ISSN 0105-8517

The Use of Action Semantics

Peter D. Mosses
David A. Watt

DAIMI PB - 217
August 1986

AARHUS UNIVERSITY T T ]
COMPUTER SCIENCE DEPARTMENT | | 1]
Ny Munkegade 116 — DK 8000 Aarhus C — DENMARK

i
Telephone: +456 1271 88 Telex: 64767 aausci dk




THE USE OF ACTION SEMANTICS!

Peter D. Mosses

Computer Science Department
Aarhus University
DK-8000 Aarhus C, Denmark

David A. Watt

Computing Science Department
Unzversity of Glasgow
Glasgow GI12 8QQ, U.K.

Formal descriptions of semantics have so far failed to match the acceptance and
popularity of formal descriptions of syntax. Thus, in current standards for pro-
gramming languages, syntax is usually described formally but semantics informally,
despite the greater danger of impreciseness in the description of semantics. Possible
reasons for this state of affairs are discussed. Action Semantics, which has been
developed from Denotational Semantics and Abstract Semantic Algebras, has some
features that may make it more attractive than other semantic formalisms. This
paper describes and motivates Action Semantics, and gives some realistic examples
of its use.

1. INTRODUCTION

For many years now, BNF (with minor variations) has been used for describing the context-free
syntax of programming languages. It has been found to be generally acceptable and useful
— to language designers and standardizers, to programmers and implementors, and in formal
studies.

In contrast, there is no such consensus with semantic descriptions. There is a diversity of
approaches, each having advantages for some applications, but also having disadvantages
for others. In particular, none of the previous approaches to formal semantics seems to be
appropriate for use in standards for programming languages, and standardizers have generally
kept to informal, natural-language descriptions of semantics (e.g., [1,2]). But it seems doubtful
that informal descriptions of such complex artefacts as programming languages can ever be
made sufficiently precise to rule out mis-interpretation by implementors and programmers;
likewise, they cannot be used reliably in connection with program verification.

The main approaches to formal semantics are Denotational Semantics, Axiomatic Semantics
and Operational Semantics. Let us look at them briefly in turn, and consider their strengths
and weaknesses for describing conventional programming languages.

To appear in the Proceedings of the IFIP TC2 Working Conference on Formal Description of
Programming Concepts III (Gl. Avernzs, Denmark, August 1986), published by North-Holland
Publishing Company, Amsterdam. This preprint is for the personal use of the recipient, and should not
be cited.



Denotational Semantics [22,25,23,11] is perhaps the main contender. It seems that it is
able to cope with everything that language designers can come up with, and it is founded
upon an elegant and powerful theory. But there are problems with the comprehensibility of
denotational descriptions. This may be partly because the higher-order functions taken as
denotations of phrases are unfamiliar objects to many. Moreover, the A-notation used to express
denotations has obscure operational implications, and it takes considerable time and effort to
learn the various idioms of A\-programming (such as continuations) that are generally used in
denotational descriptions. Lastly, little attention has been paid to modularization, so that, even
in the absence of the other factors, larger descriptions would still be disproportionately difficult

to grasp.

The Vienna Development Method (VDM) provides an alternative notation for denotational
descriptions, usually referred to as “Meta-IV” [6]. In fact Meta-IV is an extension of A\-notation,
incorporating a variety of familiar data types, such as trees, sets and mappings, and it even has
imperative features. The operational implications of Meta-IV are more apparent than those
of pure A-notation, and there is less need to depend on idioms. However, the foundations
of Meta-IV seem somewhat shaky, and there are the usual problems with the modularity and
comprehensibility of large-scale descriptions.

The (largely) functional programming language ML [15] has also been tried as a meta-language
for expressing denotational descriptions. The ML implementation enables the empirical testing
of semantic descriptions (and rapid prototyping [26]). It is unclear how difficult it would be to
reason about denotations expressed in ML.

It is also possible to use a general-purpose programming language as a meta-language: variants
of Pascal, Algol68, C, and Ada have all been proposed for this purpose. This might seem
attractive, due to the use of familiar notation, and the possibility (in some languages) of
achieving modularity. However, such general-purpose programming languages, even when
reduced to applicative subsets and extended to allow higher-order functions (which makes them
less familiar!), turn out to be rather clumsy for expressing semantic descriptions. They also
lack formal definitions themselves, making it impossible to reason about the semantics given
to programs in the described language (especially with meta-circular descriptions!). Finally, it
is not at all clear that it is desirable to reduce the semantics of new languages to the (often
idiosyncratic) semantics of existing languages.

Axiomatic Semantics [12,8] is reasonably accessible to programmers and implementors, involy-
ing only assertions about the values of variables, and the basic notions of formal logic (axioms
and inference rules). The main problems here are with generality and comprehensibility —
some simple programming constructs, like procedures with parameters, have uncomfortably
intricate descriptions — and with ensuring consistency. The published axiomatic description of
Pascal [13] does not cover the full language, and its rules for function declarations give logical
inconsistency [4].

By the way, the so-called “weakest precondition” semantics of [8] is not particularly axiomatic,
even though it uses assertions: it is denotational in essence, and suffers from some of the
pragmatic deficiencies of the usual denotational approach.

Operational Semantics [27] is just abstract programming of compilers and interpreters, and
as such is quite easy for programmers and implementors to work with. However, operational
descriptions of full-scale languages are rather voluminous documents, and little attention has
been paid to modularity. There is a constant danger of operational specifications being
biased towards particular implementation strategies, making it difficult to relate them to (real)
implementations based on alternative strategies. Even when there is no bias towards a particular



implementation strategy, there are certain to be details in the operational description that are of
an implementation nature and not essential to an abstract understanding of the programming
language’s semantics. It is presumably this that accounts for the voluminousness of operational
descriptions.

The Structural Operational Semantics approach [21,20,7] employs axiomatic descriptions of
operational transitions. It can be used for static semantics and translation, as well as dynamic
semantics. It has yet to be tried out “in the large”, although a modified version, SMoLCS [5],
is currently being used in an attempt to give a formal description of Ada. Both Structural
Operational Semantics and SMoLCS seem to have some advantages over the pure axiomatic
and operational approaches.

A significant weakness shared by all the above approaches is the lack of any explicit relation to
familiar computational concepts, such as order of computation, scope rules, etc. The reader
of the formal semantic description is forced to rediscover the concepts that were in the mind
of the language designer in the first place. Informal semantic descriptions, when well-written,
can avoid this problem, and possibly this is the major factor that causes programmers to prefer
them to formal descriptions.

We are proposing a new approach to semantic description, one that attempts to avoid the
pragmatic disadvantages of the approaches mentioned above. Our approach is still evolving,
and we are currently conducting a large-scale experiment — a full semantic description of
ISO Standard Pascal (Level 0) — to see how well it can cope with conventional programming
languages. This experiment is nearing completion, and the results so far look promising [18].

The approach is called Action Semantics. It is based on “Abstract Semantic Algebras” [16,17],
but the presentation of semantic descriptions has been significantly modified, with the aim of
improving readability.

Action Semantics is comgpositional, like conventional Denotational Semantics (and Initial
Algebra Semantics [10]), in that the semantics of each phrase is determined by the semantics
of its subphrases. The difference is that the semantics of phrases (.e., their denotations) are no
longer taken to be higher-order functions: they are “actions”, which have (reasonably) simple
operational interpretations, and quite nice algebraic properties.

In fact, Action Semantics may be regarded as “denotational”, although taking actions as
denotations generally gives a less “abstract” semantics than that obtained using higher-order
functions — i.e., fewer phrases are semantically-equivalent. (But note that “full abstractness”
[19,14] is seldom achieved in conventional denotational descriptions, in practice.)

We consider actions in detail in the next section. The semantics of a wide class of programming
languages (both functional and imperative) can, it seems, be given in terms of a fairly small
number of standard primitive actions and action combinators. This gives the possibility of
re-using parts of previous semantic descriptions when describing new languages, and facilitates
the semantic comparison of languages. Moreover, actions enjoy a high degree of orthogonality,
which gives good modifiability of semantic descriptions. (Note that modularity alone does not
necessarily give good modifiablity.)

Our notation for actions is intentionally verbose and suggestive. This, we believe, makes it
possible to gain a (broad) impression of a language’s semantics from a casual reading of its
action-semantic description — we hope that this will encourage the casual reader to become a
serious reader! There seem to be substantial pragmatic advantages, both for the readers and
the authors of semantic descriptions, in having a notation with a fair amount of redundancy.
Our action notation mimics natural language, but remains completely formal. (Other, more



“mathematical”, representations of the notation could be adopted when conciseness is a primary
concern.)

The formal interpretation of standard actions is specified by algebraic axioms. These axioms
provide useful information about the properties of actions. Note that we do not expect the
reader to acquire an intuitive grasp of actions just by gazing at the axioms for them; rather, the
axioms are to be used to “fine-tune” a previously-established conceptual understanding (and for
formal reasoning about actions, of course).

We shall not dwell on the algebraic specification of actions in this paper. We refer the reader
to [17] for examples and a discussion of foundational aspects. But note that giving an algebraic
specification of actions does not preclude supplementary specifications using other formalisms.
For example, one could give a model for actions based on domains of higher-order functions —
thus turning action-semantic descriptions into conventional denotational descriptions!

Action Semantics was originally developed for use in specifying just the dynamic semantics
of programming languages. Recently, we have become attracted by the idea of using it for
expressing the checking of static constraints as well. Both the static and dynamic semantics
are then specified as mappings from context-free abstract syntax to actions, using the same
notation.

In the rest of the paper, we first indicate the meta-notation used in Action Semantics, and
explain the concept of actions. Then we give some examples of the use of Action Semantics,
taken from the current version of our Pascal semantic description. We conclude by sketching
our intentions regarding the future development of Action Semantics.

2. NOTATION

The overall organization of action-semantic descriptions is indicated in Table 1. The remaining
tables and the appendices illustrate the various parts of an action-semantic description with
examples taken from our Pascal description [18]. In this section we explain the notation used,
leaving discussion of the Pascal examples themselves to the following sections.

By the way, informal comments may be used throughout action-semantic descriptions. Each
comment is initiated by an exclamation mark I’, and terminated by the end of the line. (In
this paper, we give explanatory comments in the text, rather than incorporating them in the
examples.)

The first section of an action semantics presents the standard notation for values and actions.
The sorts (z.e., types) and operations of the notation are introduced using something akin to
the OBJ2 algebraic specification framework [9]. We differ from OBJ2 mainly in blurring the
distinction between sorts and “objects”.

The standard sorts of values and actions are listed first, see Table 2. As in OBJ2, sorts may be
subsorts of other sorts. They may also be parameterized by sorts (or values). A parameterized
sort is identified with the union (7.e., least supersort) of all its instances.

After the sorts come the operations on values and actions. The sorts of the arguments and
result of each operation are given in the usual way, see Tables 3 and 4. “Mixfix” notation for
operations is specified, as in OBJ2, using underlines ‘_’ to indicate argument positions (prefix
notation is assumed otherwise). Optional bits of notation are enclosed in square brackets.



Preface
1. Standard Notation

1.1. Sorts
1.2. Operations

2. Abstract Syntax

2.1. Abstract Phrase Sorts
2.2. Abstract Phrase Productions
3. Static Semanties

3.1. Special Sorts
3.2. Special Operations
3.3. Semantic Functions

4, Dynamic Semantics
Special Sorts

4.1.
4.2. Special Operations
4.3. Semantic Functions

Appendices
A. Algebraic Axioms for Standard Notation
X. Explanation of Meta—Notation

TABLE 1
Organization of an Action Semantics

The axioms that formally specify the interpretation of the operations are deferred to an
appendix (not illustrated in this paper). The form of the axioms is much as in OBJ2, allowing
equations and positive conditional equations in terms over the operations and (sorted) variables.

The second section of an action semantics specifies the (context-free) abstract syntax of the
programming language to be described. The style of presentation of abstract syntax is similar to
that commonly used in conventional Denotational Semantics, 7.e., “abstract BNF”. See Table
5 for an example. The sorts of abstract syntactic phrases are listed first, together with their
relationship to the nonterminal symbols of the programming language’s concrete grammar. (At
present the relationship is stated only informally, by means of comments.) Then productions
list the alternative constructions for each phrase sort, introducing sorted syntactic variables that
are used as abstract nonterminals ( these are later used also in the semantic equations). Note
that the “abstract terminal symbols” used in abstract productions have no formal connection
with concrete syntax: they are merely a suggestive means of distinguishing abstract constructs.
Algebraically, each alternative of a production corresponds to the introduction of an operation
with (possibly) mixfix syntax. Ambiguity in the abstract grammar is of no concern, as the
grammar is not used for parsing strings of symbols, only for describing the (tree) structure of



abstract phrases.

The remaining section (or sections) specifies the semantic functions for the programming
language. As a prelude, special sorts and operations may be introduced (see Tables 6 and 7).
As well as new sorts being introduced here, sort parameters of the standard notation are
instantiated to unions of other sorts, effectively specializing the standard notation for the
purpose of the semantics of the particular language to be described. (This is analogous to
identifying the “characteristic domains” in conventional Denotational Semantics: the domains
of denotable, storable and expressible values [24].)

The semantic functions, mapping abstract phrases to actions (or, occasionally, to values) are
specified inductively by semantic equations. See the appendices for examples. The notation is
just as in conventional Denotational Semantics.

The left hand side of each semantic equation is the application of a semantic function to
a schematic abstract phrase construction. The phrase construction is indicated by abstract
nonterminals and terminal symbols, enclosed in double square brackets. Primes and/or
subscripts may be used on the nonterminals so as to identify different subphrases of the same
sort.

The right hand side is any term built from the (standard and special) operations and from
applications of semantic functions to subphrases of the phrase construction given in the left
hand side. In practice, we may relax this strict “homomorphic” discipline and allow compound
constructions on the right hand side, provided that this does not affect the well-foundedness
of the inductive definition. This can be used to emphasize that one phrase is merely an
abbreviation for another phrase in the language.

Defining several semantic functions on a single sort abbreviates defining a single semantic
function mapping to tuples (of values or actions). This is especially convenient for factorization
into static semantics and dynamic semantics, as there is often not much commonality between
them. The total semantics of programs can then be defined as a particular combination of their
static and dynamic semantics.

We now explain and motivate our standard notation for actions and values. The formal syntax
of the notation is given in Tables 2-4.

An action, conceptually, is just an entity that can be performed so as to process information.
In general, the outcome of a performance may be completion (normal termination), or escape
(exceptional termination), or dévergence (non-termination), or failure.

When performed, actions operate on named values, cells of storage, and bindings for tokens. It
is useful to consider separately various facets of actions: in the functional facet, actions receive
and produce sets of named values; in the imperative facet, actions receive and may change the
contents of cells in storage (they may also create and destroy cells); in the binding facet, actions
receive and produce sets of bindings of tokens to values.

The various facets are orthogonal, in that operations in one facet do not interfere with
operations in the other facets. For example, storing a value in a cell of storage does not produce
new bindings for tokens; binding a token to a value does not cause any change to storage.

This separation of facets is closely related to the distinct uses in conventional Denotational
Semantics of arguments, states, and environments. In the action notation, however, we do not
refer explicitly to such data structures, in the interests of modifiability.



Boolean Natural List(S) Set(S)

Value Name(S) Adjective Term(S)

Storable Cell(S) Bindable Token(S)

Undefined S ? Abstraction Action
TABLE 2

Standard Sorts

Each facet has rather different characteristics with respect to the propagation of information.
In the functional facet, values are fransient, and are “forgotten”, unless explicitly copied. In
the imperative facet, in contrast, the values stored in cells are stable, remaining constant until
new values are stored there (or the cells are destroyed). In the binding facet, the bindings are
established for a particular scope, and earlier bindings get re-established when performance
leaves a scope.

The consideration of facets of actions has guided the design of the standard action notation.
Each primitive action is generally concerned with one particular facet, and does not produce
information in the other facets. Likewise, each action combinator is essentially a tuple of basic
single-faceted combinators, and usually one or more of these are neutral, not restricting the
flow of information either into or out of sub-actions.

There are various standard sorts in the action notation. These are listed in Table 2. First of all,
there are the usual sorts of mathematical values, such as Boolean and Natural. For any sort of
values S, the sort List(S) is standard; also Set(S), when S has an equality operation.

For each sort of values S, the sort S? is the union of S with the sort Undef'ined, whose only value
is “undefined”. (Note that “undefined” is essentially an “error value” — it does not represent
non-termination!)

Then there are the sorts Name, Cell, and Token. Names are used for referring to previously-
computed values in actions (like bound variables in A-notation). Cells are the identities
(addresses, locations) of potential bits of storage; we assume that storage management is
implementation-dependent, so the action that creates a cell may choose any cell that is not part
of the current storage. Tokens are syntactic items such as identifiers and labels, to which values
may be bound.

Associated with Name, Cell, and Token are the sorts Value, Storable, and Bindable, re-
spectively. These sorts are not further specified in the standard notation, they are essentially
parameters that can be instantiated with whatever particular (unions of) sorts are required for
the semantics of a particular programming language.

It is convenient to assume subsorts Name(S), Cell(S), and Token(S) corresponding to the
subsorts (S) of Value, Storable, and Bindable, respectively. Note that the subsorts Name(S)
do not inherit the subsort relation of Value: in fact they are désjoint. Nevertheless, a name in
Name(S) may still refer to a value that is in a subsort of S, as such a value is also of sort S.

The sort Term provides the means for actions to use operations on values. Terms may contain
references to named values, the contents of cells, and the bindings of tokens — note that these
references are not regarded as separate actions, in contrast to earlier versions of the action
notation [16]. For each value sort S, Term has a subsort Term(S), consisting of terms that yield
values of sort S (or the value “undefined”).



undefined — Undefined
true — Boolean
false — Boolean
complement : Boolean — Boolean
disjunction : Boolean, Boolean — Boolean
conjunction : Boolean, Boolean — Boolean

0 : — Natural
—+1 : Natural — Natural
empty-list : — List(S)
only = 8 - List(8)
Jjoin : List(8), List(S) —+ TH8%(5)
first—of : List(S) -+ 37

rest—of : List(8) = Ligt(s) e
length : List(S) — Natural
empty-set — Set(S)
singleton s B — Set(S)
union : Set(S), Set(8) — Set(S)
difference : Set(S), Set(S) — Set(S)
intersection : Set(8), Set(S) — Set(S)
is—equal : Set(S), Set(S) — Boolean
is—subset : Set(S), Set(S) — Boolean
is—contained : S, Set(S) — Boolean

s — Name(S)
sl-s2 2 — Name(S2(S1))
- - : Adjective, Name(S) — Name(S)

the _ : Name(S) — Term(S)
contents—of : Term(Cell(S)) — Term(S)
binding-of : Term(Token(S)) - Term(S)

op : Term(S1), ..., Term(Sn) — Term(S)
abstraction — : Action — Term(Abstraction)
_ with the _ : Term(Abstraction), Name — Term(Abstraction)
— importing all : Term(Abstraction) — Term(Abstraction)

TABLE 3
Standard Operations on Values and Terms

Finally, there are the standard sorts Action and Abstraction. Actions are not themselves

values, but they can be encapsulated in abstractions (which are values) and subsequently
enacted.

Now for the standard operations. The operations on values are listed in Table 3, and
the suggestive words used in the operation symbols are intended to make further informal
explanation superfluous.



The standard notation for names in Name(S) is to use the lower-case spelling “s” of the sort
S, e.g., “boolean” of sort Name(Boolean). Different names of the same sort are formed
by prefixing adjectives, such as “lst”, “2nd”, “other” — adjectives should not clash with
other symbols in the notation, but are otherwise arbitrary. When S is an instantiation of a
parameterized sort, e.g., List(Boolean), we allow the spelling of the parameter to prefix the
spelling of the parameterized sort, e.g., “boolean-1ist” (instead of “list(boolean)”).

References to the values of names in terms are made by use of the definite article, “the”. Thus
“the boolean” in a term yields the value named by “boolean”, if there is one; otherwise it
yields the value “undefined”. Analogously, “contents—of” yields the value stored in a cell,
e.g., “contents—of(the boolean-cell)”; and “binding—of” yields the value bound to a token,
e.g., “binding—of (I )”, where I is an (identifier) token.

Value operations used in terms are strict in “undefined”, so that the evaluation of a term
containing references to undefined names, etc., always yields “undefined”.

We defer the explanation of the operations that involve abstractions until the end of the section.

Now for the standard primitive actions and action combinators. There is insufficient space here
for full details; we consider only the main features of each form of action, ignoring the special
cases that arise when actions are used in “unintended” ways. (To prohibit the unintended uses
of actions syntactically would involve the use of a cumbersome notation for subsorts of actions,

which we currently prefer to avoid.) The syntax of the standard action notation is given in
Table 4.

The number of primitives and combinators in the standard notation may seem rather large —
in fact there are 25 of them in all. But the conceptual complexity of the action notation is
much less than this might suggest, thanks to the orthogonality (and commonality) of the various
facets. Indeed we claim that all the actions express familiar computational notions. In any
case, the aim is for the same action notation to be used in the semantic descriptions of many
different programming languages, which may compensate for the effort of learning it.

Below, N stands for an arbitrary name, T for a term, and A for an action (all with optional
subscripts). Note that the square brackets used are not symbols themselves, they merely enclose
optional symbols.

Except where stated otherwise:

® actions complete (Z.e., terminate normally);

® the values, storage, and bindings received by actions are propagated to their component
actions and terms;

® escapes, divergence and failures propagate;

® primitive actions produce no values, make no changes to storage, and produce no bindings.

“obtain alnl N from T’ names the value of T' by N, if that value is of the sort indicated by
N ; otherwise it fails. Usage: Naming values for later reference, renaming values to avoid name
clashes, and checking that values belong to particular subsorts.

Example: obtain a boolean from contents-of(the cell) .

“check T, 1s T,” completes if the value of T, is the same as the value of T,; otherwise it
fails. Usage: Checking for a particular value, and guarding alternative actions.

Example: check the boolean is true .



obtain alnl _ from _ : Name(S1), Term(S2) — Action
check _ is _ : Term(S1), Term(S2) — Action
copy the _ : Name(S) — Action
copy all : — Action
skip — Action
fail : — Action
create alnl _ : Name(Cell(S)) - Action
destroy _— : Term(Cell(S)) — Action
store _ in _ : Term(S), Term(Cell(S)) — Action
bind _ to _ : Term(Token(S)), Term(S) — Action
Leither] _ or _ _ : Action, Action — Action
[preferablyl _ else _ : Action, Action — Action
[both]l _ and _ : Action, Action — Action
[first]l _ then _ : Action, Action — Action
_ before _ : Action, Action — Action
— within _ : Action, Action — Action
block _ : Action — Action
enact _ : Term(Abstraction) — Action
_ where (O is _ : Action, Action — Action
] — Action
recursively _ : Action — Action
escape : — Action
— then exceptionally — : Action, Action — Action
— and exceptionally _ : Action, Action — Action
error — Action
TABLE 4

Standard Operations on Actions

“copy the N copies only the value named N. Usage: Propagating values.
Example: copy the 1lst boolean .

“copy all” copies all the named values.
“gkip” simply completes, forgetting all the named values.
“fail” simply fails.

“create alnl N” creates a cell whose contents are initially “undefined”. The sort of the
contents is indicated by N. Usage: Allocating storage for (simple) variables.

Example: create a boolean—cell .

“destroy T” destroys the cell given by the value of T'. Usage: Re-allocating storage.
Example: destroy the boolean—-cell .

“store T, in T,” stores the value of T in the cell given by the value of T,. Usage: Assigning
to (simple) variables.

Example: store true in the boolean—cell .

10



“bind T} to T,” binds the token given by the value of T} to the value of T,. Usage: Declaring
identifiers and formal parameters.

Example: bind 1d I to the boolean-cell .

“leither] 4, or A4,” may choose between performing 4, or performing A4,; but if the chosen
action fails, it performs the other action instead. Usage: Combining alternative actions with
exclusive guards, and implementation-dependent (non-deterministic) choice.

Example: either
check the boolean is true then A’
or check the boolean is false then A" .

“[preferably] A, else A4,” performs 4,; but if A, fails, it performs 4, instead. Usage:
Combining alternative actions with non-exclusive guards.

Example: preferably
obtain a boolean from the value then A’
else error .

“Iboth] A4, and A,” performs 4, and 4, together, combining any values and bindings that
they produce, and interleaving any changes to storage that they make. Usage: Implementation-
dependent combination of interfering actions, and ordinary combination of independent
actions.

Example: both obtain a boolean from first-of the boolean-list
and obtain a boolean-list from rest-of the boolean-1list .

“Cfirst] A4, then 4,” performs A4,, followed by 4, (if 4, completes). The only values
produced by the whole action are those produced by 4,, and the only values received by 4, are
those produced by 4,. Usage: Sequential composition of actions.

Example: first create a boolean—cell
then bind id I to the boolean—cell .

“A, before A,” performs 4,, followed by 4, (if 4; completes). In contrast to “4, then 4,”,
both 4, and 4, receive the values received by the whole action, and the whole action produces
all the values produced by 4, and A4, (asin “4; and 4,”). The bindings produced by the whole
action are those produced by 4,, overridden by those produced by 4,, which itself receives the
bindings received by the whole action overridden by those produced by 4,. Usage: Sequential
composition of declarations, and sequential evaluation of expressions.

Example: bind id I; to the 1st value before
bind id I, to the 2nd value .

“A, within 4,” performs Al, followed by A4, (if 4, completes). This is like “4, before 4,”,
except that bindings are composed differently: the only bindings produced by the whole action
are those produced by 4,, and the only bindings received by A4, are those produced by 4,.
Usage: Restricting the scopes of declarations.

Example: bind id I, to the lst value within
bind id I, to the 2nd value .

“block A" performs A, but then discards any bindings produced by A4 . Usage: Localizing the
scopes of declarations in block structure.

Example: block A4’
before A" .

11



“d, where [l is A4,” performs 4,. Whenever the performance reaches an occurrence of
the dummy action “[]”, A4, is performed in place of “[J”. This corresponds to performing
the action given by replacing the occurrences of “[]” in 4, with the (perhaps infinite) action
obtained by unfolding 4, at “[]”. Note that “where” can be nested; but there does not seem to
be a need for more than the one dummy action, “[1”. Usage: Iterating actions.

Example: first obtain a natural from 42

then [
where [ is
preferably

check the natural is 0 and copy the natural
else first obtain a natural from the natural - 1

then [

then obtain a natural from the natural + 1 .

“recursively A" performs 4, which must complete, producing only bindings: no values, no
changes to storage. The action 4 receives the bindings received by the whole action, overridden
by those produced by 4 itself. Usage: Making declarations recursive.

Example: block recursively A’
before A" .

“escape” simply escapes, producing all the received values. Usage: Raising exceptions, and
performing jumps.

Example: copy the value then escape .

“d, then exceptionally A,” performs A4, first. If 4, escapes, then 4, is performed as well,
the only values received being those produced by 4,, and the escape is not propagated. Usage:
Handling exceptions and jumps to labelled statements.

Example: A’ then exceptionally
preferably check the value is 0 else escape .

“d, and exceptionally 4,” performs 4, first. If 4, escapes, then 4, is performed as well,
the only values received being those received by the whole action, and the escape is propagated,
producing all the values produced by 4, and A4,. Usage: Adding further values to escapes.

Example: A' and exceptionally
first copy the extra value
then escape .

“error” escapes, not producing any values. Usage: Dynamic error conditions causing premature
termination of programs.

Now we consider abstractions. The term “abstraction 4” yields a value of sort Abstraction,
encapsulating the action 4. The action “enact T performs the action encapsulated in the
abstraction value given by evaluating T'. The encapsulated action does not receive the values
and bindings received by “enact T, although it does receive the storage.

Such simple abstractions could be used for parameterless procedures without non-local refer-
ences to bindings (there being then no distinction between static and dynamic scope rules).

In order to deal with parameter-passing, we use the term “T with the N, where T yields
an abstraction. The value of this term is an abstraction that encapsulates the same action that
the value of T encapsulates, except that the action now receives the value named by N — the

12



same value as received by “T with the N” — when enacted. Thus the value named by N is
“frozen” into the abstraction given by “T with the N”.

Further named values can be supplied to the abstraction given by “T" with the N” in the same
way, but of course the value of N cannot be altered. This is adequate for dealing with the
concept of partial application used in various programming languages. Note that normal (total)
application is expressed by “enact T with the N”, where N names a previously-computed
list of actual parameter values.

Similarly, to specify whether static or dynamic scopes are to be used for non-local references
to bindings in abstractions, we use the term “7 importing all”. This gives an abstraction in
which all the bindings received by this term are also received by the encapsulated action. So
“(abstraction 4 ) importing all” gives an abstraction with static scopes, whereas “enact T
importing all” gives dynamic scopes for the abstraction yielded by T°, in general.

There does not seem to be much use for abstractions like “7T" with all” and “T, importing
T,” (where the value of T, is a token), but they could easily be incorporated in the full standard
notation.

A final point about the notation, concerning disambiguation: It would be intolerable to insist
on full parenthesization of actions, as the plethora of parentheses would greatly hinder the
fluent reading of the notation. On the other hand, it would be just as unreasonable to expect
the reader to remember an elaborate operator precedence.

Our solution is to use indentation as a suggestive way of indicating grouping. The main rule
is that each (maximal) indented sequence of lines is always a complete action — this can be
formalized by means of an attribute grammar, with an inherited attribute corresponding to
indentation level. Within a sequence of lines at the same level of indentation, combinators
associate to the left. By the way, all the combinators in the action notation are associative, so
repeated combinations involving the same combinator do not need grouping at all.

When the nesting gets too deep for indentation, as it does occasionally in our Pascal semantics,
we resort to punctuation: an operator preceded by a comma has lower precedence than
any operator without punctuation marks, and higher precedence than operators preceded by
semicolons (as in ordinary English sentence structure). We reserve parentheses for use in terms
occurring in actions.

3. DYNAMIC SEMANTICS

In this section we discuss some examples of dynamic semantics. These examples are all taken
from the current version of our action-semantic description of ISO Standard Pascal (Level 0)
[18].

Table 5 gives our abstract syntax for some typical expressions, statements, and declarations in
Pascal. The relation between this abstract syntax and the standard concrete syntax of Pascal is
quite straightforward: the abstract syntax essentially just ignores those details of concrete syntax
that have no semantic significance, e.g., whether an expression E is a term or a factor.

Before the action notation can be used to specify the denotations of the abstract phrases of
Pascal, it needs to be specialized with respect to the sorts of values that actions process. Table 6
gives the special sorts appropriate for Pascal. (Actually, a few sorts are omitted in Table 6 —
they will be discussed at the end of this section.)

13



ur :

DO

EL

PFDP :

FPP :

FPS

IL

Some of the sorts in Table 6 are parameterized by sorts (ranged over by S) or integers (ranged
over by M, N).

The sorts Character, Integer, and Real are all “implementation-defined”, and they are
parameters of the whole semantic description. (The constraints on their associated operations

Identifier ! identifier
Unsigned-Integer |  unsigned-integer
Expression ! expression | variable-access |

! actual-parameter
Expression-List ! expression { , expression}
Dyadic—Operator ! adding-operator | . ..
Statements ! statement | statement-sequence
Block ! block

Procedure-and-Function-Declaration-Part

! procedure-and-function-declaration-part
Formal-Parameter-Part

! [formal-parameter-list]
Formal-Parameter-Sections

! formal-parameter-section {;

! Sformal-parameter-section}

Identifier-List ! identifier-list

Identifier ! productions omitted

Unsigned-Integer !  productions omitted

Expression ::= I |UI | E DO E | ...

Dyadic-Operator ::= + | ...

Statements t:= E:=E |S ;S8 |if E then S else S
| while E doS |I (EL)|...

Expression-List ::= E | E , EL

Block = ... PFDP begin S end

Procedure—-and-Function-Declaration—-Part

::= procedure I FPP ; B ; | PFDP PFDP | ...

Formal-Parameter—Part
1:= ( FPS ) | EMPTY

Formal-Parameter—-Sections
s:= IL : I |var IL : I | FPS ; FPS | ...

Identifier-List ::= I |IL , IL

TABLE 5
Some of the Pascal Abstract Syntax

are to be specified formally in an appendix.)

Enumerand(N) is essentially a copy of the integers 0,...,N-1. String(N) has the same values
as Array(1,N,Character), where Array(M,N,S) is the sort of tuples indexed by the integers M,
..., N, with components of sort S. Record values are essentially mappings from (field-)identifiers

to component values.

14



Character Enumerand(N) Integer

Real String(N) Array(N,N’,S) Record
Pointer(S) File(S) Variable(S) Type(S)
Procedure Function Active-Function Formal-Mode
Ordinal = Boolean, Character, Enumerand, Integer
Storable = Boolean, Character, Enumerand, Integer,
Real, Set, Pointer
Agsignable = Boolean, Character, Enumerand, Integer,
Real, Set, String, Array, Record, Pointer, File
Identifiable = Boolean, Character, Enumerand, Integer,

Real, String, Variable, Type,
Procedure, Function, Active-Function

Token(Identifiable) = Identifier

Bindable = Identifiable, ...

Operand = Boolean, Character, Enumerand, Integer,
Real, Set, String, Pointer

Operator—Result = Boolean, Integer, Real, Set

Argument = Boolean, Character, Enumerand, Integer,

Real, Set, String, Array, Record, Pointer,
Variable, Procedure, Function

Function-Result = Boolean, Character, Enumerand, Integer,
Real, Pointer

Constant = Boolean, Character, Enumerand, Integer,
Real, String

Result = Boolean, Character, Enumerand, Integer,

Real, Set, String, Array, Record, Pointer,
Variable, Procedure, Function, Active-Function
Value =

TABLE 6
Some Special Sorts for the Pascal Dynamic Semantics

Variable(S) is rather like the standard sort Cell(S), but it is generalized to deal with
compound variables that may share cells in storage. Values of sort Type(S) merely give
adequate structural information for allocating elements of Variable(S).

Procedure and Function values are really just pairs with components of sorts List(Formal-
Mode) and Abstraction. The Formal-Mode values indicate whether coercions are to be applied
to actual parameters. Each value of sort Active—Function consists of an ordinary Function
value paired with a result-variable.

The remaining sorts are just unions of the above sorts. The sort Ordinal corresponds to
the Pascal notion of ordinal values. Storable indicates what Cell values may contain, and
Assignable does the same for Variable. Identifiable values can be bound to Pascal identifiers
(the other sorts of Bindable values in the full Pascal semantics will be discussed later).

Operand values are operated upon by relational, Boolean and arithmetic operators, yielding

values of sort Operator-Result. Similarly, Argument values are passed to procedures and
functions as the values of actual parameters, and function activations (may) yield values of

15



sort Function-Result. Result encompasses all the values that can be yielded by expression’
evaluation in Pascal; likewise Constant for constant values. Value is the union of all the
(standard and special) value sorts, and indicates what can be referred to by names in the action
notation.

A closer inspection of Table 6 reveals that no two of the various union sorts coincide!
This indicates a certain semantic irregularity in Pascal, presumably due to implementation
considerations and incidental syntactic restrictions — although it seems strange that Set values
may be operands, operator-results, or arguments, but not function-results!

A few of the operations associated with the special sorts are listed in Table 7. Note particularly
that some names (for instance, “procedure”), are overloaded and used as constructor operations.

The special operations “allocate”, “assign”, and “access” are generalizations of the Cell
operations “create”, “store”, and “contents—of”, respectively, to cope with compound
variables. But note that “access” is an action, rather than a Term constructor: we do not
assume that obtaining the value of a compound variable is an indivisible action. Formally,
“allocate”, “assign”, and “access” are to be specified as abbreviations for compound
standard actions involving (multiple) operations on cells.

Also, “coerce N from T” is an abbreviation for a compound action: it is just the same
as “obtain N from T when T yields a value of the same sort as the name N; otherwise,
“coerce” performs Pascal-specific actions in order to get a value of the desired sort. Some of
the possibilities are floating an integer to a real number, accessing the value of a variable, or
calling a parameterless function. “coerce” is widely used in the Pascal action semantics.

We hope that the reader will now find it possible to get the gist of the semantic equations given
in Appendix A — or even the full Pascal description. Even though the accuracy of the reader’s
understanding of the action notation may be poor to start with, it should increase rapidly
by considering the actions corresponding to familiar Pascal constructs. Ultimately, points of
doubt about the intended interpretation of the action notation are to be resolved by study of its
algebraic axioms.

To help the reader, we provide the following comments on the semantic functions used in
Appendix A.

For identifiers, “1d I” is just I with all letters converted to lower case. Almost as trivial are the
denotations of unsigned integer literals: “valuation UI” is the corresponding integer value.
These denotations do not involve actions at all.

Expressions are more interesting. There are several reasons for letting the denotations of
expressions be actions, rather than mere values. First, we wish to indicate explicitly that the
order of evaluation of sub-expressions in Pascal is implementation-dependent; with actions, this
is done by using the combinator “and”.? (If evaluation of expressions were sequential, we would
use “before” instead.) Next, function activations in expressions require the use of actions —
and may have side-effects. Finally, our algebraic framework is first-order, so the denotations
of operators occurring in expressions cannot be operations (on values), whereas they can be
actions.

Anyway, “evaluate E” is an action that computes the uncoerced value of E, naming it

'In our abstract syntax, expressions include variable-accesses and actual-parameters.

2 Actually, the Standard Pascal allows the evaluation of sub-expressions to be omitted (when their values
are irrelevant) or to be done “in parallel”; but it is not clear to us exactly what that might mean.

16



Zero — Integer
maximum-integer : — Integer
negation : Integer — Integer

sum : Integer, Integer — Integer?
ordinal-number : Ordinal — Integer

float : Integer — Real?

negation : Real — Real

sum : Real, Real — Real?

procedure : List(Formal-Mode), Abstraction — Procedure
body—of : Procedure — Abstraction
formal-mode-list—of : Procedure — List(Formal-Mode)
function : List(Formal-Mode), Abstraction — Function
body-of : Function — Abstraction
formal-mode-list-of : Function — List(Formal-Mode)
active—function : Function, Variable — Active-Function
function-of : Active-Function = Function
result-variable—of : Active-Function — Variable
value—mode — Formal-Mode
variable-mode — Formal-Mode
procedural-mode — Formal-Mode
funetional-mode — Formal-Mode

allocate aln] _ of _ : Name(Variable), Term(Type) — Action
assign _ to _ : Term(Assignable), Term(Variable) — Action
access aln]l _ in _ : Name(Assignable), Term(Variable) — Action
coerce alnl _ from _ : Name(S1), Term(S2) — Action

coerce alnl N from T =

preferably

obtain alnl] N from T

else obtain an integer from T then coerce aln]l N from the integer
else obtain a variable from T then access aln]l N in the variable
else

TABLE 7

Some Special Operations for the Pascal Dynamic Semantics

“result”. For dyadic operators, “operate DO” is an action that receives two values named
“lst operand” and “2nd operand”, and produces a value named “operator-result”.

The denotations of statements, given by “execute §”, are actions that neither receive nor
produce named values.

The evaluation of actual parameters by “evaluate-arguments EL” receives a list of formal
mode values, and produces a list of argument values.

For blocks, “activate B” executes the declarations and statements of B, using “establish

PFDP” to bind the declared procedure and function identifiers to appropriate values. (For
brevity, we are ignoring other kinds of declarations occurring in blocks.) Finally, for formal

17



parameters, “formal-modes—of FPP” is the list of their modes (value, variable, etc.) —
this is not an action, as it does not involve any processing of computed information — and
“establish—formals FPP” binds the identifiers in FPP to the components of the argument-list
received.

Finally, we consider how to deal with the action-semantic description of some of the “nastier”
features of Pascal: forward procedure declarations, variant records, and jumps. Lack of space

prohibits us from giving the formal description of these constructs here, the energetic reader is
referred to [18].

Note, by the way, that we do not consider it to be a disadvantage of Action Semantics that
it is able to cope with nasty, as well as nice, features of programming languages. The nastier
a construct, the more it needs a formal descriptionl However, we do hope that language
designers might be discouraged from including nasty constructs by the complexity of their
action-semantic descriptions. Approaches to formal semantics that lack generality and prohibit
various features run the risk of alienating language designers, and could delay the development
of new programming concepts.

Now for forward procedure declarations. These allow procedure headings to be declared
separately from (but before) the corresponding procedure bodies. A heading declaration is an
ordinary procedure declaration where the body is replaced by the symbol forward. In the
body declaration, the procedure heading is abbreviated by leaving out the formal parameters.
(Similarly for forward function declarations.)

The idea of forward declarations is to permit mutually recursive procedures while keeping to
a “declaration-before-use” discipline. There is no problem in expressing mutual recursion in

action semantics, the only difficulty is in reconstituting complete procedures from the separate
headings and bodies.

Of course, one could just regard forward declarations as something to be eliminated in going
from concrete syntax to abstract syntax. But that is not as trivial as it might sound, and cannot
easily be separated from static semantics. Anyway, we prefer to treat the entire Pascal language
in the dynamic semantics, rather than insisting that the reader be aware of various syntactic
transformations and checks that are to be applied to programs before taking their semantics.

Briefly, our semantics for a forward-declaration of a procedure identifier / binds a token
“forward-id I” to a value of sort Procedure-Head, consisting of a Formal-Mode-List value
and an abstraction. The action encapsulated in the abstraction binds the formal-parameters of
the procedure-heading to the arguments it receives, but there is no body yet to be the scope of
these bindings. Subsequently, the body declaration for I binds “id I” to a normal Procedure
value whose abstraction component is supplied with the abstraction component of the procedure
head. The insertion of “recursively” in the semantic equation for block activation then gives
the required mutual recursion between bindings for “id I”.

An inspection of the semantic equations for forward declarations given in [18] indicates that
this feature complicates the semantics of procedure declaration about threefold.

As for variant records, we hide most of the gory details in the special actions “allocate”,
“assign”, and “access”. The main idea is to represent fields of a variant record by abstractions
which, when enacted, perform the required checks on the associated selector variable of the
variant. Note that the Pascal with-statement rules out handling variant field accesses in the
semantics of field-designator expressions, as it causes field identifiers to be bound directly to
component variables. When changing variants, the old variant part gets destroyed, and the
new variant part is created.

18



Finally, jumps and labels. In conventional Denotational Semantics, the idiom of “continuations”
is used to express sequential performance. This allows labels to be bound to continuations that
represent “the rest of the computation” from the label onwards. Denotations of statements,
etc., take continuations as arguments, and the goto-statement merely ignores its continuation
argument and applies the continuation bound to the label. This is not possible in the standard
action-notation, where sequencing is expressed directly, rather than by means of idioms.

Instead, we bind labels to dynamically-generated values of sort Jump-Point. The only feature
of these values is that they can be tested for equality. The execution of a goto-statement just
escapes with the jump-point bound to the label. The semantics of block activation is extended
to include, after the execution of the statements of the block, the exceptional performance of
an auxiliary semantics of statements. This handles any escapes with those jump-points that are
bound to the labels in the statements. (This has to be iterated, using the “where” notation,
to cater for subsequent jumps at the same block-level.) The idea of using escapes instead of
continuations has been exploited in VDM [6]; we were led to it by consideration of the algebraic
properties of actions.

An alternative approach to jumps and labels would be to let the jump-points include abstractions
that encapsulate the performance of the rest of the statements in the block. Then a jump
escapes to the activation level indicated by the jump-point, executes the (recursively-bound)
abstraction and finally terminates the block. But this turns out to be even more complicated to
specify than the approach sketched above.

For more examples of Pascal nasties, see [18]!

4. STATIC SEMANTICS

Action Semantics was designed originally to describe the dynamic semantics of (conventional)
programming languages — witness the terminology ‘action’ and the selection of standard actions
(Table 4). In developing our action-semantic description of Pascal, however, we have found
that Action Semantics is quite suitable for describing static semantics too.

Because the standard actions are worded as imperative verbs and conjunctions, the dynamic
semantic description reads like a set of instructions stating what has to be done when each
program phrase is ‘executed’. The static semantic description reads like a set of instructions
stating what has to be done to check whether each program phrase is well-formed or not (in a
context-sensitive sense).

Of course, there are important differences between the static and dynamic semantic descriptions

of (conventional) programming languages. In the Pascal description we find the following
differences:

® The values processed by the dynamic semantics are integers, reals, sets, pointers, variables,
procedures, functions, and so on. The values processed by the static semantics are con-
stants, types, ‘variable-modes’, ‘procedure-modes’, ‘function-modes’, and so on. Consider
variables, for example: the dynamic semantics is concerned principally with the storage
cell(s) occupied by each variable; whereas the static semantics is concerned principally
with its type, and sometimes with whether it is a component of a packed structure. We
use the term ‘mode’ for the statically-known properties of an entity such as a variable,
procedure, function, or formal parameter.

19



Some values are common to the dynamic semantics and the static semantics, such as
constants and types — although types are used for type-checking in the static semantics
but only for storage allocation of variables in the dynamic semantics.

® Actions concerned with storage — namely “create”, “destroy” and “store” — are not
ordinarily used in the static semantics. To that extent, the entire imperative facet of
actions is redundant in the static semantics. (One exception is mentioned later in this
section.)

® Iteration and escapes are never used in the static semantics, so the actions “_ where [ is _”,
“escape”, “_ then exceptionally _” and “_ and exceptionally _” are not needed.

A consequence of the last point is that no action in the Pascal static semantics ever diverges
or escapes; the only possible outcomes are completion and failure. We adopt the following
convention: if the denotation of a phrase is an action that completes, that phrase is well-formed;
if the denotation of a phrase is an action that fails, that phrase is ill-formed.

In the static semantics of Pascal, the denotation of a program P is “constrain P”, which
completes if and only if P is well-formed. In the dynamic semantics, the denotation of P is
“run P”, which when performed will produce some changes in storage (.e., the storage where
the external entities are held). These are composed to form the complete semantics of Pascal as
follows, with the “then” combinator ensuring that “run P” is not performed if “constrain P”
fails:

“constrain P then run P”

Now let us examine in more detail the static semantics of parts of Pascal whose abstract syntax
is shown in Table 5. Some, but not all, of the standard sorts and operations (Tables 2-4) are
used in the static semantics.

Some of the special sorts required by the Pascal static semantics are shown in Table 8, and
some of the special operations in Table 9.

Sorts such as Integer-Type, Set-Type, and Pointer-Type correspond to the various type
classes of Pascal. Some of these type classes contain a single type, e.g., “integer—type” of
sort Integer-Type. For each other type class an appropriate constructor operation is defined,
e.g., “set—type”. Type is defined to be the union of all the type classes, and Ordinal-Type,
Structured-Type, etc., are defined to be unions of certain type classes only. Operations such
as “is-numeric” and “assignment-compatible” correspond to the various predicates on types
required in the static semantics.

Other sorts in Table 8 correspond to the various mode classes of Pascal. For example,
Procedure-Mode is the sort of ‘procedure-modes’, each of which is constructed from a list
of ‘formal-modes’ by the operation “procedure-mode”. OQur phrase sort Expression covers
not only ordinary expressions (whose modes are of sort Data-Mode), but also variable-accesses
(Variable-Mode), procedure identifiers (Procedure-Mode), and function identifiers (Function—
- Mode). The sort Result-Mode is defined to be the union of all these sorts. The operation
“type—of” is overloaded on various mode classes such as Variable-Mode and Data-Mode.

Identifiable is instantiated for the Pascal static semantics to be the union of Constant,
Type, Variable-Mode, Procedure—Mode, and Function-Mode. These are the ‘values’ to which
identifiers are bound in the static semantics, Compare the instantiation of Identifiable in the
dynamic semantics (Table 6).

Some semantic equations of the Pascal static semantics are shown in Appendix B.

20



Integer Real String Packing

Integer-Type Set-Type Array-Type Pointer-Type

Data—Mode Procedure—Mode Function-Mode Active-Function-Mode
Constant = Boolean, Character, Enumerand, Integer,

Ordinal-Type
Structured-Type
Operand-Type
Operation-Result-Type
Function—Result-Type
Type

Formal-Mode
Variable—Mode
Result-Mode

Identifiable
Token(Identifiable)

Bindable
Value

Some

integer—type
real-type
set—type
is—numeric

assignment-compatible :

data—mode
procedure—mode
type-of

type—of
formal-modes—of
formal-modes—of
result—type—of

coerce aln] _ from _

Real, String

Boolean-Type, ..., Integer-Type
Set-Type, Array-Type, ...
Boolean-Type, ..., Integer-Type, ..
Boclean-Type, Integer-Type, ...
Ordinal-Type, Real-Type, Pointer-Type

Ordinal-Type, Real-Type, Structured-Type, Pointer-Type
Formal-Value—Mode, Formal-Variable—Mode, ...
Entire-Variable-Mode, Component-Variable-Mode, ...
Constant, Data-Mode, Variable-Mode,

Procedure-Mode, Function-Mode

Constant, Type, Variable-Mode,

Procedure-Mode, Function—Mode

Identifier

Identifiable, ...

., Pointer-Type

TABLE 8

Special Sorts for the Pascal Static Semantics

: Name(Data-Mode), Term(Result-Mode) —

— Integer-Type

: — Real-Type
: Type—Name, Packing, Ordinal-Type — Set-Type
: Type — Boolean

Type, Type — Boolean
: Type — Data—Mode
: List(Formal-Mode) — Procedure-Mode
: Data-Mode — Type
: Variable-Mode — Type
: Procedure-Mode — List(Formal-Mode)
: Function-Mode — List(Formal-Mode)
: Function-Mode -

Function-Result-Type

Action

TABLE 9

Some Special Operations for the Pascal Static Semantics

21



ccs

For expressions, “infer-mode E” is an action that infers the (uncoerced) mode of E, naming
it “result-mode”, if E is well-formed — otherwise it fails. The action “typify-result DO”
checks the application of DO to two operands; it receives values named “1st operand-type”
and “2nd operand-type”, and produces a value named “operation-result-type” (unless it
fails).

For statements, “constrain S§” is an action that simply completes if S is well-formed —
otherwise it fails. Its semantic equations illustrate the basic techniques of using Action
Semantics to describe static semantics.

The denotations of blocks and declarations in Appendix B show how we enforce the language’s
scope rules. Declarations in Pascal are essentially sequential, so the combinator “before”
is suitable in the way it accumulates bindings. However, no identifier I may be declared
twice in the same block, nor may I be used in a block before its declaration (even if I is
also declared in an enclosing block). Our solution deals with both constraints at once. The
denotation (component) “hide-locals B” produces a binding of I to “undefined” for every
identifier I declared in block B. Moreover, it fails if any identifier is declared more than once
in B. Wherever “declare-and-constrain B” is performed, “hide-locals B” is performed
beforehand. This prevents duplicate declarations of I. It also ensure that “binding-of (id
I)” is “undefined” throughout the part of B that precedes the declaration of I.

For procedure and function declarations, “declare PFDP” binds all the identifiers declared
in PFDP to their modes; “produce-formal-mode-1ist FPP” checks the formal-parameter-
part FPP and deduces its formal-mode-list; and “declare-formals FPP” binds the formal
parameters of FPP, in sequence, to the received formal-mode-list, for the purpose of checking
whether the corresponding procedure body is well-formed.

The parts of the Pascal static semantics that we have illustrated are fairly straightforward.
Some other aspects of Pascal, such as the restrictions on mutual recursion of types, forward
procedures and functions, and scopes of labels, make the static semantic equations messy but
are quite tractable.

One problem that is fairly troublesome is Pascal’s name-equivalence rule for types. This requires
a unique “type-name” to be generated for each anonymous type-denoter in the program. This
is why (surprisingly) we do use the imperative facet in the Pascal static semantics. We can treat
a type name as a kind of storage cell, whose content is an (unchanging) type. (Alternatively, we
could let Cell(Undefined) be a subsort of Token, and bind type names to types.) Something of
the sort would seem to be needed to formalize the name-equivalence rule in any denotational
framework.

5. CONCLUSION

Action Semantics is a novel and (at least for the authors) exciting approach to the formal
description of programming languages. Its novelty lies mainly in the standard notation for
actions — hence the name. Other significant innovations are the use of formalized naturalistic
language in the meta-notation, and the modular organization of action-semantic descriptions.

Action Semantics combines several techniques. The denotational technique is used to express
the semantics of program phrases in terms of actions. The (algebraic) axiomatic technique is
used to specify the intended interpretation of actions formally, but this is supplemented by an
informal operational description of actions. We claim that this makes the most appropriate

22



use of the various techniques: for instance, it would not be appropriate to try to give algebraic
axioms for unruly programming languages, nor would it give much insight into actions to
reduce them to higher-order functions.

By the way, although we hope that the standard action notation will remain stable for
some time to come, it may be useful to isolate special-purpose sub-notations, e.g., for use
in static semantics. Note also that there is no guarantee that our action combinators can
express all possible ways of combining actions: it may be necessary to add new ones, perhaps
corresponding to concepts that we have overseen, or else just different ways of combinbing
single-faceted combinators.

How do action-semantic descriptions compare to the usual informal semantic descriptions used
in standard documents and reference manuals for programming languages? Well, despite the
fact that informal semantic descriptions often use a rather legalistic and stilted language, we
have to admit that they still read more fluently than our action notation. But on the other
hand, when it comes to understanding the consequences of semantic descriptions, the informal
reader of an action semantics should benefit from its compositional structure and uniformity of
notation.

It will be interesting to see whether or not the programming community does find Action
Semantics sufficiently useful to attract it away from informal descriptions. It seems to have
become firmly established that formal semantics is generally incomprehensible to the average
programmer. Action Semantics has tried to find a “middle way” between the rigours of
formalism and the pitfalls of informal descriptions — but without abandoning formality!
Instead of insisting that programmers should get to know an unfamiliar semantic universe of
higher-order functions, we have tried to formalize thesr universe of actions, in the hope of a
reconciliation between theory and practice.

We have worked out one large-scale example of the use of Action Semantics: a description
of ISO Standard Pascal. We intend to provide other examples in the near future, such as
Standard ML, in order to demonstrate that action-semantic descriptions are not particularly
biased towards any one style of language — only towards good design and semantic regularity!

If there is sufficient interest in action-semantic descriptions for sequential languages, it will
encourage us to extend actions with a communication facet, with a view to describing languages
involving concurrency. Other action-semantics-based projects include compiler-generation and
program development. But these may not be worthwhile unless Action Semantics becomes
rather popular.

We appeal for reactions to Action Semantics: please let us know what could be improved,
preferably with concrete examples. Also we would welcome collaboration in giving action-
semantic descriptions of various programming languages. If there is enough interest, PDM will
maintain a mailing list of “activists”. By the way, our electronic addresses are: pdm@daimi.uucp,
and daw@cs.glasgow.ac.uk.

ACKNOWLEDGMENTS

We thank our colleagues at home and abroad for encouragement during the early days of
Action Semantics. The diverse comments from the referees on our extended abstract helped us
to decide the contents of the full paper.

25



REFERENCES

[1] The Pascal Standard, ISO 7185. 1982. See [28].
[2] Reference Manual for the Ada Programming Language, ANSI/MIL-STD 1815 A. 1983.

[3] K. R. Apt. Ten years of Hoare’s logic: A survey. In Proc. 5th Scand. Logic Symp.,
Aalborg Univ. Press, 1979.

[4] E. A. Ashcroft, M. Clint, and C. A. R. Hoare. Remarks on 'Program proving: Jumps and
functions, by M. Clint and C. A. R. Hoare'. Acta Inf., 6:317-318, 1976.

[5] E. Astesiano et al. On parameterized algebraic specification of concurrent systems. In
Proc. CAAP-TAPSOFT 85, Springer-Verlag, 1985. LNCS 185.

[6] D. Bjerner and C. B. Jones. Formal Specification and Software Development. Prentice-
Hall, 1982.

[7] D. Clement, ]J. Despeyroux, et al. Natural Semantics on the Computer. Rapport de
Recherche No. 416, INRIA, 1985.

[8] E. W. Dijkstra.  Guarded commands, non-determinacy, and formal derivations of
programs. Commun. ACM, 18:453-457, 1975.

[9] K. Futatsugi, J. A. Goguen, et al. Principles of OBJ2. In Proc. POPL’84, ACM, 1984.

[10] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra semantics
and continuous algebras. J. ACM, 24:68-95, 1977.

[11] M. J. C. Gordon. The Denotational Description of Programming Languages. Springer-
Verlag, 1979.

[12] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12:576-580, 1969.

[13] C. A. R. Hoare and N. Wirth. An axiomatic definition of the programming language
PASCAL. Acta Inf., 2:335-355, 1973.

[14] R. Milner. Fully abstract models of typed lambda-calculus. Theoretical Comput. Sci.,
1-22, 1977.

[15] R. Milner. The standard ML core language. Polymorphism, 11(2), 1985.

[16] P. D. Mosses. Abstract semantic algebras! In Proc. IFIP TC2 Working Conference
on Formal Description of Programming Concepts II (Garmisch-Partenkirchen, 1982),
North-Holland, 1983.

[17] P. D. Mosses. A basic abstract semantic algebra. In Proc. Int. Symp. on Semantics of
Data Types (Sophia-Antipolis), Springer-Verlag, 1984. LNCS 173.

[18] P. D. Mosses and D. A. Watt. Pascal: Action semantics. August 1986. Draft, Version
0.3,

[19] G. D. Plotkin. LCF considered as a programming language. Theoretical Comput. Sci.,
5:223-255, 1977.

[20] G. D. Plotkin. An operational semantics for CSP. In Proc. IFIP TC2 Working
Conference on Formal Description of Programming Concepts II (Garmisch- Partenkirchen,
1982), North-Holland, 1983.

[21] G. D. Plotkin. A4 Structural Approach to Operational Semantics. DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.

[22] D. S. Scott and C. Strachey. Towards a Mathematical Semantics for Computer Languages.
Tech. Mono. PRG-6, Programming Research Group, Oxford University, 1971.

24



[23] J. E. Stoy. The Scott-Strachey Approach to Programming Language Theory. MIT Press,
1977.

[24] C. Strachey. The Varieties of Programming Language. Tech. Mono. PRG-10,
Programming Research Group, Oxford University, 1973.

[25] R. D. Tennent. The denotational semantics of programming languages. Commun. ACM,
19:437-453, 1976.

[26] D. A. Watt. Executable semantic descriptions. Software: Practice and Experience,
16:13-43, 1986.

[27] P. Wegner. The Vienna definition language. 4CM Comput. Surv., 4:5-63, 1972.

[28] I. R. Wilson and A. M. Addyman. 4 Practical Introduction to Pascal — with BS 6192.
Macmillan, 1982.

APPENDIX A. SOME DYNAMIC SEMANTIC FUNCTIONS FOR PASCAL

[id: Identifier — Identifier|

valuation: Unsigned-Integer — Integer?

evaluate: Expression — Aetion|

evaluate [[ I 1] =

obtain a result from binding—of (id I)

evaluate [ Ul 11 =

obtain a result from valuation UI

evaluate ([ E, DO E, 1] =

first both evaluate E, then
coerce a 1st operand from the result
and evaluate E, then
coerce a 2nd operand from the result
then operate DO
then obtain a result from the operator-result

25



operate: Dyadic-Operator — Action

operate [[ + 1] =

preferably
obtain a 1st integer from the 1lst operand and
obtain a 2nd integer from the 2nd operand, then
obtain an operator-result from
sum (the 1st integer, the 2nd integer)
else error
else coerce a 1st real from the 1st operand and
coerce a 2nd real from the 2nd operand, then
obtain an operator-result from
sum (the 1st real, the 2nd real)
else error
or obtain a 1st set from the 1st operand and
obtain a 2nd set from the 2nd operand, then
obtain an operator-result from
union (the 1st set, the 2nd set)

execute: Statements — Action

execute IIE1 1= l% 1 =

first both evaluate E, then
obtain a variable from the result
and evaluate E, then
coerce an assignable from the result
then assign the assignable to the variable

execute L §, ; §, 11 =

first execute §, then execute §,

execute [[ if E then S1 else S, 10 =

evaluate E then
coerce a boolean from the result then

either
check the boolean is true then
execute §;

or check the boolean is false then
execute S,

26



execute [[ while E do § 11 =

O where J is
evaluate E then
coerce a boolean from the result then
either
check the boolean is true then
execute § then []
or check the boolean 1s false then skip

execute [L I ( EL ) 11 =

first obtain a procedure from binding-of (id I)
then both obtain an abstraction from body—of (the procedure)
and obtain a formal-mode-list from
formal-mode-list—of (the procedure) then
evaluate-arguments EL
then enact the abstraction with the argument-list

evaluate—arguments: Expression-List — Action

evaluate—arguments [[ E 11 =

first evaluate E and
obtain a formal-mode from first-of (the formal-mode-list)
then either
check the formal-mode is value—-mode and
coerce an assignable from the result, then
obtain an argument from the assignable
or check the formal-mode is variable-mode and
obtain a variable from the result, then
obtain an argument from the variable
or 595
then obtain an argument-list from only (the argument)

evaluate—arguments [[ E , EL 1] =

both obtain a formal-mode-list from
only (first-of (the formal-mode-list)) then
evaluate—arguments [[ E 1] then
obtain an argument from first—of (the argument-list)
and obtain a formal-mode-list from
rest—of (the formal-mode-list) then
evaluate—arguments EL
then obtain an argument-list from
join (only (the argument), the argument-list)

27



activate: Block — Actionl

activate [[ ... PFDP begin S end 11 =

block ... before
establish PFDP
before
execute S

[istablish: Procedure—and-Function-Declaration-Part — Actiﬂ

establish [[ procedure I FPP ; B ; 11 =

recursively
bind id I to procedure (
formal-modes—of FPP,
abstraction (
block establish-formals FPP before
activate B
) importing all )

establish ([ PFDP, PFDP, 11 =

establish IGUDIH before
establish PFDP,

formal-modes—of: Formal-Parameter—Part — List(Formal—Mode)|

establish-formals: Formal-Parameter—Part — Action]

establish—formals ([ ( FPS ) 11 =
establish-formals FPS

establish-formals [ EMPTY 11 =
skip

28



establish-formals: Formal-Parameter-Section — Acticgl

establish—formals [[ I :+ ' 11 =

first both obtain an assignable from first—of (the argument-list)
and  obtain a type from binding—of (id I') then
allocate a variable of the type
then both bind id I to the variable
and assign the assignable to the variable
and  obtain an argument-list from rest—of (the argument-list)

establish—formals [[ IL, , IL, ¢ I' ] =
establish—formals [T Iy o d' & dl; & 21

establish-formals L var I : I' 1] =

first obtain a variable from first—of (the argument-list)
then bind id I to the variable
and obtain an argument-list from rest—of (the argument—list)

establish—formals [ var L, , IL, : '] =
establish—formals [[ var IL, : I' ; var ILs; : I' 7

establish—-formals (L FPS, ; FPS, 11 =

establish-formals FPS, then
establish—formals FPS,

APPENDIX B. SOME STATIC SEMANTIC FUNCTIONS FOR PASCAL

infer-mode: Expression — Actioﬁ]

infer-mode [ I 11 =

obtain a result-mode from binding-of (id I)

infer-mode ([ E, DO E, 11 =

both infer-mode E, then
coerce a data-mode from the result-mode then
obtain a 1st operand-type from type-of (the data-mode)
and infer-mode E, then
coerce a data-mode from the result-mode then
obtain a 2nd operand-type from type-of (the data-mode)
then typify-result DO
then obtain a result-mode from data—mode (the operation-result-type)

29



LPypify—result: Dyadic—Operator — Actioﬁ]

typify-result [ + 11 =

preferably
check the 1st operand-type is integer—type and
check the 2nd operand-type is integer-type, then
obtain an operation-result-type from integer-type
else check is-numeric (the 1st operand-type) is true and
check is—numeric (the 2nd operand-type) is true, then
obtain an operation-result-type from real-type
or

[Ebnstrain: Statements — Actiaﬂ1

constrain [[ E, := E, 7] =

both infer-mode E, then
obtain a variable—mode from the result-mode then
obtain a 1st type from type—of (the variable-mode)
and infer-mode E, then
coerce a data-mode from the result-mode then
obtain a 2nd type from type-of (the data-mode)
then check assignment-compatible (the 1st type, the 2nd type) is true

constrain [ §, ; §, 1 =

both constrain S,

and constrain Sé
constrain [[ while E do § 11 =

both infer-mode E then
coerce a data—-mode from the result-mode then
check type-of (the data-mode) is boolean—type
and constrain §

constrain [[ 7 ( EL ) 11 =

obtain a procedure-mode from binding-of (id I) then
obtain a formal-mode-list from formal-modes—of (the procedure-mode) then
modulate EL

[@é@ulate: Expression-List — Actiofﬂ

30



declare—and—constrain: Block — Action

declare-and-constrain [[ -+ PFDP begin S end 7] =

... before

declare PFDP before
constrain §

declare: Procedure—and—Function—Declaration—Part — Action

declare [[ Procedure 7 Fpp s B ;11 =

first produce—f‘ormal——mode-—list FPp

then bind id I to brocedure-mode (the formal-mode-
block hide-locals B before

declare—f‘ormals FPP before
declare—and—constrain B

1list) before

declare [T PFDP1 PFDP2 =

declare PFDP1 before
declare PFDP2

hide-locals: Block — Action

hide-locals [T ... prpp begin S end 171 =

- and hide-loealg PFDpP

hide-locals: Procedure—and—Function—Declaration—Part — Action

hide-locals [T Procedure I FPP ; B 3 1 =

bind id I to undefined

hlde-locals I PFDP, PFDP, 11 -

hide-loeals PFDP1 and hide-loealg PFDP2

produoe—formal~mode~list: Formal—Parameter-—Part — Action

deolare—formals: Formal—Parameter—Part — Action



