ISSN 0105-8517

Self-Timed Iteration

M.R. Greenstreet
J. Staunstrup
T.E. Williams

DAIMI PB - 228
August 1987

AARHUS UNIVERSITY h_l_i l E

COMPUTER SCIENCE DEPARTMENT ?

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK
Telephone: +456 12 83 55 Telex: 64767 aausci dk

Hi=

PB - 228 Greenstreet et al.: Self-Timed Iteration

Self-Timed Iteration

M.R. Greenstreet, T.E. Williams, and J. Staunstrup
Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract

This paper describes a technique for specifying, analyzing and imple-
menting a series of computations using iterative, self-timed circuits. Even
though the circuits iterate, they operate without clocking. The circuits
do not require arbiters, have no possibility of synchronization failure,
and function correctly independent of time delays. Each computation in
the iteration can be a general function and is implemented using asyn-
chronous, delay-independent logic which indicates its completion. A gen-
eral implementation for self-timed iteration is presented; then, simplifying
assumptions for specific implementations are shown which can reduce the
amount of hardware required.

1 Introduction

Self-timed circuits operate without external clocking and perform their
operations as fast as the technology, temperature, and specific data in-
puts allow. These circuits indicate their completion along with an output
value by either providing a signal from a matching worst case path or en-
coding completion as part of the result[6]. However, most previous usages
of self-timing techniques in integrated circuits have been very localized
and have not performed iteration (cycling) within the self-timed domain.
For example, though the self-timed PLA[9] has become common, it is
typically embedded in a synchronous system, and though it operates re-
peatedly, the self-timing does not extend beyond one evaluation of the
PLA; the iteration is controlled by clocked circuitry. Although iterative
asynchronous designs are presented in [1], those circuits perform syn-
chronization with arbiters. This paper shows that it is possible to build
a system which iterates within the self-timed domain, and without any
external clocking, arbiters, timing hazards, or constraints on propagation
delays.

The analysis of self-timed iterations was inspired by, and is a general-
ization of, the technique used to implement a division chip in [10]. Using
self-timed iterations is particularly attractive and practical for arithmetic
processors, such as the divider, because they involve a long sequence
of calculations which can proceed without further external inputs after
initialization. The self-timed iterations can provide a performance ad-
vantage over a system whose iterations are controlled by an external
clock because each iteration can begin as soon as the previous is finished;
whereas, a clocked design must wait for the worst possible delays in each
cycle.

In order to specify and analyze communication in an asynchronous
environment, a notation called “Synchronized Transitions” [7] is used.
After introducing the notation, a self-timed iterative algorithm is given
and shown to operate correctly independent of delays. A general hard-
ware implementation for the self-timed algorithm is shown which cor-
responds directly to the specification. This is followed by a discussion
of optimizations which can be performed based on bounds for relative
timing in specific implementations.

2 Synchronized Transitions

A system is typically constructed by hierarchically partitioning it into
smaller blocks of circuitry with defined communication between the blocks.
In synchronous designs, this communication is based on clocks which
are common to the communicating circuits. In self-timed designs, com-
munication between blocks must be asynchronous because there are no
common clocks to control communication actions.

State changes are modeled as transitions. Transitions are described
using an imperative notation similar to what is found in many high-level
programming languages. For example,

TRANSITION evaluate(s: state; z: BOOLEAN)
< s8.Xx — 8.X%X, 8.y := FALSE, f(z2) >

The transition evaluate is performed only in a state satisfying s.x
and leads to a state where s.y = f£(z) and s.x = FALSE. The transition
is atomic, which means that it appears to be indivisible. Asynchronous
blocks communicate by participating in the same transition. This is ex-
pressed by including state variables from two or more blocks as actual
parameters to the same transition. The general form for a transition is:

TRANSITION name(nl, n2 ...)
< C(ni, n2 ...) — A(nl, n2 ...) >

e nl, n2 ... are the state variables used by the transition.

e C(nl, n2 ...) is the precondition of the transition; it is a boolean
condition on the values of n1, n2 ... The transition can only be
performed when its precondition is satisfied.

e A(nl, n2 ...) is the action of the transition. This is an assign-
ment which specifies the state transformation made by this tran-
sition. It may only change the values of n1, n2 .

It is not required that a transition is performed immediately after its
precondition has been satisfied, and there is no upper bound on when
it takes place. The precondition may become false again without the
transition having been performed; however, restrictions presented in sec-
tion 2.1 prevent this in the self-timed implementations we are considering.
The execution order and duration of enabled transitions is unspecified.

3

A transition is atomic as indicated by the notation < ... >. This means
that the transition appears to be executed indivisibly; this may, however,
not be the way it is implemented.

Initiation of a transition is written as a procedure call, e.g. invert(a,
b). Transitions are repeated indefinitely once they are initiated. Usually,
many transitions must be initiated to describe the desired computation.
This is done by giving a list of transition initiations separated by | | (to
indicate concurrent executing of the transitions):

invert(ready, reset) || evaluate(si, input) ||
evaluate(so, yi)

This type of description gives an abstract model (specification) for the
behavior of a design. A more detailed description of “Synchronized Tran-
sitions” and their applications is given in [7]. A similar notation using
“Production Rules” for the synthesis of self-timed circuits is presented in

[5].

2.1 Implementation rules

The “Synchronized Transitions” notation provides a specification of a
system in terms of atomic actions (transitions). However, it is not re-
quired that an implementation perform only one transition at a time.
To do so would be both impractical and inefficient. Therefore, the im-
plementation should perform many transitions simultaneously, while pre-
serving the appearance of atomicity.

This section presents criteria for correspondence between a specifica-
tion using the “Synchronized Transitions” notation and an implemen-
tation where the transitions are non-atomic. Sufficient conditions for a
non-atomic implementation to be correct are given, and some relation-
ships between these conditions and the physical behavior of circuits are
described. This presentation is informal; a rigorous derivation is beyond
the scope of this paper.

In a non-atomic implementation of a transition, < ¢ — A >, the ap-
pearance of atomicity must be maintained locally, since there are no
global synchronization signals to enforce indivisible operations. This
means that the condition C must be strong enough (together with all
other preconditions) to prevent inconsistent executions, and that some
restrictions must be imposed on the allowable collections of transitions.

4

Executions where two transitions simultaneously write the same state
variable must be prohibited. Such writing could result in variables with
undefined values. We do not use arbiters to resolve these conflicts, be-
cause an arbiter cannot be both error free and guaranteed to decide in
bounded time[4]. By observing the following restriction, simultaneous
writing is avoided:

Ezclusive Write: Each state variable must only be written by
a single transition.

This is a very strong condition; weaker conditions could be sufficient.
However, this condition is simple, and it is satisfied by the algorithms
presented in this paper.

The values of variables must be stable while a transition is (possibly)
using them. If the value of a variable read by a transition were to be
changed while the transition was modifying another variable, the write
variable of the transition could receive an undefined value. For example, a
transition could be disabled when it had half-way changed the value of its
write variable. Thus, we further restrict the allowable set of transitions
with the following condition:

Stable Read: Let t1 and t2 be two transitions such that t1
writes a variable which t2 reads, then t1 and t2 may
not be simultaneously active.

A transition, t,(< ¢y — 1, := £(r,) >) is defined to be active if c,A
(14 # £(x¢)). Like exclusive-write, this condition is stronger than nec-
essary.

“Synchronized Transitions” descriptions which meet the above condi-
tions can be implemented by hardware which never produces metastable
values. Metastability occurs when an intermediate value (neither true
nor false) is written into a storage element. This can occur either by
attempting to concurrently write different values, or by inhibiting a write
before the stored value has been completely changed. The first situation
is prevented by the exclusive-write condition. The stable-read condition
prevents the second.

Furthermore, “Synchronized Transitions” descriptions which meet
the above two restrictions can be implemented by hardware which func-
tions correctly independently of delays in logic elements and wires. Arbi-
trary delays in logic elements are modeled by the property that enabling

5

elapse before it actually does. Wire delays influence the order in which
inputs arrive to a transition. This is equivalent to altering the order in
which the other transitions wrote these variables. The stable read condi-
tion guarantees that the values assigned by a transition are independent
of the order in which enabled transitions were executed. Thus, hardware
implementations satisfying these conditions are independent of both wire
and logic element delays.

3 Iterative Self-timed Algorithms

In this section, two algorithms will be presented for self-timed iteration.
The first algorithm is for a simple ring-oscillator, but it demonstrates
many of the key features of more complex iterations. The second algo-
rithm is a generalization of the ring-oscillator; arbitrary functions can be
computed, yet the algorithm retains the simple underlying structure of
the ring-oscillator. The correctness of both algorithms is demonstrated
by establishing invariants which they maintain.

In an iterative design, computation progresses as a wave traveling
around the loop of stages. The rising edge of the wave corresponds to
computing a new result, the falling edge corresponds to resetting the
hardware element in preparation for the next computation. The wave
can be represented by a single bit, in which case the circuit oscillates, but
computes no other result. By representing the wave with more than one
bit, data-values can be encoded into the wave, and useful computation
can be performed as the wave progresses. For proper computation, it
must be ensured that the rising edge of the wave never overtakes the
falling edge (i.e. attempting to perform a computation on a stage which
is not reset from the previous computation), and that the falling edge

never overtakes the rising edge (i.e. resetting all stages and entering a
dead-state).

3.1 Simple Iteration

In the case of a simple ring-oscillator, a single bit circulates around the
loop. Such a ring-oscillator is shown in figure 1. This oscillator differs
from traditional ring-oscillators in that it is built from Muller-C elements
(see figure 2) instead of inverters. The forward path along which a pulse

n-1
—SiH
out [—¢
succ
C
Figure 1: Ring-Oscillator
Truth Table
e —
1n succ |out .
i ——
L L L out
L H Unchanged
H L Unchanged SHce ——|
H H H

Figure 2: The Muller-C Element

progresses around the oscillator results in no overall inversion; thus, the
number of stages, n, can be either even or odd.

The operation of the oscillator can be understood by, initially, assum-
ing that the lower (succ) input of each C element is always the same as
the upper input. In this case, the C element functions as a buffer; thus,
the oscillator works as a ring of buffers. The C elements are divided into
two non-empty, contiguous groups: those whose outputs are true (the
crest of the wave) and those whose outputs are false (the trough of the
wave). The wave progresses around the ring as the buffers on the bound-
ary between the crest and the trough transfer a true value forward and
by the complement action at the other boundary.

If the circuit was simply a ring of buffers, the oscillation would even-
tually die out. In real circuits, propagation delays are different for rising
and falling values and for different instances of the same circuit. Thus, in
a ring of buffers, either the trough will eventually overtake the crest, or
the crest will overtake the trough, and the circuit will enter a dead-state.
The ring of C elements avoids this problem. This is the purpose of the

7

ringosc(n: 3..00) (* the loop has n stages *)
VAR y: ARRAY [0..n-1] OF BOOLEAN
TRANSITION C(in, out, succ: BOOLEAN)
(* C-element with one input inverted *)
< in <> succ — out := in >

BEGIN
|7 c(ylietl, ylil, ylieil);

END ringosc.

Where: i®@ 1= (i+ 1)modnandiol = (i-1) mod n.

Figure 3: “Synchronized Transitions” Program for the Ring-Oscillator

lower (succ) input to the C elements. This input ensures that the output
of one element can only become true when the output of the successor
element is false. This guarantees that the crest cannot overtake the
trough. Likewise, the output of an element can only become false when
the output of the successor element is true.

The preceding arguments assumed that the delays of the wires and
inverters were insignificant in comparison to the delays of the C elements.
In particular, it was assumed that the value of the lower input to a C
element was the complement of the value of the output from the successor
stage. To account for arbitrary delays, we can only assume that the
value at an input is a value which the supplying output had sometime in
the past. To consider this more general case, it is useful to employ the
“Synchronized Transitions” notation. This will also be useful when the
algorithm is generalized by replacing the C elements with circuits which
compute a useful result in the course of the oscillation. A program for
the ring-oscillator using “Synchronized Transitions” mnotation is shown
in figure 3.

This program satisfies the restrictions given in section 2.1 and can
be expected to function correctly independently of the delays of wires or
logic elements. Since each state variable is written by exactly one tran-
sition, the program satisfies the exclusive-write condition. The dynamic
behavior of the program must be considered to show that the stable-read
condition is satisfied.

In the self-timed paradigm, there is no global time reference (such as

a clock) to allow reasoning about the state of the entire system. Instead,
we can reason about individual transitions, and show that certain pairs
of transitions cannot be simultaneously active. This allows us to reason
about the values of variables in local sets of transitions, and from this,
global properties of the system can be demonstrated.

Invariant 1 The stages whose outputs are true form a non-empty set of
adjacent stages. The stages whose outputs are false form a non-empty
set of adjacent stages.

To see that this is an invariant, assume that it holds at some point of the
execution. This means that there exists a stage y[i] such that:

(in = true) A (out = succ = false) or (in — false) A (out = succ = true)

In both cases, performing out := in maintains the invariant.

From the invariant and the requirement that n > 3, it follows that
the stable read condition is satisfied. Observe that, if there is an element
whose output is true followed by two elements whose outputs are false,
there must be an active transition (to set the middle output to true). A
similar argument applies for an element whose output is false followed
by two elements whose outputs is true. This leads to one more invariant,
which shows that the ring-oscillator never enters into a dead-state.

Invariant 2 If there are at least three C elements in the loop, then there
ezists an active transition.

In this section, we have shown how a description using “Synchronized
Transitions” may be used to demonstrate the correctness of a self-timed
design. This was done by checking the implementation rules of section 2.1
and establishing invariants, which we believe is a much more reliable way
of demonstrating properties of a design than simulation or exhaustive
case analysis.

3.2 A General Algorithm for Iteration

A tail-recursive function can be computed by repeatedly applying a sim-
pler kernel to the result of the previous application (or input). A direct
implementation of such a function, F, uses a separate instance of the

!Strictly speaking, it should also be demonstrated that the initial state satisfies the invariant.

H

__) input i
= f(yi_i) = f&(input) k>i>0

0 .. 1.2 3 k-1
input YO F P P2 A3 AT F X output

Figure 4: Fully-Combinatorial Implementation

0 1 n-1
F F F

Figure 5: Iterative Implementation

hardware for each application of the kernel. This is shown in figure 4.
Such implementations are used, for example, in fully-combinatorial mul-
tipliers, where the kernel is a shift and a conditional addition. Given an
input value yo, the circuit computes a sequence of values Y1, Y25 .-, Y& Each
stage computes a new value, y;, of the sequence by applying some fixed
function F on the value received from its predecessor, y;_;. The exact
nature of F is not important for our analysis. In the divider [10], which
inspired this work, F is a function which given a divisor and a partial
remainder computes a quotient digit and a new partial remainder.
Iteration allows the computation of the desired sequence (Y172, oo YE)
by looping the evaluation around a small, fixed number of stages arranged
in a ring. This is possible because it is the same function F which is used
repeatedly. Such an implementation is shown in figure 5. For simplicity,
issues of input to and output from such a loop are deferred to section 5.
In this paper, we are concerned with self-timed implementations. Let
F be a physical (self-timed) implementation of F. Let in and out be the
input and output of a stage, and let succ be the output of the succeeding
stage (as in figure 1). The circuit F may require some time to compute a
new output given a new input. During this time, it may be the case that
F(yin) # F(yin). The output is said to be invalid during this time. To use
F in a self-timed system, it must be possible to determine if the output is
valid, from the value of F(y;,). This can be done by adding one or more

10

iteration(n: 3..00) (* the loop has n stages *)
VAR y: ARRAY[O0..n-1] OF alphabet;
(* alphabet is a self-completion-indicating
signal *)
TRANSITION C’(in, out, succ: alphabet)
<(valid(in) A reset(succ)) V (reset(in) A valid(succ))
— out := F(in)>
BEGIN
175 ¢ (yli © 11, ylil, yli @ 11);
END iteration.

It is assumed that F will produce a reset output when reset(in).

Figure 6: “Synchronized Transitions” Program for Iteration

reset values to the range of F. Such representations of values are called
self-completion-indicating. A completely delay-independent imple-
mentation requires self-completion-indicating signals; sending a separate
completion signal would introduce a timing dependency into the design.
In particular, the delays of the wires carrying the actual data and the
wire(s) carrying the completion signal would have to be matched.

The block F can be used in an iterative system as follows. First, the
input of F is set to a reset value. When the output of F becomes reset, we
know that the circuit is ready to begin a new computation. Second, the
input of F is set to a valid value. When the output of F becomes valid,
we know that the circuit has computed a new result. These operations
can be performed repeatedly as required by the iterative algorithm. The
computation progresses like the wave in a ring-oscillator. A valid value
represents the crest of the wave, and a reset value represents the trough.
This is a generalization of the simple oscillator in section 3.1.

The “Synchronized Transitions” program for such a system is shown
in figure 6. The predicate valid(X) is true if the value of the signal X
is valid, and the predicate reset(X) is true if it is reset. During the
time a signal X is transitioning due to the resetting or evaluation of its
source, neither reset(X) nor valid(X) will be true. The validity of this
program can be verified using invariants analogous to those presented
with the simple oscillator.

11

set of adjacent stages.

Invariant 4 If there are at least three O’ elements in the loop, then there
ezists an active transition.

Furthermore, the program in figure 6 computes the desired sequence of
values as demonstrated by the next invariant. Let j be an index for
the stages (0 < j < n) and i be an index for the values (0 <1< x).
Because each stage computes many values, i increases as the computation
progresses.

Invariant 5 y[j| = Fi(input) V reset(y[j])

Assume that the invariant holds before performing an instance of a ¢’
transition writing to y[j]. There are two cases to consider depend-
ing on which clause of the precondition is satisfied. If valid(in) A
reset(succ), it follows from the invariant that there is an i such that
in = y[j&1] =.5r1_1(input); hence, performing out := F(in) estab-
lishes y[j1 = F*(input). Otherwise, reset(in) A valid(succ), and
performing out := F(in) establishes reset(y[j]).

4 Hardware Implementation

Self-timed hardware can be designed which corresponds to the algorithm
described in the previous section. First, designs are presented which are
technology independent and preserve all the properties of the algorithm.
In particular, they function correctly regardless of the delays of logic
elements or wires. Next, simplifications for specific implementations are
suggested. Then, it is shown how more efficient designs can be derived
when some timing relationships are known.

4.1 Direct Implementation

Figure 7 shows a block diagram corresponding directly to the self-timed
iteration algorithm presented above. The function F computes a new
value for out from the value of in when the enable input is true (corre-
sponding to the precondition of a transition enabling the action); other-
wise, the old value of out is retained. The enabling can be implemented
with a transparent latch on the output of a purely combinational function

12

L
in valid?q : F [— out
| enable
r-reset.?—l_ |
|
|
? [
reset? —_ |
|
suce valiarhl ,
|
Pre-Condition I Action

Figure 7: Direct Implementation of an Iteration Stage

which produces a reset value for out when in is reset, and out = #(in)
when in is valid.

The signals for in, out, and succ to the function F are self-completion-
indicating. A simple encoding is to let each bit, X, in such a signal
be represented on two wires, x* and ¥*. When both wires are low, the
value is reset (e.g. not yet valid), and when either of the wires becomes
high, the boolean value encoded on the pair is valid. The value for X
is indicated by the superscript on whichever of the two wires x* and x*
is high. The wire pair must return to the reset condition before the
transmission of another value; so, there is never a high on both wires
simultaneously. The two wires can be OR’ed together to produce the
status of the signal: high if the pair represents a valid value, and low for
a reset value. This representation of a boolean value can be generalized
to a multi-bit representation. A multi-bit value is valid if each of its bits
is valid (i.e. the AND of the status of all the bits) and reset if each bit is
reset (i.e. the complement of the OR of the status of all the bits). These

are the functions performed by the boxes labeled valid? and reset? in
figure 7.

4.2 CMOS Implementation

Figure 8 shows a CMOS two-input NAND gate which uses the encoding
described above. If both inputs are reset (AT, A%, B”, and B are low),
the stacks of P-channel transistors will pull the internal nodes (I and J)
to vdd resulting in both ¥' and YF being low (i.e. a reset value on the

13

T yF J ~| >o— yT
BT ——E BF o

F: Y= AB

Figure 8: Self-Completion Indicating Two-input NAND Gate

output). If either A¥ or BY goes high, node J will be pulled to gnd by
the corresponding N-channel transistor, resulting in the Y* output going
high. This implements the function of the NAND gate that if either input
is false the output is true. A similar analysis of the other half of the cir-
cuit shows that, if both inputs are true, the output is false. Arbitrary
logic functions can be implemented by these techniques to implement the
function, F, for the iteration algorithm. As both the true and false
signals are available from every logic element, appropriate networks of
N-channel devices can be designed to implement whatever function is
desired. Furthermore, logic implemented as the NAND gate above makes
monotonic transitions. If each bit of the input remains stable after tran-
sitioning from a reset value to a valid value (or valid to reset), each bit
of the output will also make a single transition from a reset value to a
valid (or valid to reset).

This form of logic implementation has properties which allow sim-
plification of the hardware design. It is possible for neither the pull-up
network nor the pull-down network of such logic networks to be active.
In this situation, the old value of the output is retained by the capaci-
tance of nodes I and J. This dynamic storage can be utilized to merge
the hardware for F and the transparent-latch.

The monotonicity of all circuitry makes it possible to implement the
tests for valid(in) and reset(in) implicitly, within the the hardware
for F. Such tests do not need to be separately implemented for the pre-
condition. Moreover, the tests for valid(succ) and reset(succ) can
be combined into a single test, status, which has memory as to whether
valid(succ) or reset (succ) were last true:

14

; 10—
AF
_“S q
succ stp qu c[‘é _DO_'YT
i [: .
BT E\ !
BF {CIH
o]

Figure 9: A CMOS Implementation of an Iteration Stage

status(X) = TRUE if X were last valid
= FALSE if X were last reset

Figure 9 shows a single stage for the iterative algorithm simplified
by the observations above. The function F is a two-input NAND gate to
provide a simple example. The transparent-latch is combined with the
hardware for computing F by adding an extra N-channel and an extra
P-channel transistor to each stack. Tests for valid(in) and reset (in)
are implicitly performed by the logic implementing the NAND gate, and
the tests for valid(succ) and reset(succ) are replaced by the single
test for status (succ) as above.

The “Synchronized Transitions” algorithm guarantees that the stages
interact correctly independently of any timing delays. Each stage corre-
sponds to an atomic transition. This requires that inputs to F have suffi-
ciently short rise and fall times that the various transistors connected to
the signal interpret it as the same boolean value. Furthermore, when an
output changes, it must be guaranteed that it makes a complete change
between voltage levels corresponding to the logical values so that, if the
value is used by more than one stage, it will be interpreted consistently.
Schmidt-triggers[3] can be used to buffer the inputs and output of each
stage such that these conditions are met. The Schmidt-trigger can be
designed such that, for a monotonically changing input, once the output
enters the undefined region (voltages between high and low), the output

15

is guaranteed to complete the transition in bounded time.2 The Schmidt-
triggers isolate the internal nodes to guarantee bounded wiring delays and
rise and fall times within each stage regardless of the properties of the
other stages and the inter-stage wiring.

These observations are made to show that truly time-delay indepen-
dent circuits can be built for self-timed iteration (the largest isochronic
region is a Schmidt-trigger and the internal node to which it is con-
nected). However, it is often possible to derive reasonable bounds for
timing delays. Thus, much more efficient implementations are possible
as described in the next section.

4.3 Optimization

Optimization seeks to simplify the hardware and lessen the execution
delay and silicon area. If adequate relations are known about relative
time delays, more efficient designs can be produced than those described
in the previous section. When an implementation is fabricated on a single
integrated circuit, reliable delay judgements can usually be made based
on transistor sizing and the similarities of transistors fabricated on the
same chip. If such is the case, then it can be assumed that faster paths
have already finished when a known slower path is observed to finish. This
assumption means that the hardware to explicitly check such conditions
can be removed, yielding a simpler design.

In the case of the CMOS implementation of figure 9, the P-channel
transistors controlled by AT, AF, B”, and BF serve to confirm that the reset
value on all of a stage’s input wires is received from its predecessor before
the stage itself can reset. If it is known that one particular input wire
is the slowest, then these stacks of transistors can each be replaced by a
single transistor.

The generation of status(out) can be simplified in a similar man-
ner. If a particular bit of out, represented on the wire pair out. slowV, is
known to be the last to become valid, and another wire pair, out.slouR,
is known to be the last to become reset then:

status(out) = (out.slowV' V out.slowV’) © (out.slowR™ V out.slowR’)

?Note that this is not using a Schmidt-trigger to solve a decision or arbitration problem.
There can be input voltages for which the Schmidt-trigger takes unbounded time to change;
however, once the output has changed far enough to enter the undefined region, the time to
complete the transition is bounded.

16

H|
n & I
My

succ.slow

succ.slow’ :EDB_%J
g oyt

AT AF [5F
BF —

Figure 10: Optimization of an Iteration Stage Based on Known Timing
Relations

where the symbol © denotes the Muller-C function. If out.slowV and

out.slowR are the same wire pair (e.g. the pair driving the largest ca-

pacitance), denoted out.slow, then this relation reduces to
status(out) = out.slow” V out.slow’

Thus, the circuit which computed status in the previous implementation

(which required logic elements for each wire in out) can be replaced by

just a NOR gate to sense the completion of the slowest wire pair.

Further optimizations are possible when the stages are the same and
they can be reset faster than they evaluate. This is often the case because
evaluation may require several levels of logic, whereas resetting can be
done in parallel to all of the nodes within a stage. If resetting and the
associated wire propagation is always faster than evaluation, then all of
the P-channel transistors which confirm the reception of the reset inputs
from a stage’s predecessor can be eliminated. Similarly, the N-channel
transistors connected to the st box delay the evaluation of the stage until
the reception of the status that the next stage has been reset. If resetting
is always faster than evaluation, then these N-channel transistors are
unnecessary because the successor to a stage will have had plenty of time
to reset. The resulting circuit is shown in figure 10. It is noted that in
this implementation that the invariants of the algorithm are maintained
as a consequence of known time-delays in the circuit and are not explicitly
enforced by the logic.

The iteration algorithm concurrently performs the resetting of one
stage and the evaluation of another when there are more than three
stages. However, there is no concurrency with only the minimum of
three stages. When resetting is known to be faster than evaluation for

17

succ.r ¥F .__| So—yT
T
succ.slow }D__{ BF —]
\Y%4

succ.slow’

Figure 11: Modifications to Achieve Concurrency with only Three Stages

similar stages, concurrency can be achieved for the three stage case as
well. In figure 10, a stage was actively reset as long as the output of the
successor stage is valid. This can be expressed as:

r = valid(succ)
Hence, the signal T to reset a stage is low (active) throughout the time
it takes for the second successor to evaluate and then for the successor
to reset. If resetting is assumed to be faster than evaluation, the reset
signal for a stage can be removed as soon as the stage’s second successor
finishes evaluation. This is because it is known that the resetting of a
stage will be already done by the time the second successor has finished
evaluating. Since the successor begins resetting after the second succes-
sor finishes evaluating, the reset control for a stage can be changed to:

r = valid(succ) A —-succ.r
By thus removing the reset signal of a stage sooner, the evaluation of
that stage may proceed concurrently with the resetting of its successor.
This modification, shown in figure 11 for the CMOS implementation, is
the circuit used in [10] which achieves the execution speed improvement
from concurrent reset and evaluate even with three stages.

5 Generalizations

In the simplest form of the algorithm, only limited concurrency is realized
(e.g. one stage can compute a new valid value while another resets).
Greater concurrency is possible by implementing several parallel data-
paths or several communicating loops. Diagrams for these configurations
are shown in figure 12.

18

Loop With Parallel Paths Loops With I/O Elements

Figure 12: Systems With Increased Concurrency

As shown in the left half of figure 12, parallel data-paths may be
implemented with the addition of split and join operators. The split
operator, s, sends data from p to both a and b and combines the status
signals from a and b to send back to p. In particular, s indicates a valid
(reset) successor when both a and b have valid (reset) outputs as shown
below:

valid(s) = valid(a) A valid(b)

reset(s) = reset(a) A reset(b)
The join operator, j, performs the complementary function of the split.
The data values from ¢ and d are concatenated to provide the input for
q, and valid(q) and reset(q) are sent to both ¢ and d.

The right half of figure 12 shows two communicating loops. Each loop
implements the iteration algorithm. The I/O element can perform one
of two operations based upon the value of its input (e.g. a particular bit
of the value may specify the operation). One operation is to copy the
input (from x) to the output (i.e. to y). This allows the two loops to
iterate independently. The other operation exchanges a pair of values
between the two loops. In this operation, the I/O element sends its
input to the I/O element of the other loop, waits to receive a value from
the other I/O element, and then sends this value to y. Because each
element waits to receive a valid input before performing its next action,
the exchange can be performed without arbitration[2]. This provides
a mechanism for I/O operations within the self-timed domain without
any possibility of synchronization failure. This also provides a method
for communicating with circuits designed by other (e.g. synchronous)
methods; however, the other system may be susceptible to timing hazards
if adequate precautions are not taken.

19

if adequate precautions are not taken.

The algorithms presented in this paper provide a basis for self-timed
iteration which is independent of the function performed by each stage.
Different functions may be implemented for different applications. Iter-
ation is well suited for dedicated co-processors such as chips for multi-
plication, division [10], transcendental functions (e.g. the CORDIC al-
gorithm [8]), and data encryption/decryption. Using the generalizations
presented in this section, self-timed iteration could be applied to arrays
of processors or cellular automata, where individual cells can operate at
much higher rates than it is practical to distribute a global clock.

6 Conclusions

We have presented an algorithm for iteration in the self-timed domain
using only asynchronous circuits. Fabricated and tested VLSI arithmetic
chips [10] using these circuits have previously verified and demonstrated
the usefulness of self-timed iterations. The algorithm in this paper can be
applied to systems of any size independent of communication and proces-
sor delays. Because it is self-timed, particular hardware implementations
will operate as fast as the technology, temperature, and data values allow.

References

[1] T.S. Anantharaman, E.M. Clarke, et al., “Compiling path expres-
sions into VLSI circuits,” Distributed Computing, vol. 1, no. 3, pp-
150-166, 1986.

[2] D.M. Chapiro, “Globally-Asynchronous, Locally-Synchronous Sys-
tems,” Ph.D. thesis, Department of Computer Science, Stanford
University, October 1984.

[3] L.A. Glasser and D.W. Dobberpuhl, The Design and Analysis of
VLSI Circuits, pp. 280-282, Addison-Wesley, 1985.

[4] L.R. Marino, “General Theory of Metastable Operation,” IEEE
Transaction on Computers, vol. 30, no. 2, pp. 107-115, February
1981.

20

[5] A.J. Martin, “Compiling communicating processes into delay-
insensitive VLSI circuits,” Distributed Computing, vol. 1, pp. 226-
234, 1986.

[6] C.L. Seitz, “System Timing,” Chapter 7 of Introduction to VLSI
Systems by C. Mead and L. Conway, Addison-Wesley, 1978.

[7] J. Staunstrup and A.P. Ravn, “Synchronized Transitions,” DAIMI
PB-219, Computer Science Department, Aarhus University, Den-
mark, (submitted for publication) January 1987.

8] J.S. Walther, “A Unified Algorithm for Elementary Functions,” 1971

Spring Joint Computer Conference, AFIPS Proceedings, vol. 38, pp.
379-385, 1971.

[9] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design,
A Systems Perspective, p. 372, Addison-Wesley, 1985.

[10] T.E. Williams, M. Horowitz, et al., “A Self-Timed Chip for Divi-
sion,” Proceedings of the Conference on Advanced Research in VLSI,
Stanford University, March 1987.

21

