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Static Exception Handling
in Beta

Jorgen Lindskov Knudsen
Computer Science Department
Aarhus University, Denmark

Abstract

The concept of static exception handling have previously been investigated
in a general setting. In this paper, we will investigate the introduction of
static exception handling in the programming language Beta. The aim is
to show that static exception handling is a valuable contribution to object-
oriented programming. Furthermore, the paper illustrates the evolution of a
programming language feature from the general design phase to a concrete
proposal for inclusion into a full-fledged programming language (in this case
Beta).



Introduction

This paper will discuss static exception handling in the programming language Beta. It
is assumed that the reader is familiar with the Beta language as described in references /1/
and /2/. Furthermore, it is assumed that the reader is familiar with static exception
handling as described in references /3/ and /4/.

The discussion will be divided into four parts. First of all, some problems in Beta are
discussed. These problems are related to the coexistence of blockstructure, prefixing and
virtual binding. These problems need to be resolved in order to introduce hierarchical,
co-operative exception handling as discussed in reference /4/. Secondly, sequels in uni-
sequential Beta are discussed. Here it is illustrated that sequels can be included in the Beta
language merely by defining a sequel pattern. Thirdly, sequels in multi-sequential Beta
are discussed. Exception handling in multi-sequential Beta is particular interesting as it
gives rise to a discussion of issues of inter-process exception handling which have not been
dealt with in the two previous articles (references /3/ and /4/). Finally, implementation of
sequels in basic Beta is discussed.

1 Discussion of Prefixing, Virtual Binding, and Blockstructuring

The programming language Beta is a blockstructured language with extensive support of
object-oriented programming. This support is primarily through the concepts prefixing
and virtual binding. In this section, we will discuss the relationship between blockstructure,
prefixing and virtual binding, and thereby reveal some irregularities of the Beta language,
and finally propose some slight changes in order to remove these irregularities such that the
three mechanisms become more orthogonal.

One of the mechanisms for specifying the blockstructure of a Beta program is nested
singular instances, specified in the action-part. In order to ease the following discussion, we
will use the term “block” or “inner block” as a synonym to “singular instance, specified in
the action-part”.

Let us start by considering prefixing and blockstructure. Let us consider example 1.
The example shows two pattern declarations, A and A’.

A : Pattern (# Z : Pattexrn(# ... #);
P : Pattern Z(# ... #);
Do

B : (# R : Pattern P(# ... #);
Do

#);.
#

A’: Pattern A(# Z' : Pattern Z(# ... #); ... Do ... #);

Example 1:

In the attribute part of A, the patterns Z and P are declared (P prefixed with Z). The

action part of A contains an inner block B. In this block, a pattern attribute R (prefixed
with P) is declared.



The pattern A’ is prefixed with A and contains a pattern declaration of Z’ in its attribute
part (Z’ prefixed with Z).

All of these declarations (of A, Z, P, R, A’ and Z’) are legal and can be given a clean
semantics (given in ref./1/). Let us make one slight change, as can be seen in example 2.

A : Pattern (# Z : Pattern(# ... #);
PicZ;
Do

B : (# R : Pattern P(# ... #);
Dy

#);-

#);-
A’; Pattern A(# Z° : Pattern Z(# ... #);
Pu<Z;
Do

#);.

Example 2:

The only difference between example 1 and 2 is that we have made the binding of P into
a virtual binding. In A, an initial virtual binding of P is specified (P :< Z)!, and a further
binding of P (P ::< Z’) is specified in the subpattern A’. Again, all of these declarations
are legal, and can be given a clean semantics (given in ref./1/). However, making one
additional change (as in example 3) creates problems. (Beta has resolved this problem, see
later.)

The only difference between example 2 and 3 is that we in block B has further bound
P to R. This further binding creates ambiguities in the program. The problem arises when
we consider an instance a of A’. During execution of the action part of a, we might reach
the invocation of @P in block B. At that point P is further bound twice (once in B and
once in A’), and there is no guarantee that either of them is a subpattern of the other. That
is, the binding of P is ambiguous.

This ambiguity can be resolved by means of some ad-hoc rules but it can easy be seen
that such rules become highly complex and not very intuitive. It should also be noted
that this usage of virtual binding leads to bindings of a very dynamic nature (the bindings
will depend of the actual control flow). This is in contrast with virtual binding in Beta
(as described in reference /1/), where the virtual binding of an attribute is constant with
respect to one particular instance. It should be noted that the above problem is avoided in
Beta by only allowing further bindings to appear in subpatterns of the pattern containing
the initial virtual binding.

Unfortunately, the above Beta restriction on the usage of virtual binding makes virtual
binding along the blockhierarchy of a program nearly impossible. This can be illustrated
by example 4.

The example illustrates that we can create prefix hierarchies that reflect the blockhier-
archy of the program, but we cannot let the virtual bindings of a name follow the same

'The Beta terminology is slightly different than the one used here. In Beta, P :< Z is called a virtual pattern
declaration but in order to conform with reference /4/ we retain the terminology used there.



A : Pattern (# Z : Pattern(# ... #);
P:<Z;
Do

B : (# R : Pattern Z(# ... #);

P::<R;
Do
@P;
#);
#);
A': Pattern A(# Z' : Pattern Z(# ... #);
P acZl
Do
#);
a: @A’
Example 3:

(# Z : Pattern (# ... #);
Pi<Z;
Do
(# 2 : Pattexn Z(# ... #);
P i< Z'; (* illegal 1l *)
Do
#);

#);.

Example 4:



blockhierarchy. Prefixed inner blocks make one-level further bindings possible but does not
give the full generality. This is illustrated in example 5. Note, the further binding P ::< Z”

(# A : Pattern (# Z : Pattern (# ... #);
Pi<Z;
Do

#);
Do_

A# Z' : Pattern Z(# ... #);
P2
Do

i# Z” : Pattern Z'(# ... #);
P i< 27; (* still illegal Il *)
Do

) #);.
. ;#);

#);-

Example 5:

is still illegal!

As it can be seen from the above discussion, we need to relax the Beta restriction on the
usage of virtual bindings.
We will propose the following restriction:

If an initial virtual binding is present in the attribute part of a pattern A, then
further bindings can only be specified in subpatterns of A.

However, if the initial virtual binding is present in the attribute part of the
entity-descriptor associated with a singular entity, then further bindings can be
specified in inner blocks (i.e. in the attribute part of singular entities, inserted
in the action part of the entity itself).

This restriction would allow for the further binding P ::< Z’ in example 4, whereas the
further binding P ::< Z” in example 5 would still be illegal. In fact, the above restriction
makes virtual bindings along both the blockhierarchy and the prefixhierarchy possible, but
disallows any connections between the two virtual binding mechanisms. That is, one might
even use two different syntactic notions, depending on whether it is virtual binding along
the prefixhierarchy, or virtual binding along the blockhierarchy. However, we will in the
following use the same notion for both kinds of binding since no confusion is possible.

The above restriction does not apply to prefixing, and in that respect prefixing is
still more generally usable than virtual binding. However, the above restriction on possible
further bindings of virtual bindings has broadened the usability of virtual binding compared
with current Beta.

This kind of virtual binding resembles dynamic binding. The reason why virtual binding
along the blockhierarchy can be allowed in an otherwise static language is that the kind of



dynamic binding that can be specified by means of virtual binding is very restricted. Let us
consider example 6.

(# A : Pattern (# P : Pattern (# ... #);

VP < P;
R : Pattern (# ... Do ... VP ... #);
Do
#);
a:@A;

Do

(‘# Q : Pattern (# ... #);

VP :< Q;
S : Pattern (# ... Do ... VP ... #);

Do

(# Q' : Pattern Q(# ... #):
VP ::< Q;
Do'

S ke
;-R; {%2*)
#);:
-
#);:

#);‘

Example 6:

Note the two VP’s. One virtually bound in A, and one virtually bound (VP :< Q) in
the inner block. The action phase executed as a result of the invocation of S contains an
invocation of VP. If § is invoked at (*1*) this will result in execution of the action phase
of ', whereas it at (*3*) will result in execution of the action phase of Q. However, even
though VP is virtual in A, invoking VP through the a.R at (*2*) will lead to the execution
of the action phase of P, not Q. This is in contrast to dynamic binding where it would
have been the action phase of Q’.

The virtual binding mechanism is restrained in one further respect compared with
dynamic binding. The further binding of a virtual pattern must follow a prefixhierarchy
(that is, the pattern specified in the further binding must be prefixed with the pattern
specified in any previous further/initial binding), whereas using dynamic binding there is
no way within the language to ensure that any relation holds between the various bindings
of a particular name.

Furthermore, having the possibility of virtual binding along the blockhierarchy of a
program gives further opportunities for top-down development for programs. Furthermore,
this additional dynamics gives only rise to a slightly more complex implementation since
the implementation technique to be used for this kind of virtual binding is almost identical
to the one to be used for virtual prefixes in current Beta. The extra complexity is at



block-entry/exit. In a block containing a further binding of a virtual pattern, the virtual
pattern association must be relocated to the pattern specified in the further binding. This
relocation must be done at block-entry, and the old association must be restored at block
exit.

Informally, the following must be done for each virtual pattern with a further binding
in the block:

block entry: Push the current association on the stack
Virtual Pattern Pointer : = Further Binding Pattern
block exit: Pop the old association off the stack

Virtual Pattern Pointer : = Old Association

Note, that the extra complexity is very minimal (in the order of 2 operations), and the extra
cost is only charged on blocks that actually utilizes the virtual binding mechanism.

One problem remains to be discussed: Instances of virtual patterns, and instances of
patterns with a virtual prefix (in short called virtual instances in the following discussion).

Virtual instances declared in the attribute part of patterns can be dealt with effectively
by means of indirect addressing (pointer to the actual entity).

Virtual instances declared in the attribute part of inner blocks introduces additional
problems. First of all, Beta has to allocate such instances off-line in order to be able to
do compile-time calculation of attribut-offsets of entities (just as above). But one problem
remains, namely the actual allocation. Let us illustrate by example 7.

(# P : Pattern (# ... #):

VP < P
v:@VP;
Do

. (* here we must be able to access the *)

. (* P specific attributes of v *)

(# P’ : Pattern P(# ... #);
VP ::< P’;

Do
- (* here we must be able to access the *)
. (* P’ specific attributes of v *)

#);

(# P : Pattern P(# ... #);
VP ::< P

Do
. (* here we must be able to access the *)
. (* P” specific attributes of v ¥)

#)

- (* here we are only able to access the *)

. (* P specific attributes of v *)

#);

Example 7:

The problem is that we must be able to allocate an entity that can be interpreted by
any pattern that is bound to VP in all inner blocks to the block in which v is declared. In
many cases, this is possible at compile-time, but in the worst case, the virtual part of v has
to be dynamically allocated (i.e. off-line).



Summary

Introducing virtual bindings along the blockhierarchy will allow usage of virtual binding
more generally than in current Beta. Moreover, the implementation is only slightly more
complicated than virtual binding along the prefixhierarchy, and the extra cost is only
charged when the mechanism is actually used. However, in order to avoid conflicting
further bindings we have to restrict the usage of virtual binding in such a way that virtual
bindings along the prefixhierarchies are separated from the virtual bindings along the
blockhierarchies. This restriction is a slight relaxation of the restriction imposed on virtual
bindings in current Beta.

That is, virtual bindings along the blockhierarchy can be incorporated in the Beta
language just by relaxing one language restriction and without making the implementation
significantly more complex.

2 Introducing Sequels into Beta

Following the above discussion of prefixing, virtual binding and blockstructure in Beta, we
are in position to discuss the introduction of static exception handling in Beta. We will
divide the discussion into two steps. Firstly, we discuss introduction of sequels into the
uni-sequential part of Beta, and secondly, we discuss the introduction of sequels into the
multi-sequential part of Beta.

2.1 Introducing Sequels into Uni-sequential Beta

Let us start by introducing a predefined pattern named Sequel that implement the
desired behaviour of sequels. In a later section, we will comment on how to implement this
pattern in basic Beta. Sequels as described in references /3/ and /4/ will now be specified
in Beta as patterns with Sequel in their prefix-chain.? The semantics of sequels in Beta can
now be formulated as follows:

Let s be a sequel instance with descriptor D such that
*D=§#..#orD=S§,
and Aj: Pattern (# ... #)
A, : fPattern A, (... 8, : Pattern Sequel(# ... #) ... #)
A ::Pattern A, _#..S :PatternS,_,(#...#) ... #
A;: P:attern A, #...#H

and ais an instance with descriptor
A#..s=D..#H.
Then the termination level of s is A, . That is, execution of s in a will result
in termination of all a activities originating from the action part specified
in A,. And execution will be resumed after the inner-imperative in A,_,.
(The #nner-imperative that initiated the action part specified in A,)

ZNote that we in the following will use the term sequel in two different ways. When we say “the pattern Sequel
(capital 5)”, we refer to the predefined pattern, implementing the sequel behaviour. When we say “a sequel”,
we refer to any entity with the predefined pattern Sequel in its prefix-chain. No confusion should be possible.



® D = Sequel

and ain an instance with descriptor
P#...s=D...#.
Then the termination level of s is the encloser of Sequel. (We will comment
on this case later.)

The rationale of the above rule is the following: Introducing a descriptor with Sequel
as the immediate prefix is in the Beta programming language synonymous to defining a
sequel by means of a specialized language construct (such as the one used in references /3/
and /4/).

Let us illustrate this semantics of sequels by means of three examples from references /3/
and /4/, now formulated in Beta with the predefined pattern Sequel. The termination
level of instances of the sequels Present and Absent in example 8 is TableSearchAndCount

TableSearchAndCount : Pattern
(# A : @Table;
X : @Item;
I : @Tablelndex;
Result : @Tablelndex;
Present : Pattern Sequel
(#] : @Tablelndex;
Enter <J>
Do A.Occurrences[]] + 1 => A.Occurrences[J];
J => Resulg;
#);
Absent : Pattern Sequel
(#] : @TableIndex;
Enter <J>
Do 1 => A.Occurrences[]J];
X => A.ltem[]];
J => Result;
#);
Enter <A, X>
Do X =>Hash =>1;
Cycle(# Do (if A.Item[I] =
// X then I => Present;
// nullltem then I => Absent;
if);
I Mod TableMax =>1;1 + 1 =>1;
#);
Exit <Result>
#);

Example 8: example 3 from reference /3/

since S, in that case is Present and Absent, respectively. In example 9, the termination
level of instances of the sequel LocalError is Bl since S, in that case is ResourceError.
Example 10 is a more realistic example of usage of static exception handling in Beta and
we will therefore comment more detailed on that example.

In block B, a Stack pattern is declared with two virtual sequel patterns Overflow and
Underflow. These virtual sequels are invoked in Push and Pop, respectively. Furthermore,



B1 : (# ResourceError : Pattern Sequel
(# Do ResourcelUndo; INNER; ResourcelRelease #);
Do

ResourcelRequest;

B2 : (# LocalError : Pattern ResourceError
(# Do Script!ScriptError; INNER; ScriptlDisEngage #);
Do

Script!lEngage;
LocalError;

Script!DisEngage;
#);

ResourcelRelease;
#);

Example 9: example 11 from reference /4/

in B, a sequel StackError is declared and a specialization of Stack named GlobalStack,
in which Overflow and Underflow are final bound to StackError. Finally, a P pattern
in specified in B. In P, two sequels IllegalPush and IllegalPop are declared, and a
specialization of Stack named LocalStack, in which Overflow is final bound to IllegalPush,
and Underflow is final bound to IllegalPop. Finally, Stackl is declared as an instance of
LocalStack, and Stack2 is declared as an instance of GlobalStack. In the action-part of
P, two imperatives are shown: I => Stackl.Push and | => Stack2.Push. If Overflow is
invoked during I => Stackl.Push, then Overflow is bound to IllegalPush, in which case S,
is IllegalPush and therefore the termination level of Overflow is P. If, on the other hand,
Overflow were invoked during J => Stack2. Push, then Overflow is bound to StackError, in
which case S, is StackError, and therefore the termination level of Overflow is B

These three examples show that with the predefined pattern Sequel it is possible to
specify static exception handling in Beta along the lines of references /3/ and /4/.

In the rest of this section, we will discuss issues of static exception handling particular
related to the structure of the Beta programming language. The generality of the Beta
language gives rise to some additional considerations.

The first consideration is immediate instances of Sequel (case D = Sequel on page 7)
as illustrated in example 11. We will here comment on two different interpretations of
D = Sequel. There are two possibilities: Firstly, the termination level might be B (i.e.
the termination level of an immediate instance of Sequel is the encloser of the instance).
This would have as consequence that the termination level of Sequel would be dynamic
(i.e. two instances may have different termination level) whereas the termination level of
any subpatterns of Sequel would be static. This is in contrast with the static approach
to exception handling and we must therefore consider the other alternative. The second
alternative is that the termination level is the encloser of the Sequel pattern. This implies
that the termination level of Sequel is static and thus consistent with the static approach
to exception handling. Furthermore, the behaviour of the first alternative can easily be
simulated as illustrated in example 12. This second interpretation is the one used in the
semantics on page 7.



B : (# Stack : Pattern
(# Max :< Integer;
Overflow, Underflow :< Sequel;
Store : @[Max]Item;
Top : @Integer;
Push : Pattern (# 1 : @Item;
Enter <I>
Do (if Top =// Max then Overflow if);
Top + 1 => Top;
I => Store[Top];
#);
Pop : Pattern (# Result : @Item;
Do (if Top =// 0 then Underflow if);
Store[Top] => Result;
Top -1 => Top;
Exit <Result>
#);
Empty : Pattern (# Do Exit <Top = 0> #);
Do (* Stack initialization *) 0 => Top #);
StackError : Pattern Sequel (# ... #);
GlobalStack : Pattern Stack(# Overflow :: StackError; Underflow :: StackError #);
P : Pattern
(# IllegalPush : Pattern Sequel(# ... #);
IllegalPop : Pattern Sequel(# ... #);
LocalStack : Pattern Stack(# Overflow :: IllegalPush; Underflow :: IllegalPop #);
Stackl : @LocalStack(# Max :: 100 #);
Stack2 : @GlobalStack(# Max :: 50 #);
Do (* P *)

I => Stackl.Push;
J => Stack2.Push;
#);
Do (*B *)

P;
#);

Example 10: example 10 from reference /3/

B: (#5: @Sequel;
Do

S; (* what is the termination level of S? *)

#);‘

Example 11:

10



B:(#S: @Sequel(# ... #);
Do

S; (* with termination level B *)

#);.

Example 12:

The second consideration is sequels as attributes to static instances. Let us consider
example 13. Assume that we in an entity R executes Stack. Push, and assume further that

Stack : (#
bverﬂow : Pattern Sequel(# ... #);

Push : Pattern (# 1 : @Item;
Enter <I>
Do (if Top =// Max then Overflow if);
Top + 1 => Top;
I => Store[Top];

#);
Do (* Stack *)
0 => Top;
#);
Example 13:

Stack.Top = Stack.Max. Then Stack. Overflow will be executed, terminating the action
part of Stack but not terminating Push, since Push is not an activity originating from the
action part of Stack.

This underlines one fundamental principle of static exception handling in Beta: Invo-
cation of a sequel in a Beta program will only affect the activities originating from the
action part of the termination level — all other activities are unaffected by the exception
occurrence. In example 13 this implies that Pusk must be designed otherwise if Push should
be terminated when Overflow is executed, as illustrated in example 14.

Push : Pattern (# I : @Item;
PushError : Pattern Sequel(# ... Do ... Overflow #);
Enter <I>
Do (if Top =// Max then PushError if);
Top + 1 => Top;
I => Store[Top];
#);

Example 14:

Let us consider example 15 that illustrates the consequences of the co-existence of

11



prefixed instances and sequel attributes of such prefixed entities. Then, if execution of the

(# A : Pattern P(# )
S : Pattern Sequel (# ... #);

Doi

#);:

a : @A; (* Static instance *)
a’: #A; (* Dynamic instance *)

Do
.=>A =>,,
i =,
L =>.@A => ..
L=>.a => .
#);
Example 15:

action part of any instance of A reaches the invocation of S, the action part of § will be
executed, and if it terminates successfully,® the execution of all actions originated from the
action part of the particular instance of A will be terminated (including the action part of
A). Whether or not the particular instance of A will become inaccessible after the sequel
invocation, is a property of its mode of generation and not a direct consequence of the
sequel invocation.

Note, that it is only the action part of A that is terminated by the invocation of S.
That is, execution will continue after the snner-imperative in P which caused the execution
of the action part of A. This semantics of sequel invocations is first of all consistent with
the treatment of blocks in reference /4/, and furthermore consistent with the declaration
of § as an attribute of A, and not of P. That is, S belongs to the abstraction level of A
and is unknown to the abstraction level of P. In other words, S must handle the exception
occurrence in such a way that control can be passed securely to the P level. If not, S should
invoke another sequel either declared in P, in one of P’s superpatterns, or declared in an
outer scope.

Finally, example 16 outlines the structure of a Beta program with static exception
handling, utilizing both prefixing and virtual binding. With the above discussion, the
example requires only a few comments:

In the instance BetaProgram, patterns A and A’, and instances a, a’, t and r are
declared. In the prefix BetaPredefinedEnvironment, the Sequel pattern is declared and
a sequel instance Halt. Sequel Halt will terminate the entire BetaProgram (including
the action part specified in BetaPredefinedEnvironment). Sequel t will terminate the
entire BetaProgram (as Halt), whereas sequel r will terminate the action part specified in
BetaProgram (returning control to BetaPredefinedEnvironment). Sequel S will terminate

*In the following, we will assume that sequels terminate successfully when invoced. This is just to ease the
discussion and does not limit the validity of the discussion.

12



BetaPredefinedEnvironment : Pattern (#

Sequel : Pattern (#
Halt : @Sequel;

#;
BetaProgram : BetaPredefined Environment
(# A : Pattern (# S : Pattern Sequel(# ... #);

VS :< Sequel;
X : @VS;

Do

#);

A’ : Pattern A(#
S’ : Pattern Sequel(# ... #);
S” : Pattern S(# ... #);
VS i< §;
Do

#);
a: @A;
a': @A’
t : @Sequel;
r: @Sequel(# ... #);
Do

#);.

Example 16:

13
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the action part specified in A both when invoked in a and a’. Sequel §’ will terminate the
action part of A’, whereas sequel §”” will terminate the action part specified in A, too.

Instances of VS are a little irregular, and indicates the need for constraints on the usage
of the Sequel pattern. Instances of VS in a (e.g. x) will terminate the entire BetaProgram
(as Halt and t) whereas instances of VS in a’ (e.g. x) will terminate the action part specified
in A’. If there were no further binding of VS in A’, instances of VS in a’ would have
terminated the entire BetaProgram. Although we cannot enforce the constraint on the
usage of Sequel in current Beta, we strongly recommend that the Sequel pattern is only
used for prefix specification in order to avoid the irregularities of instances of, say, VS.

This situation is very similar to the concept of abstract classes in Smalltalk-80 (refer-
ence /5/). Abstract classes in Smalltalk-80 are classes of which no immediate instances may
be created — only instances of subclasses of the abstract class.

Summary

In summary, introducing sequels in uni-sequential Beta is possible without too many
compromises. The only problems are attributed to sequels being introduced as a predefined
pattern Sequel and not as a new concept with its own rules. Fortunately, these irregularities
are only minor borderline cases that can be eliminated by one additional rule saying
that the predefined pattern Sequel can only be used as prefix in pattern declarations.
Earlier descriptions of the Beta programming language discussed mechanisms for putting
constraints on the possible usages of certain patterns, but such mechanisms are not part of
current Beta. If such mechanisms were avaiable, we would only allow Sequel to be used
as prefix and thereby avoiding the problems of immediate instances of Sequel. However,
since these irregularities can be avoided by trivial programming tricks as shown above, we
will allow their presence and make use of their flexibility when appropriate.

Basically, this is all there is to sequels in uni-sequential Beta and with the above
mentioned restriction on the usage of virtual binding, the discussion in reference /4/ is
applicable to Beta.

It should be noted, that the concept of default sequels discussed in reference /4/ is not
contained in the present proposal for sequels in Beta. The reason is that the concept of
default sequels is a very specialized concept, and as such it does not conform well into the
Beta framework of very general language constructs.

2.2 Introducing Sequels into Multi-sequential Beta

Objects in Beta are the containers of individual control-threads in a Beta program. Objects
may be compound objects. In order to ease the following discussion we define four different
states that an object may be in during its entire lifetime.

Active: We say that an object is in Actéve state when it is executing the imperatives in its
action part (excluding any ObjectExecution-imperatives).

Dormant: We say that an object is in Dormant state when it is executing an ObjectExecution-
imperative (.8, either (/.7 Lsd) OF U il ED) ).

Suspended: We say that an object is in Suspended state when it either has executed a
suspend-imperative, has finished executing its action part, or the ObjectExecution-
imperative it is part of, has become detached.

14



We say that an ObjectExecution-imperative will become detached, if either a detach-
imperative is executed by one of the objects, denoted in the ObjectExecution-
imperative, or a sequel declared in the outer scope to the ObjectExecution-imperative
is invoked during execution of the ObjectExecution-imperative.

Terminated: We say that an object is in Terminated state when it has finished executing its

action part, or a sequel declared local to the object has been invoked and terminated
successfully.

In order to analyze exception handling in multi-sequential Beta, we only have to consider
objects in states Active and Dormant. The states Suspended and Terminated are irrelevant
to this discussion since no further actions of the objects will be executed in these states
(except for resumption in the Suspended state afterwhich the object converts into Active
state)

An object in Active state may in principle engage in three different activities. Firstly,
it may execute its own action part and the action part of local instances. Secondly, it may
engage in communication with some other object, or finally, it may request the execution
of global instances. Note, that communication is synchronized mutual exclusive execution
of the action part of an instance local to one of the communication partners.

An object in Dormant state may engage in two different activities. Firstly, it may execute
the action part of one of its local instances on request from one of the objects specified in
the ObjectExecution-imperative. Such executions are mutual exclusive. Secondly, it may
engage in communication with some other object, either a global object, or one of the other
objects of the ObjectExecution-imperative.

In the following, we will discuss the different cases in which sequels might be executed
in multi-sequential Beta. Furthermore, we will discuss the consequences of invoking the
sequels in the different cases. We will assume, that we have an object A with a local sequel
attribute, named S (i.e. the termination level of § is A. We will divide the discussion into
two parts. Firstly, we will assume that A is in Active state, and secondly, we will assume
that A is in Dormant state.

Objects in Active state

Let us assume that A is in Actsve state. There is now four different cases to consider:

1. A may execute the action parts of local instances. During this, a sequel local to A
might be invoked, resulting in the termination of all activities originated within A (as
discussed in section 2.1). If the action part of A is invoked by an inner-imperative,
execution of A resumes after the inner-imperative in the prefix. Otherwise, A will go
into Terminated state. The sequel must have been invoked as a consequence of the
execution of the action part of some local instance; That is, the exception occurrence
does not involve any other objects.

2. A may accept communications with some other object Q. The static instance deno-
tation in the accept-imperative denotes a local instance R. During the syncronized
execution of the entity, A cannot be terminated by an invocation of S, other than
invocations originated from R, since A executes R in mutual exclusion. If, through
the execution of R, S is invoked, the communication with Q is deadlocked. The only
way in which Q can be unlocked is if Q is in Dormant state and one of the objects in
the ObjectExecution-imperative executes the A! R and another accepts invocations of

15



some Q-local sequel (e.g. executes ?S’). In that case, S has the opportunity of invoking
§’ in Q, just prior to its termination of the action part of A. The communication need
not deadlock if no synchronizations are pending when R is terminated by .

Note, that the local instance denoted by the accept-imperative might be a static
instance of a sequel. In that case, A accepts its action part to be terminated by some
other object Q.

3. A may execute an accept-imperative where the static instance denotation denotes
some global instances. This case will be dealt with later when we discuss A in
Dormant state.

4. A may execute a request-imperative. If during the synchronized execution of the
entity, an exception occurs, we are in the opposite situation to the one discussed
in case 2 above, and A will therefore be locked in the communication if there
are any pending synchronizations in the communication. Note, that this is no
worse than the request never being accepted, or some cases of usage of detach-
or leave/restart-imperatives. Note that the acceptor of the communication cannot
succeed in requesting A to execute some of its own sequels since A cannot accept
another communication while locked in the communication that caused the initial
exception to occur.

There is one subtle point with respect to synchronized executions of sequels. Synchro-
nized execution of sequels does not give rise to deadlock situations, since they need
not synchronize at the delivery of the exit-list as sequels, by their very nature, cannot
have exit-lists.

In conclusion, if A is in Active state, its execution cannot be interrupted by exception
occurrences except those that A is directly involved in. More importantly, none of the

communications that A might accept can be asynchronously interrupted by a sequel
declared in A.

Objects in Dormant state

The situation is more complex when we consider A in Dormant state. In Dormant state,
several objects have been initiated by A in an ObjectExecution-imperative. For the sake of
the following discussion, we will call these objects the running objects.

Let us consider one of these running objects. Then there are five different cases to
consider:

1. One of the running objects may execute the action part of its own local entities. This
situation is not different from case 1 of an object in Active state.

2. One of the running objects may request the execution of global instances. Since global
instances are executed in mutual exclusion, their execution will not be terminated by
an invocation of S in A, other that invocations through the execution of the global
instance.

3. One of the running objects may denote a global instance in an accept-imperative.
This is with respect to sequel invocation not different from the previous case.

4. 'Two running objects may both engage in the synchronized execution of the same
entity. The entity must then be local to one of them. During this synchronized
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execution, S might be invoced (caused by a third running object). This will cause all
running objects to be suspended, including the two synchronized objects, but since
they are synchronized with each other, and both are suspended, deadlock is avoided.
Note, they might be resumed at some later point, thereby possibly completing the
communication.

5. Onme of the running objects may itself engage in communication with a global object
different from A. This can be by executing either an accept-imperative or a request-
imperative. In both cases, S might be invoked (caused by one of the other running
objects) in which case all running objects will be suspended immediately.

If S is invoked while the running object is executing an accept-statement (and the
synchronized execution of the entity has been initiated), the global object will be
locked just as discussed in case 2 of an Active object.

If, on the other hand, S is invoked while the running object is executing a request-
imperative (and the synchronized execution has been initiated), the global object
need not be involved; It may just discard any exit-list produced. However, we have
to impose one restriction on the sequel S in such cases. S must not terminate before
all pending synchronizations are fulfilled in order to ensure secure synchronization of
the system irrespectively of whether S is invoced or not. One might say that $ in such
cases must fulfill any synchronizations on the behalf of the running objects.

This concludes the detailed discussion of sequels in multi-sequential Beta. Note, that the
above discussion applies just as well if S is declared local to an outer block in which the
ObjectExecution-imperative is present.

3 Implementation of the pattern Sequel in Basic Beta

In the above discussion, we have introduced static exception handling into the programming
language Beta by means of a predefined pattern Sequel. In this section, we will discuss one
approach to implementing this pattern in Basic Beta.

Basically, we only need to be able to denote the action part corresponding to the
termination level. Given this ability, the only thing the pattern Sequel needs to do is
to issue a leave-imperative as its last imperative (with the label denoting the action part
corresponding to the termination level).

In order to specify this denotation, we have to introduce some structural attributes. The
structural attributes are attributes supplied and maintained by the implementation. The
prototype implementation of Beta contains the definition of several structural attributes of
which two are of interest here: SUB* and ORG. In order to implement the Sequel pattern
in Beta, we would like to add one structural attribute ACTION, denoting the action part
of the entity, and to extend the usability of all the structural attributes. The extension is
to allow the structural attributes to be used to specify attribute denotations as composite
denotations (i.e. using the usual ‘.’-notation).”

That is, we utilize the following structural attributes:

*Actually, SUB is called MAINP and with a slightly different meaning. The differences are of no concern to
the following discussion.

Note, that we in this paper do not propose these structural attributes to be generally usable, but as convenient
notations for the implementation. It should be obvious, that the compiler and/or the run-time system easily
can deduce these attributes. In order not to burden all entities with these structural attributes, it would be
convenient to be able to specify that these attributes are only maintained for instances of particular patterns,
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ORG: Denotes the origin of the entity.

SUB: Denotes the entity at the qualification of a possible subpattern of the entity (none if
no subpattern exists).

ACTION: Denotes the action part of the entity.

As noted above, we are discussing one possible implementation of sequels and not whether
the proposed structural attributes should be generally usable programming tools.
Using these structural attributes, we are able to specify the pattern Sequel to be:

Sequel : Pattern (#

Do
INNER;
(if (SUB = none) =
/7 true then leave ORG.ACTION;
// false then leave SUB.ORG.ACTION;
if);

#);

It should be noted that this particular usage of the leave-imperative is not allowed in
current Beta.

In fact, this is all there is to implementing sequels in Beta, since the above discussion of
sequels in multi-sequential Beta equally well applies in the case where one of the running
objects executes a leave-imperative with a label denoting an enclosing block. In other
words, the problems discussed must be dealt with in Beta because of the existence of the
leave-imperative, and not because of the introduction of sequels into the language.

Final Remarks

The above discussion reveals that static exception handling along the lines of refer-
ences /3/ and /4/ can be introduced in object-oriented programming, examplified by the
programming language Beta. The discussion of virtual binding along the block-structure
have revealed the usefulness hereof and illustrated that allowing virtual binding along the
block-structure does not complicate the implementation significantly.

Introducing the sequel concept in Beta have been shown to be possible. Minor
compromisis have been necessary. The generality of the Beta language have been both an
advantage and a disadvantage. The prime advantage have been the ability to introduce the
sequel concept in Beta merely be defining one pattern. The prime disadvantage have been
not to be able to disallow immediate instances of this sequel pattern and some problems
concerning virtual instances.

Fortunately, these disadvantages show up in borderline cases, and only realistic usage of
the proposal will reveal whether these disadvantages are minor or not.

The discussion of static exception handling in the multi-sequential part of Beta illustrates
one important aspect of this proposal — an exception is associated with one and only one
control-thread. This implies that exception handling strategies during a rendezvous of
control-threads is not an inherent proporty of this proposal — an exception occurrence
will only affect one of the involved control-threads. If other exception handling strategies

and otherwise not. This would allow the definition, within the language itself, of further structural attributes,
without wasting space in those entities that does not utilize them.
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are wanted in a particular application, the programmer is free to implement the specific
strategy and is not restricted to the language-defined strategy.

The discussion of the implementation of the sequel pattern show that implementation
is possible if access is allowed to some of the structural attributes that are normally
maintained by the compiler. The implementation have not been tested in the proto-type
implementation, yet.

This proposal for introduction of static exception handling in Beta is final in the sence
that the next step must be to incorporate the proposal in the proto-type implementation and
then resolve the above mentioned problems during the implementation phase and during
realistic programming tasks using the proposal.
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