionHandler
#MODULE AttentionHand ler«———PROCEDURE Gethttention
! "~ PROCEDURE &ttentionType
.,x"f ~PROCEDURE InitKeyboardHandler
p) i oA et 7 e e FEOCEDBURE 3tartTextEnter
5 [e MODULE KeyboardHandler o= poncepuRe nompletaTextenter
; Ly . :
ek ‘;\-?H‘ T PROZEDURE AdjustTextCount
W PROCEOURE PoplpMenuy
W, MO nuzeHandler === o ,
N HODULE MouseHandler =" ocirrriRe Nenuact don
\\PROCEDURE Textéction

\ " . PROCEDURE Zelsct
j PROCEDURE PointingAction :__::F‘F'DI"EDUFE "etiprdﬁ-nu

Figure 7.4: A compositional tree presentation of a Modula-2 program.

CONTINUE is the presentation element that corresponds to the tail of the
list.> The “choice-construct” in the presentation rule (see the appendix)
ensures that the declaration only is presented if it is a procedure or a
module. The operators module-declaration and procedure-declaration

show how the label scheme MO.LabelPs is defined.

7.2.4 Transverse Graph Presentations

In this section we will describe a presentation formalism that allows us
to define more transverse binary relations among selected objects, and
to display these relations in graph structures on the screen. Transverse
graph presentations can be seen as generalizations of the compositional
tree presentations that we described in the previous section. As in section
7.2.3, the presentation function will be split into two sub-functions:

Select-and-relate: AST — BinaryRelation
Layout: BinaryRelation — ScreenTree.

Also in this case the Interlisp Grapher will be able to carry out the Layout
function, although some aesthetic graph layout questions become more
urgent when “real” graphs (as opposed to trees) are displayed.

In addition to selecting the objects in the document that contribute
to the graph presentation, the relations among these objects have to be
defined too. The selection of objects, and the production of the node

3 As described in section 3.2.1, lists are in Muir represented as nested binary trees of heads
and tails.

148 ABSTRACT PRESENTATIONS

labels can be done in the same way as in the compositional tree presen-
tations. The relations among the objects, on the contrary, have to be
defined explicitly here. (In the previous section, the relations among the
objects were inherited from the composition of the document.)

The concept in the graph presentation formalism that allows us to
define transverse relations among objects is called object tdentifications.
Each object that contributes to the graph presentation must have asso-
ciated an object identification. In order to define the edges of the graph,
a list of object identifications is generated for each of the objects. If an
object has associated an object identification Idss;, and if it generates a
list of objects identifications Id;, Id,, ..., Id;, then there exist edges from
Ides; to Id; for 5 € [1..k]. This information defines the relation among
the objects, and the Layout function can project it onto the screen. Let
us now take a closer look at the mechanisms in the graph presentation
rules that allows us to define the object identifications.

A graph presentation rule for the terminal phylum declaration

P P1 P2 ces Pn
is a list of presentation elements
(PE; PE; ... PE,).

In the same way as in the compositional tree presentations, a presentation
element can be one of the keywords STOP and CONTINUE. A presentation
element can in addition be a triple

[Node-label-scheme Identification-scheme Edge-scheme].

If C is an immediate constituent of a P-construct in a document, for
which the corresponding presentation element is such a triple, then C is
designated as an object that contributes to the presentation. Further-
more, Node-label-scheme defines the node label of C (in the same way
as in the previous section), and Identification-scheme and Edge-scheme
define its object identifications and its list of “to-object” identifications
respectively.

An object identification is a symbol which is required to identify the
object in a unique way. The object identification is generated by applying
the identification scheme on the object, in a similar way as a textual
presentation scheme is applied on an AST-constituent to produce a node
label. Also the edge scheme is applied on the object, and it is expected
to generate a string of the form

7.2. ABSTRACT PRESENTATION TECHNIQUES 149

6raph Seditor

[MPL MODULE Tree [MPL MODULE Grammar PROGRAM MODULE Muir
IMPL MODULE #zt IMPL MODULE Prasenter ;;'f"“""\
,-"‘rr' -‘_‘——_‘:_'::'—_____: 7_._.-”’-/ \
L—""Fdﬂ-— /.f i N &
o - DEF h1UDUi__!.E Prezenter
L= ’ = ———
g — _—___Jiﬂ—d—‘_.—_l_f’j//
:::::.,-——-—— = .._‘J" .--__,.r'
[DEF MODULE ast f o
oy A
v Sl
ey Mo e /,/"
L N
- 5 '-.»!.-'J.
QEF" NUDULE Tres DEF MODULE Grammar
[DEF MODULE Ast]

Figure 7.5: A transverse graph presentation of Modula-2 compilation
units.

“Identification-1 SEP Identification-2 SEP ... Identification-n SEP”

which is interpreted as a list of n object identification symbols. SEP is
a special keyword that separates the object identification symbols in the
string.

We have written several graph presentation schemes for the grammars
that are supported by Muir. Let us first take a detailed look at the defini-
tion of an “import-export presentation” for Modula-2. Figure 7.5 shows
an example of such a presentation.? The edges in the graph are implic-
itly oriented from the top towards the bottom of the paper. Boxed nodes
represent nodes that participate in cycles in the graph. An arch from a
module M; (down) to a module M; means that M; imports facilities from
Mz. For the sake of simplifying the example we have modified the mean-
ing of the Modula-2 import clauses slightly. We assume that if a module
M, imports facilities from a module M, then an explicit import clause
with a “FROM M,” indication is present in M;. The FROM clause in
Modula-2 actually implies an unqualification of the names in an import
list. Le., “FROM M,” is not necessary in order for M; to import from

M;. Rather, a remote entity X from M, can be referred to as “M;.X” in
M;.

4The layout of the presentation in figure 7.5 has been done manually.

150 ABSTRACT PRESENTATIONS

The presentation rules used to generate the presentation in figure 7.5
are shown in appendix B. We organize all Modula-2 compilation units in
a linear list. The operator Compilation Unit-list, which defines this list,
has a graph presentation rule

([MO.LabelPs MO.ImportExportIdScheme
MO.ImportExportEdgeScheme] CONTINUE)

which belongs to the presentation scheme MO.ImportExportPs. This
presentation rule states that there must exist a presentation node for
every compilation unit in the list. The ImportExportPs presentation
rules for the operators MainModule, ImplementationModule, and Defi-
nitionModule are all “stop rules”, i.e., the interior of the modules are
not searched for contributing objects. This makes it relatively fast to
create the presentation. Local modules of compilation units are con-
sequently not included in the presentations defined by the presenta-
tion scheme ImportExportPs. The label scheme and the identification
scheme of the graph presentation are defined in the operators MainMod-
ule, ImplementationModule, and DefinitionModule. The object identifi-
cations are of the form MainModule. Module Name, ImplModule. Module-
Name, and DefModule. ModuleName respectively. The edges are created
by the MO.ImportExportEdgeScheme rules in the three module opera-
tors plus those in the import, import-list, and FromModule operators.
The edge scheme essentially locates the constructs “FROM module IM-
PORT <name-list>" and translates them to a list of identifications. In
addition, the edge scheme for ImplementationModule makes explicit in
the presentation that an implementation module always imports the fa-
cilities from its corresponding definition module.

It would be more difficult, although not impossible, to generate a
similar import-export presentation for a “real Modula-2” program in the
current graph presentation formalism. The reason is that a module M,
may import a quality Q from M, solely by referring to “M,.Q”. In other
words, the fact that M; imports facilities from other modules is not de-
fined at a particular and fixed place in Mj, but rather, it can be scattered
around in the whole module. It might be worthwhile to relax the way
edges are defined by the edge scheme. Instead of putting edge scheme
rules on all the operators in between the object and the construct that
define a contribution (in between the module-declaration and the con-

7.2. ABSTRACT PRESENTATION TECHNIQUES 151

struct “M.Q” in the example), it might be easier to define the edges
by searching for the constructs in the objects that contribute with edges
(along the same line as contributing objects are located in the graph and
the tree presentation formalisms.)

As another example of a transverse graph presentation, we have im-
plemented a graph presentation scheme that, when applied on a Pascal
program, presents the static procedure call graph of the program. Fig-
ure 7.6 shows a sample Pascal program and the generated procedure call
graph. In the same way as in figure 7.5, the edges in the graph are ori-
ented from the top to the bottom of the paper, and boxed procedures
participate in cycles, i.e., they are recursive. The graph presentation in
figure 7.6(b) is not well-suited for constructive use. Too many details
have been left out, and it would be strange to modify the Pascal program
directly via this presentation. However, it conveys useful cross reference
information, and the presentation can be used as the basis for initiation of
other presentations, from which the underlying program can be modified.

As the last example of transverse graph presentations, we will con-
sider the presentation of a collection of categorical phylum declarations
as a phylum hierarchy. In section 3.1.2 it was explained that a categorical
phylum declaration is an object that enumerates its immediate subphyla,
but not its more distant subphyla. A phylum hierarchy was also formally
defined in section 3.1.2. In the AST representation of a hierarchical gram-
mar in Muir the phylum declarations are organized in a linear list. Le.,
the AST representation of the phylum declarations does not reflect the
phylum hierarchy directly. Figure 7.7(a) sketches the list of phylum dec-
larations that define the type hierarchy in Pascal, and figure 7 .7(b) shows
the graph presentation of the phylum type. Figure 3.1 on page 31 shows
a similar presentation, namely a presentation of the phylum statement in
Pascal. It clearly makes sense to use the phylum hierarchy presentations
constructively. Le., instead of modifying the phylum hierarchy indirectly
in a presentation similar to the one shown in figure 7.7(a), specialized
edit operations should make it possible to modify the phylum hierarchy
in terms of nodes and edges in the graph presentation. In the following
section we will more thoroughly discuss editing of abstract presentations,
in particular editing based on transverse graph presentations.

152 ABSTRACT PRESENTATIONS

Program CallGraphExample;
Var Count: Integer
Procedure P1(N: Integer);
Var I: Integer
Begin

forI:=1to N

do Begin
Count := Count + 1;
P1(N - 1)
d

En
End;

Procedure P2(P: Integer);
Var J: Integer
Begin
J:=P;
while] >=10
do Begin
P1(J); .
YueJai 6raph 3editor

End; End Program CallBraphExample

Procedure P3(P: Integer);

Begin
Case P div 2 of Procedure P4

0: P1(P); a
1: P2(P) #
Enclli‘;nd ff Procedure P3

Procedure P4(Q: Boolean ; R: Integer); ,x/,/////

Begin
edure P2
i£Q FProce

then P2(R)
else P3(R)
End;

|[Procedure P1

Begin
Count := 0; _ .
P4(TRUE,5) |Pr‘ncedur‘e PJ.J
End.

(2) (b)

Figure 7.6: A traditional and a graph presentation of a Pascal program.

7.2. ABSTRACT PRESENTATION TECHNIQUES 153

Categorical Phylum type:
Subphyla: simple-type structured-type pointer-type

Terminal Phylum pointer-type:
Operators: pointer-type

Categorical Phylum structured-type:
Subphyla: array-type record-type set-type file-type
packed-type

Categorical Phylum simple-type:
Subphyla: scalar-type subrange-type type-name

Terminal Phylum packed-type:
Operators: packed-type

Terminal Phylum file-type:
Operators: file-type

Terminal Phylum set-type:
Operators: set-type

Terminal Phylum record-type:
Operators: record-type

Terminal Phylum array-type:

Operators: array-type 6rabh feditor (1)
pointer-type
Categorical Phylum type-name: / packed-type
Subphyla: nameApl < ~Tile-type
phy P | r r_,fstr‘l.lrztl.lred—type‘t%\set—type
Terminal Phylum subrange-type: ;iﬁg;i’;;zze
Operators: subrange-type \ : __type-name nameap]
simple-type-=——subrange-type
Terminal Phylum scalar-type: 3 2P \“\\SC al ér?typep
Operators: scalar-type
Terminal Phylum nameApl:
Operators: nameApl

(a) (b)
Figure 7.7: A list of phyla, and its graph presentation.

154 ABSTRACT PRESENTATIONS

7.3 Editing an Abstract Presentation

In section 7.2 we noticed that in some situations it makes sense to modify
a document by modifying one of the relations that are defined among the
objects of the document. We called that constructive use of the relations.
In other situations, the information contained in the relation is so sparse
that a modification of the relation cannot be projected back into the AST
representation of the document. In this section we will assume that the
relations are of such a nature that constructive use of them makes sense.

In an abstract presentation, one or a few kinds of objects are em-
phasized, and certain relationships among these objects are displayed.
These restrictions affect the set of edit operations that meaningfully can
be applied on the document through a given abstract presentation. In
general, the edit operations should manipulate the objects and the re-
lations at such an abstraction level that the edit operation makes sense
w.r.t. the presentation. As an absolute minimum, the effect of each edit
operation should be observable through the presentation. In this section
we will discuss how these “guidelines” affect the elaboration of the edit
operations on compositional tree presentations and on transverse graph
presentations.

As already observed in chapter 4, there are two fundamentally dif-
ferent ways to edit a document in a structure-oriented environment: Via
presentation-oriented edit operations or via structure-oriented edit oper-
ations. Presentation-oriented edit operations manipulate the elements of
the presentations, for example nodes and edges in a graph presentation,
and the modifications at this level must be projected back into the AST
representation of the document. Structure-oriented edit operations ma-
nipulate the internal AST structure, preferably in such a way that the
modifications can be understood in terms of the aspects of the document
that are emphasized in the presentation. We are not going to discuss
presentation-oriented editing techniques in this chapter. As in chapter 4,
we will also here stick to the structure-oriented editing approach.

7.3.1 Compositional Tree Presentations

The structure-oriented edit operations that we discussed in chapter 4 were
primarily well-suited to manipulate the detailed compositional relations
of a document. If more overall compositional relations are presented, we

7.3. EDITING AN ABSTRACT PRESENTATION 155

must be careful to manipulate constructs at the proper abstraction level.
Let us exemplify this by taking a closer look at the edit operations on
the tree presentation in figure 7.4 (see page 147.)

When editing a document through an overall, compositional presenta-
tion, edit operations that insert composite templates (see section 4.2.2)
should in general be preferred to primitive edit operations. If we, for
example, use a primitive edit operation to expand one of the procedure
declarations in figure 7.4, it is difficult to insert a local procedure or a lo-
cal module in that procedure because it does not contain the declaration
placeholder for local declarations. An appropriate composite template,
on the other hand, could be refined in such a way that continued editing
at the selected level of abstraction is possible.

In the current implementation of Muir, a compositional tree presen-
tation is re-generated from the AST after every edit operation. This is
clearly too slow. In the same way as we have implemented incremental
screen updating techniques for text style presentations, this should also
be done for the compositional tree presentations. It would be straight-
forward to make the Select presentation function (see 7.2.3) update the
binary relation incrementally after each edit operation, and to redo the
Layout presentation function in its entirety. Hereby the rather time con-
suming search in the AST for marked nodes is eliminated. Experiments
indicate that following this strategy, the screen update time will in most
situations be reasonable.

7.3.2 Transverse Graph Presentations

The structure-oriented edit operations that manipulate the compositional
structures cannot in general be expected to do very well if applied on a
graph presentation that illustrates transverse relationships among ob-
jects. The problem is that the edit operations that we introduced in
section 4.2, and which primarily were intended to manipulate the com-
positional relations, contain too much freedom, and they consequently
are too primitive to be adequate for editing of transverse graph presenta-
tions. In this section we will discuss a general edit operation framework,
which is well-suited for editing of a document through graph presenta-
tions. The editing technique that we propose has not been implemented
and tried out in Muir.

Only a small number of different structure-oriented edit operations

156 ABSTRACT PRESENTATIONS

are needed to edit a document via a graph presentation. It should be
possible to

1. add a new unrelated object to the document,
2. delete an existing unrelated object from the document,

3. relate two existing objects,
4. un-relate two already related objects in the document, and

5. modify the aspects of the document that are presented in the node

label.

One could of course imagine other edit operations and other combina-
tions, but these five groups span the range of possible modifications in a
particularly simple way.

The five kinds of edit operations are generally defined for any trans-
verse graph presentation, but they need to be specialized for each par-
ticular graph presentation scheme. The basic pattern of action is, for
example, available on both the import-export presentation (as in figure
7.5), and on phylum hierarchies (as in figure 7.7). But for each of the
presentations, it must be defined in terms of the AST representation of
the documents what it means to add and delete new objects and rela-
tions. We will now propose how this specialization of the edit operations
could be done. To be concrete, we choose to discuss the edit operation
that relates two existing objects in a document.

The general edit operation that relates two objects needs two argu-
ments, namely the two objects that must be related. It is not crucial for
this discussion whether the command syntax is prefix, infix, or postfix,
but let us just assume that the infix command syntax is chosen. IL.e.,
the source node is selected before the edit operation is initiated, and
as the initial action of the general edit operation, the user is asked to
point at the destination node. The general edit operation then activates
a transformation, which is specific for each particular graph presentation
scheme. In Lisp terminology, the general edit operation provides a hook
[82,85], which must be filled in by the definer of the presentation scheme.
For the edit operation that relates two objects, the source node and the
target node should be passed as arguments to the transformation, and
the transformation is expected to update the AST appropriately.

7.4. ENVIRONMENTAL SUPPORT 157

In many cases we imagine that the underlying AST can be modified
by a single pattern-based transformation (see 4.1). In others, several
modifications of the AST are needed in order to maintain the consistency
between the AST and the graph presentation. If, for example, we want
to support a new kind of operation that both adds and relates an object
O; to another object O,, both the ASTs that represent O; and O, are
affected. As another example, the edit operation that modifies the label
of a graph node N may require changes to N and to all objects that are
related to N (if all references to N should be preserved.) Thus in general,
the transformation may be implemented by a Lisp function, which in turn
may activate several pattern-based transformations.

When the AST is modified, the presentation needs to be updated
too. It is out of question to regenerate the whole graph presentation
from scratch after each edit operation. It can be quite time consuming
to generate the presentation, and even worse, it is hard automatically
to solve the layout problem, i.e, the mutual placement of nodes in the
window. Some kind of incremental screen updating is necessary. It is
trivial to update the screen following the operation that adds a new re-
lation between two nodes, but for the operations that add new objects
to the document, we find it most realistic that the user during interac-
tion places the node in the window. It would clearly be desirable if the
graph layout could be preserved between sessions. To accomplish this,
some presentation information needs to be stored in association with the
document.

Even though we claim that the five general edit operations are suf-
ficient for creation and modification of any document through a graph
presentation, some of the general edit operations may need two or more
specializations. For example, there should be three variants of the “add
object” for the import-export presentation, one for each of the three kinds
of modules (compilation units) in Modula-2. The operation that adds a
new phylum to the phylum hierarchy should also have two variants, one
for adding a categorical phylum and one for adding a terminal phylum.

7.4 Environmental Support

Abstract presentations are useful for maintaining the overall relations of
a document. But frequently it is necessary during an editing session to

158 ABSTRACT PRESENTATIONS

present particular objects at a lower abstraction level, in order to examine
or change some of the more detailed relations of the document. In this
section we will study how the environment can support this flexibility,
and how the presentations at the various abstraction levels interact, when
several of them are present on the screen at the same time.

The operation that chains the various presentations together in the
Muir environment is called Re-present. Re-present initiates a new pre-
sentation of the current focus in another window. In its basic form,
Re-present attempts to use a presentation scheme at a lower abstraction
level. This reflects the experience that an overall abstract presentation
frequently is used as a platform for initiation of more detailed presen-
tations. Figure 7.8 illustrates this for the Modula-2 presentations that
we have studied earlier in this chapter (see figure 7.4 and figure 7.5.)
The upper graph presentation shows a number of modules and a partic-
ular kind of relations among them (the import-export relations.) The
focus in this window has been re-presented in the middle window, which
shows the program module Muir in some detail. The selected procedure
PointingAction has finally been re-presented in the lower window. This
presentation shows all the details of the procedure that are not already
apparent in other windows. It implies that the two local procedures of
PointingAction are not presented at the most detailed abstraction level.
We find textual nesting at the detailed level inappropriate to visualize
relations among textually large objects. This approach helps to keep all
the presentations at a size that make them fit into a single window on the
screen. The three abstraction levels shown in figure 7.8 were proposed
in EKKO [10,69], which is a design of a programming environment for a
Pascal-like language.

There exist various specializations of Re-present which make it possi-
ble to request the usage of a particular presentation style and a particular
presentation scheme. It is, for example, possible to go from a rather de-
tailed presentation to a presentation of the same structure at a higher
abstraction level.

As illustrated above, it must be anticipated that some constructs in a
document are presented more than once on the screen at the same time.
For example, the procedure name PointingAction is presented both in
the middle window and in the lower window in figure 7.8. We say that
two presentations Py and P; are overlapping if changes in the underlying
internal structure through P; can affect Py, or vice versa. Several issues

74. ENVIRONMENTAL SUPPORT

[MPL MODULE Tree
IMPL MODULE Azt

[OEF WODULE Ast]
- d ‘-\"

o -

P o’
-~ ;’/ \\\.“\
,;';:-"_ A,
DEF MODULE Tree

IMPL MUDULE Brammar

_4-'-"""”-'."-’

g
DEF MODULE Grammar

PROGRAI® MODULE Muir
-
///
‘n

/DEF MODULE Prasenter

IMPL MODULE Preazen

,Z:;’

.f/-:‘ /f/‘

Tree Seditor f;)

ELZIF Button=middle THEN
EMD EMND
END,

etupMenu(L)

159

o _~PROCEQURE InicatrentionHandler
sMODULE AttentionHandler-——-—PROCEDURE GetAttention
;"" PROCEDURE attentionTyps
ff J//,PRBDEDURE InitKeyboardHandler
A ot s et et 1 e o PROCEDURE StartTextEnter
2 o MODULE ReybosrdRandler S proceDuRE SompTetaTextenter
S, -PROCEDBURE AdjustTextlount
o,
o PROCEDURE PopllpMenu
\'\ | (A Ix]
W, MODULE HouseHandTer =—__ ppocEpURE Menusct ion
\\PRGLEDURE Text&ction PROCEDURE &
" " uBTE‘Ct
PRGCEUURE‘F°1"t1ngﬁCt1°""“*-PRUDEDURE Setupian
F‘PULEDUPE NIRRT 4R Att: Attention)
BEGIM
WITH Atc
00 IF Button=lert THEN Se?ect Stn)

Figure 7.8: Related presentations at three different abstraction levels .

160 ABSTRACT PRESENTATIONS

;/
//5 N

Figure 7.9: Overlapping presentations of a tree T.

need clarification when we work with overlapping presentations. First,
it is possible to affect the existence and the identity of one presentation
through operations on another presentation. We need a general “policy”
to handle that problem. Secondly, we need to decide to which degree
overlapping presentations should be consistent with the underlying AST
structure. We will now in turn discuss each of these issues.

Let us assume that we have a situation as outlined in figure 7.9.
The AST T is presented in Py, and T’s constituent S is presented in
P,. If the construct R is replaced by another construct R’ through the
presentation Py, the presentation P, could be affected. There are at least
three different interpretation of the replacement:

1. Py is lost, because the internal structure S, which it presents, no
longer is part of the tree T.

2. P; is not affected, and S will continue to exist.
3. Py will after the tree substitution present some substructure of R’.

We prefer the second solution. We consider a presentation as a “handle”
to the underlying document, and as long as such a handle exists we
cannot lose it. The part of the document “in between” R and S, on the

74. ENVIRONMENTAL SUPPORT 161

Figure 7.10: Situation after the replacement of R by R’.

other hand, will be lost. Using this interpretation, the situation after the
substitution is as shown in figure 7.10.

In the ideal environment, every presentation on the screen should
be consistent with its underlying AST structure. In case of overlapping
presentations, a modification in one of the windows may affect a number
of other windows as well. In some situations, or for some presentations, it
might be too time consuming to maintain total consistency between the
AST structures and their presentations. We feel that it is too primitive,
and perhaps even too dangerous to make it the responsibility of the user
to ask for regeneration of a possibly inconsistent presentation. If the
system cannot afford “the total consistency approach”, it should at least
mark the inconsistent presentations as obsolete. The default in Muir is
to keep all the presentations consistent at any time. As an option, the
“mark as obsolete approach” can be turned on via a global flag. If it is
time consuming to update some presentations, this option may make the
environment more pleasant to use, because the delay following an edit
operation is decreased.

Let us finally sketch how we in the implementation of Muir manage to
keep all affected presentations up to date. Let us consider what happens
internally when a construct, say R in figure 7.9, is replaced by another
construct R’. We maintain a mapping

162 ABSTRACT PRESENTATIONS

Node WindowMap: TreeNode — List of presentations.

This mapping makes it possible to determine efficiently whether a given
node in an AST is a root in a presentation, and moreover, it gives us the
presentations rooted by the node. Every presentation affected by the tree
modification has its origin on the path from R to the root of the AST.5
For each presentation found in this way, we check to see if R, actually is
presented. For each presentation found to be affected, we issue a request
for screen updating (passing information about R’, R, and its position in
the presentation). Such a request is stored as a so-called screen update
record in a screen update list. An edit operation, which may involve
several tree substitutions, can in this way request many screen updatings.
Following the edit operation, a screen update procedure effectuates the
screen updatings from the screen update list.

7.5 Related Work

In this section we will briefly survey various alternative presentation tech-
niques that have been described in the literature. It is appropriate to start
by looking at some early work in the area of text processing. Already
in the mid-sixties the presentation problem was recognized by Engel-
bart and his group at SRI where they developed the NLS system 26,83].
We have already mentioned NLS in chapter 2 (page 10.) A hierarchical
structuring of text together with the possibility of controlling how this
hierarchy is presented on the screen is central to NLS. To specify the
presentation, NLS uses three independent view-specification conditions:
level, truncation, and content. Level describes the maximum depth of
the presentation, and truncation describes the maximum number of lines
that will be displayed for each “statement” in the hierarchy. Content is
a more powerful mechanism, which allows the user to specify that only
statements whose content satisfies the content condition should be pre-
sented.

In structure-oriented editors, a simple “holophrasting” technique is
frequently used to allow larger portions of a document to be displayed
on the screen. A holophrast is a cover name for a substructure of a

5This might not always be true for transverse graph presentations. If such a presentation
addresses objects outside the tree rooted by the origin of the presentation, the graph presentation
may be affected in other ways as well.

7.5. RELATED WORK 163

document, and it was introduced by Hansen in the Emily editor in 1971
[39,40]. (Emily is described in some detail in section 2.3.1 of this thesis.)
In a presentation, the holophrast is shown instead of the substructure
itself. Holophrasting and similar concepts have been used in numerous
systems [10,31,61,91]. There has also been done some work on auto-
matic holophrasting [64,62,84], by which the system, and not the user,
determines which construct to holophrast in order to obtain a given pre-
sentation goal. In R® [42]—a programming environment for Fortran—a
window used for program presentation is divided into two panes, one be-
sides the other. In the right-hand side pane the entire Fortran program is
presented, holophrasted to such a degree that it fits into the pane. In the
left-hand side pane, an indicated part of the contents of the holophrasted
pane is shown in full detail.

Several contemporary programming systems provide facilities for mak-
ing abstract presentations. Let us first take at look at Pecan [75,76], a
prototype system developed at Brown University. In Pecan it is possible
to define so-called views. A “syntax-directed editor view,” which uses tra-
ditional textual presentation of programs, constitute the primary way to
present, create, and modify programs. A Nassi-Schneiderman flow chart
view is also supported. Besides these, several so-called semantic views
of the symbol table, the data type of variables, and the tree representa-
tion of expressions are provided. Thus, most of the views in Pecan are
quite detailed images of static and dynamic aspects of a program and its
execution. More overall program presentations, such as a “module-level
abstraction view”, are proposed in [76].

Abstract presentations have also been used in Gandalf (see section
2.3.3.) Textual presentation at various abstraction levels is described
and exemplified in both [59] (Aloe) and in [29] (Loipe), which builds on
top of Aloe. The Aloe syntax description separates the abstract grammar
and the so-called unparse schemes (concrete grammars), and it therefore
makes sense to define several unparse schemes. Unparse schemes can be
used to define several useful abstract presentations, such as procedure
structure presentations and procedure call cross references. In Gnome
[15], which is a more recent Gandalf environment, a so-called outline
wew is briefly described.

In [9] it is described how abstract presentation techniques have been
applied on a specific programming language, namely Beta [63]. A variety
of relations among structures in Beta programs and Beta program exe-

164 ABSTRACT PRESENTATIONS

cutions are defined. In this work it has been a major concern to define
presentations that make use of special graphical symbols instead of tex-
tual means. Even the detailed aspects of a Beta program are presented
by these alternative means.

If more elaborate document representations than tree structures are
used, it may be realistic to come up with more elaborate presentations
as well. Linton proposes in [56] to represent programs as relations in
a relational database, and he sketches how to define alternative views
of programs in such a framework. Horwitz describes in [44,45] a “sym-
biosis” of attribute grammars and relational database techniques, which
builds on top of the work done by Reps and Teitelbaum [78,79]. In this
work, a view is defined as a query to a relational database. The query is
automatically re-executed for each change in the underlying document.
Documents are represented as attributed abstract syntax trees that can
be augmented with relations. These relations may contain information
that is loosely associated with the document, or they may, in a more
explicit way, represent information that in principle also could be de-
rived from the attributed ASTs. This extension of the representational
basis of the system makes it possible to present program anomalies and
static semantic errors in a rather concise way, because the information
explicitly is available in the data base at any time. For example, all un-
used definitions, and all procedure calls whose number of parameters do
not match their corresponding procedure declarations can be presented.
(This particular example is discussed in some detail in [45].) The price of
this functionality is a considerably higher complexity, because the system
must deal with both attributed ASTs and relational representations.

7.6 Summary

We have in this chapter developed two abstract presentation techniques:
One by which the compositional structure w.r.t. selected object types
can be presented, and another that allows more transverse relationships
among selected object types to be presented. Both of the techniques we
find most interesting if the presented objects play a role in the overall
structuring of the document. We look at our work as a contribution to

solving the urgent need for better overall presentations of large docu-
ments.

7.6. SUMMARY 165

The abstract presentation techniques have been embedded into sim-
ple presentation formalisms (or languages.) It means that the abstract
presentation techniques are not bound to one or a few “applications” or
languages. In the same way as it is possible to make textual presenta-
tion schemes (or pretty printers) for every language, it is also possible
to make graph style presentations in our framework whenever there exist
objects and relationships in the languages that are adequate for this kind
of presentation.

We have observed that edit operations in general depend on the pre-
sentations through which they are applied. It must be required that the
edit operations manipulate the internal AST structure in such a way that
the net effect makes sense in the presentation. For the transverse graph
presentation this sometimes means that two or more (possibly distant)
places in the AST have to be modified in order for the operation to “act
naturally” on the presentation. The problems caused by overlapping pre-
sentations were finally touched upon. We described how the identity of
a presentation can be affected by operations on other presentations. To
ensure a more satisfactory interaction we also introduced various degrees

of consistency between the internal representation and the screen presen-
tations.

Chapter 8

Conclusions

The conclusions will be organized with respect to the following key areas
that have been treated in this thesis: Hierarchical grammars, language
development facilities, syntax-directed editing, and semi-automatic facil-
ities. The status of the work together with possible future research topics
in the area will also be touched on.

Hierarchical Grammars

A hierarchical grammar represents a new formalism for the definition of
the context free syntax of artificial languages. From a conceptual point of
view, a hierarchical grammar is a specialization /generalization hierarchy
of syntactic domains. We are not aware of other works in which this point
of view has been used on grammars. We deal with multiple grammars by
linking them all together in a single hierarchy, and by allowing subphylum
relations that cross the boundaries between the phylum hierarchies. The
treatment of the most general syntactic domain in a single language and
in the whole environment (the phylum Anything) is particularly nice
in our model. The idea of having “general applicable constructs” (the
phylum Always) also turned out to be very useful.

From a pragmatic point of view there are only minor differences be-
tween the new formalism and the already well-known formalisms. We
have seen that it is straightforward to interpret the hierarchical grammar
concepts as either nonterminals/productions or operators/phyla. The
special phyla in the hierarchical grammar framework—Anything, Always,
gate phyla, identification phyla, and choice phyla—can therefore, more
or less elegantly, be provided for in the already well-known grammar
definition formalisms.

166

167

Language Development Facilities

The purpose of Muir is to support the development of new artificial lan-
guages. In other words, Muir is a language development environment.
This is a new and indeed a very specialized area, and as such it is dif-
ficult to put forward definitive conclusions. However, we firmly believe
that syntax-directed editing facilities are indispensable in a language de-
velopment environment. The uniform treatment of grammars and docu-
ments, together with the possibility of shifting between grammar editors
and document editors at any time, has clearly promoted a good deal of
flexibility in Muir. The vision of editing a grammar through its phy-
lum hierarchy has not yet been tried out in practice. However, we have
in chapter 7 devised a general presentation technique that could be the
basis for a realization of this vision.

Experimentation is a keyword in a language development environ-
ment. We envision that it typically will be necessary to modify a gram-
mar, based on some experience gained by creating some sample docu-
ments in the new language. In order to reestablish the consistency be-
tween the grammar and its dependent documents, we find it important
that the existing documents can be updated in a systematic way. The
semi-automatic approach devised in chapter 5, which is based on trans-
formation templates created by the system upon grammar modifications,
is novel, and we are not aware of similar facilities in other systems. In
DOSE [30], a “prototyping environment for language design”, this issue
has been ignored.

Language analysis tools are clearly relevant in a language development
environment. This is an issue that nearly has been ignored in Muir. Also
(static) semantic support would be interesting, but we have not gone
into that area either. The work on static semantic issues in language-
based editors is a good starting point for this. The most natural “next
step”, though, is to gain some experience with Muir in a real language
development situation. Work on that is currently (as of January 1987)
going on at Stanford’s CSLI, where the Aleph specification language [99]
is being “implemented” in Muir.

168 CHAPTER 8. CONCLUSIONS

Syntax-Directed Editing

Most, if not the entire functionality of Muir, is relevant for AST-based,
syntax-directed editing environments. Of special interest is the abstract
presentation capabilities and the implementation of edit operations as
pattern-based transformations.

It can be concluded that abstract presentations in the same way as
more concrete presentations can be defined in grammar related presenta-
tion rules. In order to gain some experience with the definition of abstract
presentations we have defined two simple presentation formalisms; one
for showing the overall compositional structure of a document, and an-
other for showing transverse relationships in graph presentations. An
AST-based environment is well-suited as a basis for making abstract
presentations. It would be very difficult, if not impossible, to support
similar capabilities in environments based on a textual representation of
documents. Abstract presentations might be one of the best arguments
in favor of AST-based environments. We have proposed how general,
structure-oriented edit operations can be defined on abstract presenta-
tions. However, we feel that more research is needed in that area.

Extensibility and customization are also relevant topics in syntax-
directed editors. We find it important to provide a framework that makes
it easy to implement new structure-oriented editing operations. The Muir
transformation framework, defined in chapter 4, has proven to be well-
suited in that respect. The use of inheritance in the phylum hierarchy
is an elegant technique that allows us to define on which kinds of con-
structs a given edit operation is applicable. Finally, because grammars
in a syntax-directed editing environment rarely are static, the facility for
keeping documents consistent with their grammar is envisioned to be a
useful tool in most syntax-directed editing environments.

Semi-Automatic Facilities

One of the major design decisions was to automate the simple routine
tasks, and to solve the more intellectually demanding tasks in interaction
with the user. The multi-formalism transformation facility in chapter 6
is probably the best example of a facility that has been based on this
principle.

169

One of the most interesting aspects of the multi-formalism transfor-
mation facility is the semi-automatic generation of the transformations.
Based on our experience with the translation from Pascal to Modula-2
and vice versa it is evident that the system-created transformation tem-
plates provide an excellent starting point for making a set of transforma-
tions. The price for this functionality is paid during the creation (and
the debugging) of the relation among the source and the target phyla.
However, it is possible to provide a convenient user interface to that part
of the system, namely by letting the user select pairs of phylum symbols
in windows that present the source grammar and the target grammar
respectively.

The actual translation process is also semi-automatic. The set of
transformations can be applied on a document, and the resulting mixed-
formalism document can manually be converted to a “pure” target docu-
ment. The manual translation process is carried out in a normal instance
of Sedit, the syntax-directed editor in Muir. It is interesting to notice
that only a couple of new structure-oriented edit operations are required
for that task.

Finally, the facility that helps keep documents updated w.r.t. their
grammar is also an example of a successful semi-automatic component
of Muir. It is indeed the interaction between the system’s and the user’s
contribution that makes our approach interesting.

All in all it can be concluded that an editing environment in gen-
eral, and a syntax-directed editing environment in particular, is a good
platform for the realization of many semi-automatic activities.

Appendix A

Proof of Correctness Theorem

In this appendix we prove the correctness theorem for multi-formalism
transformations from section 6.3.4 on page 112. Let us rephrase the
theorem here:

Theorem. Correctness of a transformation
Given a syntactically valid multi-formalism AST A and a transfor-
mation 7 = (P,R,PR). Let C}, ..., C% denote the AST-constituents
of P that are related to AST-constituents of the replacement R. If

1. p(R) C* (P) and
2. w(C%) C* w(PR(C%)) for 5 € [1..n]

then 7(A) is a syntactically valid multi-formalism AST.

Proof.

Let us assume that the application of the transformation r on the AST A
locates m matches My, My, ..., M,, where m > 0. Depending of the trans-
formation class of 7, new matches may be located in the replacements
substituted for these matches. Each of the matches will be replaced by

the replacement R, and in order for this substitution to be legal it must
be the case that

(1) o(R) C* w(M,)

for ¢ € [1..m)].
Let us now consider one of the matches My, M,, vves My, and for notational
simplicity, let us call it M. For each of the constituents Cb, ..., C% in the

170

171

pattern there exit corresponding constituents in M, namely C},, ..., C%,.
The relation PR among the constituents of P and R induces a similar
relation MR among the constituents of the match M and the replacement
R. The match constituents C}, ..., C% are substituted for MR(C},), -

MR (C%;) respectively, and in order for that to be valid we must prove
that

() (Ci) C* w(MR(Ci))

for ¢ € [1..n].

If we can prove (1) and (2) for an arbitrary match M (and if the trans-
formation step defined by 7 terminates) then the theorem can easily be
proved by induction. The basis for the induction is that the AST A, on

which the transformation is applied, is a valid multi-formalism AST, and
it follows directly from the pre-conditions of the theorem.

Ad (1):
Consider the following chain of assertions:
p(R) C* o(P)=p(M) C* w(M).
©(R) C* ©(P) is a pre-condition of the theorem. ©(P)=p(M) stems from

the fact that the pattern P matches M. And finally, (M) C* w(M) is true

because the AST, on which the transformation is applied, is syntactically
valid.

Ad (2):
The following chain of assertions proves (2):

#(Cly) C* w(Ciy)=w(Ch) C* w(PR(CH))=w(MR(Ciy)).

The first link, ©(C};) C* w(C%,), is true because we assume that the
match-constituent C%; is syntactically valid before the transformation is
applied. w(C}s) = w(C%) holds due to the fact that the pattern con-
stituent C’% matches the constituent C4y of the match. Third, the asser-
tion w(C%) C* w(PR(C%)) is a pre-condition of the theorem, and finally,
because the relation MR is induced by the relation PR, w(PR(C%)) =
w(MR(C%y)).

We have hereby proved the induction step, and this concludes the proof
the correctness theorem.

Appendix B

Modula-2 Presentation Rules

In this appendix the phylum declarations that define the presentations
in figure 7.4 (see page 147) and figure 7.5 (see page 149) are listed.
Compared with the actual declarations in the hierarchical Modula-2
grammar there have been made a couple cosmetic changes to the phylum
declarations. First, in order to ease the understanding, only relevant pre-
sentation rules are included. Secondly, abstract constituents are referred
to by name in the presentation rules, and not via a “constituent number.”

Terminal Phylum declaration-list:
head : declaration
tail : declaration-list
presentation-rules
MO.TreePs:
Choice
“(EQUAL (NAMEOFTREE (SUBTREE ROOT 1)) ‘module-declaration)”
(Constituent head control: Label= MO .LabelPs);
“(EQUAL (NAMEOFTREE (SUBTREE ROOT 1)) ’procedure-declaration)”
(Constituent head control: Label= MO.LabelPs)

CONTINUE

Explanation:“A list of declarations”

Terminal Phylum module-declaration:
Moduleldentifier : nameDcl
ModulePriority : OptionalPriority
Modulelmport : import-list
ModuleExport : OptionalExport
ModuleBlock : block
presentation-rules
MO.LabelPs: “MODULE ” Moduleldentifier

Explanation: “Declaration of local module”

172

Terminal Phylum procedure-declaration:
Procedureldentifier : nameDcl
formalParameters : FormalParameters
ProcedureBlock : block
presentation-rules

MO.LabelPs: “PROCEDURE ” Procedureldentifier

Explanation: “A full declaration of a procedure”

Terminal Phylum CompilationUnit-list:
head : CompilationUnit

tail : CompilationUnit-list
presentation-rules

MO.ImportExportPs:

173

[MO.LabelPs MO.ImportExportIdScheme MO.ImportExportEdgeScheme] CONTINUE

Explanation: “A list of compilation units (main module, implementation modules

and definition modules.)”

Terminal Phylum MainModule:
ModuleName : nameDcl
Priority : OptionalPriority
Import : import-list
ModuleBlock : block
presentation-rules
MO.LabelPs:
“PROGRAM MODULE ” ModuleName
MO .ImportExportIdScheme:
“MainModule.” ModuleName
MO.ImportExportEdgeScheme:
Import
MO.ImportExportPs:

STOP STOP STOP STOP
Explanation: “A main program”

Terminal Phylum ImplementationModule:
ModuleName : nameDcl
Priority : OptionalPriority
Import : import-list
ModuleBlock : block
presentation-rules
MO.LabelPs:
“IMPL MODULE ” ModuleName
MO.ImportExportIdScheme:
“ImplModule.” ModuleName
MO.ImportExportEdgeScheme:
“DefModule.” ModuleName SEP Import
MO.ImportExportPs:
STOP STOP STOP STOP

174 MODULA-2 PRESENTATION RULES

Explanation: “An implementation module.”

Terminal Phylum DefinitionModule:
ModuleName : nameDcl
Import : import-list
Definitions : definition-list
presentation-rules
MO.LabelPs:
“DEF MODULE * ModuleName
MO.ImportExportIdScheme:
“DefModule.” ModuleName
MO.ImportExportEdgeScheme:
Import
MO.ImportExportPs:
STOP STOP STOP

Explanation: “A definition module.”

Terminal Phylum import-list:

head : import

tail : import-list

presentation-rules
MO.ImportExportEdgeScheme: head tail

Explanation: “A list of import sections, in each of which it is possible to import a list of named
definitions”

Terminal Phylum import:

FromClause : FromClause

ImportNameList : nameApl-list

presentation-rules
MO.ImportExportEdgeScheme: FromClause

Explanation: “Specify a list of imported names. If the optional module name is specified, all
names are assumed to be imported from this module. In the module, they can be
used as if they had been exported in non-qualified mode.”

Terminal Phylum FromModule:
ImportModule : nameApl
presentation-rules

MO.ImportExportEdgeScheme: “DefModule.” ImportModule SEP

Explanation: “Qualifying import list with module name”

175

Appendix C
Guided Tour in Muir Woods

This appendix takes the reader on a guided tour through the
Muir environment. The appendix is especially well-suited to

deepen the understanding of section 3.2 about the Muir envi-
ronment.

C.1 Start Situation

The first snapshot shows the initial Muir screen.

{HEEPJILD AHCA = r !
SVNTA CCHECK i :
SCRUPDS TEFLG o]
CASHMENMUFLS 'l Interlisp-D
= :]EI-JUREDEFI[‘!ITIC‘F'I [}

ASZERTCHECE FLAG
3 AUTOINFD
-2 tree k" ECITBUFFER rl
tEr tres 06 TAGFLA 5
aumar tree OR VYRITETEMPLATEFLG }
YERSIOIMCHECE FLiG o
“Template 11st On" TREEFOREMAT H
i 3RAPHE < TEMT o
TEC(RHIETFLAGE] AF.CFHL A DT |
T
T6r{DF rHSETFLAG3])
BHIETFL AL
TT-(0F ANINIT)
RHINLT
T8e1 TETQ DEFAULTRFRINTINGHOST ' Toor:)
RCELA]
73-105TE]

RLENTFREET S el P S
Cam

[ireeSeditor———————— 1
- GEANBERINFU Prezentar
ST Pavs
T perators
_—
. ~MACro Operarors
“Editlp's

|
i
:

Tree Seditar
- GRAMMAR INFO Hodula-2

Tree Seditor
- GRHMMARIHFD Cpstemlres

Jree Seditor
. BERMMAKIHFD Metscanguage;

- BEANRARINFI Pizial

SRy s EF-=—-rny1a ePryis mnyia
BT nperators T Editop'e = Gperatary B operarors
TN Macro operatar: CuTteMacra operators “I-Macro operators
TEdatin’ s !' TR SeEd1t0p’ s

Snapshot 1. Start situation. After having loaded the system this picture is shown on

the screen.

176

C.2. HOW TO INITIATE ACTIONS 177

Muir is loaded on top of a standard Interlisp-D sysout.
The Muir boot function sets up a display in which the most
relevant grammars are presented in outline form. In snapshot
1, five such presentations are located at the bottom of the
screen. Each of the editor windows are full-fledged syntax-
directed editors that contain abstract presentations of hierar-
chical grammars (see chapter 3.)

We call the structure-oriented editor in Muir “Sedit”. Sed-
itors support two different presentation styles, a text style and
a graph style. The graph style presentations that we will meet
on this tour all show the composition of programs, and they
are therefore constrained to be tree structures. We will refer
to such presentations as tree style presentations.

Because of the tiny amount of information in the five out-
line presentations in snapshot 1, we mainly use them to ini-
tiate actions on grammars, and to initiate more detailed pre-
sentations of various aspects of a grammar. How this is done
will be clear in a moment. Besides the outline presentation of
the grammars, also the so-called prompt window (the black
window at the upper left-hand side corner of the screen), the
standard TTY window (below the prompt window), and a
couple of icons are shown. The TTY window is the window
from which arbitrary Lisp expressions can be evaluated. Oc-
casionally it is useful to initiate an operation related to Muir
via the TTY window. The prompt window is mainly used
for messages from the system. Finally, a flag menu is present
(placed to the left of the CSLI icon.) Through this menu it

1s possible to change various flags (variables) on which Muir
depends.

C.2 How to Initiate Actions

A construct in an Sedit window can be selected by buttoning it
with the left mouse button. The currently selected construct
in a presentation is called the current focus, and it is shown in
reverse. The primary way to start an action in Muir is through
popup menus. A popup menu is related to the current focus,

178 GUIDED TOUR

and it reflects the various actions that can be executed on
the focus. The popup menu appears when the middle mouse
button is activated in the window that contains the focus.
Given the situation in snapshot 1, we want to carry out
an action on the Pascal grammar. By middle buttoning the
root in the Pascal grammar (the third window from the left

at the bottom of the screen) we get the menu shown below.

[Edit Operations Snapshot 2. A popup menu related to the root
- ar

gr‘amma __________________ of the Pascal grammar. The selected operation will
Inztall start a Pascal Seditor, if initiated. The small ar-
Aralyze)

l rows in the menu fields mark those fields that have
Footinfo submenus. We use submenus for specializations of
Copy b operations. (Submenus are provided as a standard
Fe-present ¥ - ..

OoEdItOp b Interlisp-D facility.)
Reduce »

Jndo .

Search >

Holophrast . »

sttributeAnalysis

*ranmimar

In general, a popup menu contains several segments. Op-
erations in the upper section are the primitive edit opera-
tions, which are well-known from most syntax-directed edi-
tors. Operations in the second menu section are “generalized
edit operations”, which are relevant on the current focus. The
operations in the third section are focus-independent edit op-
erations. These are always meaningful, and consequently this
section is always in the popup menu. Section four contains
composite templates, i.e., non-primitive constructs which it
makes sense to substitute for the current focus. A fifth sec-
tion may contain list manipulation operations, but no such
operations are relevant on the root of the Pascal grammar.
One or more of the menu segments may by empty. If that is
the case, the segment numbering just described is different.

A few actions can also be initiated via the background
menu (a popup menu which appears when the gray back-
ground is buttoned with the right button.) The next illus-
tration shows a snapshot of the background menu when it is

C.3. PASCAL EDITING 179

rolled two levels out.

CHAT _
idle ¥
Savevh
Shnap
Hardcaopy #
FSh
TEdit #
Sreet
Reclaim
WViolurne Display
Paclkages

MNewPhyium
Mewliperator
| MetaGrammar o wE ditOp
J FascalProgram
4riodulaPrao Qram

Snapshot 3. The background menu with sub-menus.
Whale pressing the mouse button the cursor is moved
across the two gray right arrows to produce this situation.
If the mouse button is released in this state, the NewEd-
1tOp operation will be ezecuted. The remaining items in

the menu (at the outer level) are not relevant to Muir.

In the following we will denote the menu choice from above
with Muir>MetaGrammar>NewEditOp. Whenever an opera-
tion can be activated via a popup menu it can also be activated
via the keyboard by typing “Control x” followed by as many
characters of the operation that makes it unique!. In addition
it is, of course, possible to do anything from the TTY window,
but it is usually the last resort if, for some reason, the other
techniques fail.

C.3 Pascal editing

Most of the remaining discussion of the Muir environment will
be centered around a Pascal example, because most people
are familiar with Pascal as opposed to our grammar-related
formalisms. Using the operation Muir >PascalProgram from
the background menu we start a tree style Pascal Seditor, and
using the popup menu, we load an already existing Pascal

!Operations in sub-menus, however, cannot be activated via the keyboard
yet, and in general we think it would be tedious to do so because also all the
super-operation names must be specified.

180 GUIDED TOUR

program by Copy>FromFile. The resulting display is shown
below.

1,Id: PA procedure, Choice: P& routine-declaration,
Tree Seditor
~Procedurs FeadlnTours Procedure StartTour

fgii;Functian Perzonkm

Foot =" _ P d SR _———Function BoatKm
e = Function TotalPersonkm

‘Procedure Top

Snapshot 4. A tree Seditor for a Pascal Program. Information about the current focus
is shown in the local prompt window of the presentation (7ust above the title bar of the
window.) It can be seen that the identification phylum of the focus is procedure in Pascal

(PA), and that the choice phylum is routine-declaration.

The presentation in this Seditor is an example of what
we call abstract presentation. The underlying internal struc-
ture is an AST for the whole Pascal program, but only the
relationship between procedures and their local procedures is
shown in the presentation. Abstract presentation is discussed
in detail in chapter 7 of this thesis.

Having selected the procedure Statistics we can re-present
it in the usual textual way, just by using Re-present in the
popup menu. (When Re-present is applied on a tree presen-
tation it will attempt to re-present the internal structure as
text, using the so-called default textual presentation scheme.)
However, we wish to apply an alternative textual presenta-
tion scheme that filters out the (textual) presentation of local
procedures. The fact that Statistics has local procedures is
already apparent from the tree presentation, so why waste
space by presenting the local procedures at the detailed level
too? To enforce such a presentation we carry out the opera-
tion Re-present>AsText >InOtherScheme, which will present
a new menu of alternative textual presentation schemes. We
select “PA.TextPs1”, a somewhat cryptic name for the de-
sired scheme, and the following snapshot shows the resulting
textual presentation of “Statistics.”

C.3. PASCAL EDITING 181

1,Id: P& nam=0cl, Choice: P&, namelc]

Text Seditor (+) [Use Keyboard]

Procedure SEETRIIAIS ;
¥ar Bt,Pz: Integer
Begin
Write("Boar Statistics:");
for Bt := 1 to MaxBoarld
do Begin '
Write("Boat ",Bt,Boatkm(Bt));
Writeln
End;
Write("Person Statistics");
for Fz := 1 to MaxPersonld

do Begin .
Write{"Rower “,Ps,Personkm(Ps));
Writeln
End; 5
Write{"Total number of person km.",TotalPerzonkm)
End

Snapshot 5. Teztual presentation of the procedure Statistics. The two local
functions of Statistics are not presented in this window. The whole procedure
structure of the program, of which Statistics is part, is shown in snapshot /.
The tezt [Use Keyboard] in the title bar of the window tells that the editor
allows input from the keyboard to be substituted for the current focus. The
symbol (1) indicates that the document shown in this window is part of another

document (in this case the document shown in snapshot 4.)

The underlying internal representation of the procedure in
snapshot 5 is a substructure of the internal representation of
the tree presentation in snapshot 4. Thus, if the procedure
name is modified through the textual presentation in snapshot
5 it will also be reflected in the tree presentation. Structure-
oriented editing can be applied at both the textual level and
at the tree level, and they work exactly in the same way?.
Textual structure editing is relatively well-known, so let us
illustrate the editing capabilities at the tree level. If we want
to add a third and a fourth local procedure to Statistics, we
select the function TotalPersonKm in snapshot 4, and we ap-

%In some sense, the edit operations should depend upon the presentation style.
Some edit operations are meaningful in a textual presentation, whereas in a tree
presentation, the effect of the operation cannot be observed.

182 GUIDED TOUR

ply “AddElementAfter>2” on this focus. This results in the
following tree presentation of the program:

1,Id: PA.MIL, Choice: PA.routine-declaration, list element

Tree Seditor

~Procedure ReadlnTours———Procedure StarctTour

s

-

. . ~Function Boatkm
Root se———Function FPerzonkm

~—p 1 - g T —=Function TotalFersonkm
™. —Procedurs Statisticsss ; 5
~, T rBcedurs Sat e ¢ rout ine—declarationd
~Procedure Top M

routine=declaratcions

Snapshot 6. Situation after the operation “AddElementAfter>2” has been ezecuted on
TotalPersonKm in snapshot 4.

Each of the unexpanded routine placeholders can now be
expanded to procedures or functions. Let us assume that the
user expands the first <routine-declaration> with the opera-
tor procedure. To further elaborate this procedure, the user

must open a more detailed (textual) presentation, using Re-
present:

1,Id: PA.NIL, Choice: P&.namelc]

Text Seditor (+) [Use Keyboard]

Procedure [GEVENERRI(<paranster-listh);
Chlock>

Snapshot 7. A teztual presentation of the selection in

snapshot 6, after it has been expanded with the operator

procedure.

The parameter list and the block is now refined via structure-
oriented editing, and the following template may be obtained:

C.4. DEFINITION OF COMPOSITE TEMPLATES 183

1.Id: P&.MIL, Choice: F& . nameDcl

Text Seditor (¢+) [Use Keyboard]
Procedure [{EICEIEABI(<namelcls: <type-name’);
cconstant-declarations?
ctype-declarationss
¥Yar <(namelc1>,<{namellc1>: <typed;
Chnamebcl>,cnamelcly: (types

croutine-declaration-1ist>
Begin

cstatement>;

Lstatements;

cstatement,
End

Snapshot 8. Composite procedure template. The parameter list and
the block in snapshot 7 have been refined.

C.4 Definition of Composite Tem-
plates

Every time a procedure is defined, roughly the same refine-
ments of the parameter list and the block are carried out. For
procedure definitions, the refinements carried out on snapshot
7 (and shown in snapshot 8) are typical. In this, and similar
situations, it is time-saving to define the resulting template
once and for all, and make it available for subsequent use.
Let us show how this can be done in Muir. We select the
whole procedure in snapshot 8. To declare it as a composite
template we execute the operation Copy>ToTemplateStore
on it. This operation will prompt the user for a name of the
template. We christen it *procedure. In general, “stared” op-
erator names hide such composite templates in Muir. For ex-
ample in snapshot 2, xgrammar is a template for a new gram-
mar. Internally, when Copy >ToTemplateStore is executed,
the template is nested into a rather trivial transformation,
which is appended to a special list of such transformations.
Furthermore, this transformation is associated with the ap-
propriate phyla, such that the edit operation implemented by

184 GUIDED TOUR

the transformation appears in the menu when it is applicable
(see section 4.2.2 for more details on that.) Finally, the mod-
ified list of templates is written back onto a file, such that the
new template is available in the future.

In the following, *procedure is a valid alternative in the
menu whenever a routine declaration is selected. If we, for
example, button the unexpanded routine declaration in snap-
shot 6, the menu now reflects the new option *procedure (to-
gether with a similar option for functions):

procedure
furnction
FrocedureTrans
FunctionTrans
AddFirstRaoutine
Copy
Re-present
DoEditCp
Reduce

Undo

Search
Holophrast »
Procedure Jattributesnalysis

Root s——Funstion Personkn - “procedure

I e e Function Tolkp eten
N Erocsdure Stat131103;&?“‘~Prncedure <.jﬂTE_HJ
SRraeatues Tap ey anm e A ddElementBefors _
acddElernentafier B
{DeleteElernent

N g

1,1d: P&.NIL,
Tree Seditor

~Provcedure ReadInTours
=
-~

Choice: P&.routine-declaration, 119

g

~Function Bo

Snapshot 9. Popup menu on a routine declaration in the Pascal program. Composite

templates (¥procedure and *function) have been defined for procedures and functions.

C.5 Skeletal Presentation

Before we continue the discussion of the editing capabilities
in Muir, we will show another presentation “feature.” Snap-
shot 4, 6, and 9 showed high level presentations of a Pascal
program. Sometimes it can be useful, or at least interesting,
to be able present the same information at a very low level.
The low level we have in mind is a presentation that resembles
the internal AST representation. To illustrate that, we select

C.5. SKELETAL PRESENTATION 185

the first for-statement in Statistics (in snapshot 5). Then we
do Re-present >AsTree >InOtherScheme and we select “tree-
skeletal”. This creates the following presentation:

186 GUIDED TOUR

1,Id: P&.procedure-call, Choice: PA.statement, Tist element
Tree Seditor (+)

Bt 1 MaxBoatld begiﬁ..end

statenent-T1ist

-
_ " _\
-~ -
" -""“'—..__ .
procedure-call statement-T1i3t
A -‘/_,-"\._‘
F l\.) o
/{f \L\ _‘ﬂ"‘ Jj.'f R\\"_
f‘.,‘ _I\‘ _‘f‘t ﬁ‘\‘_-
Write argumsnts procedure-call empty-statement-1ist
N\
.-"‘r W
4 "
7
f'l \"1

[a1]

“prezsion-list Writeln empty
o

s,
.
0
).-“

s,
o \'\‘.

- n

£ ",

- ..J‘. \'-\.b

-~ \“'
Boat gxpression-11st
-~ &

-
o LY

-
// h\.,
Bt gxpression-1ist

-
-f"-" \L"-

-~ e
BoatkmiBL) empty-expression-T1ist

Snapshot 10. Low level tree presentation of a for-statement. This presentation reveals
the internal AST representation that we use for Muir. It can be seen that lists internally
are represented as binary nested trees. Furthermore, the grammar is not refined to
handle the structure of expressions. “BoatKm(Bt)”, for ezample, is not presented

structurally. Notice that this presentation can be used for editing ezactly as all the

other presentalions we have encountered.

We support a similar textual skeletal presentation scheme
where the tree structure is shown by indentation. These very

C.6. SYSTEMATIC MODIFICATIONS 187

detailed presentations are rarely useful for editing, but they
are pretty good for debugging and demonstration purposes.
In addition, the skeletal presentations do not depend on ex-
plicitly defined presentation rules in the grammar. So in situ-
ations where no presentation rules are present for a document,
we are still able to present it by using the skeletal presentation
schemes. For a useful application of that, see chapter 5.

C.6 Systematic Modifications

We will now demonstrate how various systematic modifica-
tions of a program can be carried out in Muir. The modifica-
tions we have in mind are so complicated that no single edit
operation can be expected to do the job. On the other hand,
the modifications are simple enough to be described in a pro-
cedure. This procedure may be totally automatic, or—as we
shall see—it may involve a few manual steps. It may be a te-
dious task to carry out all the steps of the procedure manually,
only using the edit operations provided by the system.

Let us assume that all the Read and Write statements in
our Pascal program must dump their output on a file in ad-
dition to their “normal” behavior. We create two new proce-
dures DumpRead and Dump Write, and we want to substitute
all activations of Read with DumpRead, and all activations of
Write with Dump Write. Let us first illustrate how we handle
the Read case. We select an example of a Read statement in
the program, and we activate the Search command on it. It
will set up an Sedit window with a structure-oriented search
operation for the given Read statement.

188 GUIDED TOUR

1,Id: PA.procedure-call, Choice: SY.&nything

Transformation Structureiearch(Opfocus)
Explanation "Refine the tern and the
pre-conditian®

Pre-condition "T"

Transformation-class Primnitive
Focus-modification NoChange

Pattern [EECI{}A

Replacement M4TCH

Snapshot 11. Structure-oriented search operation. In the
structure-oriented search operation, the replacement is the spe-
cial “MATCH?” indication. It tells that the replacement is the
match itself. Le., the document is not affected by this transfor-

mation.

We now broaden the pattern by reducing the name Bt to
the unexpanded placeholder <expression>, and we refine the
replacement to a call of the procedure DumpRead:

1,Id: MT.name0cl, Choice: MT.nam=0c)
Text Seditor [Use Keyboard]

Transforsation EERIENITTEER(Opfocus)

Explanation "Transforms an activation of Read to an
activation of DumpRead."

Pre-condition "T"

Transformation-class Primitive

Focus-modification MoChange

Pattern Read{[&ry: <{expression:])

Replacement DumpRead([Arg: <expression>],0umpFlag)

Snapshot 12. The structure-oriented search operation from above has been
refined to o real transformation. The name Arg of the expressions in the pattern

and replacement serves to copy the first argument of Read to the first argument
of DumpRead.

We now carry out the transformation on the program.
Technically, this is done by selecting the whole program in the
tree presentation (snapshot 4), and then activating the edit
operation DoEditOp in the popup menu. DoEditOp will ask
us to select a transformation somewhere on the screen. We

C.6. SYSTEMATIC MODIFICATIONS 189

point at the newly created transformation, and after a few
seconds Muir reports that a specific number of read state-
ments have been transformed to DumpRead. If we happen
to have some textual presentations of affected program frag-
ments on the screen, they will all be updated, because Muir
always attempts to keep the internal AST structure and their
presentations consistent (see section 7.4.)

In a textual environment, the modifications described above
could be done with a good text editor. However, global re-
placement operations are more error prone in a textual en-
vironment, because in such an environment it is difficult to
separate different constructs that happen to be presented in
the same way.

Write is handled in the same way, but we encounter an
“unexpected” difficulty because we use Write with a variable
number of arguments, and it is not possible to have user-
created procedures with similar capabilities in Pascal. We
decide to activate Dump Write several times instead. In order
to find out how many variable length write statements we
have around in the program, we create the following search
operation (again by selecting an example of a write, and by
some manual structure editing on the pattern):

1,Id: MT.nawmeDcl, Choice: MT.name0c]

Text Seditor [Use Keyboard]
Transforsation AEVSAEEEETEE Opfocus
Explanation "Fefine the pattern and the pre-condition®
Pre-condition "T"

Transformation-class Primitive

Focus-modification MoChange

Pattern wr1te((expr8331un>,iexpressinn),iexpression—]ist})
Replacement WM4TCH

Snapshot 13. Structure-oriented search operation. The two expression templates match

any exzpression, and the expression-list template matches any ezpression list with zero,

one or more elements.

The constructs we are looking for happen to be so regular
that we can capture them with the search operation above.
For systematic modifications in general, this is not always

190

GUIDED TOUR

the case. The alternative is that we select the Write state-
ments in the program manually, and that we put aside refer-
ences to each of them while we go along. To do this, we call
Re-present >OnStack on each of the write statements. Each
activation of Re-present>OnStack pushes a reference to the
Write-statement onto the so-called AST stack, which is lo-
cated at the upper right-hand side corner of the screen. After
having done that three times, the stack looks like this:

AST 8tack

1 procstUPe-c411
Write
| e e e e]
1 procedure-call
gl B
ﬂ

1 procedure-call
Write

Snapshot 14. The AST stack. Each stack frame
shows the identification phylum of the construct,
together with a name that describes it (in this case
the procedure name.) In general, a stack frame
contains a list of ASTs, and the number of ASTs
i each frame is displayed. In this ezample, all
frames are lists of only one element, because we
have selected them ome at a time in a program,
and pushed references onto the stack. The top of
the AST stack is selected. The AST stack is a
“random access stack.” It means that every stack

frame can be selected and operated upon.

We now want to apply a transformation on the stack that
transforms a Write statement with two arguments to two ac-
tivations of DumpWrite. This transformation looks like this:

C.6. SYSTEMATIC MODIFICATIONS 191

1,Id: MT.namz0c1, Choice: MT.nameDcl

Text Seditor (+) [Use Keyhnard]

Transformation JIEEHA | Upfocus) .
Explanation "Transtorms a write statement with two
arguments to a block with two DumpWrite activations.®
Pre—-condition "T"
Transformation-class Primitive
Focus-modification MoChange
Pattern Write{[ELl: C(expression>],[E2: <{expressiaon>])
Replacement Begin
DumpWrite{[ELl: <expression>],0umpFlag);
OumpWrite{[E2: (expression>],0umpFlag)
End

Snapshot 15. A transformation that transforms a Write statements with two

arguments to two calls of Dump Write.

To apply this transformation on the three Write-statements
on the stack, we contract the stack to only one stack frame
containing a list of the three statements:

Snapshot 16. The contracted AST stack. The
3 procedure-call number ‘8’ tells that the stack frame is a list of
three constructs (namely the three selected Write-

statements.)

Next we push a copy of the transformation Write2 from
snapshot 15 onto the stack, by using Copy >ToStack on the

whole transformation. This leaves the stack in the following
state:

AST Stack Snapshot 17. The AST stack now has two

3 procedure-call frames. The first is the list of references to the

Write statements. The top is a copy of the trans-

1 editOp formation from snapshot 15.
Write2

A number of operations are available on the stack. They
can be activated via a popup menu, which appears when the

192 GUIDED TOUR

stack is middle buttoned. We apply the stack operation Ap-
plyEditOp, which requires that the top of the stack is a trans-
formation, and the frame next to the top is the transformation
focus. ApplyEditOp pops the stack twice, and it pushes the
result of applying Write2 onto the stack. This is a list of three
begin..end constructs:

AST Stack Snapshot 18. The AST stack after the trans-

3 begin..end formation Write2 has been executed on the three
_ write statements. In the same way as the trans-

formation focus was a list of references into the
Pascal program, also the current stack top is a list

of references into the program.

We can apply a similar transformation for write statements
with three arguments, but we will not show these steps here.
It is easy to modify the transformation in snapshot 15 to deal
with three argument, but using the current transformation
framework, it is harder to formulate a general solution for n
arguments (n > 1.) If we anticipate that similar systematic
modifications are needed in the future, we can store the in-

volved transformations from snapshot 12 and snapshot 15 on
a file.

C.7 From Program to Grammar

It is easy in Muir to look at a grammar element (a phylum
declaration or an operator declaration), which defines a given
construct in a document. Let us, for example, assume that we
want to look at the Pascal operator declaration that defines
the for-construct in snapshot 5. We select an example of a for-
construct and do Re-present >Operator. This sets up a new

Sedit window on the for operator declaration in the Pascal
grammar:

C.7. FROM PROGRAM TO GRAMMAR 193

1,Id: MT.namelcl, Choice: MT.nam=s0c]

Text Seditor (+) [Use Keyboard]

Operator [alpeaas .
for-wariable | (namefpls:
init-expreszsion | Cexprezsionz

terminal-gxpression : <exprezsions
repeateditatement | (statementy

presentation-rules
Pa,. TextPs: ‘

kKeyWord{“for "), for- ¢:riab1e, KeyWord(" := "), _
init-expression, KeyWord(" to "), fcrm1na1 -expression, OR,
KeyWard "do "), repeated3tatement
Pa.CallTreeEdgeschensa:

a

Explanation: "For to" i _
Equations: environment = father.environment -
Defaulteguation = <eguation-sxpressions

check = ({ for-variable.used
IJ 1 dindit-expression. used
Il terminal-expression.uzed))
Y omyEe 1, environment) .
Oefaulteguation = <eguation-gxpressiana

Snapshot 19. Teztual presentation of an operator in o grammar. The first five lines
of the operator describe the abstract syntaz: The phylum of each constituent (such as
<nameApl>), and their “internal name” (such as for-variable.) The internal constituent
names are used to refer to abstract constituents in the presentation rules. Two presentation
rules are given, namely PA.TextPs and PA.CallTreeEdgeScheme. The first of these de-
scribes the “standard” testual presentation of a for-statement. The exzplanation is a helping
text that will appear when the user is about to use a for-construct during structure-oriented

editing. The last few lines are attribute equations.

The identification phylum and the choice phylum of the
construct can be re-presented in the same way. Because the
hierarchical grammar for Pascal is supported by Muir, we can
modify the grammar in the same way as we do structure-
oriented editing on a Pascal program. Moreover, grammar
modifications can be incrementally compiled (installed), and
changes are reflected immediately by the system. As an ex-
ample of this, we modify the textual presentation scheme of
the for-operator to

194 GUIDED TOUR

Keyword(“Do ”), repeatedStatement,

Keyword(“ for ”), for-variable, Keyword(“ from ”)
init-expression,

Keyword(“ to ”), terminal-expression.

2

If we now re-present the Pascal procedure Statistics we get
the following result (compare with snapshot 5):

1,Id: P&.for-to, Choice: P&.statement, 1ist element

Text Seditor (+)

Procedure Statiztics;

Yar Bt,P=s: I[nteger

Begin

Write{"Boat Statistics:");

Wraite("Person Statistics:”
Do Begin
Write{"Rower ",Pz,Personkmn(Pa));
Writeln
End for Pz from 1 to MaxPerzonld;
Begin
Dumpi¥rite{"Total number of person km.",0umpFlag);
OumpWrite{TotalPersonkn,DunpF lag)
End
End

Snapshot 20. The procedure Statistics presented with the new presentation

rules for for-statements. The current focus is a single for-statement.

All Pascal programs we present in the future (using the
presentation scheme PA.TextPs®) will show for-statements in
this way (so we prefer to change the presentation rule back
to its original definition.) We could also modify the abstract
syntax of the for-construct, but unless we update all existing
Pascal programs to conform with the new abstract syntax, we
will get difficulties. The problem is that existing documents

8The presentation rule PA.TextPs is the standard textual presentation scheme
for Pascal. We have earlier used the alternative textual presentation scheme
PA.TextPsl, which doesn’t present local procedure and function declarations.
However, this presentation scheme is only defined on the relevant constructs
(blocks), and one common textual presentation rules (PA.TextPs) is used to
present other constructs in the language, such as for-statements.

C.7. FROM PROGRAM TO GRAMMAR 195

become inconsistent w.r.t. the current version of the grammar.
We have dealt with that problem in chapter 5 in the thesis.

Let us go a step further. The Pascal grammar is a docu-
ment, which is defined by a grammar for grammars. We often
call this grammar for the meta grammar. Therefore we can
ask the system to re-present the operator declaration of the
for operator. We select the operator shown in snapshot 19,
and we do Re-present >Operator. This sets up the following
Sedit window:

1,Id: MT. . nam=s0cl, Choice: MT.name0cl
Text Seditor (+) [Use Keyboard]

Operator [1900g |

COommeEnt . CCOomMmEnt?

operator-name ;. <namelzlx
ahstract-syntax : <symbol-list>
command-character : {(cammand-<tr>
atd-properties @ <property-T1izt?
prezentations @ (presentation-lizt}
explanation <{explanationy

equations : 3etBrammar.{eguation-Tizt>

presentation-rules
LabelSchemes:
operator-name

Tree3chems:
&TOP, 2TOP, STOP, STOP, STOP, STOP, STOP
PPL:

Text "Operator " ((BOLD RESULAR REBULAR)), operator-name,
":", CR, abstract-syntax, CR, std-properties, CR,
Text "presentation-rules" ((BOLOD REGULAR REGULAR 1)), CR,
prezentations, CR,

Text "Explanation: " ((BOLOD REGULAR REGULAR),
explanation, CR,

Text "Equations: " ((BOLD RESULAR REGULAR)), eguations
PSHORT :

By <1 8

?

Explanation: "Thiz is an explanation of operator"

Snapshot 21. The operator declaration for operators in the meta grammar. The first
section lists the abstract constituents of an operator. Below that, the presentation rules

LabelScheme, TreeScheme, PP1, and PSHORT are defined. As can be seen, the presen-

tation of the presentation rules is pretty ugly.

Again we could redefine one of the presentation rules (or
the abstract grammar) if we wanted too. The operator dec-

196 GUIDED TOUR

laration for operators defines its own syntax, and the pre-
sentation scheme PPI1 in operator operator defines its own
presentation.* So if we repeat Re-present >Operator on this

operator, we get an identical presentation to that in snapshot
21

C.8 The Final Situation.

This completes the short travel through the wood of Muir
trees, grammars, and presentations. Let us finally show a
picture of the whole screen after these operations.

T Stack

A3
C Ss EEPOLLR DL S [Tegin: . ond
. PDATEFLG i

Interd: MENLIFLS ;
CASHMENURECEF I TION
SERTIHECIFLAG ¢

1,0 PaLy =c&1V, Gh3vee: PALitatement 1vif o~ lement
Tree Seditor (1)

ror=cs

SMTE T . hERGTREE
SuTHDOY $ #3577, 16d0G
JE={BRAY]

4
4Be SHOWTE - T MOUDULAZTREE 1 eedut ling)
AMINDOY $E 375, 45640

[T e e ulL

el L TSRO T -

T~
DL lus FA.RIRELe T, ChOICe: Ph.namelsl P [R
Opfo T

. "~
Er 1 MarBoacld vegin..end

1o Integer; = o
ke
g HEICTLITERRE

resdIng: Boglean
Begin o

ar1te(Plaaze snter Loat iu, wher of 1eat: in J,/"
boat, (Ower: 1a ang the lengtn . -

resding = true; prenedu'-f=*~=ll

wh1le r&suing

do Begin
DumpFesa (B, Dumpf lag);

the trip);

OunpFesa(ar: Ounp
o arelFrrer o
L. 0w UT namel: 1,

s SEEn i Operator TIIEITN:
f?' B P T Lol PR oproim] 20108 A QumEnt s CoMMENT . EYTTTH

L
¢z ulonamedol

Uperatar o -

fur=vartaoie CUETIVER

Toxt Jeditor (v) [Uss Keyboard] I press s SXpretpignoTes | fT9seropertie: properte-Tizt
Transforsat ion JEEH ofodu. * [e',.m,,a,_e,';r AR 7 presentation: prewentar ton-lite
Explanation Tran:fiew? 3 orite D03Temgnt o Lh (Wi FepEATEAST AL 0 saplanaryon Cé planatien
Arauments 1o 3 Llacl wIth Lws Dump¥rife 3ctivalions. v i SQUALIONT @ LETLrAWMAr 2quaTian-13ig

Pre-condition "I K= .
Tranaforsation-class Prwirive presentation—1 Boat etpreczion

Focus-m0d1f 1cat1on Noln ange RIS presentatvion—rules
Pattern »rire([E1 e prec qon-],[ES. - @opreciianc) ﬁcy?ord('o Label cheue:
Replacesent Begin X . 4 for-variable, - Sper ;razt-nane
Ouipwr1ta{[EL: e pres:ion:], 0unpF13g) ESIE) ™ tarw red Trecichens: i
* - Et & pr 0P, STOP, (TOP, ITOF, TOR, T0P, |
PPY:

o Oumperata([€2 - e-pres.1ons],0umpf lag) =8
§ Tree Seditor End
5 Pr
oProcedure DunpRead
C~Procedure FesalnTour:

BEXEEECET
“Operanor " ((BOLD FEGULAR EERU

i sbrtrsct-runtay, CR, std-prap
g;ﬁ;:?g;;?";“ . - ‘preentition-rulas” ((BOLO RES
Frocedure tartlaur e Bostru BI M prpranrstions, cR,

Fant §2 Furction Bostan Text "€ plsnstion: * {(EOLD REGULAR
St1o -2 on - Gk i T R —— ewplanation, CR,
sl M L L AEEIEn TEEANPEr Sininu shEc far=ariable | ot “Eauattons: * {(6OLD PEQULAR RE|
. P"f':" e T:- e ~Prozesare - nauebot WA e BERY ponnbr:
Rsedune oy “Procedure - nsuede 1 Mesruinal-y oz, i, 3

W e Telf enviran|
Defsaltzguation = < equatt| Explanatien: “This 1: sn e-planstion o

Tree Seditor

LBEaBER TE G 080 a0 sy ot BRAMMARTNFG Cocve = T Y _,g,:,mrmmiér; Hodu15-3
PRI Py 13 e Fr s - PEYIS
= per anor: T-EditlpTe S Uperators I cpersrors
Tt Masrs opErator TeManra aperarors “UBCrG Dperators
Eunrip: THENIEAR Y “Euitlp’

Snapshot 22. The final situation. As snapshot 1, this snapshots shows the whole Muir
screen. Some of the presentations that have been ezplained during the tour still remain

on the screen.

We have naturally closed some of the windows that we

4The equation-part is not included in the visible part of the window.

C.8. THE FINAL SITUATION. 197

have worked with, but quite a few are still around. The pic-
ture above is a typical picture of a Muir screen. Instead of
working on one large document belonging to a single lan-
guage we have (partly overlapping) presentations of several
documents from several languages. Typically, only small sub-
documents are presented in full detail.

Bibliography

[
2]
3]

4]

(5]

[6]

[10]

[11]

[12]

Aho, A.V. and Ullman, J.D., The Theory of Parsing, Translation, and Compil-
ing, volume 1: Parsing, Prentice-Hall 1972.

Allison, L., “Syntax Directed Program Editing”, Software—Practice and Expe-
rience, vol. 13, 1983, pp. 453-465.

Ambriola, V. and Staudt, B.J., The ALOE Action Routine Language Manual
(draft), Carnegie-Mellon University, November 1985.

Bahlke, R. and Snelting, G., “The PSG — Programming System Generator”,
Proceedings of the ACM SIGPLAN 85 Symposium on Language Issues in Pro-
gramming Environments, Sigplan Notices, vol. 20, no. 7, July 1985, pp. 28-33.

Balzer, R. and Cheatham, T.E. Jr., Editorial: Program Transformations, IEEE
Transactions on Software Engineering, vol. SE-7, no. 1, January 1981, pp. 1-2
(Introduction to a special section on program transformations.)

Barr, A., Cohen, P.R., and Feigenbaum, E.A., The Handbook of Artificial Intel-
ligence, vol. 1-3, William Kaufmann, Inc., 1981.

Barstow, D.R., Shrobe H.E., and Sandewall E. (editors) Interactive Program-
ming Environments, McGraw-Hill, 1984,

Barstow, D.R., “A Display-Oriented Editor for INTERLISP” in Barstow, D.R.,
Shrobe, H.E., and Sandewall, E. (editors) Interactive Programming Environ-
ments, McGraw-Hill, 1984, pp. 288-299.

Berthelsen, S., Hvidbjerg, S., and Sgrensen, P., Graphical Programming En-
vironments Applied to Beta, DAIMI IR-64, Department of Computer Science,
Aarhus University, Denmark, September 1986.

Borup, K., Ngrmark, K., and Sandvad, E., EKKO—An Integrated Program
Development System, DAIMI IR-51, Department of Computer Science, Aarhus
University, Denmark, November 1983.

Boyle, J.M., “Lisp to Fortran—Program Transformation Applied”, Program
Transformation and Programming Environments, Nato ASI Series, Series F:
Computer and System Sciences, Vol. 8, 1984, pp. 291-298.

Burkhart, H. and Nievergelt, J., Structure-Oriented Editors, ETH Ziirich, May
1980.

198

BIBLIOGRAPHY 199

13)

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

24]

[25]

Bgdker, S. and Knudsen, J.L., TREED, En Interaktiv Syntax-styret Editor,
Department of Computer Science, Aarhus University, 1980 (not published.)

Cameron, R.D. and Ito, M.R.., “Grammar-Based Definition of Metaprogramming
Systems”, ACM Transactions on Programming Languages and Systems, vol. 6,
no. 1, January 1984, pp. 20-54.

Chandhok, R., Garlan, D., Goldenson, D., Miller P., and Tucker M., “Program-
ming environments based on structure editing: the GNOME approach”, Proc.
AFIPS National Computer Conference, vol. 54, 1985, pp. 359-369.

Cheatham, T. Jr., Holloway, G.H., and Townley, J.A., Program Refinement by
Transformation, Center for Research in Computing Technology, Aiken Compu-
tation Laboratory, Harward University, TR-10-80, June 1980.

Clark, R. and Koehler, 8., The UCSD Pascal Handbook, A Reference and Guide-
book for Programmers, Englewood Cliffs, N.J., Prentice-Hall, Inc., 1982.

Dahl, O.-J., Myhrhaug, B., and Nygaard, K., Common Base Language, Norwe-
gian Computing Center, October 1970.

Darlington, J. and Burstall, R.M., “A System which Automatically Improves
Programs”, Acta Informatica, vol. 6, 1976, pp. 41-60.

Delisle, N.M., Menicosy, D.E., and Schwartz, M.D., “Viewing a Programming
Environment as a Single Tool”, Proceedings of the ACM SIGSOFT /SIGPLAN
Software Engineering Symposium on Practical Software Development Environ-

ments, Software Engineering Notes, vol. 9, no. 3. and Sigplan Notices, vol. 19,
no. 5, May 1984, pp. 49-56.

Delisle, N.M., Menicosy, D.E., and Schwartz, M.D., “Magpie—An Interactive
Programming Environment for Pascal”, Proceedings of the Eighteenth Hawaii
International Conference on System Sciences, 1985, vol. I1, pp. 588-595.

Dixon, M., An Extensible Structured Data Editor for Interlisp-D, (not pub-
lished.)

Donzeau-Gouge, V., Huet, G., Kahn, G., and Lang, B., Programming Environ-
ments based on Structured Editors: The Mentor Experience, Inria, Rapport de
Recherche, no. 26, July 1980.

Donzeau-Gouge, V., Kahn, G., Lang, B., and Mélése, B., “Document Struc-
ture and Modularity in Mentor”, Proceedings of the ACM SIGSOFT /SIGPLAN
Software Engineering Symposium on Practical Software Development Environ-
ments, Software Engineering Notes, vol. 9, no. 3. and Sigplan Notices, vol. 19,
no. 5, May 1984, pp. 141-148.

Ellison, R.J. and Staudt, B.J., “The Evolution of the Gandalf System”, The
Journal of Systems and Software, vol. 5, no. 2, May 1985, pp. 107-1109.

200

26]

[27]

28]

20]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

BIBLIOGRAPHY

Engelbart, D.C. and English, W.K., “A research center for augmenting human
intellect”, AFIPS Conference Proceedings, Volume 33, Part one, 1968, Fall Joint
Computer Conference, December 1968, San Francisco, pp. 395-410.

Eriksen, S.H., Jensen, B.B., Kristensen, B.B., and Madsen, O.L., The BOBS-
System, DAIMI PB-71, Computer Science Department, Aarhus University, Den-
mark, February 1982,

Feather, M.S., “Specification and Transformation: Automated Implementation”,
Program Transformation and Programming Environments, Nato ASI Series, Se-
ries F: Computer and System Sciences, Vol. 8, 1984, pp. 223-230.

Feiler, P.H., A Language-Oriented Interactive Programming Environment Based
on Compilation Technology, Ph.D. Thesis, Department of Computer Science,
Carnegie-Mellon University, May 1982.

Feiler, P.H., Fahimeh, J., and Schlichter, J.H., “An Interactive Prototyping En-
vironment for Language Design”, Proceedings of the Nineteenth Hawaii Inter-
national Conference on System Sciences, 1986, pp. 106-116.

Fischer, C.N., Johnson, G.F., Mauney, J., Pal, A., and Stock, D.L., “The Poe
Language-Based Editor Project”, Proceedings of the ACM SIGSOFT /SIGPLAN
Software Engineering Symposium on Practical Software Development Environ-
ments, Software Engineering Notes, vol. 9, no. 3. and Sigplan Notices, vol. 19,
no. 5, May 1984, pp. 21-29.

Fraser, C.W., “A Generalized Text Editor”, Communication of the ACM, vol.
23, no. 3, March 1980, pp. 154-158.

Fraser, C.W., “Syntax-Directed Editing of General Data Structures”, Proceed-
ings of the ACM SIGPLAN-SIGOA Symposium on Text Manipulation, Sigplan
Notices, vol. 16, no. 6, June 1981, pp. 17-21.

Goldberg, A. and Robson, D., Smalltalk-80 The Language and its Implementa-
tion, Addison-Wesley, Publishing Company, 1983.

Goldberg, A., Smalltalk-80 The Interactive Programming Environment,
Addison-Wesley Publishing Company, 1984.

Gouguen, J.A., Thatcher, J.W., and Wagner, E.G., “An Initial Algebra Ap-
proach to the Specification, Correctness, and Implementation of Abstract Data
Types”, in R.T. Yeh (editor) Current Trends in Programming Methodology, Vol.
IV, Data Structuring, Prentice Hall, 1978, pp. 80-149.

Greenblatt, R.D., Knight, T.F Jr., Holloway J., Moon, D.A., and Weinreb, D.L.,
“The LISP Machine” in Barstow, D.R., Shrobe, H.E., and Sandewall, E. (editors)
Interactive Programming Environments, McGraw-Hill, 1984, pp. 326-352.

Griswold, R.E., Poage, J.F., and Polonsky, I.P., The Snobol4 Programming Lan-
guage, second edition, Prentice Hall, Inc., 1971.

BIBLIOGRAPHY 201

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
[48]

[49]

[50]

[51]

[52]

Hansen, W.J., Creation of Hierarchic Text with a Computer Display, Ph.D.
dissertation, Stanford University, May 1971.

Hansen, W.J., “User Engineering Principles for Interactive Systems”, Fall Joint
Computer Conference, 1971, pp. 523-532.

Hershey, W.R., “Thinktank, an Outlining and Organizing Tool”, BYTE, May
1984, pp. 189-193.

Hood, R.T. and Kennedy, K., “A Programming Environment for Fortran”, Pro-
ceedings of the Eighteenth Hawaii International Conference on System Sciences,
1985, vol. II, pp. 625-637.

Horgan, J.R. and Moore, D.J., “Techniques for Improving Language-Based Edi-
tors”, Proceedings of the ACM SIGSOFT /SIGPLAN Software Engineering Sym-
posium on Practical Software Development Environments, Software Engineering
Notes, vol. 9, no. 3. and Sigplan Notices, vol. 19, no. 5, May 1984, pp. 7-14.

Horwitz, S.B. and Teitelbaum, T., “Relations and Attributes: A Symbiotic Basis
for Editing Environments”, Proceedings of the ACM SIGPLAN 85 Symposium

on Language Issues in Programming Environments, Sigplan Notices, vol. 20, no.
7, July 1985, pp. 93-106.

Horwitz, S.B., Generating Language-Based Editors: A Relationally-Attributed
Approach, Ph.D. Thesis, Department of Computer Science, Cornell University,
TR 85-696, August 1985.

Lisp Library Packages, Xerox Artificial Intelligence Systems, January 1985.

Interlisp-D Reference Manual, vol. 1: Language, Xerox Artificial Intelligence
Systems, October 85.

Interlisp-D Reference Manual, vol. 2: Environment, Xerox Artificial Intelligence
Systems, October 85.

Jensen, K. and Wirth, N., PASCAL User Manual and Report, Second Edition,
Springer-Verlag 1975.

Jesshope, C.R., Crawley, M.J., and Lovegrove, G.L., “An Intelligent Pascal Ed-
itor for a Graphical Oriented Workstation” Software—Practice and Experience,
vol. 15, 1985, pp. 1103-1119.

Kaiser, G.E. and Habermann, A.N., “An Environment for System Version Con-

trol”, The Second Compendium of Gandalf Documentation, Carnegie-Mellon
University, May 1982.

Kaiser, G.E. and Kant, E., “Incremental Parsing without a Parser”, The Journal
of Systems and Software, vol. 5, no. 2, May 1985, pp. 121-144.

202

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[63]

[64]

[65]

BIBLIOGRAPHY

Kristensen, B.B., Madsen, O.L., Mgller-Pedersen, B., and Nygaard, K., “Ab-
straction Mechanisms in the Beta Programming Language”, Proceedings of

Tenth ACM Symposium on Principles of Programming Languages, 1983, pp.
285-298.

Kristensen, B.B., Madsen, O.L., Mgller-Pedersen, B., and Nygaard, K., “An
Algebra for Program Fragments”, Proceedings of the ACM SIGPLAN 85 Sym-
posium on Language Issues in Programming Environments, Sigplan N otices, vol.
20, no. 7, July 1985, pp. 161-170.

Leblang, D.B., “Abstract Syntax Based Programming Environments”, Proceed-

ings of the AdaTec Conference on Ada, Arlington, Virginia, October 1982, pp.
187-200.

Linton, M.A., “Implementing Relational Views of Programs”, Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, Software Engineering Notes, vol. 9, no. 3.
and Sigplan Notices, vol. 19, no. 5, May 1984, pp. 132-140.

Madhavji, N.H., Leoutsarakos, N., and Vouliouris, D., “Software Construction

Using Typed Fragments”, Lecture Notes in Computer Science, no. 186, Springer-
Verlag, 1985, pp. 163-178.

Madsen, O.L., Note about extension of BNF grammars with alternation and
construction-like productions, personal correspondence, 1984.

Medina-Mora, R., Syntax-Directed Editing: Towards Integrated Programming
Environments, Ph.D. Thesis, Department of Computer Science, Carnegie-Mellon
University, March 1982.

Medina-Mora, R. et al., ALOE Users’ and Implementors’ Guide, Department of
Computer Science, Carnegie-Mellon University, November 1983.

Meyer, B. and Nerson, J-M., A Visual and Strutural Editor, TRCS84-03, De-

partment of Computer Science, University of California Santa Barbara, January
1985. :

Meyer, B., Nerson, J-M., and Ko, S.H., Showing Programs on a Screen, TRCS84-
04, Department of Computer Science, University of California Santa Barbara,
January 1985.

Meyrowitz, N. and van Dam, A., “Interactive Editing Systems: Part I and 1§
ACM Computing Surveys, vol. 14, no. 3, September 1982, pp. 321-415.

Mikelsons, M., “Prettyprinting in an Interactive Programming Environment”,
Proceedings of the ACM SIGPLAN-SIGOA Symposium on Text Manipulation,
Sigplan Notices, vol. 16, no. 6, June 1981, pp. 108-116.

Naur, P., (editor), “Report on the Algorithmic Language ALGOL 60”, Commu-
nication of the ACM, vol. 3, no. 5, May 1960, pp. 299-314.

BIBLIOGRAPHY 203

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

Nelson, T.H., “Replacing the Printed Word: A Complete Literary System” in
Information Processing 80, Proceedings of IFIP Congress 80, Lavington, S. (ed-
itor), North-Holland Publishing Company, 1980, pp. 1013-1023.

Nielsen J., Nielsen, H.W., Ngrmark, K., and Sgrensen, J., EAGLE - a Syntax-
directed editor, Users’ guide, (In Danish) DAIMI MD-45, Department of Com-
puter Science, Aarhus University, Denmark, January 1982.

Notkin, D., “The Gandalf Project”, The Journal of Systems and Software, vol.
5, no. 2, May 1985, pp. 91-105.

Ngrmark, K., “Program Development on Graphical Workstations”, Proceedings
of the Eighteenth Hawaii International Conference on System Sciences, 1985,
vol. I, pp. 672-682.

Ngrmark, K., “An Overview of Muir—A Language Development Environment”,
Programming Environments—Programming Paradigms, Proceedings of a Work-
shop at Roskilde University Centre, October 1986, pp. 187-196.

Oppen, D.C., “Prettyprinting”, ACM Transactions on Programming Languages
and Systems, vol. 2, no. 4, October 1980, pp. 465-483.

Partsch, H. and Steinbriiggen, R., “Program Transformation Systems”, ACM
Computing Surveys, vol. 15, no. 3, September 1983, pp. 199-236.

Peyton, L., Presenter—Presentation in a Language Design Environment, Pro-

gramming Project (not published), Department of Computer Science, Stanford
University, July 1986.

Peyton, L., Presenter User’s Guide, Programming Project (not published), De-
partment of Computer Science, Stanford University, July 1986.

Reiss, S.P., “Graphical Program Development with PECAN Program Develop-
ment Systems”, Proceedings of the ACM SIGSOFT /SIGPLAN Software Engi-
neering Symposium on Practical Software Development Environments, Software

Engineering Notes, vol. 9, no. 3. and Sigplan Notices, vol. 19, no. 5, May 1984,
pp. 30-37.

Reiss, S.P., “PECAN: Program Development Systems that Support Multiple
Views”, IEEFE Transactions on Software Engineering, vol. SE-11, no. 3, March
1985, pp. 276-285.

Reps, T.R., Teitelbaum, T., and Demers, A., “Incremental Context-Dependent
Analysis for Language-Based Editors”, ACM Transactions on Programming Lan-
guages and Systems, vol. 5, no. 3, July 1983, pp. 449-477.

Reps, T. and Teitelbaum, T., “The Synthesizer Generator”, Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Soft-
ware Development Environments, Software Engineering Notes, vol. 9, no. 3. and
Sigplan Notices, vol. 19, no. 5, May 1984, pp. 42-48.

204

[79]

[80]

81

[82]

83]

84)

[85]

[86]

87]

[88]

[89]

(00]

[91]

BIBLIOGRAPHY

Reps, T., Generating Language-Based Environments, The MIT Press, Cam-
bridge Mass., 1984.

Reps, T. and Teitelbaum, T., The Synthesizer Generator Reference Manual,
Department of Computer Science, Cornell University, August 1985.

Reps, T., Marceau, C., and Teitelbaum, T., “Remote Attribute Updating for
Language-Based Editors”, Thirteenth Annual ACM Symposium on Principles of
Programming Languages, January 1986, pp. 1-13.

Sandewall, E., “Programming in an Interactive Environment: the “Lisp” Expe-
rience”, ACM Computing Surveys, vol. 10, no. 1, March 1978, pp. 35-71, also in
Barstow, D.R., Shrobe, H.E., and Sandewall, E. (editors) Interactive Program-
ming Environments, McGraw-Hill, 1984, pp. 31-80.

The Seybold Report on Word Processing, vol. 1, no. 9, October 1978.

Smith, S.R., Barnard, D.T., and Macleod, I.A., “Holophrasted Displays in an
Interactive Environment”, International Journal of Man-Machine Studies, vol.
20, no. 4, April 1084, pp. 343-355.

Stallman, R.M., “EMACS: The Extensible, Customizable, Self-Documenting
Display Editor” in Barstow, D.R., Shrobe, H.E., and Sandewall, E. (editors)
Interactive Programming Environments, McGraw-Hill, 1984, pp. 300-325.

Stallman, R.M., GNU Emacs Manual, First Edition, Emacs Version 16, June
1985.

Standish, T.A., Harriman, D.C., Kibler, D.F., and Neighbors, J.M., Improving
and Refining Programs by Program Manipulation, Department of Information

and Computer Science, University of California at Irvine, Irvine, California,
February, 1976.

Stromfors, O. and Jonesjd, L., “The Implementation and Experiences of a
Structure-Oriented Text Editor”, Proceedings of the ACM SIGPLAN-SIGOA

Symposium on Text Manipulation, Sigplan Notices, vol. 16, no. 6, June 1981,
pp. 22-27.

Stromfors, O., “A Structure Editor as a Template for Programming Environment
Functions”, Proceedings of a Workshop at Roskilde University Centre, October
22-24, 1986, pp. 197-202.

Tanenbaum, A.S., Structured Computer Organization, Prentice-Hall Inc., 1976.
Teitelbaum, T. and Reps, T., “The Cornell Program Synthesizer: A Syntax-

Directed Programming Environment”, Communication of the ACM, vol. 24, no.
9, September 1981, pp. 563-573.

BIBLIOGRAPHY 205

[92]

[93]

[94]

05)

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

Teitelbaum, T., Reps, T., and Horwitz, S., “The Why and Wherefore of the
Cornell Program Synthesizer”, Proceedings of the ACM SIGPLAN-SIGOA Sym-

posium on Text Manipulation, Sigplan Notices, vol. 16, no. 6, June 1981, pp.
8-16.

Tennent, R.D., Principles of Programming Languages, Prentice-Hall 1981.

Thacker, C., McCreight, E., Lampson, B., Sproull, R., and Boggs, D., Alto: A
Personal Computer, Xerox Palo Alto Research Center Technical Report, CSL-
79-11, August 1979.

“Outline Buyers Find New Uses”, Infoworld, July, 1985, p. 22.

Waters, R.C., “Program Editors should not Abandon Text Oriented Com-
mands”, Sigplan Notices, vol. 17, no. 7, July 1982, pp. 39-46.

Winograd, T., Language as a Cognitive Process, Addison-Wesley Publishing
Company, 1983.

Winograd, T., Muir: A Language Development Environment, Stanford CSLI
report, forthcoming.

Winograd, T., Aleph: A System Specification Language, Stanford CSLI report,
forthcoming.

Wirth, N., Programming in Modula-2, Third, Corrected Edition, Springer-
Verlag, 1985.

Wozencraft, J., Sedit, A Wonderful New Structure Editor, Xerox Parc, (draft of
manual, not published yet.)

Yue, K., Constructing and Analyzing Specification of Real World Systems,
STAN-CS-86-1090, Ph.D. Thesis, Department of Computer Science, Stanford
University, September 1986.

Zelkowitz, M.V., “A Small Contribution to Editing with a Syntax Directed Edi-
tor”, Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Environments, Software Engineering
Notes, vol. 9, no. 3. and Sigplan Notices, vol. 19, no. 5, May 1984, pp. 1-6.

	pb-222 del1
	pb-222 del2
	pb-222 del3
	pb-222 del4

