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0. Introduction

A great deal of work has so far gone into developing temporal logic as a tool for specifying
and proving the properties of distributed programs. 8, 10, 11] is just a small sample
of the literature in this area. Through this line of work it has become clear that the
modalities of temporal logic are ideally suited for capturing the dynamic properties of
distributed programs.

What is missing in this approach — as we see it — is an explicit treatment of concur-
rency. Stated differently, in most of the work in the area of temporal logic, concurrency is
represented in terms of arbitrary (non-deterministic) interleaving. This by itself is quite
acceptable for many purposes. The major consequence however is that one is forced to
attach assertions (temporal logic formulas) to the global states of a distributed program.
One then reasons about the program in terms of its global states. In general, it is diffi-
cult, if not impossible, to “detect” such global states; parts of the global state may be
changing concurrently due to independent actions carried out on two “geographically”
separated locations. Hence it would be attractive to have a formalism which deals only
with the local states of the sequential components that — together with the underlying
communication medium - constitute the distributed program.

In this paper we put forward one such formalism. In order to bring the main ideas
into sharp focus, we have chosen an abstract model of distributed systems rather than
a concrete model of distributed programs. Our model is a subclass of a model of
distributed systems called event structures.

An event structure is basically a partially ordered set of event occurrences together
with a symmetric conflict relation. The ordering relation models causality so that two
event occurrences that are neither comparable nor in conflict may occur with no order
over their occurrences. In this sense event structures provide an explicit and clearly
separated representation of sequence, choice and concurrency. Event structures arise
naturally from net theory [7] and Winskel has constructed a substantial theory centered
around these objects [13]. In particular, Winskel has obtained the non-interleaved se-
mantics of CCS-like languages using event structures [12]. Hence there is good reason
to hope that these objects can serve — at least in theoretical studies — as an adequate
model of distributed programs.

As a first step toward constructing temporal logics for distributed programs which
emphasise the local states of the sequential constituents, we consider a restricted sub-
class of event structures called n-agent (n > 1) event structures. Here an event structure
is viewed as consisting of n sequential event structures each of which can exhibit non-
determinism (conflict) but no concurrency in its individual behaviour. The individual
agents become aware of the properties of other agents through explicit communication
modelled by the global (partial) ordering relation. We attach assertions to the local
states of the various agents. This restricted subclass does have a fair amount of mod-
elling power even though we cannot cater for the dynamic creation and destruction of
processes. For instance, the formalism used by Chandy and Misra [2], in its “unfolded”
version would fit into our framework.

We use indexed modalities to describe the states of knowledge of the agents. Thus
our syntax and semantics bear some resemblance to recent work on logics of knowledge



[4, 5, 9]. However there are some fundamental differences — as pointed out in the
concluding section — between the two approaches. Hence in the sequel, when we use
phrases such as “agent-i knows that agent-j has ... ” and so forth, it is meant to be a
purely informal use of such phrases.

In the next section we introduce n-agent event structures. They will serve as the
frames for the logic with indexed modalities that we propose. The syntax and the
semantics of this logic are presented in section 2. Though we view this logic as a version
of modal logic it has the flavour of a tense logic (in the sense of Burgess [1]) as well.
This is brought out by the axiom system presented in section 3 where we also argue
for the soundness of this system w.r.t. the chosen semantics. In section 4 we show the
completeness of our axiom system using a Henkin-style proof. In doing so, we rely

heavily on Burgess [1]. In the concluding section we discuss in more detail our work in
the context of related literature.



1. n-Agent Event Structures

An event structure represents the behaviour of a distributed system through a set of
event occurrences, a causality relation that partially orders the event occurrences and
a conflict relation which reflects the (behavioural) choices available to the system.

Definition 1.1
An event structure is a triple ES = (F, <,#) where

(i) F is a set of events.

)
(i) < C E x E is a partial order, called the causality relation.
(iii) # CEx E is an irreflexive, symmetric relation, called the conflict relation.

(iv) For any ey, es,es in E,
erffe; and e, < e3 implies ey #es.

O

The last clause in the definition captures the intuition that the past of every event
should be “consistent”. This will become clear once we introduce the notion of config-
urations.

Here is an example of an event structure. The events have been labelled to reflect
the behaviour of a producer communicating via an unbounded buffer to a consumer.

The producer can stop after producing zero or more items. Both the producer and
consumer are assumed to work sequentially.

) e} ey /

[5]
}

[5] [5]
eil /}z /es '}4/

Figure 1



For convenience, in Figure 1 we have just indicated the “minimal” elements of the
causality relation (as directed arcs) and the conflict relation (as squiggly lines). Thus
ey < es because e; < e; and e; < e3. Moreover, e} #e] because e|#e; < €. Finally,
ey and eg can occur concurrently because they are causally incomparable and are not
in conflict with one another. We will follow this graphical convention throughout the
paper.

The states of an event structure are called configurations.

Definition 1.2
Let ES = (E,<,#) be an event structure and ¢ C E.
(1) cis #-freeiff (¢ x ¢) N# = ¢.

(ii) ¢ is left-closed iff for any e € ¢ and €' € E,
e’ < e implies €' € c.

(iii) ¢ is a configuration iff ¢ is #-free and left-closed.

(iv) Cgs={cC E|cisa configuration}.

O

For the event structure shown in Figure 1, {e;, e;}, {e1, s, ei} and {ej, es, €3,...} are
configurations, but {e;,e}} and {e;,el,ej} are not.

A configuration represents a state of affairs that has been reached through the oc-
currences of a subset of events. The notion of a configuration captures the intuition that
an event can occur only after all the events that lie in its past have occurred. Moreover,
two events in conflict cannot both occur in any stretch of behaviour. Consequently,
two events that are neither causally ordered nor in conflict can occur concurrently. As
mentioned earlier, the last clause in the definition of an event structure guarantees that
the past of each event is consistent in the sense of being conflict-free. Formally, we say

that the left closure of an event in an event structure is a configuration.

Definition 1.3

Let ES = (E, <, #) be an event structure and e € E. The left closure of e, denoted
l e, is defined by

le={eE|e<e}



Proposition 1.4
For an event structure ES = (E, <, #)and e € E, | e is a configuration.

Proof: Follows easily from the definitions.

a

It appears to be very difficult to obtain a logical characterization of event structures
in general. Hence in this paper we shall confine our attention to event structures that
can be viewed as a collection of a finite number of pairwise disjoint “sequential” event

structures which may communicate with each other. In a sequential event structure no
two events can occur concurrently.

Definition 1.5

An event structure ES = (E, <, #) is said to be sequential iff for any two events
e1,ea € H,

er < ey or ez < e1 or erfe;.

Here is an example of a sequential event structure.

Figure 2

In what follows, we shall let Ny denote the set of non-negative integers and N the

set of positive integers. We can now introduce the subclass of event structures studied
in this paper.

Definition 1.6

An n-agent event structure is the structure ES = (Ey, Egy..., By, <,#), wheren € N
and

(i) ¢ # 7 implies E;NE; = ¢ (for 1 <4< 7 < n).

(ii) (E,<,#) is an event structure, where E = U, E;.



iii) For 1 < ¢ < n, the agent (E;,<;,#:) is a sequential event structure, where #;
7
(resp. <;) is # (resp. <) restricted to E; x E;.

(iv) # = {(e1,€2) | I(el,€h) € #. ¢} < e; and €} < ez}, where
(v) # = Uit #.
0l

Part (iv) of the definition captures the idea that choices are made “locally” by
the individual sequential agents and this information is propagated by the causality
relation. Consequently, different agents can influence each other only through explicit
communication, which is modelled by the “global” causality relation <.

The producer-consumer example of Figure 1 can be viewed as a 2-agent event struc-
ture (El, Eg, S, #) with

El = {61,61,82, 8’2,. ..}
E;, = {ef,e5,...}.
The agent (E1, <1,#) was shown in Figure 2.

We conclude this section by sketching in an informal fashion the means for viewing
event structures as frames for our modal logic. The standard frames for modal logic
have the form (W, R) where W is a set of worlds and R C W x W is the accessibility
relation. Given an event structure ES = (E, <, 4t), the obvious candidate to serve
as the set of worlds is Cpg, the set of configurations of ES. The accessibility relation
should be defined in terms of C, since (Cgg, C) is a poset with C reflecting the causality
ordering over the configurations. The accessibility relation should also reflect the fact
that agents acquire knowledge about other agents only through explicit communications
received from other agents.

We wish to argue that only a subset of Cgs should be chosen to serve the role of
worlds. Let ES = (Ey, E,,...,E,, <,#) be an n-agent event structure and ¢ € Cgs.
In general ¢ will represent a global (distributed) state of affairs. It is difficult to justify
asserting the truth or falsity of a formula at ¢ without assuming an omnipotent observer
capable of recording global states. Hence we only consider those members of C Es which
can be regarded as local states belonging to the individual agents. It then becomes
natural to assign formulas to such local states. It is then also possible to have situations
where different agents (at their individual local states) concurrently differ on the the
truth of a formula. These considerations will underlie our formal semantics, to be
presented in the next section.

Now the local states of the n-agent event structure ES = (Ey, Es,. .., E,, <,#) can
be defined in a natural fashion as:

LCgs ={| e|e€ E} where E = U}, E;

It is easy to observe that for two events e and ¢/, | e C | ¢ iff ¢ < €. In other
words, (LCps,C) and (E, <) are isomorphic posets. This justifies our proposal to view
the event structures themselves as frames. Thus in what follows when we speak of a
formula o« being true at an event e, what we mean is that o holds at the local state le.
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2. The Language and Its Models

For the rest of the paper, we fix an n € N and let ¢, 7, k range over 11850 ; L

Syntax

We fix a countable set of atomic propositions P = {py, ps, .. .} and let p, ¢ range over
P. We also fix a set consisting of n atomic type propositions, I' = {TisTayomy Tt We
assume that PN T = ¢ and set P = PUT. The type propositions will be used to
identify particular agents.

We shall use the logical connectives ~ and V, as well as n indexed strong future
modalities 3, Os,..., O, and n indexed — as it will turn out — not so strong past
modalities B, Ba,..., Bp.

The jormulas of our language can now be built up inductively.

Definition 2.1
(i) Every member of P is a formula.
(ii) If o and B are formulas, then so are ~ a, & V B, ;e and 8;0.

a

We let o, 8,7,6,0 with or without subscripts, range over F , the set of all formulas.
It will be convenient to have available the following derived logical connectives and
modalities:

Definition 2.2

i) arf € ~(~av~p)

(i) e®p = (~aAB)V(~BAq)
(i) a8 ¥ ~avpg
(iv) a=8 ¥ (adp)A(BD0)
(v) <Cua = S O: ~ «
(vi) & i = H; ~a
]
Semantics
Definition 2.3
A frame is an n-agent event structure £.S = (Ev, Eay. .., B, <, #).
|

We will find it convenient to specify an n-agent event structure as simply ES = (E, <
, 7f) and assume implicitly a partitioning E,..., E, of E.



Definition 2.4
A model is an ordered pair M = (ES,V), where
(i) ES =(E, <, #)is a frame,

(i) V:E— 2% is the valuation function satisfying:
Foranye€ E,r; € V(e) iff e € E;. (i.e. V7)) = E;).

O

Let M = (ES,V) be amodel and ES = (E, <, #). Let e € E and o be a formula.

Then the notion of a being true at e in the model M is denoted as e, M = o« and is
defined inductively:

Definition 2.5
(i) eeM|=p iff peV(e)
(ii) e M=~ aiff e, M |~ «
e, M= avpiffe M =aore,M =g

)
(iv) e, M |= O;aiff for some €' € E;,
¢' < e and for all e" € E;,
¢ < e" implies ", M |= «

(v) e,M = B;aiff for all ¢ € E;,
if ' < e then for all e" € E;,
if e" < €' then ", M = o

a

The first three clauses are standard and require no explanation. The next clause
can be expressed informally as:

“At e, it is known that in agent ¢, « will hold henceforth.”

In agent 7 itself, this is the same as the tense logic O operator. In an agent j =g,
the assertion [;« asserts knowledge about another agent. Hence it must be the case
that agent ¢+ communicated (directly or via other agents) at some stage in the past of
agent 7 the information that o would hold henceforth in agent s.

On the other hand, e, M |= H;o expresses something weaker:

“As far as is known, o has always held for the agent 7.”

Thus if the agent : has never communicated with the agent j, then at any local
state belonging to agent j, the formula B;a will hold for arbitrary «. In this sense
B is weak and [1; is strong. We note that the definition of e, M |= B;a is somewhat
pedantic since it could have been shortened to



e, M |= Biaiff forall ¢’ € E;
if ¢! < e then €', M [ .

But we prefer to keep — in the original definition — the spirit of the definition of
e,M = O;a. We also wish to draw attention to the semantics of the derived dual
modalities.

e, M |= &;a iff for some €' € E;
e' < e and for some €' € E;
e <e'and ", M |= c.

Once again this can be shortened to:

e, M |= &;a iff for some ¢' € E;,
¢<eande,M [ a.

In any case, the intended meaning is:
“It is known that in agent 7, o has held before.”

Thus ©; is a relatively strong modality asserting something definite about the past of
agent ¢ whereas ; is relatively weak.

e, M |= O;aiff for all ¢ € E;
if ¢’ < e then there is some ¢” € E;,
with ¢’ <e" and ", M |= c.

In agent 7 itself, {;casserts that « will hold in some future state. However in agent
J, where j # ¢, ;o merely captures:

“As far as is known, a may hold eventually in agent 7.”

Thus if agent ¢ has never communicated anything to j, ;a will hold in J for any a.
We conclude this section by noting down the standard notions of satisfiability and
validity.

Definition 2.6

(i) o is satisfiable iff there exists a model M = (ES,V) with ES = (E, <, #) and
e € E such that e, M = a.

(ii) For a model M = (ES,V), where ES = (E, <, #),
M aiffforallec E.e,M |= o

(iii) « is valid, denoted |= a, iff for all models M, M = a.



3. The Axiom System

Most of our axioms are indexed versions of standard modal logic axioms taken from
(6] and a few tense logic axioms taken from [1]. The axioms that are new are meant
to characterize the way in which the agents acquire knowledge concerning other agents
through communication. We first present the axiom scheme in full and then provide
some explanatorial remarks.

Axioms

(A0)

(Al.a)
(ALb)
(A2.2)
(A2.b)
(A3.)

(A3.b)

All the substitutional instances of the tautologies of propositional logic.

O: (@D B) D (0D 0O: B)
(Deductive Closure)
Bi(e D> B) D (B:a D B:8)

7 D (Oiax D a)
(Local Reflexivity)
7D (a0 D &;a)

;D O; O«
(Transitivity)
Ci0ia D Oja

Sia NS D Oi(a N &i8) V &i(B A S;a) (Backward Linearity of the Agents)

Sia D0; S
(Relating past and future)
Qia D 8Os

O:;aD @;(T,'/\ IZI;CE)
Sia D &i(1i A &;a) (Communication axioms)
Oia D Ei('i'g :)(),-a)
B;a D Ei(’i‘,— D E,'OL)

ﬁEB'rzEB...GB‘rn
o0 (type axioms)
T D Bin

Inference Rules

(MP)

o, D f3
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(TG.a)
aDf
O:a D O:8
(TG.b)

o
Hia

First we note that the standard reflexivity axioms have been modified to ensure that
~ oA ;o is not necessarily inconsistent. After all the agent j might deny « and yet
might have received a message stating that the agent 7 believes « to be true. (A3.a)
asserts transitivity within agents whereas (A3.b) asserts transitivity across agents. (A4)
states that the individual agents are tree-like. (A5.a) and (A5.b) are standard axioms
and have been adapted from [1].

The communication axioms and the type axioms are in some sense the characteristic
axioms of our system. (A6.a) and (A6.b) assert that definite (i.e. strong future and weak
past) information concerning the agent 7 must have originated from a state belonging
to agent ¢. (A6.c) and (A6.d) assert that — possibly — indefinite information (i.e. weak
future and strong past) concerning the agent ¢ must agree with all the information
that has so far been received from agent i. (A7.a) captures the idea that each local
state belongs to exactly one agent. (A7.b) and (A7.c) guarantee that from any state
belonging to agent 7, all the other states belonging to agent ¢ can be accessed.

The inference rule (TG.b) is standard whereas the standard future version (i.e. from
a infer O;a ) will not be sound in the present framework. (TG.a) is all what we can
soundly infer. It turns out that a slightly modified version of “from « infer O;a” which
we need can be obtained as a derived inference rule as shown below.

A formula a which can be derived using the axioms and the inference rules will be
called a thesis. We will use - « to denote the fact that o is a thesis in our system.

Theorem 3.1 (Soundness)

If - o then = a.

Proof: We will just argue for the soundness of three of the axioms and one of the
inference rules. It is routine to verify the rest.

Let M = (ES,V) be a model with ES = (E, <, #). Let e € E;.

Then consider (A3.b). Suppose e, M = &;& 0. Then there exists e; € E; such
that e; < e and e;, M |= &ra. This implies that there exists e, € E, such that er < e
and ez, M |= a. But ¢, < e so that e, M |= Sya.

Next consider (A4). Let e € E; and assume that e, M |= &ja A &;6. Then there
exist e, e € E; such that e; < e,e, M |= a,e3 < e and €3, M |= B. If e;# e, then from
er < e, we would have e;#e. But then e; < e so that e#e which is a contradiction
because # is supposed to be irreflexive. Hence e; < €5 or e; < e;. Assume without
loss of generality that e; < e;. Then e;, M |= &8, so that e;, M = a A &;B. Clearly,
e, M = Si(an &;8).

Next consider (A6.c). Once again let ¢ € E; and assume that e, M |= O,o. Now
suppose that (| €) N Ej = ¢. Then clearly e, M |= 5;,(r; D ;). So assume that
e; € E; with e¢; < e. Clearly e;, M |= 7;. So suppose that e;, M = O jo. Then

11



ej, M |= O; ~ a. From e; < e we then have e, M |= [J; ~ & so that e, M =~ O o and
this is a contradiction because we already have e, M |= O ;e

Next consider the inference rule (TG.a). To show that (TG.a) preserves validity,
assume = o D f. Let e € F such that e, M = O;a. Then for some ¢' € E; with
e’ < e we must have ¢, M = O;a. Let ¢" € E; such that ¢' < €". Thene", M k «.
From |= @ D § we have ¢, M |= 8 from which it follows that e, M = O:8. Clearly,
e,M |: 0;0.

O

In anticipation of the completeness proof, we now state some derived inference rules
and theses.

Derived Rules

(TG.c)
«
DO O
(DR.1)
O, 0y ey Oy 3 A A L. Ay, D S8
B
(DR.2)
a=4,0
0(c | B)

Here (| B) is the formula obtained by uniformly substituting « for 8 in 6.
(DR.3.a)
aDf
;D (0 D 0.:05)

(DR.3.b)
adDf
Qi D Oiff
The derivation associated with (TG.c) is shown in the appendix. The derivation for
(DR.1) is easy and we omit it.
The derivation for (DR.2) is by induction on the complexity of § and uses (TG.a),
(TG.b) and (Alb). (DR.3.a) follows at once from (TG.a) and the derivation for

(DR.3.b) is shown in the appendix. Note that thanks to (DR.2), double negations
can be introduced and removed freely in derivations.

Theses

(Tla) Oi(anB) D (Ciandif)
(Tl.b) @,‘(OA A ﬁ) D (@,‘Oﬂ A @,ﬁ)

(T2) Bi(aApf) = Bian B,

12



(T3a) (D,‘Oﬁ A O,ﬁ) 2 O,(ﬂ A Ct)
(TB.b) BiaAh$;8D @,'(Oc A ﬁ)

) 7D (anOiB D OB A Sa))
(T4.D) 7D (aAS:if D OB A i)

(T5.2) o= &; O
(T5b) @ga = [],Ae,-a

(T6.a) DOiaA OB D Si(DiaAnAOB)
(T6.b) SiaA Bif D Si(Sian i A BLP)

(T7a) YEIAY <>ia D <>,;(T,' A a)
(T7b) NS D @;(T{ A Oc)

(T8) Qiar A Qiog ... A Siam D Vyep, (©:67) where
m > 1 and P, is given by:

Po={f|f:{1,2,...,m}— {1,2,...,m}is a bijection}.
And for f € P, we define ©;a;y as,

. def
©i} = Silasum A (Sictsay A (Sittgi A Sitegmy) ).
Thus (T8) is a generalization of (A4).

The derivations of the theses are presented in the appendix.

13



4. Completeness of the Axiom System

We now wish to show that the axiom system presented in the previous section is com-
plete. Our proof both in spirit and in its details is strongly guided by Burgess [1].

As usual by a consistent formula we shall mean a formula whose negation is not a
thesis. Of course thesishood is to be understood relative to our axiom system. Owur
proof of completeness will establish that every consistent formula is satisfiable.

The finite set of formulas {e, oz, ..., Qm} is consistent iff a;Acvy . . . Ay, is consistent.
A set for formulas is consistent iff every finite subset is. By an MCS (Maximal Consistent
Set) we mean a consistent set of formulas which is not properly included in any other
consistent set. We assume the next two results. Proofs can be easily extracted from [6].

Proposition 4.1

Any consistent set of formulas can be extended to an MCS.

Proposition 4.2

Let A be an MCS.
(i) ~xe Aiff a & A.
)

(ii) avBe Aif ac Aor B € A.

aen

(iii) aAf e Aiff a € A and B € A.

)
(iv) If o is a thesis then a € A.
)

(v) If a1, 09,...,0,, € A and a3 Aog... Aoy, D [ is a thesis then 8 € A.

The notion of the type of an MCS will play a crucial role in what follows.

Definition 4.3

Let C denote the class of all MCSs. Then type: C — {1,...,n} is given by:

VA€ C. type(A) =1 iff r; € A.

O

By (A7.a) and Prop. 4.2, we are assured that type as specified above is a well-defined
function,

We shall now define a pre-order relation over MCSs of the same type.

14



Definition 4.4

Let A and B be two MCSs with type(A) = 7 = type(B). Then

A<:BE& (S0 ae A} CB.

Proposition 4.5

Let A and B be two MCSs with type(A) = i = type(B). Then the following statements
are equivalent.

(i) A= B
(i) {OCia|ae B} C A

(iii) {«|O;a€ A} C B

)
)

(iv) {«| Biae B} C A

]
Proof:
(1) = (iii) Suppose O € A. Then by (i), ©;0;a € B. From (A5.b) it
follows that ©; O;a D O;ais a thesis. Hence [;a € B. Since
7; € B, we now have from (A2.a), o € B.
(ii) = (iv) Suppose Hia € B. Then by (ii), &; Bia € A. From (A5.a)
it follows that ¢&; H;a O B;a is a thesis. Hence Hia € A. As
before, from (A2.b), & € A because 7; € A.
(i) = (ii) Suppose a € B. Then ~ a ¢ B. By (iii), 0; ~ « ¢ A. Thus
O € A.
(iv) = (i) Similar to the proof of (iii) = (ii).
|

Before we explore one additional property of <, , we observe the following.

Lemma 4.6
(i) If ©;a is consistent then so is a.
(ii) If ; A O is consistent, then so is a A 7;.

(ili) If ; A ©;a is consistent, then so is a A 7;.

15



Proof:

(i) Assume that &;« is consistent. Suppose that « is not consistent. Then,
F~ o
F Bi~a(TG.b)
F~ S0

This contradicts the consistency of ;.

(ii) Assume that ;A ;o is consistent.
Then so is 7: A 073 A Osax (AT.D).
Hence 7; A Oi(a A7) is consistent (T3.a). (*)
Now suppose that 7; A « is not consistent.
Fr (7 A @)
FrnD O~ (a/\ T.;) (TG.C)
b~ (1 A Oi(a AT;)) (PC, Def. of O)
which contradicts the earlier result (*).

(iii) Assume that 7; A & is consistent, and 7; A ¢ is not.
Then
}‘N (‘T,' A 0{)
b~ &i(7i A @) (Part (i) of this lemma)
F~ (SiaAT) (T7.b)

which contradicts the assumption.

Lemma 4.7

Let A be an MCS with type(A) = 7. Then for any formula o,

(i) If ©;a € A then there exists an MCS B with type(B) = ¢ such that & € B and
B =< A.

(if) If Qi€ A then there exists an MCS B with type(B) = ¢ such that a € B and
A= B.

Proof:

(i) By Prop. 4.5 and Prop. 4.1, it suffices to show that B' = {OiB | Be AU {a, 7}
1s consistent. Since f1,fs,..., 8, € A implies that Oy (B, A By A ... A Bm) € B',
by (T1.a) it suffices to show that <>; 8 A @ A r; is consistent for every € A.
So consider § € A. By Lemma 4.6 it suffices to show that &;(Oif A @) A7 is
consistent.

Now B A &ia € A and 7; € A. Hence by (T4.b), Si(a A OiB) € A. Sincer; € A
we have that 7; A &;(a A $;8) is consistent.
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(ii) It suffices to show that {&:8 | B € A} U {a,7} is consistent. As in part (i) of
this lemma, it is easy to observe that in fact it suffices to show that SiBANaNT;
is consistent for every § € A. So assume that 8 € A. Once again from Lemma.
4.6, it is enough to show that ; (©:8 A &) A 7; is consistent. Now 7; € A and
BAOia € A. Hence by (T4.a), O: (e A ©;8) € A. From 7; € A we obtain that
TiNOi (e A ©;f8) is indeed consistent.

O
Lemma 4.8
= is transitive.
Proof: Follows easily from the definition of <, and (A3.D).
O
Now we shall introduce a pre-order relation for MCSs of different types.
Definition 4.9
Let A, B be two MCSs with type(A) =1 and type(B) = j # 1. Then
A=, BE (S| Siae A} = {&:8| &6 € B).
O

Lemma 4.10

Let A, B be two MCSs with type(A) =i # j = type(B). Then the following statements
are equivalent.

(i) A<, B

(111 O;a€ Aiff ;e e B

)

(i) Cia€ Aiff O B
)
)

(iv) Bia € Aiff Bia € B.
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(1)=>(iv) Bia€ Aiff ~ Bia g A. Now &; ~a ¢ Aiff &; ~ a ¢ B by (i).

But &;~ad Biff ~&; ~ ac B.

(iv)=(i) Similar to the proof of (i)=>(iv).

(i)=(ii) Die€ Adiff ~Oiag AIff Gim o @ A But Oi~ a & A iff

Oi~ a g B by (ii). And O;~ a g Biff ~O; ~ a € B.

(iii)=>(ii)  Similar to the proof of (i) = (iii).

()=(ii)  Ose€ Aiff ©&;0s0 € Aby T5.a. But &;0ia € A iff &;0;a € B

by (i). Once again by T5.a, &;0;a € B iff 0;a € B.

(iii)=(i) Cia€c Aff 0; S;a € Aby T5.b. O0; Sia € Aiff O; S;a € B

by (iii). Once again from T5.b, we get [; &;a € B iff O € B.

Lemma 4.11

Let B be an MCS with type(B) # i. Then for any formula «,

(i) If Sia € B then there exists an MCS A with type(A) = i such that A <, B and

@,;a € A.

(ii) If i € B then there exists an MCS A with type(A) = i such that A4 <. B and

;€ A.

Proof:

(1)

Let B~ = {&if | ©if € BYU{~ &iv| &y & B}. Then it suffices to show that
B~ U {7} is consistent. Consider

{@iﬂly@iﬁh ey @iﬂm,"v @i’YI:N @i’ha K R @‘i’?t} g B~

Since B~ C B we have that {Si0,...,0iam, Bi ~ 1, Bi ~ 72,..., Hi ~ Y}
is consistent. By T2, {&;ay,..., S0y, 87} is consistent where Y =~ PN ~
Y2 A ... A~ 7. From T8, we have, without loss of generality,

Qi1 ASiPy... AN Siffm D Si(BL ASi(Ba A ... A SiBn))...). Define
Bm = Brm and B, = Bt A Oifmyi for 1 < m' < m. Then we have that

{&if1, Biv} is consistent.

By T6.b and Lemma 4.6.i, {@;ﬁl, Hiv,7:} is consistent. Let Ay be an MCS
containing {@,-ﬁl, H:iY,7}. Then by lemma 4.7, there exists an MCS A; with
type(A;) = 1 such that Bl = i A @;32 € A; and 4; <; Ag. We can apply the
same argument at A; to obtain an MCS A, such that type(4;) = vand B, € A, and
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Az =t A;. Applying this argument m times we get m MCSs Ao a4 o0 Ay, do
such that 4, <; Am_1... =4 Ao with type(4) =1, B € A for 1 < | < m.
Since =, is transitive it is easy to verify that {&;8,, ©iff.,. . ., &b} C Ag. Thus
{©iB1,..., B, By, 7} is consistent.

(ii) Follows easily from the thesis (T5.a) and the proof of part (1).

L]
Finally we can introduce the pre-order relation we are really after.
Definition 4.12
Let A and B be two MCSs with type(4) = . Then
A<B<ES {Sa|lac A} CB
a

Lemma 4.13

5: (jt U jc)*

Proof: Let 4, B be two MCSs with type(A4) = i and A < B. Then {S;ex | e € A} C B.

case 1 type(B) = 1.
Then A <; B by definition.

case 2 type(B) # 1.
Let C7 = {Sia,~ &;8 | ©ia € B and &;8 ¢ B}. By the proof
of the previous result, we have that C~ U {r;} is consistent. Let
C be an MCS containing C~ U {r;}. Clearly A <; C and C <. B.
Hence <XC (=; U <,)*.

For showing containment in the other direction, we first claim that =< is transitive.
To see this, let A < B and B < C with type(4) = ¢ and type(B) = j. Consider
a € A. Then &;a € B and ©;8;a € C. From A3.b, it follows that &;a € C. Now let
Ay, Agy..., Ay be MCSs such that (4;, Aiyy) €<, U =<, for 1 <4 < m. The proof is by
induction on m.

e Then o € A; and type(A;) = ¢ implies G;a € Ay. Hence A; < Ai.

m>1 By the induction hypothesis A; < A,. Assume that 4, =i A;.
Then A; < A, by definition. Since < is transitive, we have A; <
Am so assume that A; <, A,. Let type(A4;) =1 and type(A4y) = j
with 7 # j. Consider @ € A;. Then ©;a € A;. Hence &;a € A,
Hence &;&;a € A, since A, < A,,. But this implies &;a € A,
by A2.b.

O

We need the notion of a perfect chronicle for completing the completeness proof.
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Definition 4.14
Let ES = (E, <, #) bea frame. Then

(i) A chronicle on ES is a function T which assigns an MCS to each ¢ € E.

Let T' be a chronicle on the frame ES = (E, <, #). Then
(ii) T is coherent iff it satisfies the following requirements
(a) Ve,e' € E. e < ¢' implies T'(e) < T(e') and
(b) Ve€ E.7; € T(e) iff e € E;.

(ili) T is propheticiff e € E; and ;o€ T'(e) implies that there exists ¢’ € E; such that
e <e and a € T(e).

(iv) T is historic iff e € E; and S;a € T(e) implies that there exists e’ € E; such that
e'<eand a € T(e).

(v) T is prophetically informed iff e € E; and j # 17 and O;a€ T'(e) implies that there
exists ¢’ € E; such that ¢' < e and O;a € T(e').

(vi) T is historically informed iff e € E; and j # ¢ and ©;a € T'(e) implies that there
exists ¢' € F; such that e < e and &;a € T'(e').

(vii) T is informed iff it is prophetically and historically informed.

(vili) T is perfect iff it is coherent, prophetic, historic and informed.

d

Given a valuation V' on the frame ES = (E, <, #) the chronicle induced by V is
denoted as Ty and is given by:

Veec E.Tv(e) = {a| &, M |= a} where M = (ES,V).

It is easy to verify that the chronicle induced by a valuation is always perfect. On the
other hand every perfect chronicle induces a valuation. To see this let T be a perfect
chronicle on the frame ES = (E, <, #) . Then Vr, the valuation induced by T is given
by:

Vec E.Vr(e) ={pc P|pecT(e}.

Lemma 4.15

Let T' be a perfect chronicle on the frame ES = (E, <, #). Then Ty,) = T.

Proof: Let M = (ES,Vr) and e € E. We must show that T'(e) = {a | e, M |= a}. To
this end let « be a formula. Then we proceed by structural induction on e.

If o € P then by definition of Vr, e, M |= a iff @ € T(e).

If o is of the form ~ B, then ~ 8 € T(e) iff B ¢ T(e). But by the induction
hypothesis 8 ¢ T'(e) iff e, M [~ 8 which is the same as e, M |=~ 8.
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If v is of the form f; V B, then f; v B, € T(e) iff 8, € T'(e) or B, € T(e). Once again
the required result follows from the induction hypothesis.
So assume that e is of the form ;8.

case 1 e € E;.

Suppose that O; § € T(e). Consider e' € E; such that e < ¢
Then since T is coherent, we have that T(e) =< T(e'). Clearly
T(e) <; T(e'). From Prop. 4.5 we have that 8 € T(e'). By the
induction hypothesis, ', M |= 3. Hence e, M |= [1;4.

Now suppose that [0; 8 ¢ T'(e). Then Oz~ 8 € T'(e). Since T is
perfect, we can find e’ € E; such that e < e and ~ 8 € T(e'). By
the induction hypothesis €', M [~ 8. Hence e, M K O:p.

case 2 e & E;.

Suppose that 00;8 € T'(e). Since T is perfect, there exists ¢’ € E;
such that ¢’ < e and 0;8 € T(e'). By the proof of the preceding
case we have that ¢/, M |= [0;8. Clearly e, M |= 0O0,0.

On the other hand, if e, M = 0;, then 3¢’ € E; such that ¢! < e
and €', M |= [0;8. Once again by the proof of case 1 it follows
that O; 8 € T(e'). Now T'(e') =< T(e). Hence ;008 € T(e). By
T5.a, O0: B € T(e).

The proof for the case where « is of the form H;0 is very similar
to the previous case and we shall omit it.

|

We now wish to show that a frame with a coherent but not perfect chronicle can be
extended to a frame with an improved chronicle. We start with a useful lemma.

Lemma 4.16

Let A,B,C be MCSs such that type(4) = i = type(B), A < C and B < C. Then
A jt Bor B jf‘ A,

Proof: Suppose that A Z; B and B %; A. Then there exist formulas & and B such
that oA ~ &;8 € A and A ~ &;a € B. Since A < C and B =< C, we then have
Cila N Bi~ f),0:(8 A B; ~ a) € C. Hence by A4, SilanBi~PBAS(BAB; ~
a)) € Cor &i(BAB;i~anSilanB; ~ B)) € C. Assume without loss of generality
that @,‘(C\{/\ H: ~BA e,‘(ﬂ/\ Hi ~ Ot)) € C. Then a A B; ~ B A @,’(ﬁ/\ Hi ~ O!)
is consistent by lemma 4.6. Now H:6 A &y D &i(H:6 A r; A $iv) by T6.b. Hence
$i(Bi~ AT AS{B A B; ~ @)) is consistent which leads — once again by lemma 4.6
— to the fact that B; ~ A A 7, A &i(B A B: ~ @) is consistent. But now from T3.b we
have that &i(~ BALBA B; ~ a) is consistent which — yet again by lemma 4.6 — leads
to the contradiction that ~ 8 A £ is consistent.

O

To show that a coherent but not perfect chronicle can be improved it will be conve-
nient to work with chronicle structures.

21



Definition 4.17

A chronicle structure is a pair (ES,T) where ES = (E, <, #) isaframeand T is a
coherent chronicle on ES which respects conflict in the following sense.

Vi. Ve, €' € E;. efte' = T'(e) 2; T(e') AT(€) 2, T(e).
U

The imperfections of a chronicle can be judged with the help of live requirements.

Definition 4.18
Let (ES,T) be a chronicle structure with ES = (B, <, #). Letec E.

(i) (e,iq) is a live historic requirement in (ES,T) iff e € E; and ©ia € T(e) and
there does not exist ¢’ € E; for which ¢' < e and « € T(e') holds.

(ii) (e, <C:a) is a live prophetic requirement in (ES,T) iff e€ E; and O € T(e) and
there does not exist e’ € E; for which e < ¢’ and «a € T(¢') holds.

(i) (e, ©ic) (resp. (e, D)) is a live communication requirement in (ES T)iff e & F;
and G € T'(e) (resp. Ui € T(e)) and there does not exist e’ € E; for which
e’ <eand S;a € T(e) (resp. O € T(e')) holds.

(iv) (e, ) is a live requirement in (ES,T) iff it is a live prophetic or historic or com-
munication requirement in (ES,T).

Lemma 4.19

Let (ES,T) be a chronicle structure with ES = (E, <, #) . Let (e,8) be a live

requirement in (£S,T). Then there exists a chronicle structure (ES',T") with ES' =
(E',<', #) such that:

(i) E'=EU{é} for some ¢ ¢ E.

is T' restricted to E.

)
(i) < (resp. #) is <' (resp. #') restricted to E x E.
(i) T

)

(iv) (e, B) is not a live requirement in (ES', T").
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Proof:
case 1 (e, ) is a live communication requirement.

Assume — as it will turn out — without loss of generality that 3 is
of the form &;a. Then e ¢ E;. By lemma 4.11, there exists an
MCS A such that type(A) =7 and &;a € A and A <, T(e).

Pick some é ¢ E and set for 1 < 57 < n,

B E; U {&}, if g =n
J E;, otherwise

Set E' = U}, E}. Now define
Pre(¢) ={e' € E; | T(e') < ANA £, T(e")}

and
Post(8) ={e' € E; | A%, T(e")} U {&}

Let <' be the least subset of E' x E' given by:

(iii) Pre(é) x {&} C <' and {¢&} x Post(¢) C <’
(iV) (S’)* =

Next define #’ to be
n
#=Uw#
i=1
where for 1 < 5 < n,

#,_:{ #iU{(&2),(z,8) |z € EsANA £ T(2) AT(z) £¢ A}, ifj=1

I #;, otherwise

Then define # C E' x E' as

# =A{(z,y) | 3(=',¢) € #'. 7' <' zand y <y}
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case 2

Finally extend T to E' as follows.

A, ifx=8

I i e
Yee B. THz) = { T(z), otherwise

We claim that (ES", T") is a chronicle structure with ES' = (E', <'
» #') in which (e, 8) is no longer a live requirement.

To see this, we first observe that <' is reflexive and transitive by
definition. Next we note that Vz € Pre(é) and Vy € Post(#),
z < y (where y # &). This is so because for z € Pre(€) and
y € Post(8), if y < z then T(y) <; T(z). But this would imply
that A <; T'(z) which contradicts the definition of Pre(g). (Recall
that <; is transitive by lemma 4.8.) On the other hand y#z is
ruled out by T'(z) <; A <; T(y) and the fact that (ES,T) is a
chronicle structure. Hence z < y.

Now suppose z,y € E' such that z <' y and y <' =z. First
consider the case where z = é. From y <' & it follows that for
some z; € Pre(é), y < z;. From & <' y it follows that for some
22 € Post(8) U {e},z; < y. But this implies that z; < 2 so that
T(22) = T'(21). Moreover A < T(z;), (recall that (= U S )% =)
so that A < T'(z;) which contradicts the definition of Pre(2)
Hence z = y.

By a similar argument we can show that <' is — in general —
antisymmetric.

#' is symmetric by definition. It is easy to check that #' is ir-
reflexive with the help of lemma 4.16. Now it is routine to verify
that (ES',T') is a chronicle structure in which (e, 8) is no longer
a live requirement.

(e, B) is a live prophetic requirement.

Assume that e € E; and 3 is of the form ;. By lemma 4.7
there exists an MCS A such that T'(e) <; A and type(A) = ¢ and
a € A. Pick some é¢ E and define for 1 < j < n,

B — E; U {é}, ifga=g
J E;, otherwise

Set B! = Ur-, E; Let

Pre(8) = {z€E;|T(z) %, A}U{&}
Post(8) = {z€E;| A=, T(z)AT(z) 2 A}
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Define <' to be the least subset of E' x E' which satisfies the
following conditions.

) =g«
(i) Pre(é) x {€} C < and {&} x Post(&) C <'
(i) (<) = <

Next set #' = Uj=1 #; where for 1 < j < n,

#j, otherwise

#,.2{ #5U{(2,8),(8,z) |z2€ B AT(z) 2. ANA 2, T(z)}, ifj=1

Then define #' C E' x E' as
# ={(z,9) | 3=, y) e #. 7' <" zandy' <' y}
Finally extend T to E' through,

A, it =8

! ! —
Ve E.T'(z) = { T(z), otherwise

It is easy now to check that (ES',T') — where ES' = (B =<t
,#') — is a chronicle structure in which (e, ) is no longer a live
requirement.

case 3 (e, B) is a live historic requirement.

Let e € E; and § be of the form ©;a. Then once again by lemma
4.7 we can find an MCS A4 such that A <; T'(e) and type(A) = ¢
and o € A. Pick some & ¢ E; and define

Pre(é¢) = {z€E;|T(z) 24 ANA %, T(z)}and
Post(¢) = {z€E;|A=:T(z)}u{e}

The rest of the proof is very similar to the proof of case 1 and we omit it.

Theorem 4.20 (completeness)

If = « then F a.

Proof: We will show that every consistent formula is satisfiable. Let £ be a countable
set of events. Fix an enumeration e;, e,,... of £ and ﬁx an enumeration oy, Q. - of
F, the set of formulas. Fix an injective function f : EXF — N. Since £ x Fis a
countable set, there will be no trouble in finding such an injective function. In what
follows, for (e, a) € £ x F, we will refer to f((e, ) as the code number of (e, ).
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Now assume that o is a consistent formula. Pick an MCS A which contains . Let
CS' = (ES',T") where ES' = ({e1},{(e1,€1)},4) and T'(e;) = A. Clearly CS! is
a chronicle structure. For m > 1, suppose the chronicle structure ¢S™ — (ES™,T™)
is defined with ES™ = (E™, <™ #™) where E™ = {e1,€2,...,em}. Suppose CS™
does not have any live requirements. Then set CS™t! = CS™. Otherwise consider a
live requirement (e, 8) in CS™ which has — among all the live requirements in ¢'S™
— the least code number. Then by the previous lemma CS™ can be extended to the
chronicle structure CS™! = (ES™H, ™) with BS™t1 = (Fm+l <m+1 #™+1) and
E™1 = E™U{emy1} so that (e, f) is no longer a live requirement in C.S™+1, Finally set
CS = (ES,T) where ES = (E, <, #), E =UX_; E™, <= U%_, <™ and #=US_, #™.

m=1
Moreover T is given by:
Ve € E.T(e) = T™(e) wheree € E™.

It is routine to verify that T is a perfect chronicle on ES. Hence by lemma 4.15,
M = (ES,Vr) is a model in which e;, M = o
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5. Discussion

In this paper we have obtained a modal logic characterization of a subclass of event
structures. Our major goal has been to use modal logic to characterize the flow of
information between the sequential components of a distributed system. Admittedly,
the work reported here constitutes merely a first step toward achieving this goal.

Our language needs to be expanded to include Next-State and Until operators. It
is not entirely clear what the semantics of the Until operator should be and what — if
any — additional expressive power is got by introducing this operator. Of course we
will have to then look for the right axioms corresponding to the semantics of these new
operators.

As for our frames, for many applications we will have to impose additional restric-
tions such as discreteness, well-foundedness etc. Here we feel quite hopeful that the
corresponding axioms can be quickly found thanks to Burgess [1]. More seriously, we
permit at present only asynchronous communication between the agents via message
passing. In many situations, it will be necessary to admit synchronized (i.e. hand-shake)
communication as well. This would amount to dropping the assumption that the sets
of events belonging to the agents are pair-wise disjoint. Clearly our axiom system will
have to be modified (and a new completeness proof will have to be constructed) to
reflect this. In particular, (A7.a) will now have to read: Vi=17i. There is good reason
to hope that not much else will have to be changed and that the completeness proof
will be essentially the same.

As for our semantics, we have considered a standard interpretation of 0 and ¢
where the individual agents are viewed as basically partial orders in which the prede-
cessors of any element are totally ordered. We have done so in order to carry out our
first study in as simple a setting as possible. However the individual agents represent
sequential and — in general — non-deterministic behaviours. Hence a more natural se-
mantics would be to view the agents as branching time structures. Then [ and &>
would have to be interpreted over the paths (i.e. rooted maximal chains) in the agents.
In such a set-up <> would become much stronger and [0 would be much weaker (com-
pared to the current set-up) but this is how it should be. We think that it will be a
non-trivial task to construct a sound and complete axiom system w.r.t. this branching
time semantics. Fortunately, the existing literature on branching time logics (see, for
example [3]) provides a solid basis for attacking this problem.

It will also be interesting to develop a syntax for building up n-agent event structures
and see whether the insights gained through the present work leads to a proof system
which is compositional w.r.t. the chosen syntax.

In an informal sense, our formulas may be viewed as assertions concerning the states
of knowledge or belief of the individual agents. However, there are two issues that make
it difficult to establish a clear link between our work and recent work on logics of
knowledge and belief. Firstly, the presence of past operators is crucial to our approach
and it is not obvious how to interpret Has a knowledge operator. The second problem
is that, in dealing with knowledge one always assumes that an agent knows only true
facts which is formalized by demanding ;& O « to be an axiom. In our system
however, (O;a)A ~ a will be — in general — consistent. Hence we will have to leave it
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to future work to discover whether or not the work reported here can yield useful tools
for reasoning about knowledge and belief in distributed environments.
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7. Appendix

We first establish that the derived inference rules TG.c and DR.3b preserve thesishood.
(In what follows, PC is an abbreviation for Propositional Calculus.)

(TG.e) (1) Fa (Given)
(2) Fad(nDa) (PC)
B) Frnda (1, 2, MP)
(4) F0OmD O (3; TG a)
(5) F(m>D>0Oim) D ((OmD i) D (1D 0:a)) (PC)
(6) FrnD Os7; (A7 b)
(7)  F(Om D 0i) D (1 D Oia) (5, 6, MP)
(8) FmnDd 0O (4, 7, MP)
(DR3.b) Fa>p
b~ B2~ o (PC)
FBi~fDBHi~a (TG.b, Al.b)
F&iaD &8 (PC)

We will now derive the theses. In doing so we will use a numbered sequence of steps
and label the theses as and when we encounter them.

(1) Fadavp (PC)
(2) FOweDd Oi(avp) (TG.a)
(3) FmB> Oi(a v B) (Subst. in 2)
(4) FOievOoBD0ievp) (2, 3, PC)
(3) FOi~avOi~pBD0Oi~av~p) (Subst. in 4)
(T1.a) (6) F Oi(anp) D (Oian Oif) (PC)
(1) Fadavp (PC)
(2) FBiadBiavp) (TG.b,AL.b)
(8) FH:DBilavp) (Subst. in 2)
(4) F BiaVv B;8D El,'(a Vﬁ) ( )
(5) FHi~aVB;i~fD E,’(N aV ~ ﬁ) (Subst in 4)
(TLb) (6) F Silanpf)D (Sian Sif) (PC)
1) Fa>d>(>arp) (PC)
(2) F BiaD(8:8D Bilanp)) (TG.b, AL.b, Al.b)
(B) Faapde (PQ)
(4) Bi(aAB) D Ba (TG.b, Al.Db)
(5) Bi(aAB) D 8.8 (Subst. in 4)
(6) Bi(ae A B) D (Bian B:8) (4, 5)
(T2) (7 Bi(a A B) = (Hia A B;6) (6, 2)
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(T3.a)

(T4.a)

(T5.a)

PN SN PN S N O p— pr—
RS IEICNO™

L S i S N Sl

e O bS

0 =3I Oy Ot

F (@5 8) 5 (~ f >~ a)
FOWa>B) D (0i~BD 0O~ a)

F Oi(a D B) O (Oia D O:if)

F 082 (A B)) D (OiB D Oilan B))
FaD (BD>anp)

F 0D 08D aAp)

F 0D (OiB D Oi(an B))

F O A OB D Oi(a A B)

Fl@a>B) D> (~fod~a)
FBia2>f)D(Bi~8D B~ a)

F BileDd p) D (&iaD &)
FBE:(BDaAp)D(SiBD SilanpB))
FaD (8D anp)

FB;aD E},—(ﬁ:)a/\[)’)

F BiaD (©i8 D Silan B)
FBiaAS&if D Silanp)

FrD(aD Sa)

I~ o (Ce ) D;@,‘Oﬁ)

FOiia A OB D Oi(Sia A B)
FriD (@A S D OB A i)

Fr D (@D Oia)

F 7D (D 8:0:0)

F BiQiaA &8 D (B A Osa)
F7i D ((aA ©if) D Si(B A $ia))

- O;ee DO @,‘(T; A El,-a)
F Oia D Oim A Si0ia
F @,-D,-a O o

= D;CXE@,;D;CE

= y D (Cl,-a D 0!)

F @,’(7‘; A D,‘Oﬂ) D @;a

F 000D &4 A 0:©40)
FO:Sia D &6

= 0:&;a D @,:CY.
FO:60= S

FCiaAO:8D @,'(’f,' A TO:8) A E}i(’r{ o <>£0-')
FOia A DB D Si(r A B A (1 D Oiar))

FOiaA OB D &i(ni A OB A Oja)

F Sia A BH:8 D @,‘(Ti/\ @,’O&) A B,‘(T,' D Biﬂ)
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A2.a)

A5.b, PC)
Subst. in T3.b)
2, 3, PC)

o~ —

(A2.a)

(PC, DR.3.b)
(A6.a)

(3, Subst. in 2)
(A3.b, PC)

(5, A5.a)

(A6.a, A6.b, PC)

(T3.b)
(PC, DR.3.b)

(A6.b, A6.d, PC)



(2) F©ianBifD SilriA Siah(r D 5:8)) (T3.b)

(T6.b) (3) F Sian Bif D Silni A Sia A B;B) (PC, Dr.3.b)

(1) FmA Cia D A D i (A7b)

(2) FraAQiaDdnA Cilanr) (T3.a)
(T7a.) (3) F A O D e (a A T,-) (PC)

(1) FrASiadnABRA O (A7.c)

(2) FriA&iaD (FA @;(a A ’f,-) (T3b)
(T7.) (3) FrASud Silann) (PC)

It is necessary to develop some notational machinery for deriving T8 in its general
form. We will merely show the main idea by establishing T8 for the concrete case where
m = 3.

(1)  Sior A Siop A S5 D (Cion A Si(as A Sia))V
(Cion A S;(as A Sia)) (PC, A4)

(2)  Ciou A Sifan A Sias) D Silar A Si(ag A Sias))V
Oi(aa A Sia3 A Syay) (A4)

(3)  Silaz A Sias A Siay) D Silas A Siag A Sias))V
Oilaa A Si(as A &;a1)) (A4, DR3.b)

(4)  Sics A Sifon A Syas) D Oilar A Siaz A Sia3))V
Silaz A Si(en A ©ia3))V
Siloz A Si(as A Si01)) (2, 3)

(5) S ASi(az A Sia) D Qilas A Si(as A ©ia))V (Subst. in 4)
Silas A Si(or A Sia3))V
Oilas A ©i(or A &)
(6) Sioy A Ssop A Sias D Silar A Sifan A S;a3))V
(a1 A Si(as A Siop))V
(o2 A O A Sias))V
ilaa A Siaz A Syoy))V
i(as A Si(oq A Sia))V
i(as A Si(a A Siay))

RO ORORORS

(1, 4, 5)
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