ISSN 0105-8517

The Computational Efficacy of
Finite Field Arithmetic

Gudmund Frandsen
Carl Sturtivant

DAIMI PB - 227
August 1987

AARHUS UNIVERSITY i ‘

COMPUTER SCIENCE DEPARTMENT -

Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK | T ﬁ
Telephone: +456 12 83 55 Telex: 64767 aausci dk I |

|

BT

Fra®

dse

gror®Y

- .a_n\‘.u'-

The Computational Efficacy of
Finite Field Arithmetic

Carl Sturtivant & Gudmund Frandsen
Computer Science Department
Aarhus University, Aarhus, Denmark

Abstract

We show that there exists an interesting non-uniform model of compu-
tational complexity within characteristic two finite fields. This model re-
gards all problems as families of functions whose domain and co-domain
are characteristic two fields. The model is both a structured and a fully
general model of computation.

We ask if the same is true when the characteristics of the fields are
unbounded. We show that this is equivalent to asking whether arithmetic
complexity over the prime fields is a fully general measure of complezity.

We show that this reduces to whether or not a single canonical function
is “easy” to compute using only modulo p arithmetic.

We show that the arithmetic complexity of the above function is di-
vided between two other canonical functions, the first to be computed mo-
dulo p and the second with modulo p* arithmetic.

We thus have tied the efficacy of finite field arithmetic to specific ques-
tions about the arithmetic complexities of some fundamental functions.

Introduction

Let p be a prime number. Then the integers in the range 0 to p— 1 with
modulo p arithmetic operations constitute a field. It is a remarkable
fact that there exists an element of this field g with the property that
the powers g' for i between 1 and p — 1 run through all of the non-zero
elements of the field. All finite fields contain such a g, which is known as
a primitive element [Lidl 83].

Now consider the function exp,(z) = ¢%, which is an exponential
function within the integers modulo p. Ignoring zero, since g is a primitive
element, this function has an inverse called the discrete logarithm dlog,.

The function exp, is “easy” to compute by “repeated squaring” [Dixon
84, Knuth 81] modulo p, whereas the function dlog, appears to be “hard”
[Odlyzko 84], and therefore may be a one-way function. Many crypto-
graphic schemes are based upon this [e.g. Blum 84, El Gamal 85, Gold-
reich 86, Odlyzko 84, Yao 82]. The computational complexity of dlog,
is being heavily investigated [Adleman 79, Coppersmith 84]. This and
all other useful candidates for one-way functions and other cryptographic
objects seem to arise in an algebraic or number-theoretic context [Yao
82].

We pose the question: do all efficient (i.e. polynomial time) algo-
rithms have a purely arithmetic equivalent? If so, then in investigating
dlogy within a finite field one need only consider arithmetic computa-
tions. Note that in investigating expy, it is not at all clear that there is
an efficient (“easy”) purely arithmetic computation.

To answer this question, we will consider first the restricted case of
fields with bounded characteristic. We show that for such fields all poly-
nomial time computations have a purely arithmetic equivalent.

Consider the following non-uniform model of computation: all fi-
nite fields with their arithmetic operations only, where increasing the
input size is accommodated by increasing the field size. Thus a compu-
tational problem is a family of functions {f;} where for each 7, the do-
main and co-domain of f; is a finite field. (Contrast this with the boolean
model in [Skyum 85]).

The finite field model is unique. All other models of computation
provide that an increase in the input size is accommodated by an increase
in the number of variables (e.g. the number of bits or the number of
symbols in some alphabet). In the finite field model there is always only

2

one variable. In fact, there is exactly one input and one output.

Obviously, since we have only one variable we need a measure of the
input size. The input size of f; is naturally the base two logarithm of the
size of the domain of f;. This is precisely the minimum number of bits
required to distinguish all of the field elements.

Now consider any reasonable compact and efficient representation of
all finite fields by the booleans. By this we mean assignment of “rea-
sonably short” bit-strings uniquely to every finite field element, in such
a way that “small” boolean circuits exist to implement the finite field
arithmetic. This definition is made precise in the next section.

Such a representation can provide a means of interpreting an arbitrary
boolean computational problem as a finite field computational problem.
This can be achieved by interpreting the bit-string input and output as
the field element it represents, provided that all bit-strings are used to
represent field elements (some technicalities are being deferred here).

The issue then arises as to whether the existence of an efficient boolean
solution to the computational problem implies the existence of an efficient
arithmetic solution. Here by “efficient solution” we mean the existence
of polynomial size families of circuits to solve the problem.

Following [Borodin 82] we define two classes of non-uniform models
of computation. First, we define a general model of computation as one
that gives a complexity measure that is polynomially related to boolean
circuit-size. Second, we define a structured model of computation as one
in which there is no fixed bound on the size of the values manipulated
in one atomic operation. (Here by size we mean the number of bits in
a reasonable bit representation). These definitions differ from those in
[Borodin 82] in order to make the defined concepts independent.

Let us apply these terms to some well-known models of computation.
Straight line programs over the complex numbers [Strassen 73, Valiant 82]
is a structured but not general model of computation. Boolean circuits
is a not structured but general model. Monotone boolean circuits is
possibly neither structured nor general. Clearly our finite field model of
computation is a structured model. The above question of the efficacy of
arithmetic 1s equivalent to asking whether or not it is a general model of
computation.

When restricted to characteristic two, the finite field model is both a
structured and a general model of computation. The status of the finite
field model for unbounded characteristic is unresolved. However, we will

3

show that it is a general model of computation if and only if a certain
canonical function has polynomial size arithmetic circuits.

The existence of a simultaneously structured and general model of
computation is of interest because it shows that a macroscopic structure
can be imposed upon boolean computations without loss of efficiency. In
particular, only bit-strings representing characteristic two field elements
need be manipulated in a boolean computation, and the only manipu-
lations required may be implemented by standard boolean circuits that
simulate the addition and multiplication of the field. All boolean compu-
tations can be done efficiently by “macrogates” whose interactions with
each other are well defined and elegant. These macrogates represent
arithmetic in a field and thus are subject to the commutative, associative
and distributive laws.

Using macrogates is an extremely restrictive structural imposition:
first, only data of size equal to the input size can be manipulated; sec-
ond, there can he only a small set of standard circuits used; and third,
there can be no loss of efficiency. If this can be achieved, macrogates
open up the large toolbox already available to the study of finite fields
and make it applicable to the complexity theorist in search of boolean
lower bounds. Concepts such as primes, factoring, irreducibility, orders
of elements, that were essentially invisible in the original model are now
available. Obviously, this is a massive conceptual gain.

We will show that the finite field model of computation introduced
above is an inherently sequential model; in the sense that circuit depth is
not preserved in going over from boolean computations to computations
within our model, and indeed may get exponentially bigger. Therefore
from the point of view of efficient sequential computation, large numbers
of irrelevant computations are automatically excluded. This is hopeful
from a “sequential lower bound” point of view, where we want to exclude
the possibility of the existence of certain computations. If there are fewer
to begin with, this can only help.

Consider a boolean computation with inputs x4, ..., x,. We may write
the function computed in the SOPE normal form [Savage 76| as follows:

> (I =)

AeS§ €A

where S is a subset of the power set of {1,...,n}, where sum and prod-
uct are exclusive-or and and respectively, and where the empty product is

4

taken to be 1. This is clearly a normal form because {0,1} with sum and
product as above is a field where all elements satisfy > = . The above
expression can give all functionally distinct polynomials in n variables.
Without loss of generality we may consider the boolean computation to
involve only ezclusive-or and and operations because adding 1 is per-
mitted. We may now track the computation formally, by regarding the
inputs z4,...,x, as indeterminates and defining the outcome of an oper-
ation as a polynomial equal to the formal sum or product of the incoming
polynomials as appropriate. The result of the computation is then some
polynomial with zero-one coefficients that we denote by p(zy,...,z,). Its
relation to the normal form is as follows:

p(xla vee ,:Bn) = Z (H :r;') e Z Qbi(ﬂil, 55 % ,iL'n)(ZC? — .’I'l)
A€S icA i=1
where the ¢; are arbitrary polynomials with zero-one coefficients.
Compare this redundancy in the computation with the redundancy in
the finite field model set up above. Suppose we are computing over a field
with ¢ elements. There is only one input xz. Clearly, any function can
be written by interpolation as a polynomial of degree ¢ — 1 at most. In
fact, every field element satisfies 2?9 = x (see [Lidl 83]). Thus the natural
normal form is:

g1 _
> a;xt
=0

where the a; are field elements. If p(x) is the formal polynomial resulting
from tracking the computation formally, then it is related to the normal
form by:

am z + $(2)(e" - 2)

where ¢(z) is an arbitrary polynomial with coefficients from the field.
This is the same as:

g-—1 ,

p(z) = > a;e* mod (27 — x)
i=0
The question as to whether or not there is a uniform relationship be-

tween the boolean and finite field models of computation depends upon
the uniform complexity of fundamental algebraic problems such as pri-
mality and the irreducibility of polynomials over finite fields. Such prob-
lems can be solved in random polynomial time, the randomization being

5

some sort of “poor man’s non-uniformity” [Adleman 78, Bennett 81, Gill
77]. (For a discussion of uniformity versus non-uniformity see [Borodin
77, Karp 80, Karp 82, Pippenger 79, Ruzzo 81, Valiant 83].)

If there is a uniform relationship, then uniform complexity theory can
be carried into the model en masse, with the benefit that the subtle algo-
rithms involved in establishing the existence of the uniform relationship
implicitly add conceptual force to this new view of computation.

Conversely, if there is no uniform relationship, then attempts to prove
negative results in the finite field model start from an inherently non-
uniform angle. This is because any lower bound result is nevertheless
implicitly parametrized by the input size. Adding one more bit to the
input does not radically change the nature of the computational process.
However, increasing the input size by one by increasing the field size,
and thus using new, and uniformity-wise unrelated arithmetic operations,
makes a radical change by including some intrinsic non-uniformity to an
arithmetic lower bound.

The existence or non-existence of polynomial-time algorithms for prob-
lems such as factoring integers, factoring polynomials over finite fields,
and related number-theoretic complexity investigations, clearly has great
impact on the nature and character of computations in the proposed
model, and therefore must now be considered of direct relevance to gen-
eral boolean computations, a fact that had heretofore not been estab-
lished with such force. See [Berlekamp 68, Dixon 84, Rabin 80, Riesel 86]
for results in these areas.

In the usual combinatorial scenario, most natural problems in NP
seem to be either in P or to be NP-complete [Garey 79]. This phenomenon
is probably merely a reflection of the way problems are usually posed (i.e.
in a relatively unstructured setting). Over a finite field with ¢ elements,
a problem is naturally posed as >} 1a x' where the a; are given in a
natural way as a function of ¢. For example, the discrete logarithm can
be naturally posed as:

p—2

dlogy(x) = Z: mp
(

in the field of the integers modulo a prime p (this can be easily obtained
by interpolation, as described in [Lidl 83]).

It seems likely that within the new model (because of the irregu-
lar relationship with the booleans), the distribution of natural problems

6

across the complexity classes may be quite different from usual. This sup-
position 1s supported by the known difficulty of classifying many natural
algebraic and number-theoretic problems in a combinatorial setting (e.g.
primality testing, factoring integers, and group isomorphism not fitting
in neatly with P versus NP [Garey 79]). Thus the finite field model may
prove to be useful in investigating the structure of NP, and in particular
for cryptographically motivated complexity.

In the next sections we will show that a finite field model of com-
putation is fully general if and only if any reasonable representation of
the field elements as bit-strings is efficiently accessible within the field.
That is to say iff there exist small arithmetic circuits with one input and
many outputs which, when a field element is input, compute the bits of
its representation as zero-one field values. We define a representation as
strong iff it is accessible within the fields in the above sense. We define
one representation to be equivalent to another iff there exists a family
of small boolean circuits that translate from one to the other and wice-
versa. Note that boolean circuits can easily be efficiently simulated by
field arithmetic on zero-one values.

Next we show that if a strong representation exists then all reasonable
representations are strong and equivalent to each other. Thus the issue
becomes that of whether or not the usual (“standard”) representation of
the finite fields is strong. We show that for bounded characteristic this
is indeed the case. Thus in the case of characteristic two, arithmetic is
adequate for all polynomial time computations. In the case of unbounded
characteristic we show that the problem reduces to that for the prime
fields (i.e. for modulo p arithmetic).

We define the function f(z) by:

x—xP

flz) =

) mod p

where the arithmetic within the parentheses is integer arithmetic. Since
x — zP = 0 mod p, the division by p is well defined over the integers, and
[defines a function whose domain and co-domain are both the integers
modulo p. We then show that the standard representation of the fields
of the integers modulo p is strong if and only if the function f is easy to
compute with modulo p arithmetic. The function f is not the only one
with this property, but is canonical in its form and expressive power. We
find the degree p — 1 polynomial representing f: its coefficients involve

7

Bernoulli numbers modulo p, thus suggesting a fundamental connection
with other problems in number theory [Borevich 66].
We define the function g(z) by:

1+aP —(1+)P
p

g(z) = () mod p

where, just as with f, the arithmetic within the parenthesis is integer
arithmetic. This function has a simple expansion as a polynomial of
degree p — 1 within the field:

(-1)a

1

g(z) = pg

(The division here is within the field of integers modulo p). Note the
similarity to the power series for the logarithm characteristic zero. For
this reason we refer to g as the pseudo-logarithm. Note also that both f
and g can be computed efficiently outside the field. (This can be achieved
by using modulo p? arithmetic and repeated squaring).

We define the function m(z) over the integers modulo p? by m(z) =
xmodp with the intuitively obvious meaning, and we define the arithmetic
complexity of m to be its arithmetic complexity in the ring of integers
modulo p?. We show that m is equal to the Bernoulli polynomial By, taken
modulo p?, apart from a few small terms of trivial arithmetic complexity.

Finally, we show that the arithmetic complexity of f lies between
that of m and the product of the arithmetic complexity of m with the
arithmetic complexity of g. Therefore, the arithmetic complexity of f can
be determined by finding the arithmetic complexities of m and g. Since
neither m nor g seem as powerful as f, this must be regarded as a true
simplification.

Arbitrary vs. Arithmetic Computations

The following are well known facts about finite fields (see [Lidl 83] for
details).

o All finite fields with identical cardinality are isomorphic.

o There exists a finite field of cardinality n, precisely when m is a
prime-power.

On this basis the finite field of cardinality ¢ = p™ for some prime p
and natural number » > 1 is denoted F,, in particular F, when ¢ = p.
In the latter case, F, is said to be a prime field.

o All elements of F, satisfy z? = x.

AR | -
' — 4972 when z is non-zero. The

latter can be computed in O(log ¢) multiplications by repeated squaring.
In fact, it 1s possible to eliminate division with only a constant loss of
efficiency for functions with at least linear arithmetic complexity [Bgge-
strand 87|. Subtraction can also be eliminated with only constant loss of
efficiency by observing that a + b is equal to a + (—1)b.

We may now define the finite field model of computation:

Thus division i1s unnecessary as x~

i) A finite field computational problem A is a family of functions,
one for every finite field: A = {8, | ¢ is a prime power} such that
6, : Fqg — Fy.

ii) A family of arithmetic circuits {a, | ¢ is a prime power} contains
for each finite field F; a circuit a, that uses Fj-arithmetic (4, -) and
F,-constants.

iii) An arithmetic solution to A consists of a family {a,} of arithmetic
circuits such that a; computes a unary function and e, and §, are
functionally identical for all g.

iv) The input size for an F,-problem, or for a circuit indexed by ¢, is
taken to be log g since the cardinality of F, is gq.

v) The complexity of a family of circuits is taken to be the circuit
size as a function of input size. A family of circuits is said to be
p-bounded if the complexity is bounded by some polynomial in the
input size.

Observe that solutions are nonuniform because each circuit only works
for a specific field (i.e., input size). If uniformity is desired, it can be
imposed by requiring structural similarity between the individual circuits
that constitute a solution, e.g., via constructing all of the infinite family
of circuits by a single Turing Machine of specified complexity.

It should be noted that every finite field problem has an arithmetic
solution. This follows from the fact that any function in F, can be ex-
pressed as a polynomial over F,.

Having defined the arithmetic model of computation, we shall see
that we may restrict ourselves to deal with prime fields in the sense that
arithmetic in any finite field can be simulated efficiently by arithmetic in
its underlying prime subfield:

Theorem 1-a

A finite field Fy(q = p") may be represented in terms of F, because there
exist two p-bounded families of circuits {ayg, g, F,xF) — F;} all using
F,-arithmetic and a semantic bijection ¢y : F, — F, such that for all ¢:

qu(aq(fag)) = QSQ()_I_';bq

(%)
Po(1g(Z, 7)) = Bg(T) - ¢ (3}7)

=3I

Proof of Theorem 1-a:

Given g = p", there exists an irreducible polynomial f(z) € F,[z] of
degree n. It is the case that F, = F,[z]/f(x) [Lidl 83]. Thus F, may be
regarded as a vector space over F,. Since (1,z, %, ..., 2™ 1) is a basis for
this vector space, we may define ¢,(ap,a1,---,a,-1) = ap+ ayx + -+ +
a,—12""'. Obviously, addition may be performed componentwise in this
representation and the p-bounded family of circuits {«,} is constructable.
Multiplication may be performed as a convolution followed by a modulo- f
operation. Hence the p-bounded family {u,} can be constructed.

Theorem 1-b

Given the representation of F, in terms of F, as defined above (called the
standard representation), there exist two p-bounded families of arithmetic

10

circuits {ig : Fj — Fg}, {0 : F; — F7} such that io(Z) = ¢¢(Z) and
Pg(04(y)) = y for z € F} and y € F,.

Proof of Theorem 1-b:

The family of circuits {i,} is easily constructed as a p-bounded family,
since ¢g(ag, a1, ,an_1) = ag+ a1z + -+ a,_12""'. In the case of {o,},
we note that (X0, a; - ;)P = 24 ay(af) for a; € F,, z; € Fy, since F,
has characteristic p and a = a? for @ € Z,. This leads to a system of

linear equations for finding the coordinates (aq,...,a,) of an element «
in F:
(1 2 z? z3 .zl 1lay] [«
1 z2 2% g gllp ai aP
2 Iy 2 2 2
1 2P gz % gl as — | of
n—1 n—1 n—1 _ n—1 n—1
|1 2P T g ST\ ¥ i I Y %
Since (1,z,...,z" ') is a basis for F, over F,, the involved matrix is
s Ly) q P

invertible [Lidl 83]. Consequently we find:

ag (8%
aj _[_1 O!p

n -1
-1 aof

for some constant matrix 4 over F,). In addition, each of the powers
I A may be computed using at most O(log ¢) multiplication
by repeated squaring. Hence {o,} may be constructed as a p-bounded
family of circuits.

In fact as is shown in [Bggestrand 87], {o,} may be constructed as a
family of circuits of size only O(nlog*n loglog n) in the case of fields of
characteristic two, using results from [Aho 74] and [Schonhage 77]. This
means that in this representation, arithmetic is as efficient as boolean op-
erations for any problem with complexity worse than O(nlog®nloglogn).

O

Since F,, is a subfield of F, [Lidl 83|, theorem 1-a establishes a rep-
resentation of F; in terms of itself. In addition, 1-b asserts that it is

11

possible to translate back and forth efficiently between an element in F,
and its representation in F7 (i.e., F}) by Fj-arithmetic.

In order to discuss the relation between arithmetic and general com-
putations, we define the latter in terms of Boolean algebra:

i) Let the Booleans be given by B = {0,1} with the three operators
A, V,— where they have the usual interpretations.

ii) A general computational problem I' is a family of functions: (one
for every natural number n) I' = {7, } such that v, : B* — B™.

iii) A family of Boolean circuits {b,} contains for every natural number
n a circuit b, that uses boolean operations (A, V,) and constants

(0,1).

iv) A general solution to a problem A = {v,} consists of a family of
boolean circuits {b,} such that b, computes a unary function on B”
and b, and v, are functionally identical. Thus we allow non-uniform
solutions.

v) The input size for a B™-problem or for a circuit indexed by n is
taken to be n. Thus the previous definitions of complexity and
p-boundedness apply also to Boolean circuits.

Since 0,1 are elements of any field, we may identify B = {0,1} with the
corresponding subset of any finite field.

Theorem 2

Given a general problem I' = {~,}, there exists an arithmetic prob-
lem A = {é,}, an assignment [from natural numbers to finite field in-
dices (prime powers), and two p-bounded families of circuits {i, : B*(C
Fity) = Fymy}i{on : Fipmy) — Fji,)(C B")} using Fyy)-arithmetic such
that v, = o, 0 &) 01, for all n.

Proof of Theorem 2:

Choose the assignment /(n) = 2" and the corresponding subsets of the
circuit families {i,},{o,} from Theorem 1-b as {i,},{o,}. Then A can
be chosen as a trivial extension of {i, 07, 00,} to a finite field problem.

a

12

We now consider representations of the finite fields using the booleans.
Since efficiency is an issue, we choose those representations that are rea-
sonably compact, and have small boolean circuits to implement the arith-
metic operations. We define a p-representation as follows:

i) Let the p-representation be a 6-tuple

= (L, {Se}s {aghs {1a}s {Ca}s {Pa})-

ii) [is a p-bounded assignment of natural numbers to finite field in-
dices.

i) 5, C BY9) is the set of bit string representations of F,-elements.

iv) {ag,ptq : Sq x Sqg = Sy, (; : Sq — B} are p-bounded families of

boolean circuits.

V) ¢q: Sq — F, defines the semantics of the representation:

(_ag)) = ﬁbq(‘i’)“"ﬁbq(g)
q(:b,y)) = ¢q(T) - &g(7)
(@) =1 iff ¢y(x) =0

Apart from arithmetic operations, a representation must include a zero-
recognizer. This requirement follows from the fact that a single field
element may have exponentially many different bit string representations
within a single p-representation although the p-boundedness does assume
that only “short” bit string representations are possible. Thus it is pos-
sible to compute predicates. Without this facility it may not be possible
to recognise the output at all, in which case the computation cannot be
regarded as meaningful.

Theorem 3

There exists a p-representation of the finite fields.

Proof of Theorem 3:

By Theorem 1-a, we need only consider the representation of prime fields.
For p prime, Fp is isomorphic to Z, (see [Lidl 83]). Let I(p) = [logp],

S, = {b € B"?) | b < p—1, when b is interpreted as a binary number},
which is the standard binary representation of elements in Z,. Addition

13

and multiplication are implemented as the corresponding operations for
binary numbers followed by a modulo p operation. This is easily done
by p-bounded boolean circuits. The zero-recognizer is immediate since
(0,0,...,0) is the only representation of 0.

O

The representation constructed in the above proof is denoted the stan-
dard representation.

To address the question of efficiency we must compare general and
arithmetic solutions to a finite field problem. Therefore we define:

o A general solution to a finite field computational problem A = {§,}

consists of a p-representation R = (I,{Sq},{aq}, {1¢},{¢e}: {®4})s
and a family of boolean circuits {b,} such that b, computes a unary
function on S, and ¢, 0 by = 64 0 ¢,.

Arithmetic is efficient if it is possible to simulate a general solution by
arithmetic with only a polynomial increase in circuit size. Arithmetic
can simulate the boolean operations efficiently (see proof of Theorem 4).
Therefore, all that is left to consider is whether arithmetic can be used to
compute a p-representation of a field element efficiently. More formally:

i) A p-representation R = (I,{Sq}, {og}, {tte}, {(s}, {¢y}) is strong iff

there exists two p-bounded families of arithmetic circuits

{ig: Bl(q)(g Fl(q)) — F,}
and

{0 : F, — Bl(ﬁ'!)(g Fl(q))}
such that io(Z) = ¢4(2) and ¢(04(y)) = y for € $, C F'@ and
y € F,.

ii) A p-representation R = (I, {S,}, {ag}, {tte}: {¢o}, {D¢}) p-reduces to

another p-representation R = (I', {Sg}, {ag}, {1}, {Co) {9, }) (R <,
R') iff there exists a p-bounded family of circuits {p, : S; — S}}
using boolean operations such that ¢, = qb; 0 pq.

iii) R is p-equivalent to R' (R =, R') iff (R <, R’ and R' <, R).

Intuitively, a strong p-representation is one where arithmetic can effi-
ciently access the bits of the representation. For later use, we note that
a strong representation is p-equivalent to any other representation:

14

Lemma 1

Given p-representations R, R' such that R is strong, then R =, R'.

Proof of Lemma 1:

K<, B

If R is strong then a p-bounded family of arithmetic circuits {i,} exists. If
iq is implemented using representation R’, this gives a p-bounded family
of boolean circuits that takes the R' representation of the R bit string
representing a field element and produces the R' representation of that
element. All that remains is to choose two bit strings a, and b, with
¢y(ag) = 0 and ¢ (b,) = 1, and to prefix each input to the new circuit
where an R’ representation of zero or one is required by a small circuit
that takes a boolean zero or one and switches into the old input either
a, or b, as appropriate.

R <, R

R is strong, so that {o,} exists for R as in the definition. If o, is imple-
mented in representation R', the input is now the R’ representation of
a field element, and the output is the R' representation of the bit-string
that that is the R representation of the same field element. Now use (g to
build a small circuit that will recognise R' representations of zero and one
and output the corresponding boolean value. Appending one of these to
each output where a zero or one in representation R' will appear achieves
the desired result.

a

It will turn out that arithmetic access to the standard p-representation

is crucial to assessing the efficiency of arithmetic. For this reason we
define:

o The last bit problem for prime fields L = {l, : F, — {0,1} C F,},
where [,(a) is the last bit in the standard representation of a; i.e., if
we identify F,, with {0,1,...,p—1} C N, [, is zero on even numbers
and one on odd numbers.

15

Theorem 4

The following statements are equivalent:
(1) Arithmetic over finite fields is efficient.
(2) L has a p-bounded arithmetic solution.
(3) There exists a strong p-representation.

(4) All p-representations are strong.

Proof of Theorem 4:

(1) = (2): Using the standard representation, L has a constant size gen-
eral solution and therefore by (1) a p-bounded arithmetic solution.

(2) = (3): Assuming (2), the standard representation is strong. By
Theorem 1 we need only consider the prime field case. {o,} is
built using O(log p) copies of a p-bounded arithmetic solution for
L, whereas {7,} is directly constructed.

(3) = (4): Given an arbitrary p-representation R' and a strong one R,
then R =, R’ by Lemma 1. This implies that R’ is strong since
{ig} and {0} can be obtained from {i,} and {o,} by prefixing and
postfixing respectively arithmetic simulations of the small boolean
circuits that translate from R' to R and from R to R'.

(4) = (1): Let {é,} be an arithmetic problem which has a general solu-
tion consisting of a representation R and a family of boolean circuits
{by} of complexity f. Let {tr(b,)} be a family of arithmetic circuits
simulating the boolean circuits {b,} on zero-one field values. This
can easily be achieved by using multiplication for and and 1 — = to
compute not z. Let {i;} and {o,} be the arithmetic circuits given
by the definition of strong for R. In this case, {i; 0 ¢tr(b;) 0 0} is an
arithmetic solution to {é,} of complexity at most ¢ + 3f, for some
polynomial t.

a

We have now established that the efficiency of the finite field arithmetic
depends upon the arithmetic complexity of the last bit problem for prime

16

fields. For this reason, we will hereafter confine our attention to prime
fields.

We shall see later that [, written as a polynomial over Z, has degree
at least p — 1. Thus it follows that any arithmetic circuit to compute
l, will have depth at least O(logap). This is because in an arithmetic
circuit the degree can at most double as the depth is increased by one.
Similar remarks hold for the polynomials in Theorem 1. Even at bounded
characteristic, results asserting the efficiency of arithmetic using circuit
depth as a complexity measure do not exist. Thus the finite field model
of computation is inherently sequential.

Note also that constants are not necessary in arithmetic computations
in Z,. Given a circuit using constants, the constants can be replaced by
outputs from an additional circuit that computes them from 1 using short
addition chains (see [Knuth 81]). Then 1 can be replaced by the output of
a small circuit that computes 2! when the input to the original circuit
is . This always has the value 1 except when z is 0 (see [Lidl 83]).
Thus the new circuit computes correctly except on input zero, where it
must compute zero as it has no constants. Restricting our attention to
functions h with h(0) = 0 is no great constraint. It is easy to verify that
the above construction involves only a small increase in circuit size. In
fact, for functions that can be computed without constants, constants are
not necessary in order to compute them efficiently over any finite field
[Bggestrand 87].

We shall see that some common operators over prime fields can replace
the last bit problem in Theorem 4, apparently due to these operators’
dependence on the standard representation:

e An n-ary prime field operator A = {a,} is a family of functions,
ap : Fy — Fp. Observe that the last bit problem L is a unary prime
field operator. Given the standard representation R = (...,{¢,}),
we know ¢, is invertable. This fact allows us to define the binary
prime field operators:

min: miny(a,b) = qbp(minz(qb;l(a),qb;l(b)))
exp: exp,(a,b) = a

In order to state the equivalence results formally, we need some defini-
tions:

17

e A circuit family {a,} consists of A-arithmetic circuits if a, is allowed
to use the operator , apart from Fp-arithmetic (4 = {a,}).

e An n-ary prime field operator A = {a,} reduces to an operator
B arithmetically (A <, B) iff there exists a p-bounded family of
B-arithmetic circuits {a, : Fy; — F,} such that a, and o, are
functionally identical.

e A and B are arithmetically equivalent (4 =, B) iff (4 <, B and
B <, A).
Theorem 5

op € {min,erp} implies op =, L.

Proof of Theorem 5:

Observe that qb;l : Fp — Bliegrl C FE"QP] is realized by a p-bounded
family of L-arithmetic circuits, from which it follows that op <, L for
op € {min,exp}.

Conversely:
e, a a, . , a a, “a odd”
L) = E[mznp(a, 5) — 5] since m,zn.p(a,g) = { 2 g even”
1) p—1, “a odd”
ia) = 5[1 — expp(p — 1,2)] since exp,(p — 1,a) = { 1. ’ “q even”
a

Consequently, the arithmetic complexity of any of the operators, L, min,
or exp determines the efficiency of arithmetic.

The efficiency of arithmetic is also connected to the possibility of doing
modulo-arithmetic within the prime fields:

e Let the function f : N — N be chosen such that f(p) # p for all
primes p. A prime field representation of modulo f-arithmetic is a
tuple:

Rp = (1,{Sp}: {Dp}: {Op}, {65}, {@5}, {@s} {ip}a {op} {¥5})

such that:

18

[:N—>N

Spgpi)(p)

Dp: Ops Opy @p : Sp X Sp = 5
@p: % —{0,1} CF,

ip: Fp— 5;

0 1 9y —+ By

The semantics is given by ¥, : Sp — Zgy).

'gbp(;f Dp ﬂ) = ["d’p(f) 7+ 1,l’p(§)]mod f(p)

Yp(20,7) = [¥(Z) — ¥p(7)|mod f(p)

Yp(Z Op y) = W’P('ﬁ) : @l’p(l—/)]mOd f(p)

ot = {5t
@ple) =1 iff y(a) =0

In the following, let ¢, denote the semantic function of the standard
prime field representation:

Yp(ip(a)) = ¢;'(a) mod f(p) fora €F,

0p(T) = ¢p(¢p(Z) mod p) forze€ S,

By generalizing arithmetic equivalence from dealing with single operators
on F, to encompass sets of operators on F; (in the obvious way) we may
state:

Theorem 6

For any function f : N — N\ {0,1} such that f(p) # p for all primes
pylet Ry = (..., {@p}, {Op}; {5}, {@p}, {@s}, {in}. {0p}) be an arbitrary

prime field representation of modulo f arithmetic. In such case:

L <o 1{®p}:{0p}, {0}, {00}, {@0}, {in}, {0p}}

1)

Proof of Theorem 6:
For

f(p) > p:

f(p) < p, f(p) even:

f(p) < p, f(p) odd:

lp(a) =1~ @(2 Op ip(%) Sp ip(a))
lp(a) == @(%ﬂ Op ip(a) Op @)

Observe that [,((0p(ip(a)))) is zero iff 2 -
0p(1p(a)@p2) —0p(ip(a)) is zero. Since o,(iy(a)) =
“a mod f(p)”, we can get the parity of all digits
in a base f(p) representation of a in logs)p <
logs(p) steps as above.

20

sz—arithmetic and Witt-vectors

The result just obtained establishes that arithmetic is efficient if mod p-
arithmetic can efficiently simulate mod f(p)-arithmetic. This section deals
specifically with simulations of Z,:-arithmetic by means of Z,-arithmetic.

By using a nonstandard Witt-vector representation of Z,, the last
bit problem is split into two apparently easier problems: one of which
is computing remainder modulo p in Z,, the other being computing the
additive carry in Witt-vector representation of Z..

In what follows, we identify F, (and Z,) with the standard repre-
sentation, which is the natural numbers {0,1,...,p — 1} equipped with
mod p-arithmetic. Similarly Z . is identified with the set {0,1,...,p* -1}
equipped with mod p*-arithmetic. We shall henceforth assume p always
denotes an odd prime. Ignoring the prime 2 is no severe restriction, since
any algorithm or reduction can easily be fixed for a finite number of input
sizes.

The subscript p will be omitted in the following when no ambiguity
arises.

The standard representation of Z,. is the following:

S2(Fp) = (LS}, {®p}: { s}, {00} {@p} {@0}: {in}: {0n}s {¥0})
where:
i) 1 is identically 2
i) S, = F,xF,
i) ¢p: F2 > Zy y(wo, 21) = 2o + P

(i)-(iil) determine the representation uniquely. Insertion and retrac-
tion are easy to compute:

it By — B2, Gle) =(=,0)
Oy, 4 Ff, — F,, opleg,z1) = 29

Since ¥, is a bijection, the identity relation (specifically),) is also
easy to compute. Arithmetic is more difficult. Let the multiplicative and

21

additive carries be represented by binary prime field operators =, ¢ such
that:

(o, 1) @ (Yo, 41) = (@o+ Yo, T1 +y1 + o(zo, o))
(20, 21) © (Y0, %1) = (@0~ Yo, o -y1 + 1 - Yo + (2o, Yo))
It is fairly obvious that:
Il2) =0 i 7,(2) 0, ip(g) =iuier) B 72 2)="0

and

lp(z) =0 iff ip(3) ®p ip(5) = ip(z) iff a(5,3) =0

Consequently Sy(F,) is easily realizable by F,-arithmetic except possibly
for the carry-functions:
Theorem 7

L=,1=,0

Witt-vectors are an ingeneous construction for representing Abelian ex-
tensions of fields. The theory of Witt-vectors is described in [Encyclope-
dia 80, Greenberg 69, Hasse 49, Jacobson 64, Witt 37]. For the present,
we simply render the Witt-vector representation of Z,: in a way that
emphasizes the carry-less nature of this representation. This property
makes the representation specifically attractive for our purposes.

The Witt representation of Z,. is:

Wa(Fp) = (L{Sp} {®p}: {®p} {6p}: {00}, { @0} {n}: {0}, {¥3})
where

i) [is identically 2

i) S, =F,x F, |
iii) (2o, 21) ®p (Yo,¥1) = (%o - Yo, To- Y1+ 1 - %)
iv) (0,21) @5 (0,41) = (0, =1 + ¥1)

v) (20,0) @ (0,31) = (20, 41)
vi) ¥,(0,1) =
22

We will verify later that properties i-vi determine the representation
uniquely. Propertiesi and ii are shared with the standard representation;
whereas, iii specifies multiplication as a convolution without carry. Prop-
erty 11 can only determine the representation up to an automorphism
with respect to the multiplicative structure on Z,.. Addition cannot be
specified without carry, since the resulting structure would be of charac-
teristic p. However, Z,» contains a unique additive subgroup of order p,
consisting of the non-units. Property iv forces a simple addition for this
subgroup. Property v specifies addition between some units and non-
units. Because of properties iii-v, W, (F) offers a very simple (if not the
simplest possible) simulation of Z,:-arithmetic by means of F-arithmetic.
Property vi ensures that the characteristic is p®.

The additive carry in W)(F,) is the binary prime field operator g
defined by:

p @ty —(x+y)P
B p

9p(,y)

where = denotes congruence modulo p. The righthandside expression is
p-integral since:

and the binomial coefficients are all divisible by p. Similarly the semantics

of W(F,) is expressed by means of a unary prime field operator f, defined
by:

r — xf

p

fo() =

In proving the correctness of the representation, we need a lemma stating
that g has the required carry properties:

Lemma 2
A) g(z,0) =0
B) g(z,—x) =0

C) g(z,y) = g(y, x)

23

D) g9(z,y) + 9(x +y,2) = g(=,y + 2) + 9(v, 2)

E) g(zy,zz) = zg(y,)

Proof of Lemma 2:

All identities (A)-(E) are simple consequences of the definition of g.

The correctness of W5(F,) may now be stated and proved.

Theorem 8

(a) W2(Fp) uniquely determines a representation of the ring Z,;.
(b) (o, 21) ®p (0, y1) = (2o + Yo, 21 + ¥1 + gp(T0, %0))
(c) ¥p(xo, 1) = zo + (21 — fo(0))

Proof of Theorem 8:

We shall begin by establishing (b), (c) from which the uniqueness of
the representation follows, and end by establishing existence. In what
follows, we drop special representation syntax and write +,-,—,/ for
Dy, Op, Op, @p when no ambiguity arises; similarly, we drop the index
p for f,g. Initially the consequences of iii are explored.

Observe that the representation of 0 and 1 are uniquely determined
by 0-x=0and 1-x =z, giving:

(1) lpP(O:O) =0
(2) ¥,(1,0)=1

In addition, the non-units of Z,: are precisely the elements of the set
{z | #* = 0}, which is easily recognized in the Witt-representation:

(3) {(0,z) |z € Z,} represents {zp | z € Z,}

The multiplicative subgroup of Z,: has order p(p — 1) and is cyclic.
Consequently there exist unique subgroups of orders 2, p, p—1. By noting
inductively that (zg,z,)* = (zF, kzf 'z,), we get:

(4) ¥p(=1,0) = p* — 1, since {(—1,0),(1,0)} represents {z | 22 =1}

24

(5) {(z,0) |z € Z}} represents {z | z¥~' =1}

(6) {(1,z) |z € Z,} represents {z | z* = 1} whichis {1 +zp |z € Z,}
An implication of (4) is:

(7) —(zo,21) = (~z0, —21)
We also note:

(7.5) (zo,x1) ' = (xg!, —zg2. ;) for zg £ 0

Next we investigate consequences of iv. By computing (0,1)-((zg,0)+
(90,0)) in two different ways, we get:

(8) (0,0)+ (40,0) = (xo+yo,y(z0, o)) for some binary prime field func-
tion 7.

By use of v we get:

(9) (2o, x1) + (yo,41) = (@0 + o, T1 + y1 + 7(z0, %0))
By (2) and (9) it follows that ¥,(z,z1) = zo, and that specifically

28 = 4, (20,0) by (5). In addition by vi and iv, p(0,2,) = z1p. Hence

the semantics of Wy (F,) is:

(10) (0, 21) = (20, 0) + (0, 21) E 22 + 210 E 2 + plar — f(zo))

and consequently:

(11) ¥p(zq, f(mo)) = o

We have now established the uniqueness part of Theorem 8 and may
confirm that v = g using the W,(F,)-representation:

9(z0:%0) = —[zo +yo — (zo + ¥o)”]

[(x0,0) + (y0,0) — (20 + 0, 0)]

[(0,7(z0,%0))] = v(x0,%0)

i e~ e~ e

25

Finally, we must verify that W5(F) is a commutative ring: this is
checked by trivial computations using Lemma 2, iii, (b) and (1), (2), (7)
and (7.5).

O

By exploiting commutative diagrams between W5(F,) and S3(F,) we
may reduce L and the carry-functions to f:

Theorem 9

1) g% F
ey = { DI
2) 7 <o f
w(e,y) =z f() +y- f() - foy)
3) 0 <af:
o(z,y) = flx) + f(y) + g(z,y) — f(z +y)
HIL< S

(z) = 2/(3) + 5£(2) - f(a)

Proof of Theorem 9:

1) The stated identity is a simple consequence of the definitions of f
and g. The full reduction (g <, f) follows by the distributivity of
g (Lemma 2).

2) Routing the pair (@q, 1), (¥o,%1) through the following commuta-
tive diagram in two different ways establishes 2 (where ¥(zg,z;) =
(@, z1 — f(2z¢)) is the canonical isomorphism between the two rep-
resentations of Z:):

Wa(F) x Wy(F) YX¥ . S(F) x Sy(F)
® l@
Wa(F) L - Sy(F)

26

3) Similar to 2, except using addition.

4) Follows from 2, by observing that I(z) = 7(2,%).

a

Viewed as a computational problem, f certainly has a p-bounded
general solution, which implies the existence of possibly non-uniform re-
ductions from f to L and . Conversely (by Theorem 9), there exists
trivial uniform reductions from L,7,0 and g to f. This indicates that
f is canonical among the problems that are arithmetically equivalent to
L. Clearly, the determination of f’s arithmetic complexity resolves the
question of the efficiency of finite field arithmetic.

Similarly, g may be viewed as a computational problem. Apparently
there is no simple reduction of f to g. By Theorem 9 such a reduction
would imply summation of the g function. Summation is related to the
Bernoulli polynomials and by using W5(F,) we can split the f-problem
into two hopefully simpler problems: namely g — the additive carry in
W,(F,), and m — the modulo-p operation in Z,:. It turns out that g is a
pseudo-logarithm and m is almost a Bernoulli polynomial.

We start by transferring our previous definitions of an arithmetic
model of computation to the family of rings Z::

i) A Zj-computational problem A = {6,} is a family of functions &,:
Z,:— Z,, one function for every prime.

ii) A family of Z.-arithmetic circuits {a,} contains for every prime a
circuit a, that uses Zp.-arithmetic (+,-) and Z,.-constants.

iii) An arithmetic solution to A consists of a family {a,} of Z-arith-
metic circuits such that a, computes a unary function and a, and
6, are functionally identical for all p.

iv) The input size for a Z,:-problem or circuit indexed by p is taken
to be log p. Given this, the previous definitions of complexity and
p-boundedness apply.

v) The modulo-problem m = {m,}, is given by m,(a + bp) = a for
a,b € Z,.

Ignoring the fact that some Z:-problems have no arithmetic solutions,
it seems clear that the modulo problem plays a role in Z,: similar to the

27

role of the last bit problem in Z,. In fact f, and thus L, may be reduced to
g and m. It should be noted that some Z,.-problems have no arithmetic

solutions. As an example consider {6}, where é,(a + bp) = b, for a, b in
7.

Theorem 10
1. If f has a p-bounded solution, so has m.

2. If m and ¢ both have p-bounded arithmetic solutions, then f has a
p-bounded arithmetic solution.

Proof of Theorem 10:

1. Assume {¢,} is a p-bounded arithmetic solution to f, and construct
a family of Z.-arithmetic circuits {(,} identical to {¢,} except for

2
the change of arithmetic basis. Observe that m,(z) = 2P + poy(z).
This follows from the observation that in the Witt representation

myp((20, 1)) = (20, f(20)).

2. Let {y,} be a p-bounded arithmetic solution to m, i.e. p, uses Z-
arithmetic. Assuming ¢g has a p-bounded arithmetic solution, we
may find p-bounded Z,-arithmetic circuits for ®,, ©®, in the Wy(F,)
representation of Z,. Substitute these into {,} to obtain a p-
bounded family of Z,-arithmetic circuits
{fp : Zp, x Z, —» Z, x Z,}. A p-bounded arithmetic solution to
f follows immediately by observing that f,(z) equals the second
component of ji,(z,0).

O

In the following, m and g will be related respectively to the Bernoulli
polynomials and the natural logarithm. These results indicate that m
and g have quite different properties. This suggests that the reduction of
f to {m, g} is a true simplification.

A thorough introduction to Bernoulli polynomials may be found in
[Lang 78, Norlund 24]. First we restate the basic definitions:

e The infinite set of Bernoulli numbers {B;} C Q is defined by

t otk
= Bi—
-1 = "k

28

and

e the infinite set of Bernoulli polynomials {By(z)} C Q[z] is defined
by

And second, the basic propositions:
1. .B() = 1,B1 = _%)B2k+l =l fork 2 1.

2. Let a be a residue class mod p—1 and let k,l € «, and k,[different
from zero:

o (Kummer’s Congruence:) if 0 ¢ « then By, B; are p-integral
and %ﬂ = %
7

e (Von Staudt’s Congruence:) if 0 € « then pBy = —1
I.C) Bk_imi

1

3. Bk(dj) — Z?:O (

4. LBy(z) = k- By_(z) and By(z + 1) — By(z) = k - 2"~

“eq=0

Bi(a) = (~1)*1By(1 - z)

5. Bi(z) = N1l B (&2), for N > 1 and

Proposition 2 assures that By,...,B,_» and pB,_; are defined in Z,
and Z,:. In addition Proposition 3 assures that Bj(z) is well-defined in
Z, when k < p—1.

Using Propositions 1-5, m may be characterized:

Theorem 11
1. my(z) E By(z+1)+(1-p)z

2. my(z) = £F_, a,x™, where a, = p - E% for2<n<p-1,a,=1

and a; =p-Bp1 + (1 _p) :Pzij%“
Proof of Theorem 11:
1. By Proposition 4, By(x + 1) = pE_,nP~ !, since B,(0) = 0. How-

1 P
ever L2_,nP! = a — b for £ = a + bp, where a,b € Z,. Hence,

2
B(z+ 1) & pz + mp(x) — = from which the result follows.

29

2. The power series expansion follows from 1. and Propositions 1, 3

and 4 when using (p; 4) = (—1)*. The alternative definition of

a; comes from m,(1) = 1.
(N

This result implies that identities for the Bernoulli polynomials such
as Proposition 5 may be exploited when computing m,(z). The power
series for m easily gives a power series for f:

Theorem 12

fp(m) = Zﬁ;ll b,x™, where

By _»
b, = —F=, for2<n<p—1and
n
T pBp1+1 1_p—sz
A . LM, [=5
p =y K

Proof of Theorem 12:

This follows from Theorem 11(2) and the relation between m and f used

in the proof of Theorem 10, i.e. mp(x) s pfp(x).

The identities for B,(xz) can be interpreted as f identities, e.g. f(z) +
f(—z) = «P~1.

Next we turn to g. The natural logarithm will be denoted by In. The
facts that are needed to characterize g are as follows (see [Stewart 83]):

o In(l+a)=-—x2, H-a), -1<z<1

o In(z-y)=In(z)+ In(y), z,y >0

This leads to the following result:

Theorem 13
(a) g(z,1) =021 1(~z)"

(b) g(z,1) = (z + 1)[2n(1 + 2?) — In(1 + z)]

30

Proof of Theorem 13:

This k fulfils:

Theorem 14
(a) k=ag
(b) K(2) = h(z)
(c) Let a # 1 have n distinct n’th roots ry,...,7,. Then k(a) =
k=1 k(7).
Proof of Theorem 14:
Observe that k(z) = 1l ((AR). Then
(a) is obvious.
In(i5k) = Lin(E5k) £ k(z)

(¢) The polynomial (z? — a) factors as (x — r1)...(z — 7,). Specifically

as (1 —a) =17 ,(1—»;). Furthermore, r7,...,7E are the n’th roots
of a?, from which it follows that 1 — o = II* (1 — 7¥). Hence,
i —aPf n 1—r? - .
k(a) = %ln((i_a)p) =T . Iljln(——f—(l_mp) =32 k(r;).
d

31

Conclusion

We have shown that

Finite field arithmetic is adequate for all efficient computations over
fields of bounded characteristic.

Finite field arithmetic i1s adequate for all efficient computations if
and only if the function f(z) = (t%?) has polynomial size arith-

metic circuits over Z,.

The function f(x) has polynomial size arithmetic circuits if and

only if the functions g(z,y) £ (W) and m(z) £ ¢ mod p
both have polynomial size arithmetic circuits over Z, and Z,: re-
spectively.

mp(z) = By(z + 1) + (1 — p)z where B, is the p’th Bernoulli poly-
nomial.

2
The power series for f is obtained by using the identity m,(z) £

2P+ p(f2)).

g(z,y) = — Zf;ll &:ﬂ and is thus formally related to the natural
logarithm.

These findings suggest that:

Because of the obscure nature of arithmetic computations for the
function f, it is wise to consider more than just arithmetic opera-
tions when designing algorithms to compute the discrete logarithm.

In the case of characteristic 2 finite fields, there is a natural bijection
with bit strings. By using this, arithmetic lower bounds may be
used to provide lower bounds on hoolean circuit size.

The status of arithmetic in finite fields can be resolved by investi-
gating the complexity of m and g.

32

References

Adleman 78 ADLEMAN, L. Two theorems on random polynomial time.
Proceedings 19" IEEE Symp. on Foundations of Computer Science,
pp. 75-83. IEEE Computer Society, Los Angeles, 1978.

Adleman 79 ADLEMAN, L. A subexponential algorithm for the dis-
crete logarithm problem with applications to cryptography. Proc.
20" IEEE Symp. on Foundations of Computer Science, pp. 5§5-60.
IEEE Computer Society, Los Angeles, 1979.

Aho 74 AHO, A. V., HOPCROFT, J. E. and ULLMAN, J. D. The
Design and Analysis of Computer Algorithms. Addison-Wesley,
Reading, Mass., 1974.

Bennett 81 BENNETT, C. H. and GILL, J. Relative to a random oracle
A, PA £ NP4 + co — NP4 with probability 1. SIAM Journal on
Computing 10 (1981), pp. 96-113.

Berlekamp 68 BERLEKAMP, E. R. Algebraic Coding Theory.
McGraw-Hill, New York, 1968.

Blum 84 BLUM, M. and MICALI, S. How to generate cryptographi-
cally strong sequences of pseudorandom bits. SIAM Journal on
Computing 13 (1984), pp. 850-864.

Bggestrand 87 BOGESTRAND, K. and LUND, C. Computations in
Finite Fields. Technical report DAIMI IR-71, Computer Science
Department, Aarhus University, Denmark, 1987.

Borevich 66 BOREVICH, Z. I. and SHAFAREVICH, I. R. Number
Theory. Academic Press, New York, 1966.

Borodin 77 BORODIN, A. On relating Time and Space to Size and
Depth. SIAM Journal on Computing 6 (1977), pp. 783-744.

Borodin 82 BORODIN, A. Structured vs general models in computa-
tional complexity. L’Enseignement Mathématique 28 (1982), pp.
171-189.

Coppersmith 84 COPPERSMITH, D. Fast evaluation of logarithms
in fields of characteristic two. IFEE Transactions on Information
Theory IT-30 (1984), pp. 687-594.

33

Dixon 84 DIXON, J. D. Factorization and Primality Tests. The Amer-
ican Mathematical Monthly 91 (1984), pp. 833-852.

El Gamal 85 EL GAMAL, T. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE Transactions on
Information Theory IT-31 (1985), pp. 469-472.

Encyclopedia 80 ENCYCLOPEDIC DICTIONARY OF MATHEMA-
TICS. By the Mathematical Society of Japan. Edited by Shokichi
Iyanaga and Yukiyosi Kawada. MIT-press, Cambridge, Mass., 1980.

Garey 79 GAREY, M. R. and JOHNSON, D. S. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W. H.
Freeman, New York, 1979.

Gill 77 GILL, J. Computational complexity of probabilistic Turing ma-
chines. STAM Journal on Computing 6 (1977), pp. 675-695.

Goldreich 86 GOLDREICH, O., GOLDWASSER, S. and MICALI, S.
How to construct random functions. Journal of the ACM 33 (1986),
pp. 792-807.

Greenberg 69 GREENBERG, M. J. Lectures on Forms in many Vari-
ables. W. A. Benjamin, New York, 1969.

Hasse 49 HASSE, H. Zahlentheorie. Akademie Verlag, Berlin, 1949.

Jacobson 64 JACOBSON, N. Lectures in Abstract Algebra 3. Theory of
Fields and Galois Theory. D.van Nostrand Company, Princeton,
New Jersey, 1964.

Karp 80 KARP, R. M. and LIPTON, R. J. Some connections between
nonuniform and uniform complexity classes. Proceedings 12" ACM
Symp. on Theory of Computing, pp. 302-309. ACM, New York,
1980.

Karp 82 KARP, R. M. and LIPTON, R. J. Turing Machines that take
advice. L'Enseignement Mathématique 28 (1982), pp. 191-2009.

Knuth 81 KNUTH, D. E. The Art of Computer Programming, 2: Semi-
numerical Algorithms. Addison-Wesley, Reading, Mass., 1981.

Lang 78 LANG, S. Cyclotomic Fields. Springer Verlag, New York,
1978.

34

Lidl 83 LIDL, R. and NIEDERREITER, H. Finite Fields. Encyclo-
pedia of Mathematics and its Applications 20. Addison-Wesley,
Reading, Mass., 1983.

Né6rlund 24 NORLUND, N. E. Vorlesungen tber Differenzenrechnunyg.
Springer Verlag, Berlin, 1924.

Odlyzko 84 ODLYZKO, A. M. Discrete logarithms in finite fields and
their cryptographic significance. Advances in Cryptology: Proceed-
ings EUROCRYPT 84, pp. 224-814. Lecture Notes in Computer
Science 209, Springer Verlag, Berlin, 1985.

Pippenger 79 PIPPENGER, N. On simultaneous resource bounds (pre-
liminary version). Proceedings 20" IEEE Symp. on Foundations of
Computer Science, pp. 307-311. IEEE Computer Society, Los
Angeles, 1979.

Rabin 80 RABIN, M. O. Probabilistic algorithms in finite fields. SIAM
Journal on Computing 9 (1980), pp. 273-280.

Riesel 86 RIESEL, H. Prime Numbers and Computer Methods for Fac-
torization. Birkhauser, Boston, 1985.

Ruzzo 81 RUZZO, W. L. On uniform circuit complexity. Journal of
Computer and System Sciences 22 (1981), pp. 365-383.

Savage 76 SAVAGE, J. E. The Complezity of Computing. Wiley, New
York, 1976.

Schonhage 77 SCHONHAGE, A. Schnelle Multiplikation von Polyno-
men tuber Korpern der Charakteristik 2. Acta Informatica? (1977),
pp. 395-398.

Skyum 85 SKYUM, S. and VALIANT, L. G. A complexity Theory
Based on Boolean Algebra. Journal of the ACM 32 (1985), pp.
484-502.

Stewart 83 STEWART, I. and TALL, D. Complex Analysis. Cam-
bridge University Press, 1983.

Strassen 73 STRASSEN, V. Vermeidung von Divisionen. J. Reine und
Angewandte Mathematik 264 (1973), pp. 184-202.

35

Valiant 82 VALIANT, L. G. Reducibility by algebraic projections.
L’Enseignement Mathématique 28 (1982), pp. 253-268.

Valiant 83 VALIANT, L. G. An algebraic approach to computational
complexity. Proceedings of the International Congress of Mathe-
maticians (1983), pp. 1637-1643. North Holland, Amsterdam,
1984.

Witt 37 WITT, E. Zyklische Korper und Algebren der Characteristik p
vom Grad p". J. Reine und Angewandte Mathematik 176 (1937),
pp. 126-140.

Yao 82 YAO, A. C. Theory and applications of trapdoor functions. Pro-
ceedings 23" IEEE Symp. on Foundations of Computer Science, pp.
80-91. IEEE Computer Society, Los Angeles, 1982.

36

