ISSN 0105-8517

A Distributed Spanning Tree Algorithm

Karl Erik Johansen
Ulla Lundin Jgrgensen
Svend Hauge Nielsen
Sgren Erik Nielsen
Sven Skyum

DAIMI PB - 226
Marts 1987

AARHUS UNIVERSITY e
COMPUTER SCIENCE DEPARTMENT |

I
Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK __l____
Telephone: + 456 1283 55 Telex: 64767 aausci dk

PB - 226 Johansen et al.: A Distributed Spanning Tree Algorithm

A Distributed Spanning Tree Algorithm

Abstract

We present a distributed algorithm for constructing a spanning tree for connected
undirected graphs. Nodes correspond to processors and edges correspond to two
way channels. Each processor has initially a distinct identity and all processors
perform the same algorithm. Computation as well as communication is asyncronous.
The total number of messages sent during a construction of a spanning tree is at most
2E+3NlogN. The maximal message size is loglogN+log(maxid)+3, where maxid is
the maximal processor identity.

1. Introduction

Construction of spanning trees for communication graphs has proven useful and has
been considered in a number of papers ([31,[4].[51.[61,[7]). Other problems such as
termination, extremafinding, and election of a leader all reduce to spanning trees.
Most papers on spanning trees deals with construction of minimum spanning trees.
Santoro has shown that O(E+NlogN) is a lowerbound on the message-complexity
for the problem. The best known upper bound is 2E+5NlogN ([3]). Recently Lavel-
lee and Roucairol have presented an algorithm that constructs a spanning tree in a
general network with message complexity N-1+3NlogN provided the algorithm
behaves in a balanced manner ([6]). Their worst-case complexity is again
2E+5NlogN and their message-size is very large. Finally Korach, Moran and Zaks
have shown that finding a spanning tree in a complete graph might be easier than
finding a minimal spanning tree ([5]). In this paper we present an algorithm, having
worst-case complexity 2E+3NlogN, that constructs a spanning tree in an arbitrary
network of processors.

The algorithm is based on the commonly used model. We consider an undirected
connected graph without selfloops. Each node corresponds to a processor with uni-
que identity, and each edge corresponds to a two way channel. Each channel has
(input) buffers at either endpoint organized as queues. Processors can send and re-
ceive messages via channels. The communication is asyncronous. Messages on a
channel are received at an input buffer for a processor in the order they are sent from
the neighbour, they may be arbitrarily but finitely delayed. Initially all processors are
in a sleeping state. They wake up spontaneously after a finite time and start execution
of the algorithm. The algorithm is based on a finite state machine where states have a
little memory. In the papers referenced above processors can either wake up
spontaneously or be waked up by receiving messages. This difference in
presentation makes no "visible" difference in the behavior, since messages can be

1

delayed arbitrarily.
Section 2 contains various concepts and notions needed to explain the algorithm. In
Section 3 an overall description of the algorithm is given. The algorithm is given in

details in Section 4. Section 5 contains the proof of correctness while Section 6 con-
tains the analysis of the algorithm.

2. Definitions and notations

Let G=(V(G),E(G)) be an undirected connected graph without selfloops. We will
use {.,.} to denote undirected edges and (.,.) to denote directed edges. Each node v
in G corresponds to a processor with the unique identity idy=v. V(G) {1,2,... }.
Let N=IV(G)l and E=IE(G)I.

A fragment is a connected subgraph, F=(V(F),E(F)) of G, with no cycles (an un-
directed tree). A spanning tree for G is a fragment F, where V(F)=V(G). A

spanning forrest is a set (F1,F2,...,Fx) of fragments, such that V(F;) N

V(Fj)=0 for i#j and V(G)=V(F1) U V(F2) U ... U V(Fg). Given a fragment
F=(V(F),E(F)) and a node v in V(F) let Fy=(V(F),D(Fy)) denote the rooted tree
where v is the root, and edges in D(Fy) are directed towards the root v. Each
fragment F is equipped with two not necessarily different orientations by naming

two roots. One is called the centre of F and denoted ¢(F). If (v,w) is an edge in
| D(F¢(F)) then {v,w} in E(F) will be called an in-edge for v and an out-edge for
w. The other is called the king of F and denoted k(F). If (v,w) is an edge in
D(Fk(F)) then we call {v,w} an up-edge for v and a down-edge for w. Each
fragment F has a unique identification <level,k(F)> called the colour of F. level
will be an integer in [0,logN].

3. Description of the algorithm

Initially each node v in the network is in a sleeping state. It wakes up spontaneous-
ly and enters after initialization an idle state. Then it constitutes a fragment of size 1
at level 0. The colour is <0,v> and v is both the centre and the king. During execu-
tion of the algorithm each centre in the idle state attempts to send a request(colour)-
message along one of its unprocessed edges in order to combine fragments into
larger fragments . If a centre has no adjacent unprocessed edge, the centre is moved
around in a fragment F in a depth-first fashion in Fx(r) by sending movecentre-
messages until an unprocessed adjacent edge is found or the algorithm terminates.
Assume that we have two fragments F1 and F9 with colours <L1,k(F1)> and
<L2k(F2)>. Colours of nodes in Fj are then at most, but not necessarily equal to
<L;,k(F{)> . During computation they will all receive the colour <L;,k(F;)> sooner
or later. Assume furthermore that the centre ¢ 1 in F { sends a request(<L 1,k(F1)>)

2

to anode in F along edge e (see Figure 1). After sending the request ¢ | enters state
waiting_for_accept. The request is routed in the direction of the centre ¢ inFa

as long as <L.1,k(F1)> is greater than the colour of the nodes it passes. Nodes
which pass

Figure 1. Connecting fragments.

on request-messages also enter the waiting_for_accept state and then only listen to
the in-edge for an accept- or newcolour -message (see later). If a request arrives at
a node with greater colour, the node does not react on the request. In that case nodes
which passed on that request-message will receive a new colour and reenter the idle
state. If the request reaches the centre ¢, call the route (in both directions) along
which the request came for the request-route. If <L k(F2)> is less than
<L1.k(F1)> then Fp and what has become of F1 (see later) are to be combined into a
larger fragment F. To perform a combination ¢ sends an accept(Lo)-message back
through F7 along the request-route. Nodes on the route, including c7 itself, enter
state waiting_for_new_colour. When c receives the accept-message it might
have become centre in a larger fragment, than it was when it sent the request to Fy. It
might also be in state waiting_for_new_colour in which case F1 is in the process of
being combined with yet another fragment F3 and will receive a new colour in con-
nection with that combination. In both cases c1 has sent an accept-message after sen-
ding the request-message to F9. This possibility is necessary to prevent dead-locks.
If ¢ is waiting for a new colour, it waits until it has received a new colour before it
goes on, otherwise it immediately initiates the final part of the combination of F'y
and F2, where F'1 is the present fragment containing ¢ as its centre. The
combination of F'1 and Fp will be a fragment F consisting of F'1, F2 and the edge e
along which c1 sent the request to Fp. The centre for F will be ¢, the king will be
k(F'1) and the new level L will be L'y, if L' | is greater than L7, and L'1+1 other-
wise. (L'1 is the level of F'1). ¢ 1 stops being a centre and starts colouring Fy by
sending a newcolour(<L.k(F'1)>)-message along e. The newcolour-message is

2

broadcast to all nodes in F7 via tree-edges. During colouring of F7 the orientation
with respect to up and down in F k(F) is updated. When c7 receives its new colour,
it reenters the idle state and we say that F has been formed. If <L k(F' 1)> differs
from c1's colour, F'1 is also coloured by sending newcolour-messages. The reason
for choosing k(F'1) as king for F is that nodes in F'1 do not necessarily receive a
new colour in connection with the combination.

If a centre ¢ in a fragment F sends a request along an unprocessed edgeeto anode v
in the same fragment, then v's colour might be less than the colour sent with the re-
quest and v cannot know that it comes from the same fragment (see Figure 2). The
request might therefore be forwarded in the direction of the centre as described abo-
ve. Sooner or later the request-message will meet a node u with the same colour as ¢
(it might be c itself) and will not be sent any further. When v later on receives the
colour of ¢, it recognizes that the request it forwarded was received from the centre
of its own fragment and it sends a close-message back along the edge e to ¢ and
marks the edge closed. Upon reception of the close-message ¢ marks the edge e
closed as well and reenters the idle state.

Figure 2. The route followed by a request from a centre to a node in its own frag-
ment

The preceding description gives the overall picture of the algorithm but due to pa-
rallelism, messages might cross each other, which adds tedious details to the algo-
rithm,

4. The algorithm
During computation, nodes (or processors) mark their adjacent edges (or channels)
with attributes. More attributes can be attached to each edge and the attributes at the

two endpoints might differ. The possible attributes are:

4

open. All edges adjacent to a node are marked open by that node when it wakes
up. Messages will only be sent along open edges. (Edges which are only mar-
ked open have been and will be referred to as unprocessed).

closed. No messages will be sent along closed edges.

branch. A node marking an edge, with the attribute branch, knows that the edge
is part of the fragment and will be part of the final spanning tree. (Edges marked
branch at both ends have been and will be referred to as tree-edges).

in, out, up, and down. The edge is an in-edge (out-, up-, or down-edge resp.
See Section 2). Only branch-edges will be attached those attributes.

Nodes can send a number of different messages along open edges. There are five
different message types that can be send, namely:

request, accept, close, newcolour, and movecentre. Request and
newcolour carry a colour as parameter, accept has a level as parameter, while close
and movecentre are without parameters.

Nodes can be in a number of different states <st1,stp>. Apart from the various
attributes attached to edges mentioned above, only information about at most one

edge and one colour has to be stored in a node. We have chosen to store that infor-
mation within the states.

st] is either centre or ordinary while st is one of the following:

sleeping . Initially all nodes are sleeping.

waiting_for_accept(colour,e). The node is a centre and has sent a
request(colour) along e or it is not a centre and has forwarded a request(colour)
which was received along e.

waiting_for_new_colour(e). The node has sent (or forwarded) an accept-
message along e and waits for a new colour.

terminated. The node knows all its adjacent tree-edges and has finished its
participation in the distributed computation.

idle. The node takes part in the computation, but is in none of the former four
states.

At termination of the distributed algorithm (all nodes are in state terminated) all edges
will be marked closed at both ends. Edges will be either tree-edges or not being
marked branch in either endpoint in which case they are called cross-edges.

Each node or processor v in state <st],stp> executes the following algorithm. The
fragment including v is referred to by F and has colour=<L,id>. A(v) denotes the
adjacent edges. The edges in A(v) are ordered such that, if we choose an edge with a
specific property, it is assumed that we always choose the first edge in the ordering
with that property. This is important when requests are sent from idle centres.

repeat

case <sti,st2> of

<x*,sleeping> :
<st1,stp>:= <centre,idle>; colour:=<0,v>;
for all e in A(v) do mark(e):={open} od;

<centre,idle> , <centre,waiting_for_accept(colour,e)> :
if inputbuffer for an edge e in A(v) is nonempty then m:=read buffer &1
case m of
close: {if sty = waiting_for_accept then e1=¢}
mark(e 1):=mark(e)-{open}+{closed}; sty:=idle;
request(coloury):
if colour < colour] then send accept(L) along efq;
sty:=waiting_for_new_colour(eq) fi;
accept(L.1): {if st = waiting_for_accept then e 1=¢}
if L1 =L then L:=L+1; colour:=<L,id>;
for all ep in A(v) where out in mark(ep) do
send newcolour(colour) along e) od fi;
send newcolour(<L,id>) along e; mark(e):={open,down,in,branch};
<st1,stp>:=<ordinary,idle>;
endcase
else if stp=idle then
if there is an e in A(v) where mark(e)={open} then
send request(colour) along e; stp:=waiting_for_accept(colour,e)
else if there is an e in A(v) where {open,down} < mark(e) then
send movecentre along e; mark(e):=mark(e)-{out}+{in};
st1:=ordinary
else if there is an e in A(v) where {open,up} < mark(e) then
send movecentre along e;
mark(e):=mark(e)-{open,out }+{closed,in};
<st],stp>:=<ordinary,terminated>
else stp:=terminated fi fi fi fi;

<*,waiting_for_new_colour(e)>:
if inputbuffer for e is nonempty then m:=read buffer e;
case m of
newcolour(coloury):
colour:=colour1; mark(e):={open,up,out,branch};
for allej+e in A(v) where branch in marke] do
send newcolour(colour) along e1;
if up in mark(e1) then mark(e1):=mark(eq)-{up}+{down} fi od;
sto:=idle;
request(coloury): {skip};
endcase fi;

<ordinary,idle> :
if an inputbuffer for an edge e in A(v) is nonempty then m:=read buffer e
case m of
request(coloury) :
if colour < colour] then
for the in-edge e1 in A(v) do
if e#¢ 1 then send request(colour]) along ej;
stp:=waiting_for_accept(colourq,e) fi od
else if (colour = coloury) and mark(e) = {open) then
send close along e; mark(e):= {closed} fi fi;
newcolour(<L1,id1>) :
colour:=<L1,id1>;
if (down in mark(e)) and (id ;#id) then mark(e):=mark(e)-{down}+{up}
fi;
for all ej#e in A(v) where branch in mark(e) do
send newcolour(colour) along efy;
if (up in mark(e1)) and (id1#id) then
mark(e 1):=mark(e 1)-{up}+{down} fi od;
movecentre :
if down in mark(e) then mark(e):=mark(e)-{open}+{closed} fi;
mark(e):=mark(e)-{in}+{out}; stj:=centre
endcase fi;

<ordinary,waiting_for_accept(coloury,e)> :
if the inputbuffer for the in-edge e in A(v) is nonempty then
m:=read bufferey;

case m of
request(colourp): {This might occur if v has just been a centre - skip}
accept(L) :

send accept(L) along e; stp:=waiting_for_new_colour(e)
newcolour(colour)) :

if colour] <= colourp then sty:=idle;
if (colour= colourp) and mark(e)={open} then
send close along e; mark(e):={closed} fi fi;
for all out-edges e in A(v) do send newcolour(coloury) along e;
if (up in mark(ep)) and (ido#id) then
mark(e)):=mark(e9)-{up}+{down} fi od;
colour:=coloury;
movecentre:
if down in mark(e]) then mark(e):=mark(e)-{open}+{closed} fi;
mark(e):=mark(e)-{in}+{out}; send accept(L) along ¢;
<st1,stp>:=<centre,waiting_for_new_colour(e)>;
endcase fi;

endcase until sty=terminated;

S. Correctness of the algorithm

For each node at most one message is read during an execution of a cycle of the al-
gorithm.We may therefore w.l.o.g. assume that time is discrete (-N,...-1,0,1,2,....)
and exactly one node executes one cycle of the algorithm for each time instance t. We
may furthermore assume that all nodes are awake and that no messages have been
read at time 0.

Lemma 5.1

When a node v terminates then all nodes u, which can be reached from v following
down-edges (coincide with out-edges), will be terminated as well (and have no
open adjacent edges).

Proof

For t=0 no node is terminated, so the Lemma trivially holds true. If a node v termi-
nates at time t, then v has at most one open adjacent edge (an up-edge). Since all
down-edges {v,w} are closed v has received a movecentre-message along these ed-

ges indicating that "down-neighbours" w are terminated. Thus the Lemma follows
by induction in t.

Corollary 5.2

If a node u has an open adjacent edge, a nonterminated centre ¢ (possibly u itself)
can be reached from u following in-edges marked open.

Lemma 5.3
If there is more than one centre at time t, then every pair of centres ¢ and ¢ are

connected by an open path (a path where all edges are marked open at both end-
points).

Proof

The Lemma holds true for t=0 because the network is connected and all edges are
open. The Lemma will remain true from time t to t+1 if the node v executing its cycle
at time t does not mark any new edge closed. Therefore assume that the Lemma
holds true at time t and that node v closes an edge at time t.

There are four possibilities: (1) v closes an up-edge and terminates, (2) v closes a
down-edge {v,w} after receiving a movecentre-message along {v,w}, (3) v closes
{v,w} if w is centre in the fragment containing v at time t and v has received a re-
quest from w with v's colour or v has received a newcolour-message with the same
colour as the colour of an earlier request from w, or (4) v closes {v,w} after recei-
ving a close-message along {v,w}.

Ad (1): By Lemma 5.1 no path of open edges goes through v so the connectivity of

centres with respect to open edges is not affected by this operation.

Ad (2): Receiving a movecentre-message along a down-edge {v,w} indicates that w
has terminated and again by Lemma 5.1 we get that {v,w} does not contribute to the
connectivity of centres.

Ad (3): Before v closes {v,w} at time t, there exists a cycle of open edges containing
v and w. Breaking this cycle does not affect the connectivity either.

Ad (4): Similar to case 3.

Lemma 5.4
No cycle of tree-edges can be formed.

Proof

A cycle could only be formed if a centre ¢ would accept a request that was initiated
by c itself. That will never happen since the colour of a node is nondecreasing during
computation,

Lemma 5.5

The number of tree-edges equals the difference between the total number of nodes
and the number of centres.

Proof

The Lemma holds true initially and creation of a new tree-edge and deletion of a
centre happen at the same time instance for a node in state
<centre,waiting_for_accept(+,*)> after receiving an accept-message.

Theorem 5.6

The algorithm will terminate (all nodes are terminated). At termination all edges are
closed and the tree-edges form a spanning tree.

Proof

The analysis of the number of messages sent (see Section 6) implies that the network
will reach a stable situation, where no more messages will be sent and no more com-
puting go on. Let the network be stable at time t . Assume that ¢ is a nonterminated
centre of maximal colour present in the network at time t, if such one exists. ¢ cannot
be idle because an idle centre can execute a cycle of computation in all circumstances.
If ¢ is waiting for an accept along {c,v}, then {c,v} would be open and an open path
from v to a nonterminated centre ¢ (possibly c¢) along in-edges would exist
(Corollary 5.2). The maximality of ¢'s colour then implies that an accept- or close-
message will be sent along {c,v} to ¢ at a later time than t, which is a contradiction.
If ¢ is waiting for a new colour, it will eventually receive one, so this is impossible
as well. Thus all present centres will be terminated and by Corollary 5.2 all edges

will be closed. Lemma 5.4 then implies that exactly one centre exists. It finally
follows from Lemmas 5.3 and 5.5 that the set of tree-edges form a Spanning tree.

Remark. At the time of termination one node knows that the algorithm is
terminated, namely the node terminating into state <centre,terminated>.

6. Analysis of the algorithm

The first Lemma follows directly from the way levels are computed.

Lemma 6.1
If a centre node c has level k, then the number of nodes u (including c itself), which
can be reached from c following out-edges, is at least 2k.

Corollary 6.2
The maximal level obtained during a computation is bounded by logN.

Lemma 6.3
The number of times a node v can receive a newcolour-message is bounded by

logN, so the total number of newcolour-messages sent during a computation is
bounded by N-logN.

Proof
Follows directly from Corollary 6.2.

Lemma 6.4
The number of close-messages sent during a computation is E-N+1.

Proof
Exactly one close-message is sent for each cross-edge.

Lemma 6.5

The total number of request-messages sent during a computation is bounded by
N-logN+E-N+1.

Proof

A node cannot sent two requests without having received a newcolour- or close-
message between them.

10

Lemma 6.6

The total number of movecentre-messages sent along up-edges during a computation
is

N-1.

Proof
All nodes but the centre in the final spanning tree send exactly one such messa ge.

Accept- and movecentre-messages are only sent along edges which become tree-
edges. As for tree-edges we are able to bound the total number of accept-messages
and movecentre-messages sent along down-edges (mc-messages).

Lemma 6.7

For all edges e={v,w} which become tree-edges the total number of accept-
messages sent along e and movecentre-messages sent along e in a direction marked
down is bounded by logN. Thus the total number of accept-messages and
movecentre-messages sent along down-edges (mc-messages) during a computation
is bounded by (N-1)-1ogN.

Proof

Let e={v,w} be an arbitrary edge in G along which at least one accept-message is
sent. It might happen that both a mc- and an accept-message are sent along e
between two consecutive newcolour-messages, but we will prove that after sending
an accept-message along e, at least two newcolour-messages will be sent before a
mc-message can be sent. Since two accept-messages or two mc-messages clearly
cannot be sent between two consecutive newcolour-messages, the Lemma will
follow.

Now assume that at time t an accept-message is sent from v to w along e. w is then
in state waiting_for_accept(+*,e) and v enters state waiting_for_new_colour(e). The
next message sent along e is therefore a newcolour-message sent from w to v. w
enters the idle state and marks e {branch,out,up}. On reception of the newcolour-
message v enters state idle and marks e {branch,in,down}. That is, the centre is
situated at the "w side" of e and the king is at the "v side" of e. Before a mc-message
can be sent along e (from w to v) the up and down markings of e have to be
changed. This can only happen in connection with another newcolour-message sent
along e (from w to v, the in and out markings on e can only be changed in
connection with movecentre-messages).

Theorem 6.8
The total number of messages sent during a computation is bounded by
2E+3N-logN-N-logN+1.

11

Proof
Lemmas 6.1 through 6.7.

Remark. It is possible to cut ¢-N off the bound for some ¢>1 by a more careful
analysis.

Theorem 6.9
The total number of bits sent during a computation is bound by

(E+2N.-1ogN)- (log(maxid)+loglogN+6), where maxid is the maximal identification
of a node.

Proof

Three bits suffice to give the type of message. The information sent by request- and
newcolour-messages is a colour, which is at most log(maxid)+loglogN bits. Accept-
messages have a level attached to them. By observing that information on the level is
superfluous, except when the accept is sent from one segment to another and the

level to be sent in that case is identical to the level of the node sending the message,
we get that only

N-1 of the accept-messages require loglogN bits.

References

[1] Bodlaender H.L., van Leeuwen J.: New Upperbound for Decentralized
Extrema Finding in a Ring of Processors. RUU-CS-85-15 Univ. of Utrecht. 1985.
(Preliminary version)

[2] Francez N.: Distributed termination. ACM Trans. on Programming Languages
and Systems. Vol. 2. 1980, Pages 42-55.

[3]. Gallager R. G., Humblet P. A., Spira P. M.: A Distributed Algorithm for
Minimum-Weight Spanning Trees. ACM Trans. on Programming Languages and
Systems. Vol. 5. 1983, Pages 66-77.

[4] Humblet P. A.: A Distributed Algorithm for Minimum Weight Directed
Spanning Trees. IEEE Trans. on Communications. Vol 31. 1983, Pages 756-762.

[5] Korach E., Moran S., Zaks S.: The Optimality of Distributive Constructions

of Minimum Weight and Degree Restricted Spanning Trees in a Complete Network
of Processors. Proc. of 4. Ann. ACM SPDC, Ontario 1985, Pages 277-286.

12

[6] Lavellee I., Roucairol G.: A Fully Distributed (Minimal) Spanning Tree
Algorithm. Inf. Proc. Letters 23. 1986, Pages 55-62.

[7] Santoro N.: On the Message Complexity of Distributed Problems. Int. J ournal
of Comp. and Inf. Sci. 13. 1984, Pages 131-147.

13

