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Abstract

A motivation 1is given for the use of multiple inheritance as a
general structuring mechanism for data, processes and procedures,
and an object oriented programming language that incorporates
such an inheritance mechanism is outlined. Objects in this
language combine the notions of abstract data structures and
processes. Classes and procedures are organized in multiple in-
heritance hierarchies. The main contribution of this paper is
the introduction of a coroutine like strategy for combining mul-
tiple action parts of objects. Coincidence of named properties
from different classes are treated by combining all versions of
the property. The inheritance mechanism on procedures offers an
elegant way of combining a number of inherited operations with
the same name.
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1 INTRODUCTION

Inheritance, including multiple inheritance is getting widely
acknowledged as a valuable structuring mechanism for data classes
that describe objects containing data and associated operations
as for instance in Smalltalk [9]. The first programming language
that included inheritance was Simula [8]. The purpose of this
paper is to show that inheritance on processes and procedures is

equally appropriate and to present a language with this facilily.

In section 2, a summary of traditional inheritance and its advan-
tages 1is given and a similar mechanism for processes and
procedures is motivated. In section 3, a new language is
outlined. The language is object oriented in the sense that it is
based on objects and classes that are organized in a multiple in-
heritance hierarchy. Compared to most other object oriented
languages, this language extends the notion of objects to be
autonomous communicating processes. That is, besides containing
data structures and associated operations, objects perform an
autonomous process that may be involved in a parallel computation
with other objects or may just act as an administrator of the
data structures in the object. The language presentation con-
tains examples that illustrate the usefulness of inheritance in
relation to the process aspect of objects. Section 4 contains an

overview of relations to previous work.

2 MOTIVATION

In this section it will be argued that inheritance is a valuable
structuring mechanism for both data and processes. First a brief
summary of the essence of traditional inheritance on data classes
will be given and the advantages will be pointed out. Then an
analogous notion of inheritance on processes is outlined and

nmotivated.



Inheritance is based on the ability to form hierarchies of clas-
ses. Traditionally, classes are templates from which objects
that contain data structures and associated operations can be
generated. In the literature, the class hierarchies have wvarious
names: 1is-a hierarchies, generalization/specialization hierar-
chies and inheritance hierarchies. In this paper, the following
textual and graphical notation will be used:

class A ...;

A
class B is-a A ...; /\
B C

class C is-a A ...;

B and C are said to be subclasses of A, and A is said to be a

superclass of both B and C. An object generated from a class A

is said to be an instance of A or an A-object.

If A introduces the declarations D1,...,Dn and B introduces the
declarations El1,...,Em, then the is-a relation between B and A
implies that B inherits D1,...,Dn such that B for the purpose of
this section can be considered equivalent to the class that con-
tains all the declarations D1,...,Dn and El1,...,En. B is con-
sidered a specialization of A since all B-objects have at least

all the properties described in A and are therefore also A-ob-

jects.
Exanmple:
class Person; class Student is-a Person;
— var name,address: text; var student-number: integer;
procedure change-address; —  courses: list of course;
i = procedure add-course;
end; v oo

end;

Moreover, in some languages a subclass B can modify declarations
inherited from a superclass A by introducing some restrictions on
the declarations from A that all B-objects must satisfy.

Inheritance hierarchies offer an excellent structuring mechanism
for data classes when many classes with many details are invol-
ved. The mechanism of inheritance has therefore primarily been

acknowledged within the database and artificial intelligence



areas, but it is gradually becoming clear that inheritance has
much wider application [4].

The general advantages of inheritance are:

- Better conceptual modelling.

Since specialization hierarchies are very common in everyday
life, direct modelling of such hierarchies makes the concep-
tual structure of programs easier to comprehend. See [3],
[4] and [17].

- Factorization.

Inheritance supports that common properties of classes are
factorized - that is, described only once and reused when
needed. This results 1in greater modularity and makes com-
plicated programs easier to comprehend and maintain since
redundant description is avoided.

- Stepwise refinement in design and verification.

Inheritance hierarchies support a technique where the most
general classes containing common properties of different
classes are designed and verified first, and then
specialized classes are developed top-down by adding more
and more details to existing classes.

A detailed discussion of the technique used in design is
given in [3]. Verification is discussed in [21].

- Polymorphism.

The hierarchical organization of classes provides a basis
for introduction of parametric polymorphism in the sense
that a procedure with formal parameter of class C will ac-
cept any C-object as actual parameter, including instances

of subclasses of C.

Many languages with inheritance allow only single inheritan-
ce - that is, tree structured inheritance hierarchies where a
class can have only one superclass. However, there are many ad-
vantages of allowing multiple inheritance - i.e. several super-

classes of a class: Consider the inheritance hierarchy in fig.



a) below. If multiple inheritance is not available, an alter-
native hierarchy must be chosen, for instance the one in fig. b)
below, where D' 1is 1like D plus an explicit description of the

properties in C.

N N

B\/C /T\
D D'
a) b)
Solution b) 1is inferior to solution a) in several respects: b)
is not a good conceptual model of a). Full factorization is not

obtained 1in b), since the properties in C must be duplicated in
D'. Finally, the full advantage of polymorphism is not obtained
in b), since D' is not a specialization of C and thus D'-objects
cannot be accepted as actual parameters for formals of class C.
More concrete examples of multiple inheritance will be presented
in section 3.

Inheritance on procedures and process classes (templates for
generation of processes) can be defined in a way that is quite
equivalent to inheritance on data classes: Consider two proces-
ses/procedures, Pl and P2, where Pl is-a ©P2. Besides
declarations, processes/procedures also contain statements. The
is-a relationship between P2 and Pl implies that declarations in
P1 and P2 are combined in P2 in the same way as for data classes.
Moreover, if P1 contains the statements S1,...,Sn and P2 contains
the statements T1,...,Tm, then execution of P2 will imply ex-
ecution of all the statements S1,...,Sn and Tl,...Tm in some se-
quence. (How this sequence can be controlled is the main topic of
this paper and is discussed in depth in section 3.5.) With this
notion of inheritance, P2 is considered a specialization of P1

since P2 will do at least what P1 does.



Such an inheritance mechanism for process classes and procedures
is a useful structuring mechanism just as it is for data classes.
This will be demonstrated in the following by showing that the
general advantages of inheritance also apply to proces-
ses/procedures. The examples given are rather abstract. They
serve only as motivation in this section, but some of them will
be concretized through examples in section 3.

Factorization

When several process classes are used in the same system, they
will often have some properties in common. These properties can
be factorized into one general process class that is used as a
common superclass of all the needed process classes. For instan-
ce, consider a system in which all processes must be well-behaved
according to some discipline of allocating resources. 1In such a
situation, the following factorization could be made:

Well-behaved-process

Pl P2 P3

As for data classes, this would mean that duplication of descrip-

tion is avoided and a clearer conceptual structure is obtained.

Stepwise refinement

In the development of complex processes, stepwise refinement is a
helpful technique that can help structuring the details and
separate different concerns. For instance, normal behaviour of a
process can be designed first and description of exceptional
behaviour can be added in a subclass. In a distributed com-
putation, the concerns of the distributed algorithm can be
separated from the concerns of detecting termination of the

distributed computation:



Distributed-process

Normal-computation Process-with-termination-detection

Computation-with-exceptions

Final-process

This example is too complex to be concretized in this paper, but
[18] realizes the termination branch of the hierarchy by means of
the inheritance mechanism presented in section 3.

Polymorphism

When process classes are parameterized with processes, the advan-
tage of polymorphism is obvious. A process parameter may then be
known to behave like a certain class of processes (e.g. accepting
some specific message) and still the actual parameter may be any
specialization of this class. As an example consider a class of
consumers parameterized with a producer from which to get its
data:

class Consumer (p:Producer) ; Producer

Ny

end; Pl P2

Procedure hierarchies

Most of the arguments given in favor of inheritance on processes
are also valid for procedures. Moreover, it is often so that
when data classes are organized in an inheritance hierarchy, then
the procedures that manipulate the data can be organized in a
hierarchy that is parallel to the data hierarchy. Consider as an
example a number of window classes organized in an inheritance

hierarchy:



Window

v

Window-with-border Window-with-menu

The procedure draw is relevant for all three classes but in dif-
ferent versions, since besides drawing the window itself, a win-
dow-with-border must have its border drawn, and a window-with-
menu must have its menu drawn. The three versions of the draw
procedure can be organized in an inheritance hierarchy that is
parallel to the hierarchy of the window classes:

Window.draw

Window-with-border.draw Window-with-menu.draw

The conclusion of this section is that inheritance, including
multiple inheritance, can be a useful structuring mechanism for
both data classes, process classes and procedures. However, the
potential of inheritance on process classes and procedures has
not been fully explored yet. The language outlined in the next
section is meant to contribute in this direction.



3 LANGUAGE PRESENTATION

The language outlined in this section is intended as an il-
lustration of how multiple inheritance on data, processes and
procedures can be included in an object oriented language. The
language presentation does not contain a complete language
definition. Only language features needed in order to show the

basic points of the paper are included in the presentation.

In particular, the treatment of name coincidences is simplified.
The main contribution on this subject is to show an elegant
solution to the problem of operation combination. The problem of
operation combination arises when two or more operations with the
same name are inherited from different superclasses and their
combined effect is wanted as the result of calling the operation
on instances of the subclass. The standard example of this
situation is the operation initialize.

3.1 Classes and Objects

A class is a template that describes the structure and behaviour
of all objects created from it (called instances of the class).
Classes are used to describe both processes and data structures.

A class definition contains:
1) The name of the class.

2) A list of value parameters of the class.

3) A 1list of superclasses from which the <class inherits

parameters, data attributes, operations and action parts.



4) A number of data attributes private to each instance of the

class. There are four different kinds of data attributes:

- Constants
specified as follows:
const x:T, where T 1is an ordinary enumeration type,
scalar type, subrange type or sequence type. For an
individual object, x will have a constant value given
when the object is created.

- Variables:

var X:T, where T is as above. The value of x may vary
during the lifetime of the surrounding object.
- Constant references:

const c¢:C, where C 1is a class name. Within an in-
dividual object, ¢ 1is a constant reference to a
specific instance of the class C. The actual value of
the reference is given when the surrounding object is
created.

- Variable references:

var c:C, where C is a class name. During the lifetime
of the surrounding object, c may refer to different in-
stances of class C.

The term constant data attribute is used to cover constants

and constant references. The term variable data attribute

covers variables and variable references.

5) A number of operations attached to each instance of the

class and visible to other objects. The operations are
procedures and functions with ordinary wvalue and result
parameters, local variables and bodies that can manipulate
the attributes of the surrounding object. Operations can be

organized in an inheritance hierarchy (section 3.6).

6) An action part related to each instance of the class. The

action part may manipulate the attributes, call the
operations and communicate with other objects by means of

synchronized operation calls (section 3.3).



A class that has one or more superclasses inherits all
parameters, attributes, operations and action parts from its
superclasses (and their superclasses in turn etc). Each super-
class contributes only once to the class regardless of the number
of paths in the inheritance hierarchy from the class to the
superclass. This means that objects generated from +the class
will have structure and behaviour as described by the combination
of all the classes in the inheritance hierarchy above the class.
How this combination is formed is the main subject of this paper.

Parameters, attributes and operations that a class inherits from
its superclasses are visible within the class just as if they had
been locally declared.

An object has its own version of attributes, operations and ac-
tion parts. The action parts of an object are executed alter-
nately as will be described in section 3.5 . Thus, the action
parts of an object can be considered as forming a single
autonomous process that starts executing when the object is
generated and executes in parallel with other objects. An object
can only communicate with other objects through synchronized call
of its operations. An object is thus a common notion for an ab-
stract data structure and a process.

Objects are dynamically generated from classes. A variable
reference declared as x:C gets a new C-object (or Cl-object) as-
signed to it by the statement

X:=new Cl(aparam) with (xl=expl,...,xXn=expn)

where C1=C or Cl is-a C. Aparam is a list of actual parameters
to the class Cl and the with list supplies values to the constant

data attributes x1,...xn.

- 10 -



3.2 Types

The language is typed and supports static type checking. However,
the type system allows parametric polymorphism and thus adds
flexibility and expressive power to the language compared to
traditional typed languages while maintaining the security of
static type checking. The first language with this kind of type
system was Simula [8], but a similar mechanism is included in
recent languages - e.g. Beta [13],[14] and Galileo [1].

For the purpose of this paper, the possible types are: class-

types, sequence-types, scalar-types, enumeration-types and
subrange-types.

Polymorphism of the type system is obtained by the partial <=
relation on types. For class-types, the <= relation is the tran-
sitive closure of the is-a relation (the subclass-of relation).
For sequence-types the <= relation is the <= relation on the
element type. For scalar-, enumaration- and subrange-types, the
<= relation is the ordinary subset-of relation.

Type compatibility related to assignment and parameterization is
defined as follows:
1) Type T is assignable to type S iff T <= S.
2) Actual parameters of type T are accepted for formal
parameters of type S iff T <= S.

Example
Class Person Class Student is-a Person
end end
x:Person

Procedure Pig(y: Person) ;

begin ... en
x:= new Student; legal because of polymorphism
Pip(x): do.



An object can only be manipulated in accordance with the type
with which it is declared, although it may actually belong to
more specialized types as well. For instance, in procedure Pip
above, only Person properties of the parameter y can be assumed

since y is declared to be of type Person.

The type system gives the flexibility that procedures written to
manipulate objects of type T can also be used to manipulate all

objects of more specialized types.

3.3 Communication

Objects communicate with each other by means of a synchronous
rendezvous mechanism somewhat similar to Ada's [16] and Beta's

[14]. Communication is described by means of request statements:
partner ! procedure-name ( actual-parameters )

and accept statements:
partner 7 procedure-name

where partner is a reference to an object and may be omitted from
the accept statement.

Execution of a request/accept statement within an object implies
waiting until a matching accept/request statement gets executed
within another object. The two objects synchronize and the accep-
ting object executes the denoted procedure with the actual
parameters supplied by the requesting object. Afterwards the ob-

jects continue independently.

An accept statement in object A matches a request statement in
object B if

- partner specified by B is a reference to A, and

- partner in A is either absent or a reference to B, and

- procedure-name in both denote the same procedure in A.



3.4 Control structures

The language 1includes an alternative and a repetitive command
similar to CSP's [12]. The alternative command has the form:

1T .

~ guard-1l -> statement-list-1

f./gmard-n -> statement-list-n
1.

and the repetitive:

do
— guard-1l -> statement-list-1

Od/guard—-n -> statement-list-n
where a guard can contain a boolean expression without side ef-
fects and an accept or request statement. The boolean expression
or the communication in a guard may be absent, but not both.
A guard G with a boolean expression B and a communication
statement C is said to be

- closed if B is false,

- indetermined if B is true and communication is not yet ready

through C,

- open if B is true and communication is ready through C
Absence of B or C makes the value of the guard depend only on the

present part.

The semantics of the alternative if command is:
evaluate all guards
if all guards are closed then skip
else if an open guard exists
choose an open guard
else wait until a communication is ready
in one of the indeterminate guards
choose an open guard
perform communication and statement-list

related to the chosen guard

- 13 -



This is equivalent to the CSP semantics except that closed guards
do not imply failure. The semantics of the repetitive do command
is to execute the corresponding if command repeatedly until all

guards are closed (equivalent to CSP).

Before continuing the language presentation, we will look at a
simple example that illustrates the features already introduced.
In general, the examples of this paper are kept on a minimum
size, and parts of the examples that are not essential to the un-
derstanding of the examples are just sketched by means of senten-

ces in natural language or just "...".

Example 1
This example shows a class that implements an abstract data type.

The action part of the class serves the purpose of controlling
the sequence of operation calls to instances of the data type.

The example can be thought of as part of a university database.

Class Student;

operation enrolment-for-examination;
nglﬁ_... end;

operation examination;

begin ... end;

operation dispensation;
begin ... end;

action
rue -> ) )
“_?fenrolment—for-examlnatlon;
i

? examination -> skip
./ ? dispensation -> skip

The action part of a student object ensures that enrolment takes
place before the actual examination and that the student either
takes the examen or gets a dispensation from it, but not both.
Moreover, another enrolment cannot take place before the previous

examen is over or dispensated from.

- 14 -



3.5 Multiple action parts

As already mentioned, an object gives rise to an autonomous
process that starts executing when the object is created and ex-
ecutes concurrently with other objects. The process originating
from one object consists of all the action parts described in the
class of the object and all its superclasses. In the following,

we will focus on the control aspect within a single object.

The different action parts of an object may have different
priorities associated with them (not to be discussed in detail)
and the strategy is to execute the action parts alternately ac-
cording to their ability to proceed and their relative priority.
Control shifts from one action part to another at well-defined
points in the action parts called changeover points. That is, the

action parts are executed in a kind of programmer controlled in-

terleaving or coroutine sequencing.

Changeover points are specified by means of the symbol "*". Each
changeover point has a socalled resumption condition associated
with it. The resumption condition expresses under what circum-
stances the action part 1is able to continue execution.
Changeover points may appear in the following contexts:

1) *(B) may be used as a statement, where B is a boolean ex-
pression explicitly denoting the resumption condition of the
changeover point.

2) * may be used as a prefix of a request or accept statement
meaning that there is a changeover point immediately before
the communication. The resumption condition is that the
communication 1is ready - i.e. that a matching ac-
cept/request statement 1is currently being executed by

another object.

3) * may be used in an alternative or repetitive command as
follows:
if * do *

fi, od

- 15 -



The semantics of an if* command can be expressed using the
notation in 1) above for a changeover point:

* (existence of an open guard)

choose an open guard

perform communication and statement-list
Note that the if* command will always imply choice of a
guard as opposed to the if command. If* also waits if all
guards are closed, since some guard may become true later,
not only as a result of the arrival of communications but
also as a result of the alternation with other action parts
of the same object that change the values of some boolean
expressions.
The semantics of do* is an infinite repetition of the cor-
responding if*.
If* and do* are generalizations of the when and cycle
statements in Distributed Processes [11].

4) An implicit changeover point 1is placed after the last
statement of each action part. After such a changeover

point, the action part is terminated and not reconsidered
for resumption.

Each action part of an object has a local program counter Ilpc.
When the object is created, all action parts are executed until
their first changeover point in a top down sequence in the in-
heritance hierarchy. This starting convention enables proper
initialization of common variables. Hereafter all 1pc's are
located at the first changeover point of their action part. The
alternation mechanism between the different action parts of the
object then proceeds as follows:
While not all action parts have terminated do
1) Wait until the resumption condition of some action part is
satisfied.
2) If several are satisfied, one of the action parts with
highest priority and satisfied resumption condition is
chosen. If no priorities are specified, default is that a

subclass has higher priority than its superclass.



3) Resume execution of the chosen action part until its next
changeover point.

Before showing examples of alternation, a few comments on the
mechanism are appropriate. Obviously, the general boolean ex-
pressions as resumption conditions (*(B) and boolean expressions
in guards in 1if* and do*) will be expensive to implement. The
boolean expressions must be re-evaluated each time the action
part, which is suspended at such a changeover point, is con-
sidered for resumption. However, the mechanism is very expressive
as will be shown later. Moreover, it is only paid for when ac-
tually used since * as prefix to communications can be wused in
guards to program if and do commands with changeover points that
depend on communication only and not on the full value of the

guards:
1ix
— Bl, *Cl -> S1

_Bn, *Cn -> Sn

(We require that either all communications in guards of an if or

do command are prefixed with * or none of them are.)

The semantics of such an if (or do) command is the same as the
ordinary if (or do) command (section 3.4), except that the "wait
until a communication is ready in one of the indeterminate
guards" 1is changed to a changeover point: "#*(a communication is
ready in one of the indeterminate guards)". Bl,...,Bn are not re-
evaluated when checking such a resumption condition that only in-
volves readiness of communications. Note, that this means that
when using an if or do command with communication changeover
point, then the value of Bi is not guaranteed to be true after
choice of the i'th guard, since there is a changeover point
between the evaluation of Bi and the choice of the guard. If Bi
is required to be true after choice of the guard, then Bi should
not involve variables that may be changed by other action parts
in the same object. If such variables are involved, then if* or

do* should be used.

- 17 -



To 1illustrate the alternation mechanism and its usefulness, we
will now look at some examples.

Example 2

Suppose we have a class of processes that make heavy use of some
resources and must acquire exclusive access to them during their
computation. This class of processes can be described in a

general class:

class Heavy-process (params) ;

action .

— request all required resources;
* (true) ;
release all the resources;

end;

Subclasses of class Heavy-process describe well-behaved processes
that request resources before using them and finish by releasing
them:

class Computation is-a Heavy-process;
action .

”‘géfform some computation;

end;

An instance of Computation will have its two action parts ex-
ecuted alternately by first executing the request, then the com-
putation and finally the release. The resumption condition in
Heavy-process 1is trivially true, but the default bottom-up
priorities of the action parts implies that the action part of
class Heavy-process is not resumed until the action parts of all
subclasses have terminated (reached their final implicit
changeover point). The example shows that an action combination
strategy like the one obtained by means of "inner" in Simula [8]

is covered as a special case of the alternation strategy.

_18_



Example 3
This example involves multiple inheritance and shows some of the

additional power of the alternation mechanism compared to the
"inner" mechanism of Simula and Beta. The example is an exten-

sion of example 1.

class Person:;

const name:text;
var address:text;

operation new-address(in a:text);
egln address:=a end;

action
—_ *?new-address -> skip
o
end;™
class Student is-a Person; class Lecturer is-a Person;
operation enrolment(...):; operation assign-course(...);
egin ... end; egin ... end;
operation examination(...); operation release(...);
€gin ... end; €gin ... end;
operation dispensation(...); action
egin ... end; — do true ->
. *?assign-course;
action *?release;
do true -> od
— *Zenrolment; end;

— *?dispensation -> skip

./ *7examination -> skip
£1;

od7

end;™

class Teaching-assistent is-a Student,Lecturer;
end;

An instance of Teaching-assistent executes its three action parts
alternately with changeover points at each accept statement and
alternative command. The sequence in which the action parts will
be executed will depend on requests from other objects (e.g.
users of the database) to perform operations, since the resump-
tion conditions in all changeover points are ability to com-
municate - that is, existance of requests from other objects. An
instance of Teaching-assistant will thus be able to behave alter-

nately as a Person, a Student and a Lecturer. Moreover, some



restrictions on the sequence of accepts are enforced. In the
Student part, the restrictions are the same as they were in exam-
ple 1. Similarly for the Lecturer part, an assignment to a cour-
se must have taken place before release from it is possible, and
a release 1s necessary before assignment to another course is
possible, expressing that lecturers teach only one course at a
time.

Example 4
Whereas example 3 involves alternation that depends exclusively

on external requests, example 4 illustrates alternation that also
depends on the internal state of an object. The example consists
of three classes organized as follows:

Reader Writer

Transformer

An instance of c¢lass Transformer alternates between reading,
transforming and writing depending on the ability to communicate
input and output with devices and depending on the state of local
input and output buffers.
class Reader (Inp: Input-device; max:Integer);
—var ibuffer: sequence of Indata;
—  c¢: Indata;
action
3 fer:=empty;
do* length(ibuffer) < max, Inpl!read(c) ->
— ibuifer:=append(ibuffer,c
end;
class Writer (Outp: Output-device; max:Integer);
—wvar obuffer: sequence of Outdata;
action
— obuifer:=enpty;

do* len th(ob%ffer) > 0, Outp!write(head(buffer) ->
— obuffer:=tail (cbuffer)

_20_



class Transformer is—-a Reader, Writer;
var e:Indata; f:0utdata;

action
__§§*_1en élbuffer) = Q =>

1buffer —tall(1 uffer),
f:=transform(e) ;

if* len th(obuffer) < max ->
obuffer:=append (obuffer, f)

fi

Note that example 4 makes use of the fact that checking the
resumption condition in an if* and do* involves full re-
evaluation of the guards including re-evaluation of the boolean
expressions.

3.6 Inheritance on routines

We allow inheritance on routines in exactly the same way as on
classes. A routine declaration contains:

- a name of the routine

a list of parameters
- a 1list of super-routines from which parameters, 1local
variables and bodies are inherited

a list of local wvariables

a body consisting of a list of statements.

As for action parts of classes, the bodies are executed alter-
nately, and may have priorities associated (default is that most
specialized has highest priority). For simplicity, we assume in
this paper that routines can only specify changeover points for
their own body, and thus we can still use the symbol "*" without

introducing any ambiguities.



Example 5

In the following example, procedure Use is a general description
of a well-behaved procedure that requests a printer before using
it. The Use procedure can then be used as a super-procedure for
procedures that actually make use of the printer.

Procedure Use (in p: Printer);

_“é_l request'
!

end;

Procedure Print (in f:sequence of lines) is-a Use;

g "length(f >

% _tgii?%)lneziead(f)).

iease

od
end;

The example assumes that Printer is a class of resources with
operations request, release and printline. If pl is an instance
of Printer - i.e refers to a specific printer, then the call
Print (pl,file) will result in acquiring the printer pl for ex-
clusive access, writing the file on pl and releasing pl.

Other examples of inheritance on routines will appear in section

3.7, including examples of multiple inheritance and value retur-
ning routines.



3.7 Modification of inherited properties

Until now, we have seen that a subclass is made from a number of
superclasses by specifying additional properties that instances
of the subclass must have compared to instances of the superclas-
ses. It is also possible to make a subclass in which some of the
properties inherited from superclasses are modified. Inherited
operations and data attributes can be modified in a subclass,
subject to some restrictions that ensure that the inheritance is
conceptually a specialization hierarchy and that the type system
can be statically checked.

First we consider properties inherited from only one superclass:

3.7.1 Singularly inherited properties

An operation from a superclass can be modified in a subclass to

be more specialized by means of the inheritance hierarchy on

procedures:
class Aj; class B is-a A7,
operation Pi g —  operation les—a A.P;
egil ody-1 end; egin body-2"end;
end; - end; -

where A.P refers to the operation P as specified in A. The dot-
notation is only available for specification of super-operations.
The operation P in B is the combination of body-1 and body-2 ob-

tained by alternation.

If additional parameters of mode "in" are specified in the sub-

class, default values must be given.
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A constant data attribute can be modified in a subclass to have a
more specialized type:

class A; class B is-a A;
—const x:T1; ——const XITZ;
end?: end;

where T2 <= T1,.

For a B-object, modifications in B have effect also on the parts
of the B-object described in A. Generally speaking, the effect of
a modification extends to all class levels of an actual object,
also class 1levels above the level at which the modification is
specified. For instance, if operation P above is called on an
object ¢, then the actual class membership of ¢ determines which
version of P is executed, regardless of where the call ap-
pears - e.g. whether it 1is a request from another object or a
call from some other action part within ¢ itself. (This cor-
responds to the effect of method activations in Smalltalk [9] and
to virtual procedures in Simula [8].)

A few comments on the relation between modification and static
type checking are appropriate. The ability to modify properties
in subclasses is restricted in such a way that static type
checking of the language will still be possible. We want the com-
piler to be able to guarantee that if B is-a A then all B-objects
may safely be treated as A-objects - i.e the polymorphism of the
language is safe.

If B is obtained from A by just adding new properties, this is
obviously possible.

If B is obtained from A by modification of existing properties,
then the rule that a modification must specialize the property
ensures that B-objects treated as A-objects will not violate any
specifications given in A. The rule that only constant data at-
tributes can be modified, and not variables, ensures that B-ob-
jects treated as A-objects cannot violate any type specifications

of attributes given in B.



If modification of wvariable data attributes and parameters is
wanted in the language, it should be realized by means of a
separate constraint mechanism administrated at runtime like in
Galileo [1] in order not to interfere with the static property of
the type system.

Safety of operation calls is ensured by the rule that default
values must be given for additional in-parameters to specialized
operations, and by the following convention: missing actual in-
parameters to a call of an operation implies use of the default
parameters, whereas missing actual out-parameters are ignored
(i.e. copying of value from formal to actual parameters is omit-
ted). This implies that a call of an operation from a place that
only knows the general version of the operation can also be con-
sidered legal if the actual object that owns the operation is in-
stance of a more specialized class where the operation is
specialized with additional parameters.

Now to some examples of modification.

Example 6
Example 6 shows a specialized class obtained by modification of

inherited constant data attributes (and perhaps addition of new
properties as well). The example can be thought of as part of a

university database for planning of examinations.

class Examination; class Graduate-ex is—-a Examination;
—const c¢: Course; const c: Graduate-course;

s: Student; s: Graduate-Student;

1l: Lecturer; § % &

var t:Time;

end; end;

where we assume that Graduate-course is-a Course and Graduate-

student is-a Student.
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Example 7
Example 7 is part of a graphical window system and shows
modification of a value-returning operation.

class Window:;

operation check-cursor (out inside: Boolean);
Eé‘iﬁ“‘ .

inside:= if cursor is within the window area
then true else false

end;

end;

class Window-with-menu is-a Window;

e e

operation check-cursor is-a Window.check-cursor:
egln

inside:=inside or (cursor is within menu area)

end;

end;

Calling check-cursor on a Window-with-menu implies that +the two

bodies in the two versions of procedure check-cursor are executed

alternately. Since there are no explicit changeover points in

any of them, the alternation degenerates to a top-down execution
of the two bodies. That is, the result is obtained by first ex-

ecuting the top 1level body of the operation giving an inter-

mediate result in the variable "inside", and then executing the

other

body that refines the result by means of "or". Hereafter

the value of the out parameter is true if the cursor is

positioned on the window itself or on its menu area.



3.7.2 Multiply inherited properties

Al A2 e An

A

When a class A has a number of superclasses, then a data at-
tribute, parameter or operation named x may be inherited from
several superclasses, say Al,...,An. Existing approaches to mul-
tiple inheritance have mainly concentrated on how to handle such
coincidences of names from different superclasses. (See section
4.)

The approach taken 1in this paper is to concentrate on intended
coincidences where only one version of x is wanted in A and show
how the inherited versions of x can be combined into one in an
elegant way. Accidental coincidences, where several versions of
x are wanted in A, are ignored in this paper. The possibility of
combining properties in a subclass adds expressive power to the
language, whereas treatment of accidental coincidences is mainly
a technical matter, which of course must be taken care of by a
complete language. (One way of supporting both possibilities is
to do like Thinglab [5] where multiple versions is the default
solution, but explicit merging into one version is possible.
Choosing this approach, the mechanism in this paper could then be

considered a proposal for how to perform the merging.)

For simplicity, however, we assume in this paper that multiply
inherited properties must always be combined into one version.
In order for A to be a legal class, one of the following con-

ditions must be satisfied:

1) x 1s a variable data attribute or parameter with the same
type T in all the classes from which it is inherited. x will

then have type T in A.
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2) x 1is a constant data attribute or an operation which is
modified in class A to be a specialization of all the in-
herited versions from the superclasses.

That is, if x 1is a constant data attribute with types
Tl,...,Tn inherited from Al,...,An respectively, then x must
be modified in A to have a type T that satisfies T <= Ti for
all a»l..ns

Similarly, if x is an operation, x must be modified in A
such that A.x is-a Ai.x for all i=1..n. Default values must
exist for all in-parameters that are not common for all the
inherited versions of the operation.

3) x 1is a constant data attribute or an operation for which no
explicit modification is present in A. In this case, an im-
plicit modification to the most general specialization of
the inherited types/operations will be automatically inser-

ted if possible (see 1later), otherwise A is an illegal
class.

These rules are simple generalizations of the rules for singular-
ly inherited properties described in the previous section, and
preserve the possibility of static type checking. Of course, a
modification still extends to all class levels of an actual ob-
ject as described earlier.



Schematical example

class Al; class A2;
—const x: T1; —const x: T2;
operation P; operation P;
Béqiﬁ_SI_end; ngln 52 end;
end; end;

class A is-a Al,A2;
const X: T;

operation P is-a Al.P, A2.P;
begin S3 end;

end;
assuming that T <= T1 and T <= T2.

An A-object will have an x attribute of type T, which thus

satisfies Tl and T2. If operation P is called on an A-object,

three bodies S1,S2 and S3 will be executed alternately.

The strategy for combining operations with the same name
herited from different classes can be thought of as a way of
bining different descriptions of the same operations from
ferent perspectives in such a way that all the descriptions
tribute to the whole. In this respect, the mechanism is

parable to method combination in Flavors [20].

Before showing a more interesting example, we introduce the

also
the

in-
com-
dif-
con-

com-=

con-

cept most general specialization of a number of types or a number

of operations - abbreviated mgs:

1) I1If T1,...,Tn are scalar types, enumeration types

subranges then

or

mgs(Tl,...,Tn) = intersection-of(T1,...,Tn), if not empty,

otherwise mgs(Tl,...,Tn) does not exist.

2) If T1,...,Tn are sequence types with element types S1,.
respectively, then
mgs(T1l,...,Tn) = sequence of mgs(Sl,...,Sn).

..,Sn
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3)

4)

Note
some

sion

If T1,...,Tn are classes, then mgs(Tl,...,Tn) is the class
that has T1,...,Tn as superclasses and no additional proper-
ties, 1if such a class makes sense. (If some Ti <= Tj then
Tj is superflous in the list of superclasses and ignored.)

If x 1is a multiply inherited constant data attribute from

some of Tl,...,Tn with inherited types X1,...,Xm then the
type of x in the class mgs(T1l,...,Tn) is mgs(Xl,...,Xm).
Similarly, if x is an operation inherited from T1,...,Tn
then x in mgs(T1,...,Tn) will be mgs(T1l.X,...,Tm.x).

If x is a multiply inherited variable data attribute with
the same type in all the classes from which it is inherited,
this type will also be valid for x in mgs(Tl,...,Tn). Other
kinds of name coincidences in T1,...,Tn will imply that
mgs(Tl,...,Tn) does not exist.

If P1,...,Pn are operations then mgs(Pl,...,Pn) is the
operation that has P1,...,Pn as super-operations (again ig-
noring Pj if Pi is-a Pj) and no additional properties. Name
coincidences between names in P1l,...,Pn are solved as in 3)

if possible, otherwise mgs(Pl,...,Pn) does not exist.

that the definition of mgs is recursive and that if mgs at
level does not exist, then the mgs that started the recur-

does not exist. A non-existing mgs corresponds to a number

of disjoint or incombinable types or operations.

Example 8
class Male; class Female;
—const sex: (m); —const sex: (f);
en&}' ené}'

Mgs (Male,Female) does not exist since the enumeration types (m)

and (f) are disjoint.

In general, mgs(Tl,...,Tn) satisfies that

- mgs(T1,...,Tn) <= Ti for all i=1l..n and

if T <= Ti for all i=1..n then T <= mgs(T1l,...,Tn)



This expresses that mgs(Tl,...,Tn) is the most general
specialization of T1,...,Tn. Thus mgs is a kind of general inter-
section mechanism for types and for operations.

Since mgs participates in the <= relation, the discussion of
polymorphic types also applies to mgs.

Mgs is used for implicit modification of multiply inherited
properties but can also be used as an explicit type expression.

We finish the language presentation with two examples that il-
lustrate the usefulness of our interpretation of multiply in-
herited data attributes and operations.

Example 9

class Examination;

—const s: Studenﬁ;
—  1: Lecturer;
var d: Date;

end;

class Graduate-Ex is-a Examination;
const s: Graduate—=student:;
l: Professor;

end;

class Math-Ex is-a Examination;
— const s: Math—-student;
- — 1l: Math-Lecturer;

enc"i H
e: mgs (Graduate-Ex, Math-Ex);

In the example, it is assumed that the class-types are organized

as follows:

//\

Math-Student Art-Student ... Graduate-Student Undergrad-Student
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Lecturer

Math-Lecturer Art-Lecturer ... Professor Assist-Professor
The object e is typed by means of the mgs construct and will have
an s-attribute of type mgs(Graduate-Student,Math-Student) and an

l-attribute of type mgs(Professor,Math-Lecturer).

Example 10

The following example illustrates how multiply inherited
operations are combined. The example is an extension of the

previous window example with four classes organized as follows:

Window
W-with-border W-with—-menu

W-with-both

The example focuses on the operations Draw, Translate and Check-
cursor which are relevant for all four classes. Details that
depend on the actual representation of windows are omitted.

class Window;

var ul-corner: Point;
— lr-corner: Point;

operation Draw;
egln
‘_%%?"

aw the window contents on the screen

end;

operation Translate(in x,y:Integer);
Bg_ifr___‘

__ﬁranslate window contents with the vector (x,y)
ena;

operation Check-cursor(out inside: Boolean);

e ln Ll 1] '
——iﬁside.= cursor coordinates are within window area
end;

end;



class W-with-border is-a Window;
var border-size: Integer;

operation Draw is-a Window.Draw;
Eg_iﬁ___“ -

*”%fﬁw the border arocund the window
end;

operation Translate is-a Window.Translate;
Bg_iﬁ___— -

granslate the border with vector (x,y)
end;

operation Check-cursor is-—-a Window.Check-cursor;
bBegin

_—éﬁside:= inside or (cursor coordinates are on the border)
enda;

end;

class W-with-menu is-a Window;
——const menu: ...;

operation Draw is-a Window.draw:
Bg_iﬁ___“ -
__gf_

aw the menu
end;

operation Translate is-a Window.Translate:
bg‘iﬁ—‘—— ——

__%fﬁnslate menu with vector (x,y)
end;

operation Check-cursor is-a Window.check-cursor;
Bg_iﬁ____ -

énside:= inside or (cursor coordinates are on menu area)
end;

end;

class W-with-both is-a W-with-border, W-with-menu;
enda; -

w:= new W-with-both:;

w!Translate(a,b);

The Draw operation in w will be
mgs (W-with-border.Draw, W-with-menu.Draw)

Similarly, the Check-cursor and Translate operations in w will be
mgs (W-with-border.Check-cursor, W-with-menu.Check-cursor) and

mgs (W-with-border.Translate, W-with-menu.Translate)
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The activation of w's Translate operation will imply that Trans-
late executes its three bodies top-down since there are only
final (implicit) changeover points. The example shows operation
combination by means of multiple inheritance on operations:

Window.Translate

W-with-border.Translate W-with-meénu.Translate

mgs (W-with-border.Translate, W-with-menu.Translate)

The description of the translation of the window contents is fac-
torized into the common super-operation Window.Translate. Thus,
all parts of the window will be translated exactly once with the
vector defined by the parameters.

4 RELATIONS TO OTHER WORKS.

Only very few languages with inheritance on processes/procedures
have been developed. Simula [8] allows single inheritance on
processes and provides a simple procedure 1like mechanism ("in-
ner") for combining the statement sequences. 1In [19] a similar
mechanism for procedures is proposed and Beta [13] includes both.
Taxis [15] allows multiple inheritance on transaction classes and
combines the action parts in a simple sequential way. The alter-
nation mechanism in this paper adds considerable expressive power
to the inheritance mechanism for processes/procedures compared to
these previous proposals. The alternation mechanism is a
generalization of the alternation mechanism available between ob-
jects in Beta and the programmer controlled interleaving
mechanism obtained by when and cycle statements in Distributed

Processes [1l1].



A number of recent languages and language extensions include mul-
tiple inheritance on data classes. The main differences between
the various proposals 1lie in the treatment of coincidence of
named properties. To ease comparison, a brief analysis of dif-
ferent approaches 1is appropriate.

Name coincidences may occur either vertically (fig. a below) or
horizontally (fig. b below):

A A B

o
Q

a) b)

A,B and C are classes and x is the name of a data attribute or
operation defined in A and B.

A name coincidence is usually interpreted in one of the following
two ways:

1) x in A and X in B are two different properties and the coin-

cidence of their names is accidental.

2) x in A and x in B are semantically the same property
described at different levels of abstraction (in the ver-
tical case) or from different perspectives (in the horizon-
tal case). In the vertical case, any actual B-object will
have all references to its x-attribute treated according to
the description given in class B. In the horizontal case,
the two different descriptions of x must somehow be combined

into a description that can be used for x in the class C.

Interpretation 1 is the simplest to implement and gives the con-
venience that different programmers need not worry about each

others choice of names. Pie [10] has chosen interpretation 1 ex-



cept for vertical coincidence of operation names. However, from a
conceptual viewpoint, interpretation 2 is much more interesting
and offers additional expressive power.

The additional expressive power obtained by interpretation 2 for
vertical coincidences compared to interpretation 1 is that it al-
lows specialization of a class by specialization of some of its
properties instead of just by adding new properties.

Interpretation 2 for vertical coincidence of named data at-
tributes is provided in Galileo [1] and Taxis [15] in a form very
similar to the form presented in this paper. That is, the
modified version of the data attribute has a more specialized
type.

Interpretation 2 for vertical coincidence of named operations is
quite common in the whole Smalltalk inspired family of languages
regardless of whether multiple inheritance is included or not:
[(91,[2],[51,[7]1,[19]. The mechanism was first introduced in
terms of virtual procedures in Simula [8] and is very useful sin-
ce specializing a class often results in a wish to specialize the
operations of the class correspondingly as discussed in section
2. Most of the languages include a "runsuper" mechanism that
makes it easy to define the modified version of an operation as
an extension of the previous version, but the full step to in-
heritance on operations is not taken. This is done in Beta [13]
where procedures and processes are all described by hierarchical-

ly organized patterns.

Concerning horizontal coincidence of names, interpretation 2
makes it possible to describe a concept from different perspec-
tives that are not quite orthogonal. That is, the perspectives
may depend on each other by contributing to the description of
the same property.

Interpretation 2 for horizontal coincidence of named data at-
tributes is provided in Taxis [15] like in this paper and in
Galileo [1] in a restricted version where one of the inherited

descriptions of the attribute must be a specialization of the
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other. Thinglab [5] provides a merging facility for data at-
tributes that gives a similar effect to the mechanism in this
paper.

Interpretation 2 for horizontal coincidence of operations can be
obtained in Thinglab [5], Loops [2] and Traits [7] only by ex-
plicitly modifying the operation in the common subclass and
program it to do whatever combination of the inherited operations
is wanted. In the Smalltalk extension in [6] a special primitive
"all" is provided to ease a purely sequential combination.
Thinglab [5] and the Smalltalk extension [6] require that coin-
cidences are solved by explicit modification, whereas Loops [2]
and Traits [7] choose a default version of the operation if no
common modification exists. Flavors [20] includes a number of
language defined strategies for automatically combining the in-
herited operations. Flavors has been a major source of in-
spiration for the work on name coincidences reported in this
paper. However, the solution given in this paper is very general
and has the conceptual advantages of treating data attributes and
operations symmetrically and of using only an extended notion of
the already acknowledged inheritance mechanism.

5 CONCLUSION.

It has been demonstrated that inheritance, including multiple in-
heritance, is a relevant structuring mechanism for both data,
processes and procedures. An object oriented language has been
outlined in which objects integrate the notions of abstract data
structures and processes. Classes are organized in a multiple in-
heritance hierarchy that results in a coroutine like execution of
the different action parts of an object. A similar inheritance
mechanism on procedures is available and is shown +to offer an
elegant solution to the problem of operation combination that
arises when several versions of an operation are inherited from

different classes and must be combined in a subclass.
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