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Abstract

A multiple inheritance mechanism on processes is introduced.
Processes are described in classes, and the different action
parts of a process inherited from different classes are executed
in a coroutine-like style called alternation.

The inheritance mechanism is a useful tool for factorizing the
description of common aspects of processes. This is demonstrated
within the domain of distributed programming by using the in-
heritance mechanism to factorize the description of distributed
termination detection algorithms from the description of the
distributed main computations for which termination 1is to be
detected.

The factorization is obtained by programming the termination
detection algorithms in separate classes. The main computations
are programmed in classes that use appropriate termination detec-
tion classes as superclasses. A clear separation of concerns is
obtained, and arbitrary combinations of termination detection al-

gorithms and main computations can be formed.

The same termination detection classes can also be used for more
general purposes within distributed programming, such as detec-

ting termination of each phase in a multi-phase main computatioh.



1 Introduction

In [15] a multiple inheritance mechanism on processes was in-
troduced. The idea is that not only data but also processes can
be organized in an inheritance hierarchy 1like the subclass
hierarchies of Simula [3], Smalltalk [7] and Beta [10].
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fig. 1

The process P5 in fig. 1 inherits declarations and action parts
from Pl, P2 and P3. Execution of a P5 process implies execution
of four different action parts in a coroutine like style called
alternation.

The most important advantage of inheritance on processes is that
it allows factorization of common process parts that can be
described once and used by different subclasses. Inheritance
makes it possible to separate different concerns and thus sim-
plify the involved algorithns.

In [15], the examples used to illustrate the use of inheritance
with alternation on processes were mainly chosen from the
database area. The purpose of this paper is to show some larger
examples from another application area, namely distributed

programming.

When programming a distributed algorithm, it is often so that the
algorithm can be more clearly and simply formulated when ignoring
how the processes should agree to finish the computation or dif-
ferent phases of - it. It then remains to detect when certain

kinds of stable states in the distributed system are reached. On



detection of a stable state, the appropriate reaction may be just
to terminate, or to report some state of the system, and/or to

initiate a new phase of computation.

A number of stability detection algorithms, often called ter-
mination detection algorithms, have been developed for detection
of certain kinds of stability in a distributed system. They are
general in the sense that they can be expressed independently of
the main computation for which they detect stability.

We will talk about "termination detection" because the algorithms
discussed in this paper are presented by their authors as ter-
mination detection algorithms, although they detect a certain
kind of stability which could cause other reactions than ter-

mination, e.g. initiation of a new computational phase.

Since the main computation and the termination detection al-
gorithm can be conceptually separated, it is desirable to have
language constructs that make it possible to program them
separately, instead of integrating them textually. Such a
separation will make the conceptual structure of the algorithms
more clear. Moreover, it should make it possible to use the same
termination detection algorithm in different main computations or
vice versa, without duplicating the description of either of
them. '

We will show that such separation of concerns can be obtained
through inheritance with alternation on processes. The coroutine
like alternation mechanism fits nicely with the nature of the in-
teraction between a termination detection algorithm and a main

computation.

Organization of the paper

The reader 1is expected to be familiar with object oriented
languages like Simula [3] and Smalltalk [7]. Hopefully, however,
people whose main interest is in distributed programming could

also read the paper with profit.



In section 2, we will present the distributed termination problem
in detail and discuss the overall idea of using inheritance for
describing termination algorithms.

In section 3, the termination detection algorithm by Dijkstra,
Feien and Van Gasteren [4] is presented and programmed by means
of the language outlined in Appendix A. A distributed algorithm
computing the shortest paths in a graph is programmed to il-
lustrate the use of the termination detection algorithm. The
algorithm by Dijkstra, Feien and Van Gasteren has been chosen
because it is intuitively simple and easy to explain also to the

reader who is unfamiliar with distributed programming.

Section 4 contains brief presentations and realizations of other
termination detection algorithms, to convince the reader who is
familiar with distributed programming that the technique of using
inheritance with alternation is applicable to a big class of ter-
mination detection algorithms. This section could be skipped by
the reader who is only interested in the main points of the

paper.

In section 5 we evaluate the results obtained and discuss some
more general applications of inheritance. Moreover, we comment on

future language design for the purpose.

Appendix A outlines a language with inheritance on processes. The
language serves as a framework for presenting inheritance on

processes and is in most other respects very rudimentary.

2 Factorization of Termination Detection

In this section we will present the problem of detecting ter-
mination in a distributed system, and we will show the overall
idea of using inheritance to separate the description of the ter-

mination detection and the main computation.



2.1 Termination Detection

The classical way of presenting the problem of distributed ter-
mination detection is as follows:

We have a distributed system consisting of a finite set of
processes and a set of communication channels each connecting two
distinct processes. A distributed computation called the main
computation is performed in the system. Each process carries out
some local computation and can communicate with neighbour proces-
ses by means of asynchronous message passing. The messages
related to the main computation are called primary messages. Com-
munication channels are assumed to be error free and deliver mes-
sages 1in the order sent, and message buffers are assumed to be
infinite. From the point of view of the main computation, a
process 1is at any moment either active or passive. Only active
processes send primary messages. Reception of a primary message
makes a process change from passive to active. An active process
may become passive spontaneously, whereas passive processes

remain passive until they receive a primary message.

The state in which all processes are passive from the main com-
putations point of view, and no primary messages are in transit
is a stable state. Often the system is intended to terminate when
such a stability is reached. The problem of detecting this kind
of stability is therefore usually called termination detection,
although other reactions than termination are possible. We will

adopt the conventional terminology in the following.

Termination should be detected by a distributed algorithm based
on control messages sent between the processes. A process can
participate in the termination detection algorithm when it is

passive from the main computation's point of view.

2.2 Common Structure of Termination Detection Algorithms

Many different algorithms have been developed for this purpose,



e.dg. (41, ([6]1, [12], [16]. Mcst of them assume that the main
computation is programmed in some high level language similar to
CSP [9] with guarded commands. The typical structure of the ter-
mination detection algorithms is that each process administrates
some status variables that are updated each time the process
receives and/or sends a primary message. Moreover, a control com-
munication part consisting of a number of guarded commands is
superimposed on the main computation of each process 1in such a
way that the control communication part is only active when the

main computation is passive.

Franzec and Rodeh [6] explicitly describe how their algorithm can
be incorporated intec a main computation by means of a series of
textual changes to the main computation algorithm (provided that

the main computation has a specific structure).

The technique of textually modifying the main computation is not
very appealing from a programming methodological point of view,
where abstraction and separation of concerns are important prin-
ciples. The termination detection algorithm can be used for many
different main algorithms, so the termination detection algorithm
should be factorized out by means of an abstraction which could
be used in different contexts. By separating the description of
the main algorithm and the termination detection algorithm, the
structure of each could be easily comprehended without being ob-
scured by irrelevant details conceptually belonging to the other

algorithm.

The point of this paper is that the inheritance mechanism for
processes presented in the next section and Appendix A is a high

level language construct that is well suited for this purpose.

2.3 A Small Language With Inheritance

A small language with inheritance on processes is outlined in Ap-
pendix A. The language is based on classes that contain

declarations and a statement list called an action part. The most



important statements are assignment statements, communication
statements for asynchronous message passing (denoted by ? and !),
and alternative and repetitive guarded commands (denoted if...fi
and do...od).

Classes are organized in a subclass hierarchy (multiple in-
heritance hierarchy) such that a subclass inherits all properties
from its superclasses.

An instance of a class is an autonomous process that executes in
parallel with other processes. A process has all the properties
described 1in its class and its superclasses, including an action
part from each class. The different action parts of a process
are executed alternately such that only one action part is active
at a time, and control alternates between them at specific
changeover points denoted by "*". Each changeover point specifies
a resumption condition that describes under what circumstances

the action part can be resumed for execution.

As a starting convention all the action parts of a process are
executed until their first changeover point in a top down sequen-
ce in the inheritance hierarchy. After this initial activity, the
alternation mechanism works as follows: When an active action
part reaches a changeover point, control is transferred to an ac-
tion part with satisfied resumption condition and highest
priority (possibly the currently active action part). As a
default convention, priorities are associated with classes in a
bottom-up manner such that the action part of a subclass has

higher priority than the action parts of its superclasses.

2.4 Use of Inheritance in Termination Detection

The inheritance mechanism suits the problem of factorizing ter-
mination detection algorithms from main computations in that it
allows the termination detection algorithm to be programmed in a
class (actually two classes) and the main computation to be

programmed as a subclass of this class. See fig. 2.
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The actual distributed processes will be instances of the main
computation subclass, implying that they each have all the
properties described in both classes, including an action part
for the main computation and an action part for the termination
detection algorithm. The termination class describes the status
variables, and its action part constitutes the control com-
munication part of the termination detection algorithm (see sec-
tion 2.2). Moreover, the termination class defines some abstrac-
tions - procedures or guarded command abstractions - that enfor-
ces the preconditions (if any) for primary communication, enfor-
ces a changeover point when no message is available (with resump-
tion condition "message available"), and updates the status
variables after the communication. These abstractions are in-
herited by the main computation subclass and are used for all
primary communication. Thus in a process that is an instance of
the main computation class, the two action parts will alternate
in such a way that the main computation has highest priority but
gives control to the termination detection algorithm when it is

waiting for a message.



3 A Termination Detection Algorithm

In section 3.1, the distributed termination detection algorithm
developed by Dijkstra, Feien and Van Gasteren [4] will be
described. We will use the name DFVG for the algorithm. In sec-
tion 3.2 the algorithm is realized by means of the language that
was briefly introduced in section 2.3. The language is described
in more detail in Appendix A. Section 3.3 describes an example of
use of the realized algorithm.

3.1 Presentation of DFVG

In addition to the assumptions already mentioned in the general
problem formulation, the DFVG algorithm assumes that the proces-
ses are connected 1in a ring with respect to control com-
munication, that consists of simple black and white tokens. That
is, the processes can be numbered such that PO can send tokens to
Pn-1 and Pi can send tokens to Pi-1 for i=1..n-1. Moreover, mes-
sage passing is assumed to be instantaneous such that when a mes-
sage is sent, it arrives immediately at the buffer of the
recipient. The consequence of this assumption is that ter-
mination can be concluded when knowing that all processes are
passive, since there are never any messages in transit between
two processes.

The DFVG algorithm consists of a number of probes started by PO.
The processes and the token that constitutes the probe have
colours black or white, and the token is circulated according to
the following rules (taken directly from [4]):
- Rule 1:
A process sending a primary message makes itself black.
- Rule 2:
PO initiates a probe by making itself white and sending a
white token to Pn-1
- Rule 3:
When active, Pi+l keeps the token; when passive, it hands



over the token to Pi.

- Rule 4:
When Pi+1 propagates the probe, it hands over a black token
if it is black itself, whereas being white it 1leaves the
colour of the token unchanged.

- Rule 5:
Upon transmission of the token to Pi, Pi+l1 becomes white.
(Its original colour may have influenced the colour of the
token because of rule 4.)

- Rule 6:
After the completion of an unsuccessful probe, PO initiates
a next probe.

When PO receives a token that has remained white all the way
round the ring, and PO itself is white, it can conclude that no
processes have sent any primary messages after the previous (un-
successful) probe. Since message passing is instantaneous, there
can be no messages in transit. Thus all processes are passive,
and termination has occurred. On the other hand, if the token has
become black when received by PO, some other process may be ac-
tive and termination cannot be concluded. PO then initiates a new
probe.

In [4] the algorithm is proven to be correct provided the above 6
rules are obeyed.

In [4] the spreading of the knowledge of termination from PO to
the other processes is ignored. For completeness we include this
spreading and realize it as a special termination wave initiated
by PO after PO has detected termination. The wave is passed all
the way round the ring to inform all processes that termination

has been detected.

3.2 Realization of DFVG

The asymmetry between processes - i.e. the difference between the

behaviour of P0 and the other processes - makes it necessary to



realize DFVG by means of two different classes, DFVG-0 for PO and
DFVG-i for Pi, i<>0. However, these two classes have some common
declarations that we can factorize into a common superclass DFVG.
The three classes are shown in fig. 3. Some remarks are included
in the following concerning the individual classes and the in-
teraction between termination classes and main computation clas-
ses. However, the reader who wants a deeper understanding of the

realization must consult appendix A.

DFVG contains the status variables "colour" (the colour of the
process) and "token" (the colour of the token). Moreover, two ab-
stractions, "Sendmsg" and "Receivemsg" are declared. Receivemsg
enforces a changeover point with resumption condition "ap-
propriate message available" in the action part that invokes it.
Sendmsg updates the status variables by making the process black.
Sendmsg and Receivemsg are intended to be used to program all
primary communications in the main computation. Note that
Receivemsg is a guarded command abstraction and may be used in if
and do commands just as the primitive "?" command, which can be

considered overloaded by Receivemsg in the subclasses.

DFVG-0 consists only of an action part with a cycle in which PO
sends a white token to its left neighbour in the ring and waits
(at a changeover point) until the token is returned from its
right neighbour. If both the colour of the token and the colour
of the process are white, termination has been detected. When
termination is detected, a termination wave is sent to the left.
When it has been all the way round the ring, the procedure "Ter-
mination" is called. Procedure "Termination" is incompletely
specified, and further specification is deferred until the main
computation subclass. The main computation subclass determines
in its specification of the procedure "Termination" what should
be the consequence of the termination detection. Thus the "Ter-
mination" procedure provides the means for spreading the knowled-
ge of the termination detection from the termination action part
of a process to the main computation action part of the same

process.

- 10 -



class DFVG (left,right: DFVG);

Type ontrol = (black, white);
Ype H {éermlnatlon wgve}

var colour token: Control;
- term:

Procedure Termination;
Jdeferred specification)

Guard-cmd Receivemsg (in P: DFVG ; out c: Simple):;
N ¢ -> skip -
end;

Procedure Sendmsg (in P: DFVG ; in c: Simple);

Procedure
egl? (o3

colour:= black
end;

action

end;

class DFVG-0 is-a DFVG:
action

do true -> colour:= wyhite
left ! white;
* right ? token;
iE oken—whlte% and (colour—whlte) -
%Em}na ion detected; send termination wave)
e I £;
right ? term;
Tefmination

class DFVG-i is-a DFVG;
action
colour:= white;
do *
right ? token -> if (colourwblack) ->
— token:= black

I_ft ! token;
colour:= white

/ right ? term -> 1term1nat10n wave received}
eft ! term;
Termination

£ig. 3



DFVG-1i also contains an action part with a cycle in which the
process receives a token or a termination wave from its right. In
case of a token, it passes it on to its left according to the
colouring rule - i.e. making the token black if the process is
black. In case of a termination wave, it passes it on and calls
the procedure "Termination", which serves the same purpose here
as described for DFVG-0. The "*" after "do" specifies a
changeover point with resumption condition "some guard is
open" - in this case "either a token or a termination wave has
arrived".

Note that the purpose of the types Control and T is to avoid con-
fusion between control messages and primary messages. The DFVG-0
or DFVG-i action part takes care of arrivals of tokens and ter-
mination waves, whereas the main computation action part is to
take care of arrival of primary messages. "Token" is not assig-
nable to a boolean or vice versa, and thus arrival of a token can
always be distinguished from a boolean primary message, provided
that the type Control is not used by the main computation.
Similarly for the termination wave, which moreover cannot be con-
fused with the token.

To see how the termination action part interacts with the main
computation action part in a process, we assume that we have a
specific main computation that we want to combine with the DFVG
termination detection algorithm. For simplicity, we assume that
the main computation also has a leader process and a number of
symmetric processes. We then program two classes, a leader class
as a subclass of DFVG-0 and a non-leader class as a subclass of
DFVG-i. The class hierarchy is shown in fig.4.



DFVG

/

DFVG-0 DFVG-1

Leader Non-Leader
fig. 4

Class Leader and Non-Leader each contain declarations and an ac-
tion part related to the main computation. The main computation
classes Leader and Non-Leader are assumed to obey the following
disciplinary rules (which could be enforced by the language):
1) All primary communication is programmed by means of the in-
herited abstractions "Sendmsg" and "Receivemsg".
2) None of the status variables from the termination detection
class are touched.

3) The type declarations in the termination class are not used.

The distributed computation will consist of an instance of Leader
and a number of instances of Non-Leader. Each instance will have
actual parameters denoting their left and right neighbours in the

ring. (We ignore how the circularity is established.)

If we consider an instance of Leader or Non-Leader, the top-down
starting convention for action execution ensures that the process
is cleaned by the DFVG-0 or DFVG-i action part as the first
thing. After this, the bottom-up priorities and the use of the
inherited Receivemsg ensures that the Leader or Non-Leader action
part 1is active, and that the DFVG-0 or DFVG-i action part
receives control only when the main computation is passive. In
an instance of Non-Leader, the DFVG-i part will execute one
iteration of its loop indivisibly (provided a token or a ter-
mination wave has arrived) and then it will be ready to give back
the control to the main computation in case a primary message has
arrived in the meantime. In an instance of Leader, the DFVG-0

part behaves similarly, except that its changeover point is

_13_



placed in the middle of the loop.

To argue more formally that the realization is correct, we can
argue that the rules 1 to 6 for process behaviour in section 3.1
are satisfied:

The disciplinary rule 1 for the main computation, described
above, ensures that sending of a primary message is done by means
of the abstraction Sendmsg which makes the process black. Thus
rule 1 is obeyed.

Rule 2 follows immediately from the action part of DFVG-0 which
receives control when the Leader action part reaches a changeover
point - e.g. in connection with waiting for a primary message, or
after reaching its final end (where there is always an implicit
changeover point).

Rule 3: Because of the bottom-up priorities, the main computation
part has control when active, so the DFVG-i part only gets con-
trol when the main computation is passive. If a token has ar-
rived, the resumption condition of DFVG-i is satisfied and the
token is received and handed over to the left, according to the
colouring rule corresponding to rule 4. After sending the token,
the process becomes white and thus satisfies rule 5. (Then a
changeover point is reached and control may return to the main
computation.)

Rule 6 is satisfied since the DFVG-0 part of PO starts over again
when an unsuccessful probe is completed - i.e. when a token is

received from the right and termination cannot be concluded.

3.3 Use of DFVG in Shortest Paths Algorithm

In this section, we will show a complete example of a main com-
putation in a distributed system. The example illustrates the
separation of concerns obtained by factorizing the termination

detection algorithm into a superclass.

The example is a distributed graph algorithm that computes the
lenghts of the shortest paths from a special vertex v0 to all



other vertices vi, i<>0, in a weighted oriented graph. The graph
is assumed to have no cycles with negative total length.

More formally, the problem can be stated as follows: A graph is a
tuple (V,E), where V 1is a set of vertices and E is a set of
weighted edges each connecting two vertices. If (vi,vj,w) belongs
to E, there is a simple path of length w from vertex vi to vertex
vj. In general, there is a path from vertex vi to vertex vj of
length L if there is a sequence of edges in E
(vi,vil,wl), (vil,vi2,w2),...,(vin,vj,wn+l) and the sum of the
weights on the edges, wl + w2 + ... + wn+l is L. Given a special
vertex, v0, the shortests paths problem is for each vertex vi,
i<>0, to find the shortest path from v0 to vi.

The algorithm consists of one process for each vertex in the
graph. Each process knows its successors and predecessors in the
graph and the weights on all outgoing edges. PO corresponds to
the special vertex v0 and 1is the leader process in the com-
putation. PO starts by sending a message to each of its succes-
sors containing the weight on the edge from PO to the successor.
Each Pi process (i<>0) behaves as an iterative process that
repeatedly improves its current estimate of the shortest path
from PO to Pi by minimizing the lengths of paths that go via
predecessors to Pi. That 1is, Pi accepts messages from all
predecessors Pj denoting estimated pathlengths from PO to Pj.
Then Pi determines whether the message provides a basis for im-
proving the estimated minimal pathlength from PO to Pi. If this
is the case, it sends its new estimate to all successor proces-
ses. Each process starts with an estimate of positive infinity.
The algorithm should terminate when no more improvements are
reported; that is, all processes are passive waiting for mes-

sages. Each process should then report its result and terminate.

A realization of this algorithm is given in fig. 5 as two sub-
classes of DFVG-0 and DFVG-i respectively. The class Vertex ser-
ves the purpose of giving a common denotation for all the proces-

ses. This denotation is used for formal parameter specification.

- 15 -



class Vertex(succ gred: seg%ence of Vertex;
——g__ Welgﬁ S: seque (] nteger) ;
end;

class VO is-a Vertex, DFVG-0;

Procedure Termination:
egin

t Eterminate all action parts of the process)

q including those from sub- and superclasses)
end;

action

%send wei%hts to all successors}
or 1:=1 to succ.length do .

i ~Sendmsg{sSucc.get (i), weéights.get(i))
endar;y

class Vi is-a Vertex, DFVG-i;

var shortest-found: Boolean:
- shortest,L: Integer;

Procedure Termination;
begin

T
__%ﬁortest—found:= true
end;

action
shortest:= maxinteger;

shortest-found:= false:
do *

~{receive estimate from any predecessor)} .
1=1..pred.length) Recelvemsg(gred.get(l), L) ->
1f I<shortest -> shortest:= Lj,
- send new estimate to all successors}
or j:= 1 to succ.length do
__Sendmsg(gﬁcc.get(jﬁ - .
s shortest + weilg fs.get(j))
i
é shortest-found -> {Report(shortest)}; halt

end;
fig. 5
The system consists of PO that is an instance of V0O, and a number

of Pi's that are instances of Vi.

The VO action part of process PO will send the relevant weights
to its successors and then reach the implicit changeover point at
the final end of the action part, thus leaving control to the
DFVG-0 action part. When the DFVG-0 action part detects ter-

- 16 -



mination, it terminates the process by means of a "halt" in the
procedure "Termination". The Vi action part of a Pi process
specifies the procedure "Termination" to update a variable "shor-
test-found" that is used in a guard in the main loop of the al-
gorithm such that deadlock is broken when termination has occur-

red. The process can then report its result and terminate.

The "*" after "do" in class Vi could be omitted since Receivemsg
contains a changeover point that changes a "do" in which

Receivemsg is a guard to a "do *" with resumption condition "some
guard is open".

Note that the algorithm described in class Vi very clearly shows
the basic ideas without being confused with details concerned
with termination detection. This was exactly the purpose of
separating the cohcern of termination detection from the main
computation. The reaction on the detection of termination,
however, must of course be decided in relation to the main com-
putation. This is reflected in that procedure "Termination" is
specified and its result is used in class Vi.



4 Other Algorithms

In this section three additional distributed termination detec-
tion algorithms are presented and realized by means of the
language outlined in Appendix A. Section 4 mainly serves as a
supplement to section 3 to show that the technique described in
detail there 1is more generally applicable. The reader of this
section is assumed to be familiar with distributed programming,
and the algorithms are therefore presented in less detail than
the DFVG algorithm in section 3.

Three algorithms are treated: one developed by Kumar, one by Dij-
kstra and Scholten, and one by Topor.

4.1 Kumar's Algorithm

Kumar presents several classes of algorithms and possible op-
timalizations [12]. We concentrate on the class 2 algorithm and

for simplicity ignore the optimalizations.

Kumar's algorithm is based on the following assumptions:
- Communication 1is asynchronous and transmission time is
finite.
- A ring can be found in the communication graph, that in-

cludes each process at least once.

The algorithm is very similar to the DFVG algorithm in that a
marker is sent round the ring. However, Kumar does not assume in-
stantaneous message passing (in fact not even first sent first
received). Thus there may at any time be messages in transit
between two processes, and termination cannot be concluded Jjust
on the basis of knowledge of passivity of all processes.
Therefore the marker must carry more complex information than in
the DFVG algorithm.

The marker consists of three components. The first two components
carry information about the total number of messages sent and the

total number of messages received respectively in the whole

_18_



network of processes. When receiving the marker, a process con-
tributes to the first two components of the marker by adding
counts of its own activities (messages sent and received) since
the last visit of the marker. After having contributed to the
third component of the marker as described below, it passes on
the marker. Termination can be concluded when a full traversal of
the ring has taken place in which there has been stability in the
sense that the total number of messages sent has been constant
and equal to the total number of messages received, and no
processes has added anything to the marker. Since the ring may
contain the same process several times, it is not necessarily so
that the process that initializes the marker is the one that can
detect termination. Instead a counter is used as the third com-
ponent of the marker to see when stability has lasted for a full
traversal of the ring. Each process increments the counter or
sets it to zero before passing on the marker, depending on
whether there 1is stability or not. When the counter reaches a
certain value C (the total number of nodes involved in the ring),
termination can be concluded by whichever process that has the
marker.

In the realization of Kumar's algorithm, we assume for simplicity
that the ring is a simple ring - i.e all processes are visited
only once in one traversal of the ring. (The general algorithm
can also be realized but will be more complicated. For instance,
the parameters of the classes must be sequences of processes, and
the algorithm for passing on the token must be changed from a
simple sending to the successor, to a cyclic passing the token to

different successors each time.)

The algorithm is realized in fig. 6 by means of two classes, K
and KO. KO only adds some initialization to take place before the
first changeover point. This is the only difference between the

leading and the non-leading processes.
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class K(pred,succ: K; C: Integer);

Type Control isnew Integer;
(t): _Tt“fmlnatgon wave}

var B: Boolean;
~ sntp recp sntm, recm: Control;
coun Integer;: term: T;

Procedure Termination;
{detferred specification)

Guard-cmd Receivemsg(in P: K; out e: Simple) ;
3 f €& —=> recp:=reécp + 1 —
endar;

Procedure Sendmsg(in P: K; in e: Simple);

BTIE

sntp:= sntp + 1
end;

action
sntg:= ; recp:= 0;

pred ? recm -> pred ? sntm;
red ? count;
iall components of marker received)
:= (sntp=0) and (recp=0):;
sntm:= sntm + Sntp;
recm:= recm + recp;
sgtp-— 0; recp:= ;
i
B and (recm=sntm) -> {stability}
- count:= count + 1

P

not B or (recm<>sntm) -> count:= 0

count >= C -> {termination detected)
succ ! t;
red ? term;
ermination

/ count < C -> {send marker)
succ ! recm:;
succ ! sntm;

. succ ! count

£i
/ pred ? term -> succ,! term;
Termination

class KO is-a K;

action
— sntm:= 0; recm:= 0; count:= 0;
{start circulation of the marker}

succ ! recm;
succ ! sntm;
succ ! count;

end;

fig. 6
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The variables "sntp" and "recp" keep count of the messages sent
and received by one process since the last visit of the marker.
"Sntm", "recm" and "count" are the values that constitute the

marker.

It should be noted that the structure of the termination classes
is the same as for the DFVG termination detection algorithm.
This means that the shortest paths algorithm programmed in sec-
tion 3.3 could use Kumar's termination detection algorithm in-
stead of the DFVG algorithm, just by using other superclasses to
the main computation classes. The main computation classes VO
and Vi should then have KO and K respectively as superclasses in-
stead of DFVG-0 and DFVG-i. No changes need to be made to the
contents of any classes.

4.2 Dijkstra and Scholten's Algorithm

The algorithm by Dijkstra and Scholten [5] solves a slightly dif-
ferent problem than the other algorithms discussed so far. It is
assumed that the main computation is a diffusing computation.
That 1is, a computation in which one process, called the environ-
ment, is the initiator of all activity and otherwise does not
participate in the computation. All other processes are initial-
ly passive until they receive a primary message. Except from
this, the problem is as before. The environment must detect when

all other processes are passive and no messages are in transit.

The idea in the algorithm is to ensure that when a computation
has terminated, each channel has carried as many primary messages
in the one direction as it has carried control signals in the op-
posite direction. The environment will receive the last signal
and can conclude termination when the number of messages and sig-

nals sent and received on all its channels are equal.

In general, each process keeps count in a variable D of the total
number of primary messages it has sent minus the total number of

control signals it has received. Moreover, it maintains a data
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structure called a cornet containing the identities of all neigh-
bour processes from which it has received primary messages but
not yet sent control signals to. The same neighbour may occur
several times in the cornet. At any time, one neighbour in the
cornet 1is marked as the very first that entered the cornet. The
cornet is administrated according to the rule "very first in,
very last out". The very first process P in the cornet of another
process Q is the process that most recently made Q change from
passive to active by sending it a primary message.

All processes send and receive control signals and primary mes-
sages in such a way that they maintain the invariant

(C >= 0) and (D >= 0) and ((C > 0) or (D = 0))
where C is the number of elements in the cornet.

This enables the environment to conclude termination when its

C =D = 0. The reader is referred to [5] for proofs.

The realization of Dijkstra's and Scholten's algorithm is shown
in fig. 7. The realization consists of three classes: a common
superclass, a class for internal processes and a class for the

environment. Further comments are given after the figure.

class DS(neighb: Sequence of DS);

Type S = (s);_{signals}
I isée&’léteger; {termination wave}

var D: Integer;
— signal:"S;
term: T;

Procedure Termination:

{deferred specification}

action

D

t= 0;
term:=

1
end;



class DS-Internal is-a DS;

var C: Integer,
cornet: Sequence of DS;
dumm¥ DS3

Guard-cmd S%ndmsg(ln P: DS; in e: Simple);
= i St
D:= D+1
end;
Guard- cmd Receivemsg(in P: DS; out e: Simple);
g -> Sornet .append (P)

end;
action

C:= 0;

gor&et:= empty;

o
— (i:1..neighb.length) neighb.get(i) ? signal -> D:= D-1
/ (C>1) or ((C=1) and (D=0)) -> cornet.get(C) ! s;
- - 8 rngtlreduce(dummy),

i:1l..neighb. len th) neighb.get(i) ? te ->
/7« g % %e g> fgr §:L 1 to nelghb .length do
nelghb g‘f{j) term; —
term:=
Termlnatlon

/ te<>term -> skip (ignore redundant
términation waves)

class Environment is-a DS
Procedure Sendmsg(in P: DS-Internal; in e: Simple);

Procedure
e

D:+ D+1
end;

action
3(true): {initiating primary messages sent by subclass)
O L] .
— (i:1..neighb.length) neighb.get(i) ? signal =-> D:= D-1
/ D=0 - termlnatlon detected}
j:= 1 to nelghb length do
ﬁelghb g‘t{j) term;

term:= term+
Termlnatlon

fig. 7
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We have chosen a simplified realization of a cornet as a stack
(by means of a sequence). This has been done for simplicity and
does not significantly change the algorithm. The major difference
from the algorithm as presented in [5] is that signals are now
always sent to the process that sent the last primary message. In
DS, there is a non-deterministic choice between all not "very
first" processes in the cornet, when sending a signal.

Note that in class DS-Internal, Sendmsg is defined as a guarded
command abstraction with a changeover point that will make any if
or do command that uses Sendmsg in a guard change to an if* or
do* command. The reason for this is that Sendmsg has a precon-
dition C>0 that must be guaranteed to be true when sending a mes-

sage.

The role of the integer value of the termination wave and the
variables "te" and "term" in class DS-internal, is to enable a
process to distinguish the first reception of a specific ter-
mination wave from later arrivals of the same termination wave
via other paths in the communication graph. The value of the
termination wave identifies it such that a late arrival of an old
termination wave can be distinguished from a first arrival of a

new termination wave (belonging to a new computational phase).

The environment class defines no Receivemsg abstraction, since
the environment process takes only part in the main computation
by sending primary messages that initiate the computation.
Thereafter, it only waits for termination. That is, the main
computation subclass of class Environment consists only of a num-
ber of initiating Sendmsg invocations. The "*(true)" changeover
point in the Environment process implies that the main com-
putation part gets control (because of the bottom-up priorities).
Thus, the initiating primary messages are sent, and the final
(implicit) changeover point 1is reached, giving back control to

the termination part of the process.

It should be mentioned that the algorithm by Dijkstra and Schol-

ten was originally intended to be a secondary computation that



should be superimposed as a concurrent process on the main com-
putation. However, in this realization of the algorithm, the
coroutine 1like sequencing called alternation is used without
changing the basic idea of the algorithm.

The shortest paths algorithm in section 3.3 is a diffusing com-
putation. All that is needed in order to change this algorithm
to use the termination detection algorithm by Dijkstra and Schol-
ten instead of the DFVG algorithm is to let the main computation
classes VO and Vi use the classes Environment and DS-internal

respectively as superclasses instead of DFVG-0 and DFVG-i.
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4.3 Topor's Algorithm

Topor's algorithm [16] resembles the DFVG algorithm but differs
in that it is based on a spanning tree in the communication graph
instead of a ring.

The idea of using a spanning tree was first used by Francez and
Rodeh (FR) [6] who assumed synchronous message passing like CSP
[9]. The FR algorithm is rather complicated and is omitted from
this paper. However, it can be realized by means of inheritance
with alternation, in particular if a language framework is used
that supports synchronous message passing including send
statements in guards.

Topor's algorithm combines Francez and Rodeh's idea of wusing a
spanning tree with the idea of black and white tokens and proces-
ses from DFVG. In Topor's algorithm, token waves are sent from
the leaves to the root in the spanning tree, and repeat waves are
sent in the opposite direction. The root is able to determine
whether any activity has taken place during the time passed
between two upwards waves. A process is white if it has sent no
nessages since the last upwards wave, and tokens moving upwards
in the tree change colour according to the colours of the proces-
ses visited 1like in DFVG. A token is passed on upwards by a
process when the process is passive and has received a token from
each of its sons in the tree. When a white token reaches the root
and the root is itself white, the root concludes termination.
When a black token reaches the root or when the root is black on
arrival of the token, a repeat wave 1is started from the root

towards the leaves, and a new token wave can begin.

We will present two different realizations of Topor's algorithm,
one in section 4.3.1 where we assume that the spanning tree is
given in advance, just as we did with the ring in the previous
algorithms, and another realization in section 4.3.2 where the
computation of the spanning tree 1is performed in a separate

class.
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4.3.1 Static Spanning Tree

The first realization of Topor's algorithm is given in fig. 9. It
consists of four classes: a common superclass T and three sub-
classes describing the behaviour of the leaves, the internal

nodes and the root of the spanning tree of processes.

Use of this realization of Topor's algorithm requires programming
subclasses of T-leaf, T-internal and T-root, describing the main
computation. The actual processes are instances of these subclas-
ses with actual parameters supplied in such a way that a spanning
tree is formed.

If we consider the shortest paths algorithm discussed in section
3.3, the algorithm could be combined with Topor's termination
detection algorithm instead of the DFVG algorithm as follows:
T-root is substituted for DFVG-0 in the list of superclasses of
class V0. Two versions (called Vi and Vj) of class Vi are made,
one with T-internal substituted for DfVG-i in the list of super-
classes, and one with T-leaf substituted for DFVG-i in the list
of superclasses. The contents of the classes V0 and Vi (Vj) need
not be changed. Fig. 8 shows the class hierarchy.

fig. 8

It is clearly a disadvantage that two copies of the main com-
putation class Vi, Vj are needed just because there are three
classes involved in the termination detection algorithm.
Therefore we present another realization of Topor's algorithm in

section 4.3.2.
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class T (sons: sequence of T; father: T);

Type Control = (undef, white, black);
T = (t); Etermlnatlon wave}
R = (r); {repeat wave)

var token, colour: Control:
. repeaﬁ: R;
term: T;

Procedure Termination;
erred specification}

Procedure Sendmsg(in P: T; in c: Simple);

W‘—gln

Cy
colour:= black
end;

Guard-cmd Receivemsg(in P: T; out c: Simple);

7 c -> ski
end; P

Function all-equal(in s: sequence of Simple;
c: Simple) : Boolean;

in c:
{gives true if all &lements in s equal c}
begin...end;

Function some-equal(in s: Sequence of Simple;
- . ~.,ln TT Simple] : Boolean;
{truye 1if some element in s equals c

begin ... end;

action

colour:= white
end;

class T-leaf is-a T;
var hastoken: Boolean;

action
—hastoken:= true; token:= white;
when hastoken, the leaf starts token wave}
whsn not, it waits for wave from father)
o
— hastoken -> if (colour=black) =-> token:= black fi
Tather ! token; —
hastoken:= false;
colour:= white

/ father ? repeat -> hastoken:= true;
token:= white

é father ? term -> Termination
o)
end;™
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class T-internal is-a T;
var tokens: sequence of Control:
— {the tokéﬁg_féE§TV€d from sons}
action

for i:= 1 to sons.length do
__fgkens.aﬁﬁend(undef ; {No0 tokens from sons have arrived)}
O
~ (i:1..sons.length) sons.get(i% ? token ->
tokens.put (i, token);
if not some—equalétokens,undef) -
— {TtoKens received from all sons}
token:= white; .
1f not all-equal (tokens,white)
~., Or (colour=black) -> token := black

£l
Tather ! token;
colour:= white

fi
/ father ? repeat -> for i:= 1 to sons.length do
in
Sons.get (i) ! repeat;
tokens.put (1i,undef)
end
/ father ? term -> for i:= 1 to sons.length do

—sons.get(I) ! term;
Termination

class T-root is-a T;
var tokens: sequence of Control;

action;

for i:=1 to sons.length do
a fgkens.ﬁﬁpend(unde Y T
o

— (i: 1..sons.length) sons.get(i) ? token ->

tokens.put(i,token):;

if not some-equal (tokens,undef) ->

— T {all toKens from sons have arrived}
token:= white; ;
if not all-equal (tokens,white)
;ng_Tcolour=black) -> token:= black

1

5
— token = white -> %termination detected}
or j:= to sons.length do
sons.getT(d) ! t; —
Termination
/ token = black ->
for j:=1 to sons.length do
gggln
o) ens.gut(j{undef):
sons.get(]) ! r {repeat}
. end
fi
od —
end;
fig. 9
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4.3.2 Dynamic Spanning Tree

Instead of assuming that the spanning tree is known in advance as
a static structure, it could be found in the dynamic computation.
Provided that it is given which process is to become the root in
the spanning tree, a distributed algorithm for finding a tree can
be realized as follows: The root starts by sending a question to
all its neighbours to become its sons. Any other process accepts
as 1its father only the first neighbour process who sends it such
a question. When receiving a question, a process sends an answer
telling whether it accepts the sender as its father or not. When
a process accepts a father, it sends a question to all its other
neighbours to become its sons. When a process has received an-
swers from all the neighbours that it has asked to become its
sons, it knows its own position in the spanning tree. That is,
it knows its father and its sons.

This spanning tree algorithm can be programmed by means of two
classes, ST-root and ST-others for the root and for the other
processes, respectively. A common superclass, ST, is included
to contain the declarations common to all processes. The classes
are shown in fig. 10. The guarded command abstractions in class
ST are intended for use in ST-root and ST-others only and
represent a factorization of some of their common properties.
Each process has variables '"position", "father" and "sons".
"Position" 1is set to '"undefined" initially and set to "root",
"internal" or "leaf" when the process knows its position, i.e.
its father and sons in the spanning tree. This information is to

be used by subclasses.
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class ST (neighb: sequence of ST);

Type Questlon = (q);:
= éyes
Pos = (un

roo internal, leaf):;

vVar p051t10n' Pos;
— sons: sequence of ST;
father7 ST7
qu: Questlon, ans: Answer; no-of-answers: Integer;

Guard-cmd Receiveanswer;
1:I..neighb.length) nelghb get(i) ? ,ans ->
if ans = yes -> sons. append(nelghb get(i)) fi;
5 no-of-answers:= no-of-answers
endjy;

Guard—cmd Regect; .
. .neighb.length) neighb. et 1%
3 neig b ge 1) q
end;

action .
osition:= undef; sons:= empty
end;

class ST-root is-a ST:

action,
or i:=1 to nelghb length do
nelghb get(l) !
no-of-answers: 0,
do *
~Recelyeanswer ->
1f no-of-answers = neighb.length ->
1 position:=root
1L

é Reject =-> skip

end;

class ST-others is-a ST;

action
i
—(i:1..neighb.length nei hb.get ( ?
( J gth) ger’g nel hb. get(l),
nelghb et 1? K
for j:= to ne1 b. ien th do
1f j<>iT=> nelghb get€(j)~ T g £fi;

£i;
no-of-answers:= 0;
do *
Receiveanswer ->
if no-of-answers = (nelghb length = 1)y =¥
- if sons=emp position:= leaf
- sons<>emp Y —> p051t10n := internal

. fi
i =

/ Reject -> skip
od

end;”

fig. 10
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Now Topor's algorithm can be realized by means of only two clas-
ses that use the spanning tree classes as superclasses. These two
classes also have a common superclass. The structure of the in-
heritance hierarchy is shown in fig. 11 and the <classes that
realize Topor's algorithm are sketched in fig. 12.

ST

ST-root ST-others

T-root T-others
fig. 11

Class T is 1like in section 4.3.1, except that it has no
parameters. Information about father and sons is now inherited

from class ST.

class T-root is-a ST-root,T;
Var {as in T-root in section 4.3.1}
action
* (position = root{_ ) X )
{awalts that position in spanning tree is known)
{action part from T-root in 4.3.1)

end;

class T-others is-a ST-others,T;

Var {union of variables from T-internal
- and T-leaf in section 4.3.1)

action

if * {awaits that position in spanning, tree_is known})
— position = leaf -> {action part as 1n T-leaf 1n 4.3.1}

/ position = internal -> {as in T-internal in 4.3.1}

fig. 12



Now, the shortest paths algorithm from section 3.3 can use
Topor's algorithm in exactly the same way as it could use the
other termination detection algorithms. Class VO should use
T-root as superclass instead of DFVG-0, and Vi should wuse

T-others instead of DFVG-i. The class hierarchy is shown in fig.
13

ST
ST-root ST-others
T-root T-others Vertex
\)(/7
vo Vi
fig. 13

If we consider a process that is an instance of Vi, it will con-
tain 5 non-empty action parts, two of which serve only
initialization purposes (ST and T). The top-down starting conven-
tion ensures that initialization will be done appropriately.
After initialization, the three action parts from ST-others,
T-others and Vi will alternate in such a way that the Vi part has
highest priority and thus executes whenever possible. In the
beginning, the T-others part 1is at a changeover point whose
resumption condition is that the position of the process in the
spanning tree is known. Therefore, when the Vi part is passive,
i.e. waiting for a primary message, the ST-others part will ex-
ecute. After the ST-others part (in alternation with the Vi
part) has found the position of the process in the spanning tree,
the T-others action part can be resumed (when the Vi part is pas-
sive) and start termination detection in alternation with the Vi

part.
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5 Evaluation

A number of different algorithms for detecting distributed ter-
mination have been programmed in a small language with inheritan-
ce on processes. The inheritance mechanism has made it possible
to factorize the description of each termination detection al-

gorithm from the main computations that use it.

Each termination detection algorithm has been realized as essen-
tially two classes describing the termination behaviour of a
leader process and the other processes in the distributed system.
A main computation that uses a specific termination detection al-
gorithm can be programmed as two classes that are subclasses of
appropriate termination classes. In this way, the same ter-
mination classes can be used by many different main computations.

The choice of termination detection algorithm does not affect the
structure of the main computation. (Except that use of Dijkstra
and Scholten's algorithm requires the main computation to be a
diffusing computation.) Different termination detection al-
gorithms can be chosen by a main computation just by choosing
different superclasses. This is true also for termination detec-
tion algorithms that are based on a spanning tree in the com-
munication graph. In these algorithms, the computation of the
spanning tree can be factorized into yet another superclass, such
that only a class for the leader process and a class for the
other processes are needed to represent the termination detection
algorithm. (As opposed to three classes representing root, inter-

nal nodes and leaves in the tree.)

An example of a main computation, a shortest paths algorithm, has
been programmed. The example shows how the termination detection
concerns and the main computation concerns have been separated.
The structure of the shortest paths algorithm is very clear and
not confused with irrelevant details concerned with termination

detection.

In conclusion, the termination detection algorithms have been
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nicely factorized from the main computations. The alternation
mechanism between the different action parts of a process has
been demonstrated to fit naturally with the kind of interaction
that is wanted between a termination detection algorithm and a
main computation.

The termination detection classes that have been programmed can
be used for more general purposes than just to ensure proper ter-
mination in a distributed system. Each termination class contains
a procedure "Termination", which is activated when termination is
detected. The specification of the procedure is deferred until
the main computation subclass and thus provides a flexible tool
that enables main computations to make different choices of what
to do when termination is detected. In the shortest paths exam-
ple, the action to do on termination detection was simply to
report a result and terminate. However, there are other in-
teresting possibilities:

- In the kind of main computations where global deadlocks are
difficult to avoid but easy to break when they occur, the
"Termination" procedure can be specified in the main com-
putation class to break a deadlock. Afterwards computation
can continue. The termination action part of each process
is then ready to detect the next global deadlock.

- A main computation that is structured as a multiphase al-
gorithm can use the termination detection algorithm to
detect termination of each computational phase. The
procedure "Termination" can then be specified to exit the

current computational phase and initiate the next phase.

In both the above situations, it would be more appropriate to
talk about "stability detection" rather than "termination detec-

tion", where stability is defined as in section 2.1.

Other kinds of stability detection are relevant in a distributed
system. A general algorithm for detecting stable states in a

distributed system by means of socalled "distributed snapshots"
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is presented by Chandy and Lamport in [2]. An obvious idea is to
factorize this algorithm into a class that can be used as a
superclass by different main computations. Inheritance with al-
ternation would be appropriate to describe the interaction
between the distributed snapshots algorithm and a main com-
putation. However, the distributed snapshots algorithm is so
general that programming it independently of what kinds of
"states" and "stabilities" are considered, requires a more power-
ful 1language than the one we have been using in this paper.
Provided that a 1language with more powerful abstraction
mechanisms were given, inheritance promises to be well-suited to

factorize also this very general algorithm.

This leads to some comments on language design. The language used
in this paper merely provides a framework for presenting the in-
heritance mechanism. In a complete language design, the abstrac-
tion mechanisms should be carefully designed, and the semantic
principles of Tennent [14] should be used. That is, it should be
possible to make abstractions of all semantically meaningful syn-
tactic categories in the language. (The guarded command abstrac-
tion introduced in this paper can be considered a single use of
this principle.) This would increase the expressive power of the
inheritance mechanism since different kinds of abstractions could

be specified in a superclass and inherited by subclasses.

The possibility of deferred specification should be extended to
apply to all kinds of abstractions. It could also be generalized
to cover the concept of "virtuals" in Beta [10].

- o00o -

It has been demonstrated that inheritance with alternation on
processes 1is a useful structuring mechanism that enables fac-
torization of termination detection algorithms, or rather certain
kinds of stability detection algorithms. Moreover, in a language
with powerful abstraction mechanisms, inheritance promises to be
a valuable factorization mechanism also in relation to more

general applications.
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APPENDIX A

Language Presentation

A.1l Classes and Objects

A class is a template that describes the structure and behaviour

of all objects created from it (called instances of the class).

Classes are used to describe both processes and data structures.

A class definition contains:

1)
2)

3)

4)

5)

6)

The name of the class.

A list of value parameters of the class.

A 1list of superclasses from which the class inherits
parameters, attributes and action parts.

A number of type declarations common to all instances of the
class and its subclasses.

A number of data attributes private to each instance of the
class. There are two different kinds of data attributes:
- Variables:

var x:T, where T 1is an ordinary enumeration type,
scalar type or sequence type.

- Variable references:

var X:C, where C is a class name. The variable x is a

reference to an instance of class C.

A number of abstracted attributes attached to each instance

of the class. The abstracted attributes are procedures,
functions and guarded command abstractions. The procedures
have value and result parameters, local variables and bodies

that can manipulate the attributes of the surrounding ob-
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ject. Functions have value parameters only and can inspect
attributes of the surrounding object and manipulate 1local
variables. Functions cannot call procedures and thus have no
side effects. Abstracted guarded commands are discussed in
section A.5.

7) An action part related to each instance of the class. An

action part has a priority associated with it. The action
part may manipulate the attributes, invoke the abstractions
and communicate with other objects by means of asynchronous
message passing (section A.3).

A <class that has one or more superclasses inherits all
parameters, attributes and action parts from its superclasses
(and their superclasses in turn etc). Each superclass con-
tributes only once to the class regardless of the number of paths
in the inheritance hierarchy from the class to the superclass.
This means that objects generated from the class will have struc-
ture and behaviour as described by the combination of all the

classes in the inheritance hierarchy above the class:

Parameters and attributes that a class inherits from its super-
classes are visible within the class just as if they had been
locally declared.

An object has its own version of parameters, attributes and ac-
tion parts. The different action parts of an object inherited
from different classes are executed alternately according to
their relative priorities and ability to proceed, as will be
described in detail in section A.6. The action parts can be con-
sidered as forming a single autonomous process that starts ex-
ecuting when the object is generated and executes in parallel
with other objects. An object can only communicate with other

objects through message passing.

Objects are dynamically generated from classes. A variable
reference declared as x:C gets a new C-object (or Cl-object) as-

signed to it by the statement:
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X:=new Cl (aparam)

where Cl=C or Cl is-a C. (The is-a relation is the transitive
closure of the "subclass of" relation.) Aparam is a list of ac-
tual parameters to the class C1l.

Example
{curly brackets surround comments}
class A class Al is-a A
var 1: Integer; var Jj: Integer;
—  b: B; {Class name} —— C: C; {class name}
Procedure P; Function F: Integer;
begin ... end; begin ... end;
action action
S1 52
end end

Assume that x is declared as "x: Al" and created by "a:= new Al",
then x will contain the variables i,j,b,c and the routines P and
F. Moreover, x will execute the two statement lists S1 and S2

alternately as described in section A.6.

A.2 Types

The language is typed and allows static type checking.

For the purpose of this paper, the possible types are: class
types, sequence types, scalar types and enumeration types.
Traditional scalar types and enumeration types 1like Integer,
Boolean and Char will be used together with their traditional

operators.

The sequence types are specified as
sequence of Element
where Element is any other type.
We assume the existance of at least the following functions and
procedures on sequence types (and ignore error situations):
function length -> Integer
s.length gives length of the sequence s
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function get(in i:Integer) -> Element
s.get(j) gives j'th element of s

procedure put(in i:Integer;in e:Element)
s.put(i,e) sets i'th element of s to e

procedure append(in e:Element)
s.append(e) adds e to the right end of s

procedure reduce(out e:Element)
s.reduce(e) removes right element from s

and returns it in e

The type system allows parametric polymorphism as described
below. The first language with this kind of type system was
Simula [3], but a similar mechanism is included in recent
languages - e.g. Beta [10],[11] and Galileo [1].

Parametric polymorphism of the type system is obtained by means
of a partial <= relation on types. For class-types, the <=
relation is the transitive closure of the is-a relation (the sub-
class-of relation). For sequence-types the <= relation is the <=
relation on the element types. For scalar- and enumeration-types

the <= relation is the ordinary subset-of relation. Two special

type expressions are available for formal parameter
specification: "Simple" and "Object". All simple types - i.e.
enumeration and scalar types - are <= Simple, and all class

types are <= Object.

That 1is, the <= relation is implicitly defined for simple types
and sequence types, and explicitly for class types. It 1is pos-
sible to define a derived type (similar to Ada's [13])
Type T isnew T1

where Tl is a simple type or a sequence type. The purpose of this
mechanism is to allow definition of new types that do not par-
ticipate in the <= relation with other types. Only T <= T is
valid for such a type, and T <= Simple if T is a simple type.



Type compatibility related to assignment and parameterization is
defined as follows:
1) An expression of type T is assignable to a variable of type
S 14Ef T == B.
2) Actual parameters of type T are accepted for formal
parameters of type S iff T <= S.

The parametric polymorphism of the type system gives the flex-
ibility that routines written to manipulate objects of type T can
also be used to manipulate all objects of more specialized types
without introducing any risk of runtime errors. However, the
routine is only allowed to manipulate a parameter in accordance
with its formal parameter specification - i.e. only properties
defined by type T can be assumed although the actual parameter
may have additional properties.

A.3 Communication

Objects communicate with each other by means of asynchronous mes-
sage passing. Communication 1is described by means of send
statements:

partner ! exp
and receive statements:
partner ? var

where "partner" is a reference to an object and may be omitted
from a receive statement, "exp" is an expression of some type T
and "var" 1is a variable of some type S. T and S are simple

types.

Execution of the send statement implies evaluating the expression

and sending the value to the specified partner.

Execution of the receive statement implies waiting until a mat-
ching message is available. If a partner is specified, only the

message first arrived (but not yet received) from this partner is
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considered, otherwise the first message arrived (but not yet
received) from all objects are considered.

An arrived message "val" of type T matches "var" of type S if
"val" is assignable to "var".

When a matching message is available, it is received - i.e the
value is assigned to the variable.

A.4 Control structures

The language includes an alternative and a repetitive command
similar to CSP's [9]. The alternative command has the form:

guard-1l -> statement-list-1

LR

/ guard-n -> statement-list-n

and the repetitive:

do
~ guard-l -> statement-list-1

é guard-n -> statement-list-n
o

where a guard can contain a boolean expression (including func-
tion calls) followed by a receive statement. The boolean expres-
sion or the receive statement in a guard may be absent, but not
both.
A guard G with a boolean expression B and a receive statement R
is said to be

- closed if B is false,

- indetermined if B is true and no message is available that

matches R
- open if B is true and a message that matches R is available.
Absence of B or R makes the value of the guard depend only on the

present part.
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The semantics of the alternative if command is:
evaluate all guards
if all guards are closed then skip
else if an open guard exists
choose an open guard
else wait until a matching message is available
in one of the indetermined guards
choose an open guard
receive message and perform statement-list
related to the chosen guard

This is similar to the CSP semantics except that communication is
asynchronous and closed guards do not imply failure. The seman-
tics of the repetitive do command is to execute the corresponding
if command repeatedly until all guards are closed.

We allow guards of the form
(i:1..n) Bi, Ri -> si

as an abbreviation for n guards with different values substituted
for i in Bi, Ri and si.

Besides the alternative and repetitive commands, the language in-
cludes a simple for-to statement.

A.5 Guarded command abstractions

Besides the ability to make abstractions over statement sequences
and expressions in terms of procedures and functions, the
language allows abstractions over guarded commands. The language
construct for this is called Guard-cmd and is specified as fol-

lows:

Guard-cmd g (in and out parameters)

.
end

where B is a boolean expression, R is a receive statement and S
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is a statement list. Either B or R may be absent but not both.

Parametric polymorphism is used for guarded command abstractions

just as for procedures and functions.

A guarded command abstraction can be invoked in an alternative or
repetitive command in the class in which it is declared or in
subclasses of the class:

if

— Bl1, R1 -> 81
Bi, G(apl) =-> si
Bn, Rn =-> Sn

|l—'-\ ~

Where apl is a list of actual parameters to G. The i'th guard is
equivalent to

Bi and B(apl), R(apl) -> S(apl); Si

G(apl) can be used as an abbreviation for the alternative command
with G as the only choice.

The guarded command abstraction is intended to abstract over com-

munication with some precondition and some subsequent action.

A.6 Multiple action parts

As already mentioned, an object gives rise to an autonomous
process that starts executing when the object is created and ex-
ecutes concurrently with other objects. The process originating
from one object consists of all the action parts described in the
class of the object and all its superclasses. In the following,

we will focus on the control aspect within a single object.

The different action parts of an object may have different
priorities associated with them (not to be discussed in detail)
and the strategy is to execute the action parts alternately ac-
cording to their ability to proceed and their relative priority.

Control shifts from one action part to another at well-defined
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points in the action parts called changeover points. That is, the

action parts are executed in a kind of programmer controlled in-
terleaving or coroutine sequencing.

Changeover points are specified by means of the symbol "*", Each
changeover point has a socalled resumption condition associated
with it. The resumption condition expresses under what circum-
stances the action part 1is able to continue execution.

Changeover points may appear in the following contexts:

1) *(B) may be used as a statement, where B is a boolean ex-
pression explicitly denoting the resumption condition of the
changeover point.

2) * may be used as a prefix of a receive statement meaning
that there is a changeover point immediately before the mes-
sage reception. The resumption condition is that a mat-
ching message is available.

Alternation by means of only such changeover points cor-
responds to the alternation mechanism in Beta [11].

3) * may be used in an alternative or repetitive command as

follows:
if * do *
fi od

The semantics of an if* command can be expressed using the
notation in 1) above for a changeover point:

* (existence of an open guard)

choose an open guard

receive message and perform statement-list

related to the chosen guard

Note that the if* command will always imply choice of a
guard as opposed to the if command. If* also waits if all
guards are closed, since some guard may become true later,
not only as a result of the arrival of messages but also as
a result of the alternation with other action parts of the

same object that change the values of some boolean expres-
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sions.

The semantics of do* is an infinite repetition of the cor-
responding if*.

If* and do* are generalizations of the when and cycle
statements in Distributed Processes [8].

4) An implicit changeover point is placed after the last
statement of each action part. After such a changeover
point, the action part is terminated and not reconsidered
for resumption.

Each action part of an object has a local program counter 1lpc.
When the object is created, all action parts are executed until
their first changeover point in a top down sequence in the in-
heritance hierarchy. This starting convention enables proper
initialization of common variables. Hereafter all 1lpc's are
located at their first changeover point of their action part.
The alternation mechanism between the different action parts of
the object then proceeds as follows:

While not all action parts have terminated do

1) Wait until the resumption condition of some action part is
satisfied.

2) If several are satisfied, one of the action parts with
highest priority and satisfied resumption condition is
chosen. If no priorities are specified, default is that a
subclass has higher priority than its superclass - i.e.
bottom up priorities

3) Resume execution of the chosen action part until its next

changeover point.

In general, a changeover point specified in an abstracted at-
tribute will imply a changeover point in the action part that in-

vokes the abstraction.

A guarded command abstraction that contains a changeover point in
its guard "infects" the whole if or do command in which it is

used as a guard. That is, any use of the guarded command ab-
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