ISSN 0105-8517

Block Structure and
Object-Oriented Languages

Ole Lehrmann Madsen

DAIMI PB - 230
November 1987

AARHUS UNIVERSITY B
COMPUTER SCIENCE DEPARTMENT]]]I]

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK
Telephone: +456 1271 88 Telex: 64767 aausci dk

=5
1L
=
]
i

BLOCK STRUCTURE AND
OBJECT-ORIENTED LANGUAGES*

Ole Lehrmann Madsen
Computer Science Department, Aarhus University, Aarhus, Denmark

November 16, 1987

Abstract. Programming languages that support the object-
oriented perspective on programming may be divided into two
groups. One group of languages originating from Simula fol-
lows the Algol tradition with respect to block structure, static
name binding and compile-time type checking. Another group
of languages originating from Smalltalk is more in the style
of the Lisp tradition with a flat set of definitions (classes),
dynamic name binding and run-time type checking. The pur-
pose of this paper is to analyze the role of block structure in
object-oriented languages. It will be demonstarted that block
structure is useful from both a conceptual and technical view-
point.

*To appear in: Research Directions in Object-Oriented Programming. Edited by B.D. Shriver
and P. Wegner, MIT Press, 1987.

1 Introduction

Simula 67 [Simula] and Smalltalk [Goldberg & Robson 85] are two ex-
amples of programming languages that support the object-oriented pro-
gramming style. The two languages are different in a number of ways:
Simula contains Algol 60 as a subset and supports block structure, static
(lexical) name binding, and compile-time type checking. Smalltalk has
none of these features. Smalltalk is more in the style of Lisp with a
flat set of definitions (classes), dynamic name binding and run-time type
checking.

The purpose of this paper is to discuss the role of block structure in
object-oriented languages. In [Wulf & Shaw 73], [Hanson 81], [Tennent 82],
and [Clarke et al. 80] the role of block structure in Algol-60, Pascal and
Ada is discussed. In these languages block structure appears in the form
of nested procedures and blocks. In languages like Simula 67 ([Simula))
and Beta ([Beta]) block structure is also present in the form of nested
classes.

A class describes the structure (intension) of a category of objects. In
Smalltalk an object is characterized by the set of methods (procedures)
that it will respond to. In Simula and Beta an object is characterized by
a set of attributes, which may be variables, procedures and classes. It will
be demonstrated that the use of classes as attributes of an object is useful
from both a conceptual and technical viewpoint. Block structure provides
locality: By declaring a procedure local to a class or procedure reflects
the fact that the procedure only has meaning as part of its enclosing
procedure or class. In the same way by declaring a class local to another
class states that the local class is only meaningful in a limited context
i.e. as part of an object.

In section 2 block structure as used in this paper is described. The
rest of the paper contains a number of examples of using block structure
in the form of nested classes. The examples will be given in Beta. In
Simula the use of nested classes is limited by a number of restrictions.
Beta does not have these restrictions.

H

2 Block Structure

First the terminology used in the paper is described. This includes the
programming language notation used for describing the examples. Next
the role of block structure is discussed and finally we comment on some
of the discussion of block structure in the literature.

Terminologi

A programming language supports block structure if procedures, classes,
and blocks can be textually nested as in Simula and Beta. An Algol-60
block has a description of the form

begin D1; D2;...Dn;I1;12;...Im end
where D1, D2,...Dn are declarations and I1,I2,...,Im are imperatives
to be executed.

In Algol a block can be used as an imperative in the form of an inner
block or for defining a procedure. In Simula a block may have a super-
class and it may also be used for defining a class.

In Beta the term object is used as a common name for instances of
procedures, classes and blocks. In the language defined below, block is
covered by the syntactic category object-description. Block structure is
supported since object-descriptions may be arbitrarily nested.

The language used for describing the examples is restricted to a min-
imum. Except for syntax it is a subset of Beta. The syntax is given in
figure 1.

Reference-declarations may be either static or dynamic:

o A static-reference-declaration specifies a static reference correspond-
ing to each name in the name-list. A static reference will constantly
denote an object described by object-specification; these objects are
generated together with the generation of the object containing the
declaration.

e A dynamic-reference-declaration specifies a dynamic reference cor-
responding to each name in the name-list. A dynamic reference
may denote any object qualified by the class-name; the objects are
generated by executing a new-imperative.

There are two forms of assignment-imperative:

<program> := <object-description>
<class-declaration> ::= <name>: class <object-description>
<procedure-declaration> ::= <name>: proc <formal-parameters>
<object-description>
<formal-parameters> ::= (<input-parameters>)to (<output-parameters>)
<static-reference-declaration> ::= <name-list>: <object-specification>
<dynamic-reference-declaration> ::= <name-list>: 1 <class-name>
<object-specification> ::= <class-name> | <object-description>
<object-description> ::= <super-class>begin <declaration-list>
do <imperative-list>
end
<super-class> := <class-name> | empty
<imperative> ::= <procedure-activation>
| <object-description>
| <object-name> := <value-expression>
| <object-name> :- <object-expression>

Figure 1: Syntax of example language

e V := exp is a usual assignment-imperative where the value of exp
is assigned to V.

e V:— W describes a reference assignment. V will now denote the
object W. V must be a dynamic reference.

Dynamic references correspond to reference variables in Simula and
instance variables in Smalltalk.

Both static and dynamic references have a “type” in the form of an
object-specification or class-name. For a dynamic reference, this means
that it may only denote instances of that class or one of its subclasses.

In figure 2 is given an example of a program written in the program-
ming language notation used in the paper. Comments are enclosed by {
and }.

The example language includes so-called singular objects, which are
objects described directly without referring to a class or procedure. The
whole program is a singular object described by B1. The static reference
V denotes a singular object described by B2. B3 is a singular object
describing an imperative in the form of an Algol-60 like block.

Most of the examples in this paper may (except for syntax) be ex-
pressed in the Beta programming language. Constructs not available in
Beta are explicitly mentioned. The examples are in general not express-

4

begin {B1}
C: class § {S is the superclass of C}
begin {C-objects have 4 attributes}
Al: D; {Alis a static reference denoting}
{an instance of class D}
A2: T D; {A2is a dynamic reference that}
{may denote any instance of D}
P: proc (X: integer,Y: boolean)to (Z: integer);
begin {P is a procedure attribute}
{with two input parameters, X,Y}
{and one output parameter, Z.}
{X,Y,Z are themselves instance of classes}
end ;
T: class ... {T is a class-attribute}
doI {Iis an imperative that may be executed}
end ;
E: C; {E denotes an instance of class C, a C-object}
V: {V denotes a singular object described by B2}
begin {B2} I: integer end ;
doV.I:=T1;
begin {B3}
X: integer
do X :=V.I;..
end ;
end

Figure 2: program example

ible in Simula.

The role of Block Structure

In the object-oriented programming style, a program execution is viewed
as a physical modelthat simulates the behaviour of some real or imaginary
part of the world. Using terminologi from Delta the considered part of
the world is called the referent-system ([Delta]). In order to create a
model of the referent-system concepts covering the relevant phenomena
must be developed.

For a concept we shall use the classic terms which are: the name used
to denote the concept, the intension: the properties of the phenomena
covered by the concept, and the eztension: the set of phenomena covered
by the concept.

The model system (or program execution) contains elements corre-
sponding to the phenomena and concepts selected as important for the
desired perspective on the referent-system. Classes and procedures model
concepts and objects model phenomena.

Abstraction mechanisms in programming languages are important.
Most object-oriented programming languages support the three funda-
mental subfunctions of abstraction: classification, aggregation and gen-
eralization. The inverse functions exemplification, decomposition and
specialization are similarly supported.

A class definition is a description of the intension of the instances (ex-
tension) of the class. This description includes: one or more superclasses
specifying which classes/concepts that the new class specializes, a set of
attributes characterizing instances of the new class, and an imperative-
list that describes an action-sequence associated with instances of the
class.

The attributes of a class/procedure may be described by referring to
other classes/procedures, i.e. aggregation is taking place. The attributes
may describe components that are a fixed part of the surrounding object,
or components which are references to objects. Here block-structure or
locality is important: Locality makes it possible to describe that an object
is characterized by a concept in the form of a local class or procedure. This
restricts the existence of instances of such local classes or procedures to
the lifetime of the enclosing object in which they are defined. In the
remaining sections of this paper a number of examples of this will be

given.

Block structure is not a mechanism for ”programming in the large”
in the sense that a program should be structured as a large program con-
sisting of nested procedures and classes. A programming language must
contain facilities for modularizing a program into minor parts. Especially
aggregation should be supported by a construct like the Ada package al-
lowing another hierarchy than block structure. In [BETA 83a] a language
independent mechanism for program modularization is described.

A concept/abstraction is timeless in the sense that it has no state
that changes over time. Since classes are used to model concepts, classes
should not have state. An object is a phenomenon which has a state that
may change over time. Objects may have the same form, i.e. belong to
the same class; but they have different substance. Substance is physical
material characterized by having a volume and a unique location in time
and space. Examples af objects are people, furniture, etc.

There are however phenomena which do not have substance ([Delta],[Beta)).
A transformation (a partially ordered set of events) is an example of a
phenomenon appearing in a program execution. The concepts cover-
ing such phenomena are typically modelled by procedures or concurrent
process-types (like tasks in Ada). Values, types and functions in pro-
gramming languages model concepts where the phenomena are measur-
able properties of the objects (the substance).

Discussion of Block Structure

There are many aspects of block structure being discussed in the litera-
ture. Here we shall comment on this discussion.

® Locality. The major advantage of block structure is locality. This
makes it possible to restrict the existence of an object and its de-
scription to the environment (object) where it has meaning.

o Scope rules. There are (at least) the following aspects of scope rules
for names declared within an object:

1. They only exist when the object exist. This is a consequence
of locality.

2. Access to global names and redeclaration of names.

Global names may or may not be seen within a block. In
[Wulf & Shaw 73] it is being argued that the use of global vari-
ables within nested blocks is a source of errors.

It is considered a problem that a name can be redeclared within
an internal block. There is however no reason to allow such
redeclaration in case it is found to be a problem.

Also it has been criticized that it may be difficult to see which
global names are being used within an internal block. Again
this this is not inherently tied to block structure and can be
avoided. Inlanguages like Euclid ([Lampson 77]), a block must
explicitly import from the enclosing block all names being
used.

As mentioned above block structure is not a mechanism in-
tended for “programming in the large”. In languages like Al-
gol 60 and Pascal this is the case. It is merely inteded for

“programming in the small”. In this case the above problems
tend to be minor.

3. Access to names within a block from “outside” the block may
be restricted. Hidden/protected of Simula is an example of

this.
e Syntaz. In [Hanson 81] it is said that:

Block structure can make even moderately large pro-
grams difficult to read. The difficulty is due to the physi-
cal separation of procedure-headings from their bodies....

In [Tennent 82] it is demonstrated that this is merely a matter of
syntax. By using the syntax from Landin’s ISWIM it is possible to
place internal procedure declarations after the body of the block.

3 Class Grammar

Here we shall give an example of a class with a local class attribute. The
actual example is inspired by Liskov and Zilles ([Liskov & Zilles 74]), but
is typical for a number of situations. The example defines a grammar
that is going to be used for constructing a precedence parser. For this
purpose a class corresponding to the symbols (tokens) of the grammar

grammar: class

begin ... {grammar representation}
token: class
begin ... {token representation}

18T erminal: proc ()to (b: boolean);...

isNonTerminal: proc ()to (b: boolean);. ..

end ;
precRel: proc (51, 52: token)to (C: char);
begin ...end ;

end

Figure 3: Class Grammar

must be present and a precedence relation function must be defined. The
grammar can be structured as shown in figure 3.
It is possible to declare instances of class grammar in the following
way:
G1: grammar; A, B: Gl.token;
G11is an instance of class grammmar and A,B are instances of G1.token.

For the tokens A,B operations like A.isTerminal and G1.precRel(A, B)
are possible.

Consider another set of instances:
G2: grammar; X,Y: G2.token
G1 and G2 are both instances of class Grammar. A,B and X,Y are not
instances of the same class. A,B are instances of G1.token and X,Y are
instances of GZ2.token. Intuitively this is what we want, since 4,B are
G1-tokens and X,Y are G2-tokens. The two class of tokens are clearly
different.

Also the two functions G1.precRel and G2.precRel are different func-
tions.

By declaring token local to class grammar we have the possibility to
distinguish between tokens from different grammars. Also since class
token is local to class grammar, a token has no existence without a gram-
mar. This also seems to be intuitively correct.

In Liskov and Zilles, class token is declared outside class grammar.
The representation of a token is therefore not restricted to the definition
of class grammar. Liskov and Ziles are aware of this problem:

Token is a good example of a type created to control access to
implementation details. Therefore, the new type, token,

9

is introduced to limit the distribution of information about
how the grammar is represented.

In our opinion class token should be defined as part of class grammar
since token-objects are only meaningful in relation to a specific grammar.
Also knowledge about the representation of a token should be restricted
to class grammar.

In the example above the static reference A denotes a token from the
grammar G1.

A dynamic reference like

Gltoken: T Gle.token
may denote any token from G1.

It is also possible to declare a dynamic reference that may denote
token objects from any grammar. Such a dynamic reference may be
declared as follows:

gramToken: T grammar.token
Note the difference from the declaration of e.g. A using G1.token where
G1 is a specific grammar object. In the declaration of gramToken,

grammar is a class name. GramToken may denote a token object from
any grammar.

4 Procedural Programming

In this section we shall show how to support procedural programming in
the style of Pascal or Ada. (called operator/operand-style in [Cox 84]).
Simula and BETA support Pascal-like procedural programming since a
program may consist of a collection of procedures that manipulate a set
of data structures. The data structures being implemented as instances
of classes used like Pascal records. It is more interesting to consider
procedural programming in the style of Ada using packages. This is the
subject for the rest of this section.

4.1 Functional Classes

Simula has often been criticized for the unnatural asymmetry between
operands of a function. Consider the class complez in figure 4. Here
it seems unnatural that one of the arguments of plus serves a special
purpose.

10

complez: class
begin ...
plus: proc (a: complez)to (b: complez);...
end ;

C1,02,C3: complex

C3 := Cleplus(C2)

Figure 4: Complex Class

This has been criticized by many people. In CLU ([Liskov & Zilles 74])
they have decided to qualify the operations by means of the class-name

instead of the instance-name. The above operation would then look as
follows in CLU:

C3 := complez$plus(C1,C2)
A consequence of this is that that all operation-calls must be denoted in
this way. This does not fit into the object-oriented style.

In Smalltalk the asymmetry has been kept. Numbers are viewed as
instances of a class and respond to messages. We are not necessarily con-
vinced that this is a natural way of modelling numbers in a programming
language. Below we shall show that the more traditional view can in fact
be modelled within the Simula/BETA world.

Consider the definition of a complex package in figure 5. The class
complezPck defines a set of attributes that implement complex numbers.
The object Cis an instance of complezPck. The attributes of C may then
be used as shown in the example. In CLU, the operations are qualified
by a type name. Here they are qualified by an object name. As it may
be seen, the definition of complex numbers is “functional”. There is no
asymmetri between the arguments of the operations. In the rest of this
papers objects like C will be called package objects.

4.2 Mutually Dependent Classes

In CLU a class defines one abstract data type. In Ada it is possible to
define a package consisting of mutually dependent types, i.e. types that
must know about each others representation. It is straight forward to
generalize the technique used for class complezPck to define mutually
dependent classes. In figure 6 is shown a class that describes package

11

begin
complexz Pck: class
begin
complex: class begin I, R: real end ;
create: proc (R, I: real)to (C: complez);
begin doC.R := R;Cs] :=1 end ;
plus: proc (A, B: complez)to (C: complez;)
begin
doC.I:= Al + B.I;C.R:= A.R+ B.R
end ;
end ;

C': complexz Pck;

X,Y,Z: Cecompler;
do

X :=Cecreate(1.1,2.2);Y := Cecreate(3.1,0.2); Z == Coplus(X,Y)
end

Figure 5: Complex Package

objects with attributes consisting of n classes and m operations.

The notation used in these examples have two immediate drawbacks:

o It may be awkward always to have to qualify attributes of a package
object with the name of the package object. This may be avoided
by a mechanism similar to the with-statement of Pascal or inspect-
statement of Simula (the with-statement is not in Beta):

with aT do
begin a: T'1;b: T2;¢: T3
doa := F1(b,c)

end

This is of course possible if there is only one instance of the class.
A similar problem appear with the use of Ada packages and Ada
has similar solutions for this. Also C++ [Stroustrup 86] provides a
solution for this problem.

e If only one instance of the class is needed, it may also be desirable
to avoid declaring the class. This can be avoided by describing a
package object as a singular object:

12

T: class
begin
T1: class ..
T2: class ...

Tn: class ...

F1: proc (z: T2;y: T3)to (2: T1);...
F2: proc ...

Fm: proc ...
end

als T
a: aTT1;b: aT'eT2;¢: aTWT'3;

a = aT.F1(b,¢)
Figure 6: Definition of a set of mutually classes

aT: begin
T1: class ...;T2: class ...;...
FLi peoe ...;. P8 proc . yisus
end

The examples in this section describe package objects that have class-
and procedure attributes. There is thus no state associated with these
package objects. Since an <object-description> may contain variable
declarations, it is possible to describe package objects with state. A sin-
gular package object like aT is then quite similar to an Ada package. A
class, like T or complerPck, describing package objects will correspond
to an Ada generic package. Finally an instance of such a class will corre-
spond to an instantiation of an Ada generic package.

An Ada generic package may be parameterized in various ways. In
Beta, a class (called pattern in Beta) may have virtual pattern attributes
which can be used like generic formal types etc. For examples of using
virtual patterns see [BETA 87a] and [BETA 87b].

Finally it may be noted that a class like T corresponds to an algebraic
structure:

T = (T1,T2,...,Tn,F1,F2,...,Fm)

13

5 The Prototype Abstraction Relation Prob-
lem

Consider a phenomenon that may be viewed as a prototype of a set of
other phenomena. Such a prototype phenomenon may be modelled as
an instance of a class describing the properties of it and other similar
prototype phenomena. The prototype phenomenon has a state which is
changing over time, so it seems unnatural to describe it as a subclass of
the class describing its properties.

The prototype phenomenon bears a certain relation to the set of phe-
nomena of which it is a prototype. This relation indicates that the pro-
totype phenomenon should be modelled as a class.

The problem is known as the Prototype Abstraction Relation Problem
and has been formulated by Brian Smith ([Smith 84]). The problem is
best described by an example.

e Consider a class flightType, which defines the properties of flight
descriptions in a flight table.

o SK273between Copenhagen and Los Angeles is an example of such
a flight. SK273is a flight that takes place every Monday, Wednes-
day, and Friday. The scheduled departure time is 11:30am.

o During a period of time the properties of SK278 may change. E.g.
the scheduled departure time may be changed. This indicates that
SK278 should be modelled as an instance of class flight Type.

o SK273may be viewed as a a prototype of the actual flights that take
place between CPH and LA. The actual flights are characterized by
attributes such as actual departure time, actual flight time, etc.

e SK273 may also be viewed as a class with the actual flights as
instances. Also SK278 could be a subclass of class flight Type.

A solution to this problem may be formulated using block structure
in the form of classes as attributes. The solution is presented in figure 7.

o Class flightType is a class describing the properties of the flight
prototypes in the flight table. The attributes of instances of fight-
Type are source and destination of the flight, frequency, scheduled

14

flight Type: class
begin source, destination: city;
frequency: setOfWeekDay;
departTime: timeOfDay; {departure time}
flightTime: timePeriod;
flight: class
begin departuredate: date;
actualDepartTime: timeOfDay;
actualFlight Time: timePeriod,;
departureDelay: proc ()to (d: timePeriod)
begin
d := actual DepartTime — departTime
end ;
end ;
end ;

SK273: flight Type
where source = Copenhagen, destination = LosAngeles,
frequency = {Mon, Wed, Fri},
departTime = 12 : 30am,
flightTime = 11h : 30m;

myFlight: SK273. flight
where departureDate = Feb.1.84,
actualDepartTime = 12 : 45am
actual FlightTime = 11h : 15m;

Figure 7:

departure time, scheduled flight time, etc. In addition there is an
attribute class flight describing the properties of the actual flights of
the prototype. Attributes of the actual flights are departure date,
actual departure time, actual flight time, departureDelay, etc.

SK278 is an instance of class flight Type.

Instances of class SK273.flight are the actual flights between CPH
and LA.

myFlight. departureDelay will give the time that one specific actual
flight has been delayed.

The where-construct is used to indicate bindings of the variables in
an object. In Beta this can be expressed by means of virtual patterns.

15

6 Smalltalk Metaclasses

In Smalltalk-80 all system components are represented by objects. Since
all objects are instances of a class, the classes themselves are represented
by instances of so-called metaclasses. Metaclasses give rise to both a
philosofical and technical discussion.

As stated in section 2, a class is a model of an abstraction and ab-
stractions are timeless in the sense that they have no state changing over
time.

A Smalltalk class viewed as an object may have a state changing over
time.

It is true that concepts develop over time and may be changed. A
concept is thus only “stable” during a period of time. When a con-
cept changes, it is the whole structure (intension) of the concept that
changes. This cannot be modelled by Smalltalk metaclasses. Here it is
only possible to model changes by means of class variables. Changing
the structure of a class corresponds to editing the definition of a class,
This kind of change is of course possible in any programming system, but
in Smalltalk-80 (and other systems) this has not been reflected in any
philosofical model.

Technically metaclasses are useful for describing variables and meth-
ods (class variables and class methods) that are common to all instances
of a class. Class methods are useful for generation of instances and inj-
tialization of instance variables. They do however not provide a solution
for initialization of class variables.

Below we shall show that the pure technical use of metaclasses can
be simulated by block structure. The description of the Smalltalk class
in figure 8 may be simulated by the class in figure 9.

The class metaT corresponds to the metaclass for class 7. The sin-
gular object aMetaT is an instance of the metaclass with two additional
variables Xv and Yv. The object aMetaT corresponds to class T viewed
as an object. There is however a difference between the instance aMetaT
and the class T. T'is described as a class attribute of aMetaT.

Simulation of class variables is a bit complicated. The attributes
Xv and Yv of the singular instance aMetaT simulates the actual class
variables. The singular objects X and Y contain the operations on X
and Y. These operations must access the variables Xv and Yv in order
to ensure that all instances of class T access the same class variables.

16

class name T

superclass S

instance variable names N M

class variable names XY

class methods new ...
instance methods M1 ...M2 ...

Figure 8: Sketch of Smalltalk class

metal: class metaS
begin
X: {Simulation of class variable X}
begin {declaration of operations on X}
opl: proc ...
begin {access aMetaT. Xv} end ;

)

end ;
Y: ... {like X}

new: proc ()to(R: T);...

T: class S
begin
N, M: .
M1: proc ...
M2: proc ...
end ;
end ;

aMetaT: metaT {The superclass of the object}
begin Xv,Yv: ...;

{Storage for X and ¥}
end

Figure 9: Model of a class and metaclass using block structure

17

In the example, the variables Xe, Ye,N,M have not been given any
qualification (type) following the Smalltalk tradition.

Instances of class aMetaT. T may be created by aMetaT.new.

We shall not here postulate that this is better than metaclasses in
Smalltalk. The purpose is just to show that the more technical usage of
metaclasses, can be simulated with more traditional language constructs.

There is another technical use of metaclasses in the sense that all sys-
tem components are represented by instances of classes. The text /description
of a class is itself an object. This is useful in a programming system. Here
it is however important that the levels be separated. The level of the pro-
gram execution and the level of program modification are different and
should be kept separate.

7 Conclusion

The purpose of this paper has been to show that block structure as found
in Simula 67 and Beta, but abandoned in Smalltalk-80, is a natural and
powerful mechanism. When modelling phenomena, it is useful to be able
to characterize an object by means of a class. In any case block structure
is useful for a number of technical problems in programming. This has
been demonstrated by giving examples of the use of block structure.

Class grammar is perhaps the most common type of example where a
class (token) is described locally to a grammar. The prototype abstraction
relation problem is just a special version of this problem.

The examples in section 4 shows that even the procedural style of
programming can be supported within a language which is primarily in-
tended for the object-oriented style of programming. As pointed out by
others, ([Cox 84],[Nygaard & Sgrgaard 85]), a programming languages
should not only support one style. Ob ject-oriented programming, proce-
dural programming and to a limited extent functional programming are
supported by languages like Simula, Beta and C4+.

Smalltalk-80 metaclasses seem to be a technical trick which may be
handled by more traditional constructs.

In [BETA 85] block structure has been used to define ob jects contain-
ing locally defined objects. Such compound objects are shown to be an
alternative to guarded input /output commands.

In Beta the notions of class, procedure, function and type have been

18

unified into one abstraction mechanism, the pattern. Instances of a pat-
tern may then be used as objects, procedure activations or variables. A
single general concept thus serves a number of purposes. In contrast Ada
contains a number of concepts that are similar, but have been treated
differently in many situations. This has been critizised by Peter Wegner
([Wegner 83]).

Acknowledgement. This work has evolved during discussions with Jgr-
gen Lindskov Knudsen, Bent Bruun Kristensen, Birger Mgller-Pedersen,
Kristen Nygaard, Kristine Stougadrd Thomsen and Terry Winograd. Per
Fack Sgrensen pointed out an error in the treatment of class variables in
a previous version of this paper. Part of this work has been supported
by Stanfords Center for the Study of Language and Information and by
the Danish Natural Science Research Council FTU grant no. 5.17.5.1.25.

8 References

1. [Beta 83a] B.B. Kristensen, O.L Madsen, B. Mgller-Pedersen, K. Nygaard: Syntax
Directed Program Modularization. In: Interactive Computing Systems (ed. P.
Degano, E. Sandewall), North-Holland, 1983.

2. [Beta 83b] B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard:
Abstraction Mechanisms in the BETA Programming Language. Proceedings of the

Tenth ACM Symposium on Principles of Programming Languages, J anuary 24-26
1983, Austin, Tezas.

3. [Beta 85] B.B. Kristensen, O.L. Madsen, B. Mgller Pedersen, K. Nygaard: Multi-
sequential Execution in the BETA Programming Language. Sigplan Notices, Vol.
20, No. 4, April 1985.

4. [BETA 87a] B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard:
The BETA Programming Language — Part 1: Abstraction Mechanisms — Part
2: Multi-Sequential Execution. In: B.D. Shriver, P.Wegner (ed.), Research Di-
rections in Object Oriented Programming, MIT Press, 1987,

5. [BETA 87b] B.B. Kristensen, O.L. Madsen, B. Mgller-Pedersen, K. Nygaard: Clas-
sification of Actions or Inheritance also for Methods. Proceedings of the Second
European Conference on QObject Oriented Programming, Paris, June 1987.

6. Clarke L.A., J.C. Wiledon, A.L. Wolf: Nesting in Ada Programs is for the Birds.
Proc. ACM Symposium on the Ada Programming Language, SIGPLAN Notices,
11, 189-145 (1980).

7. Cox B.R: Message/Object, An Evolutionary Change. IEEE SOFTWARE, Jan.
198.

19

10.

11.

12.

13.

14.

15.
16.
17.

18.

19.

Goldberg A., D. Robson: Smalltalk-80, The Language and its Implementation.
Addison Wesley 1985.

. [Delta] E. Holbeek-Hanssen, P. Hindlykken, K. Nygaard: System Description and

the Delta Language. Norwegian Computing Center, Publ. no 523, 1975.

Hanson D.R.: Is Block Structure Necessary. Software Practice and FEzperience,
Vol. 11 853-866 (1981).

Lampson B.W. et al: Report on the Programming Language Euclid. SIGPLAN
Notices 12, 2 (1977).

Liskov B., S. Zilles: Programming with Abstract Data Types. Sigplan Notices,
Vol. 9, No. 4, 50-59 (1974).

Nygaard K., P. Sgrgard: The Perspective Concept in Informatics. In: G. Bjerk-
ness, P. Ehn, M.Kyng (ed.) Computers and Democracy — A Scandinavian Chal-
lenge. Gower Aldershot, England 1987

[Simula] O.-J. Dahl, B. Myrhaug, K. Nygaard: SIMULA 67 Common Base Lan.
guage. Norwegian Computing Center, Oslo 1968.

Smith B.: Personal Communication. Stanford 1984.
Stroustrup B.: The C+4 Programming Language. Addison- Wesley, 1986.

Tennent R.D.: Two Examples of Block Structuring. Soffware-Practice and Ezpe-
rience, Vol. 12, 385-392 (1982).

Wegner P.: On the Unification of Data and Program Abstraction in Ada. Pro-
ceedings of the Tenth ACM Symposium on Principles of Programming Languages,
January 24-26, 1983, Austin, Tezas.

Wulf W.A., M. Shaw: Global Variables Considered Harmful. Sigplan Notices, Vol.
8, 28-34 (1973).

20

