ISSN 0105-8517

A Calculus of Communicating Systems

with Label Passing

Uffe Engberg
Mogens Nielsen

DAIMI PB - 208
May 1986

DATALOGISK AFDELING
Bygning 540 - Ny Munkegade - 8000 Aarhus C
thf. (06) 12 B3 58, telex 64767 aausci dk
Matematisk Institut Aarhus Universitet

£

A

Contenis

Preface

Introduction

Syniax

substitution, Conversion
Deriviation

strong Equivalence
Ohservational Equivalence
Expressiveness
Conclusion

References

29
33
57

58

This report is essential Uffe Engbergs thesis
for the M. Sc. degree from Department of
Computer Science, Aarhus University - except
that all proofs of theorems have been left out.
Should anyone have interest in particular
proofs, they may be obtained by contacling one
of the authors,

50 Introduction

In the original version of CCS, as presented in [Mil1], siructured
dynamically evolving configurations such as the pushdown store can he
obtained by means of recursion and the chaining combinator.

it is less clear thar the same can be obtained for unstructured
dynamically evolving configurations like the example studied in [Milt]
chapter 9, which was the natural one of allowing unboundedly many
concurrent activations of a single procedure in a concurrent programming
language. There it was pointed out that a solution would be to allow the
passage of communication links as values between one agent and another,
but that CCS probably was defective in this respect. It was also noted that
it's usefuiness was not limited to language translations.

fin [DoG] it is mentioned that in general, the exchange of ports
{communication links) between agents, would be a natural way to model the
exchange of communication capabilities.

In later versions of CCS (see [Mil2] and [Mil3]) a more basic calculus,
which allow infinite summation but not direct value communication, were
introduced. It was shown how the original version - a richer calculus -
could be encoded. Value communication and manipulation was encoded
essentially by indexing the labels and the agent identifiers. Labels or
communication links could alsc be encoded (as special cases of values). A
similar approach has been made by [AsZ] which conceptually only differs a
little from Milners approach. A very different called LNET is presented in
[KeSl. LNET might be described as a hybrid of actor languages and CCS.

In spite of this we have made a different approach for serveral reasons.

Although the later basic calculus in a sence allows the passsage of
communication links as values belween one agent and another Milner himself
notices in [MiI3]: "It is quite certain that the slender syntax of our basic
calculus and even the derived notations which we have considered, are not
sufficient allways to present such applications [with passage of
communication links] in a lucid way". Most of the problems are left for the
‘programmer”,

Our approach will be more in keeping with the original version of CCS and
at the same time widen the connection to the lambda-calculus and reduce
the number of primitve operators (no relabelling) without loss of
expressiveness. In [Mil1] Milner ask the question wether CCS's primitive
constructs are the smallest possible set and says that they need a
re-examination. Since we have not got the relabelling oprator we thereby
to some extend deal with this question. It is our belief that the paris of our
approach which concerns this could be done for the basic calculus too.

We will now discuss what reqguirements the new caloulus allowing passage
of communincaltion links should meet, It will be refered to as ECCS {(Extended
£Ls;.

In what follows there is a sligi syntactical difference to CCS. «7x,~~— is
written for wx.---, where x is bound by ? and it's scope is ~-- meaning

that a value can be received at «. Similar we write «lv.B for sending a
value,

To get a first idea of what we mean by allowing passage of communication
links (labels) consider the example:

BolBy = oxI8.87x. 81 NILJec?y. Bly.NIL

which is a CCS program. It can according to CCS develop like:

S50 Introduction

BolBy

Ix
ﬁ?x.éistiLlﬁ!&NiL
It

SISNILINIL

If we replace 8 by A it is no longer a CCS program, bul we wish such
communications of labels fo be possible in ECCS. If x and vy are replaced by
xand p - variables qualifying over labels - we expect the program to be
able to develop in the same way:

oln 87 28! o NILe? el e NIL
It

87 x.80 x NILIBIANIL

It

810 NILINIL

communication of labels would be of no use if 1t was nol possible to use a
received label for later communication , 5o the following rodification of the
example:

BylBy = s A7x. 81 NIL o7 g pISNIL
should be possible such that a development could be:

BolB
It
AT BBGNILIVSUNIL

It
15, NIL INIL

Up tilt now there has probably not been any problems to understand these
basic requirements. This is due fo the simplicity of the examples. In [Dog]
the following more complicated example is studied:

{BolB NecfB, = (27 1 pLNIL [t oc? NIL N oc] A loc, oc? NIL

The agent B, can receive a label at » and the label is bound to the
variable). If the received label « comes from the agnet B, it agrees wilh
our intuition if the system upon the communication results in:

Cocl NIL e 7, NIL)N o] tee, 0¢ 2, NIL.

But what should the result look like if the label received originates from
the outside agent B,? Should it be possible to pass o from B, to By7 If the
system instead looked like:

(BolByABIB, = (A7 pv pLNILINB.BZNILAB] Mo o7 NIL o

it would seem natural 1if the result was: («LNIL|B,)\ple7.NIL. The labels
visible for agent B, are the same in both cases. From the viewpoint of B,
there seems no reason why (ByB)ve and (By|Bg\p should behave
differently, 1t will therefore be a central requirement to ECCS, that the
name of a label resiricted shall be of no importence fo the behaviour in the

§S0 Introduction

same way as change of bound variable in a7x.--- does nol influence the
behaviour in CCS. This also seems natural 1f one takes up the the attitude
that one is communicating via links and that the communications via a
certain link should be the same no matter what name is chosen for that link.
in terms of experiments on machines as sketched in [Mil1}: the buttons are
the same no matter what name is printed on them.

The same question rises in a different situation and the problems seems
closely connected. Let 2% 1B = a7 po (IS NIL[x?x, UGNILNe, What should
the resull look like after a label is received al A and substituded for ¥ in B?
The situation is very similar to the one above, except for dependence of the
names of the restricted labels is displaced to the substitution. We therfore
demand the same independence of actual names used for restriction when
substituting a label.

We will now study one further requirement to ECCS through an example
mentioned in [Mi13]. Consider the agent A managing some resources: R,
{1sisn) which signals to A via A when they are available. Other agents
makes requests for resources to A via 6. Let @ be such an agent potentially
requesting. The situation can be pictured as:

where the resource Ryis accessed through o,
A common solulion is 1o write the system as

QAR .| RAONA ,where A={e;lcicn]

and to let A somewhere contain a subexpression like 8li.B meaning that A
communicate the index of an available resource via & and let @ contain a
subexpression like #7x (.o l.o,?.) where 87k means receiving the index
and using it for communication with resource R, via «,. The problem of
such solutions passing indexes as a kind of identification is that all potential
resources must be known at the time when the administrator A and the
system is written in order not to mix up indexes. Furthermore the family
of indexed labels {e;} must be known in advance,

To illustrate this we consider a very simple system with a requesting
agent and two resources.

§0 Introduction

Q = 87%00 18,00 Py Sly NIL
Ry = T o Px o 1290, 30
Ry, = fixX<nlZ o0, ?x. o0t x X

We leave out the details of A. A would in this example be {oc, 0}

If one wants to add a new resource R, to the system one must inspect the
system to see that communications between requesting agents is done via
labels of type «, and that «;, o, already is used. It is not enough to know
the way they communicate (the communication protocol they use) and that
requests for resources are done to A via ¢ and resources availability is
reported via a. Furthermore A must be extended with {«;} if '3 is used to
identify R,.

This show a certain lack of modularity which we want to avoid,

Therefore it shall be possible to write the different agents independently
of each other only knowing the interface to A, l.e. R; knows » of A and @
knows & of A, As a consequence it must be possible for R, to have a label
which in a certain sence is unique in all contexts and which later can be
used as communication link between Ry and Q. In addition the label shall
remain unigue or private to R, and @ after it is communicated through A via
A and 8, {except of course if it is communicated further from either @ or
R;).

Last but not least we impose the restriction to keep as close as possible
to Milners CCS - e.g. preserving as many as possible of the algebraic
properties of CCS. This requirement is actually quite independent of the
extension we are after. With all the thoughts behind and the elegancy of CCS
this must be a sound principle to apply to any atiempt at extending CCS.

We will now give an idea of how ECCS can be made in order to meet these
requirements.

Milner has already drawn attention to the connection between the binder
7 in e?x,--= of CCS and the binder "\ in the lambda-calculus ([Mil1]p.49).
He has also introduced a texiual substitution postfix which has similar
characteristics as the substitution prefix of the lambda-calculus (see
[Mil1]p.67) namely: when applied change of bound variables is done as
necessary f{o avoid clashes, It is clear that the substitution postfix
formally can be handled along the lines of the substitution prefix of the
lambda-calculus as long as we only are concerning the binding construct
x7x.,--. But it is less clear that the binding construct fix¥X introduced for
recursion in [Mi12,3] can be handled formally within the same framework,
especially when)?m«:}{i;ic«:b an I-indexed family of destinct variables where |
is a uncountable set. One of our aims will therefore be to lift the results for
the extension where fix appears as binder too (only for finite ¥X).

in order to meet the requirement of independence of actual names used
for restriction we will furthermore widen the idea of bound and free
occurences to include labels as well, with "\" as the binding symbol for
labels. In the lambda-calculus a central notion is «-convertability between
functions with respect to bound variables, The idea is that functions which
are equal "up to bound variables" denotes the same function when applied to
the same arguments. With our reguirement that behaviour expressions
which are equal "up to bound labels” should behave equal, it seems natural
to extend the notion of s-convertability to include labels bound by “v".

4

§0 Introduction

The close relationship between substitution of variables and
ec-convertability (in the following just convertability) will therfore also be
generalized to substitution of labels. At the same time we thereby obtain
the possibility to change unbound labels of a behavior expression (i.e. the
sort) and can therefore omit the postfixed relabelling operator,

For the third requirement (possibility to have a unigue or private label,
to communicate it and remain unique) notice that the label « in some sence
is unique to B in B\« since o can be used for internal communication and
cannot interfer with other «'s appering in any contexis B\e« could be in. So
in order to communicate o it must be possible to extend «'s scope to
include the receipient. This and the remaining unigueness is obtained
through a (minor) extension of the inference rules.

To put the comments above differently, we want to extend CCS to allow
passing of individual channels, viewing restriction as a formal binder, and
to allow dynamic change of scope of such binders in connection with
comrnunication.

in order to get an idea of the possibilties of ECCS we turn back to the
example of an administrator A and some agents Q; requesting for some
resources R, via the administrator.

We will make the simplifying assumption that it does not matier what
resource a requesting agent gets, though the resources may be
implemented differently as long as they obay the same communication
protocol. If the administrator use the "first come first served” policy it can
be implemented as a fifo-queue where a requesting agent enters the queue
at the rear and leaves it at the front when a resource is available:

A= (87, newreg. T(newrsg,oljoLNIL\g ,where

T = fixX< oldreg, WA8? newreg X newreg,o)l ¥ .07 freeres.
aglaregl fresres ol NILN\G

Each name in italic denotes a labelvarable. (x5 = o).

The administrator can be viewed as consisting of a serie of elements each
containing a waiting agent (o/dreg). Al the rear new request are received
(87 newreg) and a new element created. The front element receives the
name of a available resource (L7, #reeres) and passes it on to the waiting
agent { o/dregt freeres). After doing this it signals {o the next (o) that
it now is the new front element. Notice the elements at the front and rear
can serve the agents and resources concurrently.

We now turn to the parts of the resources and requesting agents which
concerns the communicalion between them and the administrator. A
resource could ook something like:

R; = fixXp<(nloe «Px.. oxlo X(N0 o

and a requesting agent:

Q= (8R.B7 xvoxle.. x?vy.. N\B. ,B=d

The underlined actions corresponds to the communication protocol

between requesting agents and resources for this spectal example. The
other shown aclions concerns the communication with the administrator.

5

S0 Introduction

The label « in the resource is restricted and therefore unique or private
for R;. Upon sending it to the administrator it's scope is extended to include
the administrator (in accordance with Com={(3) and Res=(2) of the section
about deriviations). A new name is possibly chosen in order not to interfer
with other labels within the new scope such that it remains private to the
resource. Afterwards it is passed on to the requesting agent at the front
of the queue and the scope include the agent in the same manner as before,
The same happens when the requesting agent sends it's private label -
which acts like & identification - to the administrator. Notice that a
resource after it has served an agent restores itself such that it sends a
new private label when reporting that it is available.

To clarify the idea let us consider a possible development of a very simple
scenery with two agents and one resource:

Q, = (8!B.B7 x. x18. x?y.8iy.NIL)\B
Q, = (§18.87 x. XIS, x7v.ely. NIL)AB
R = XXM, o7, o 2%, X) ey
The system could be sel up as:
(@] @, Al RMsW

If the derivigtions and eguivalences in the following possible development
is not clear to the reader we refer {0 section 3 and 4.

(@, Q,] AlR) W\
|t Q,

I
(g7 x 18, x7y.8ly NILL @l T(R, oMo LNILNeNR] R

T
(8,190,187 newreg. T newreg,s"}]
N7 freeres Ll freeres o LNILINGINILIN O ART RIS

((Q,19,(s7 newreq. T newregq,o”)|
A7 Freeres.pll freeres. o LNILNG" NG| RINB\A
&,

It
!
({R1(p"7 x XI5, x7y.sly.NILIC T{p",a")]
N7 freeres.pl.) freeres. o LNILING INB AR RIS
It
LA, TR, o"B . e 0" LNIL NG IR B Jo' Po o1 25, YAV RV AN
It
({oc18.0¢' 7y, 81y NILIC @J(T(8", 00" LNILING" N AR Joc 7%, o 12 X, RJNed\sAN
‘(a'!a,w'?y.éiy.N!L{{ QTR oo LNILNG B o T o 12%%, RINoc\E\A
It
{oc' Py 8. NILIC QTR oM a " LNILDNG " N Joct 16, R)\ec'\#\
T
(116, NILJC @, 10T (g™, 0" o " LNILINoAE"] R)%ec' s\

(SHENILIC @, U T (", oo " LNIL) Yo" ARl RINEW

&

50 introduction

(8116 NIL[s1ONIL] AIRYBAA

It should be siressed that following the gquidelines indicated zbowe one
obtain the required modularity mentioned earlier. The administrator can be
constructed without knowing anything about the resources and the
requesting agents except that the agenis makes requests via & and
resources reports their availability at A, Similar for new resources and
requesting agents one whish to add to the system. They can be added at any
time whithout any inspection of the components already in the system.For
instance we could add a new resource:

N = fixX<NI8, 67, ot X)ved
directly and the system would look like:
(Q,] G, AR N
No confusion of identifications etc. can arise. This way of adding new
components to the system seems lucid compared to the "index-approach”

where oneg have 1o inspect the system in defail.

We will now present ECCS in detail,

(£

1 syntax

The intension of this section is to give a detailed presetation of the syntax
of ECCS and to state convenlions and notation.

For most purpuses it will do to look at the syntaxtable and the section
should be used for reference when doubt arise.

in the original CCS details of types of variables and value expressions are
avoided in favour to a more clear presentation. When allowing label passing
we cannot avoild all such considerations,

Basicly we destinguish three types of values:

recursion definitions
labeis
and other values

The last two can be communicaled. Ofcource the set of variables of a
certain type is disjoint to the corresponding set of values. Similar we
assume sels of different types to be disjoint. We display explicit four such
disioint sets:

Value variables: %y Xoge s ¥y Vs
Labelvariables: Xy Xose s Vo Vos
Recursion variables: X, Xg , Y, Vg5
Labels (or names): o, ®g,. , B, By (the set denoted A)

which we assume are ordered and never exausted. We also have the
symbol 1t which does not belong o any sets, especially 1€A.
f nothing else mentioned the following symbols will denote:

ar label or labelvariable

b,ct variable or label (bindable elements)

e label, labelvariable or a valueexpression built from constant
and function symbols as usual (e.qg. used as actual parameters
to recursion definitions)

f: walueexpression alone

Dy X5 Xgs s YaYoe tlabelvariables or valuevariables {e.q. used for
formal paramelers to recursion definitions)

v label or value

M,N: label, labelvariable,valueexpression, recursion variable or a
indexed recursion definition (see later}

B, Bgs » B, B E,Eq,.. ® behaviour expressions

(Obviously we don't expect the reader to memorize these notations, but
they do ease the presentation of our material, and the reader mavy inspect
this list in case of daubt)

We are actually considering labels as values too (v denote also a label) but
do only make an explicit destinction between different types of values:
labels and "other” values.

8

(%28
.

syntax

From the ordering of the different sets lists are formed:

Lisly, is defined to be the list obtained by ordering the set to which
b belongs.

S0 if the labels are ordered as indicated above then e.q.
Listy = 0,0, ,B, Bg, - Lists are used in the definition of the substitution

prefix in the next section in order to make it unambiguous.

Yectors are used quite often and will be abbreviated. For instance the
vector <X,,.. ,X,> will be abbreviated X. If the dimension of the vector is of
interest it will be indicated by placing it below 1o the right, ie. in the
example X, indicates that X has dimension n.

In most cases when dealing with vectors of variables they shall meet the
reguirement that

all variables in a vector of variables are mutual different.

Therefore we will assume this requirement to be fulfiled except when
something else mentioned.

If a function is defined on the elements of a set resulting in a subset of
another set it is extended in the natural way to include vectors of these
elemenis too. For instance if FY is the function giving the free variables of
a behaviour expression then

FY(EY = U FY(E) and FY(E,) = FV(O) = 0
ie{1,.. ,n}

We will define four such functions described intuitively by

Free variables and labels:

EV(B) the free variables occuring in B, e.g. YeFV{a?x.abety..),
L{B) the free labels in B, e.q. xel{a?x.abery.). Le. L(B) is the sort of B,
F(BY:= FY(BIUL(B).

Bound varables and labels:

B(B) is the bound labels and variables, e.g. ¥,«eBl {A7x abory. N\x)

The function FV applied to a vector of variables will be abbreviated by
placing curly brackets around it, e.g. FV(X) is written {X}. Similar for
expressions: FV(&)={8].

Two vectors are sald to be comparable if they have the same dimension
and corresponding elements are of the same type, i.e.:

‘i comparable to f, iff
k=n and for each i (1gigk) I 15 of same type as N;

3

syntax

We say thal two yeclors are eqgual It they are comparable and the
corresponding elements are equal

M= N iftf
My = Ny for all i

_If two vectors M and N have no free occuring elements in common we write
MaN:

Moa N iff
TN = 0

F.g. for vectors of variables: %=X iff {In{%}=0.
Let A be a set. Then we write

FMea iff
FMInA=@

In what comes 1t will be usefull with some terminolgy aboul recursion. A
recursion _defintion is fixApEk. A recursion defintion can be indexed as
fix;XBE. P is called the formal paramelers and in fix,XpE(E) or X(8), & is
called the actual parameters. Intuitively fix¥pE(¥) is the solution to the
equations: %=£, where L' is the resull of substituting ¥ for § in E.

A recursion variable X; is comparable to fix;XpE - an indexed recursion
defintion,

Syntaxiable for behaviour expressions

Form g FY(B") L{B") BB")

Inaction NIL)] @

Action A2Y.B FY(B)-{y} L(BYU{A) B(B) Uiy}
x7v.B (FV(B)-{ybul xt L(B) B(BIuiy}
e B FY(Biule} L{ByuL(e) B(BUB(e)
xie.B FY(B)u{elu{ x} L{BuL(e) B(BJUB(e)
1.0 FY(B) L{BJ B(B)

Summation BB FY(RIUFV(R') L{BIUL(B" BIBIUB(BY

Composition B|B' FY(BIUFV(BR") LOBIUL(BY B(BIUB(RY

Restriction Bl FY(B) L{B)~{oc} B(Bulx}

Recursion fXpE(8) (FYE)-{,phu{s} L(E)uL(8) BEIu{¥,pluB(a)
)i

fix.
X(& {xjuie} LEE) B(&)

Conditional {ffthen A&
else B [fJUFVIBIUFV(B) L(B)UL(B) B(fHUB(BIUB(B')

The fixed elements of the syntax is underlined. We adopl the usual
constructor precedance of CLG, i.e.

§1 syntax

Restriction > Action > Composition > Summation » Conditional

If & contains no elements we write X instead of X(<>) and similar if § is a
emply vector we write THXE in stead of TixXOE(). Also If X=X, we write
fixXPE(8) in stead of fix,COPLE»(8).

Notes 1o the syntaxiable:

i) The xin front of ? is a labelvariable wich is supposed to be bound to a
label

ii} Notice that labels and labelvariables alsoc are allowed as actual
parameters to a recursion expression.

{11} In a conditional expression no label or labelvariable may be contained in
f to form a boolean expression.

Constraints _on recursion expressions:

In recursion definitions as fixXpE, X and £ shall be comparable. If ¥ has
dimension n then fix¥pE may only be indexed by i€{l,.,n} (except as
mentioned when n=1). When a indexed recursion definition appears on the
form fix,XpE(8) then P and & must be comparable. A recursion variable X
can occur free In several places in & behaviour expression. Let X(&) and
X{&) be two such occurences. Then & and & must be comparable. E.g. the
following example would make no sense:

x7y. X(y) + B7y.572.%{v,2)

We will state a further constraint on recursion expressions namely that
they are guardedly well-defined. Though it can be checked at a syntactical
level we will posiphone it to the section of derivialions because it is
motivated through it's consequences for the deriviations of a behaviour
expression,

As perhaps indicated by the syntaxtable above behaviour expressions
may only be finite, i.e. a behaviour expression shall consist of finitely
many subterms. The constraint of guardedly well-definedness has as one of
it's consequences that all behaviour expressions derived by finitely many
actions from a certain behaviour expression also will be finite.

§2 substitution, Conversion

On the following pages we are going to define single substitulion, l.e. a
expression substituded for one element, e.g. [M/bl. The definition will make
use of multiple substitution {(or multiple replacement). Multiple
substitution can be defined in terms of single substitution:

Befinition 1 ~ ~
Let f and B be comparable and assume that either Be¥(M) or B=F.
Then the multiple substitution of M for B in B: [M/BIB is defined
recursively as follows (M=<My,. \My>, B=<hy,. byt

[(M/B1B = [M/bIB if n=1
[F/B1B = [My/DpF.a /B4 1B T N2

[
As an example let M = fixXE = <fix,XE, fix,¥E>, B=<X;,Xy>. Then [fixXE/XIB
is really just a shorthand for [fix,XE/X,1fix, XE/X,1B.

When we write [M/8] in the following we will assume the conditions of Def.1
to be satisfied.

t should be clear that there cannot be any interference between free
variables of b and M, see also [Barlp.30. Notice that ocur definition is not a
general definition of multiple substitution. We have not found it necessary
to use a general definition for our purpose and it would only complicate the
proofs. A general definition can be found in [CFClp. 103,

The substitution prefix can be extended to vectors by the following
defintion:

Defition 2

[M/bIN,, is defined to be the vector <[M/bIN,,.. ,[M/DIN,>
{
We are now ready to give the formal definition of single substitution
orefix

[#<s)
M2

aubstitution, Conversion

Definition 3 (generalized substitution prefix) _
Let Mand b be comparable elements as descibed on page 9k=1). Then [M/b1B
is B* defined as follows:

Case_ 1) B a label, variable or constant.

{a) If B=b then B¥=M {b) If B=b then B*=B

Case 2) B an ordinary construction.
(@) If B=NIL then Bx=B (b} If B=ale.C then Bx=axl,ex, Ok
(¢} If B=1.C then B=1,Bx () If B=C+D then Bx=Cx+Dxk
(&) If B=C{D then Bw=Cx|in {f) If B=X(&) then Br=Xx{&x)
(g} If B=if f then C else D, then Ba=if f* then C# else Dx

Case 3) B a binding construct.
t B=avw.C
{a) If b=x then Bi=ax?x.C
{b) If b= then br=ax7[M/blly/x]C, where vy is the variable defined as:
i) 1f be¥(C) or x€FV(M) then y=x
i) If beF(C) and xeFV(M) then y=b is the first variable in Listy,

such that yeFY(CYuFY(M)

e Be=C\e
(a} If b=« then Bx=B
(b) If b=ecthen Be=[M/b]lp/«]Chp, where B is the label defined as
i) fbé&?f’%") or «gL{M) then p=w«
1) 1f peF(C) and el (M) then p=b is the first label in List
such that pel (CHul (M)
i B=fixXpE(E)
{a) If be{X,p} then Br= fix;KpE(&x)
{b)If bE{X p} then B ﬁfﬁﬁiﬁ/b] Xp/XpIE(Ex), where X and B are

defined as:

1} If be¥(E) or K,p?FV(M} then X',f5'=X, ,f

i) 1f be¥(E) aﬁd K, pInFY(MI=0 then X,p" are chosen
he{%, 5}, ,54%,5 and

if X=X, then for tsken X' is the first variable in Listy,
such that %{k%rv(ﬁiu%‘%(i"ﬁu{?k s and

if p=fi, then for 1dkant p'y is the firsl variable in L:s‘tpk
such that p' eFV{E)UFVIMU{p',.,}

The definition 1s extended 1o include substitutions in indexed recursion
definitions by means of case3l: If [M/b]fixXBE(B) = fix X pE(8) ths—*«n

[M/BIFixXPE = fix,XPE .

[
There are serveral notes to make about this definition:

i) Toavoid to much use of parentheses we assume the substitution prefix
to take precedance over the constructors of CCS. So [M/DIB\ec means
{({M/DIBNex,

i} A lack in the defintion is seen in caseZ.b,f,g and case3 where the
substitution prefix is used on expressions: e,f. If e is a variable, a label
or another constant the situation is handied by casel. But for other
value expressions there is no explicit defintion. We will assume all such
expressions are written in the notation of the lambda~-calculus and do

52 substitution, Conversion

extend the definition (implicit) with the definition from there. The same
will be with the convertability relation we are going to dsfine. The
theory for conversion from the lambda-calculus can therefore be lifted
to these subparts of a behaviour expression and will not be considered
further in the proofs 1o come,

i} The definition uses in case3.l-lll.b implicitly the notion of independence

' of actual names of labels and variables. This nolion of independence is
captured in the conversion concept which is presented formally
hereafter,

iv} The use of chesing the first label or variable in a list fulfilling a certain
condition in case3.i-ll.b.1i makes the substitulion unambiguous.

v) Although the symbol B normalwise is used for behaviour expressions
alone it is here used for atomic elements foo as seen in casel. This is
done to simplify the definition. So the substitution prefix is defined not
only for behaviour expressions but also for atomic elements as labels,
values and variables. E.g. [B/m]5=5,

The notion of a expression context will be used in defining which behaviour
expressions there are convertable. Intuitively a expression context is a
behaviour expression with some holes in it where another behaviour
expression can be placed, Formally:

Defintion 4
A expression context {just context for short) - writen C[] - is defined as
follows:

i} [Ilis a context. B - & behaviour expression - is a context

if ¢f]is 3 context then so are
a?x.Cl], ale.Cl], v.C[] and C[]\

if 1 and C'[] are contexts then the following is a context
cll+e(], elljell, and if f then €[] else ¢}

If ¢i[] (1<isn) is a context then so is
fix Zper,[1,.. e l15(8)

iiy if [} is a context and B a behaviour expression then C[B] denotes
the result of replacing all [1in C[1 {if anv) bv B.
0
Note to ii): If Cl] contains no [I's then C[B]=C[]. In general free labels or
variables of B may become bound. For instance if B=MS.NIL and
Cli=(a7x. NILILINA then C[Bl= (A7 NILIB=aIB.NIL N\x and & of B is bound.

We are now able 1o introduce the convertability relation among behaviour
expressions. The name of the different rules are chosen from [CFC] and
[Bar] in which they are used in the lambda-calculus for similar rules.

€}
P2

substitution, Conversion

Defintion 8 of cnv {convertable)

chv 18 a substitutive equivalence relation:

(¢) Bcnv B (reflexive)
Benv O
{0) — (symmetric)
Cony B
Benv ¢, Cenv D
(1) (transitive)
Beonv D

B cenv D, €I a context

{subs)
CiBY cnv CID]

conversion rule:
(o) a?7%.B env a?y.[y/xIB, provided y=x and yeFV(B)

(o) By cnv [B/«]BAR, provided pzo and peL(B)
(o) fixXPE(B) cnv fix, X P XB/%PIE(E), provided X,5=%,5 and X,p'eFv(E)

cny is extended to inciude r recursion definitions:
fixXpE cnv fixXPE iff fix,Xpf(8) cnv fix XHE(&8) for all (possible) i and &.
{1

()-(otg) says that change of bound variable may be done as long as no
confusion results. (e,) corresponds directly to o-conversion of the
lambda-calculus and {e«) too except thal there is added an element oulside
the scope of the binder. For theorems of conversion generalized from the
lambda-calculus they will therefore be part of proofs in much the same
way. Hence the parts of the proofs considering these cases will not always
be shown in all detail

For recursion definitions on the form fix, ﬁ’E’ where ¥ is of finite dimension
{(as by us) Hennesey has argued that it is enough to consider definitions
where ¥ has dimension one, l.e. ¥={>=X, since a definition can be expanded
by replacing Xy by fix<{Ey where the same is done for By until all
recursion variables are hamd by a recursion binder with one variable. This
would reduce the proofs for the case (e«;) to one similar to («,). But we are
dealig with recursion definitions possibly with parameters so we cannot
avold the problem,

We will say that two comparable vectors of behaviour expressions are
convertable :

Ecnv B iff £y cnv) (Tcisn, where F=,)

Proposition 9. |)
If fix XPE and fix XpE' are svntactical correct then

Ecnv E' = fix XpE cnv fix Xpf

§7 aubstitution, Conversion

The rest of this seclion is devoted to the most important properties of
the substitution prefix.

Theorem € (syntatical squalities)
(a) [b/blB =8B
(b) be¥(B) = M/ =B
The fallowing properties assumes (T(MUT(N)INB(B) = 4.

(¢} [M/BIIN/CIB = [IM/BIN/C]IM/BIB, provided either
(c,) c=b, c€F(M) or
(c,) bef(B)

(d) [M/DIN/DIB = [IM/DIN/DIB

Proof:
Based on induction on the rank of B - the "syntactical dept" of B ~ using the
clasissification into cases as in Def.3. We omit the formal definition of rank
(Definition 7 as it is mainly of prooftechnical interest. In {(¢) and (d) the
result of Th.8 below is used.

a1

Notice that if {¢,) holds then (c) by (b) becomes [M/bIIN/cIB={[M/bIN/CIB.

The following theorem characterize the free bindable elements of an
exprassion with substitution,

Theorem 8
ce¥{IM/bIB)Y iff either

c=b, c€¥(B) or
be¥(R), ceF(M)

03

Induction on the rank of B - using (&) and (b) of Th.6.
.

Intuitively Th.8 says that ¢ occurs free in [M/BIB iff either it already
occured free in B before the substitution or it occurs free in M which is
substituded somewhere in B. Notice that we from Th.8 get

ce¥F(B)UF(M) = ce¥([M/DIB).

This property is used often, also in later sections.

The following theorem together with Th.6 are probably some of the most
importen of the theory of substitution and conversion.

S2 substitution, Conversion

Theorem 9 (conversion egualities)
{a) Benv C= [MDBIB env [MAB]C
(b)Y [M/DIN/ACIB cnv [IM/DIN/C]IM/BIB, provided either
{by) c=b, ce¥(M) or
(b,) beF(B)

(cy [M/bIIN/DIB cnv [[M/BIN/BIB

f
Proof:
Essential induction on the definition of convertability from Def.5 {including
the structure of C[] for the (subs)-case), and the rank of B and C.

i}

intuitively two behaviour expressions are convertable if they have the
same free elements and the same structure, differing only in their bound
tabels and variables. The followimg theorem stales formally the firat
property. That they have the same structure is immediate from Def.5.
Theorem 10
Bcnv C= F(B) = F{C)

{1
Proof:
Essential induction on the definition of convertability.

{1

It is natural to expect a pendant to Th.9 where the condition of
convertability concerns the arguments of the substitution instead and it
turns out that the following theorem is trus,
ITheorem 11
Meony N = [M/bIB = [N/b]B

{1
Proof:
Only nontrivial if b is a recursion variable and M,N recursion definitions -
proved by induction on the rank of B,

{

§3 Deriviations

As in CCE we also define a binary relation L (an atomic action relation)
over Dbehaviour expressions, but it differs with resepect to recieving a
value or label. We let the relation qualify over all the values which could be
received by wriling for instance A, intuitively B APX, B means that B
become [v/xIB" under a?v where v is any value x can assume, i.e. v is a
vatue comparable 1o x. The other relations are AV ang L, B ANV,
means that B becomes B' under wﬁi\ima, i.e. by sending v via a. For 1 (1€A)
the relation corresonds 1o an internal action.

We will actually only define E&ilweﬁ' where B is a certain kind of behaviour
expression namely one who has the property that it is a program:

7

efintion 1

A program is a behaviour expression closed with respect to free variables.
fe.
B is a program iff FV(B) =@

1

in CCS the atomic action relation is defined over programs. lLe. resulting
behaviour exoression is also a program, such that the program property is
invariant under deriviation. This is not the case with ECCS, but a similar
property s obtained through the definition of sirong and observational
equivalence,

When looking at the axioms and inference rules below defining the atomic
action relation remember note iv) to 2.Def.3 that we only write [M/b] when
Mand b are comparable. So for instance the inference rules Com-(7) below
are only defined when v and x are comparable. Similarly the axiom Acis(1)
is only defined for v and x comparabile,

§3 Deriviations

na- NIL has no atomic actions

Acts
(n A7%.B ALY [y/x]B
(2) Mv.p A8
(3) .B -t B
Sum- By I, By
L: R: Symmetric for By

By + By Lo By

Come B, 1 B,
(1L R: Symmetric for B,
Bo | By L Bo | By

By MY B, By AT, B
(2L R: Symmetric with B, sending

Bo | By Lo By [[v/x]1B,

By Mgy, B MK, B wel(B))

(33 R: Symmetric with Land 7
By | By o [oe/ X1(B, | B exchanged
Res» B-AS B, wel(D)
(1)
Brec -L B
B-AME LB o
(2
Bhec AL [x/od)B
[FixXpE/XI9/plE, LB
fixXpE(v) L5 B
Con Bo I, By
Le R: Symmetric for b,

if true then B, else B, L, B
Before commenting the axioms and inferece rules it is worth {o notice:

Proposition 1.1

feLl.pisa part of the inference which ensures L0 then FV(Cy =@
implies FY(B) = (.

i
Now for the notes on the action relation:
iy Byoprop.l.t it is clear that if Act=(1) is the basis of an inference which

ensures an action of a program then FV{a7x.B)=@ and an arbitrary

19

]
Ll

i)

i)

iv)

V)

Deriviations

chosen y will therefore be just as good as x. Furthermore it will not
interfer with variables in ancther part of the program since also by
prop.i.l any other part of the program which can form an action cannot
have free variables. For instance if D=C{a?x.B is a program and
gf&ﬁﬁz@.}ggg' then x cannot be free in C. Therefore it is ensured in
Com-{2) that v is substituted in the ‘'right" place. Com-(1),(2)
corresponds o those of CCS.

The reason for letting (A7x.B,[y/xIB) be in the the relation 22¥ is that
we wish convertable programs to be behaviourly eqguivalent. This could
have been obtained through a modification of the definition of sirong
equivalence, but we have found 1t more convenient here,

Two inference rules are added compared to CCS: Com-{(3) and Res-(2).
they make it possible to extend the scope of a label. Ress(2) cancels the
the restriction and for the resons mentioned in 1) it does not matter
which variable is chosen (as long as il is a label variable of course). In
Com(3) the restriction is placed again and the label is thereby known
to ther recipient. The actual name of the label is chosen such that it
does not interfer wither other names in the new scope by the condition
«¢L(B;). Notice that the original name can be chosen if it does not
appear in the enviroment outside the old and inside the new scope,

The definition depends heavily on the substitution prefix and it's
properties as seen in Act-(1), Com(2),(3) and Res=(2). Most of all it
depends on the property that alabel or variable which "passes” through
a bound occurence by substitution changes the names of the bound
occurence and "passes” on, thereby avoiding any conflict.

The inference rule for the relabelling operation in CCS is missing, but as
argued in the section concerning the expressiveness of ECCS the
substitution prefix takes over it's role.

The crux of the definition of the atomic action relation is probaly that a
variable in some sence can pass via a label. But it has some direct
conseguences which later will prove useful, e.q.:

Proposition 2‘%.2

Assume B -1 B' (B a program). Then

In

(a) o2L(B) implies el (T IUL(B")
(b} »ael{l") implies nel(B)
() FV(B) € FY(IM

0
order to formulate the constraint of guardedly well-definedness of

recurston defintions in a behaviour expression it is necessary 1o introduce
some concepts.

Let B and F be two behaviour expressions. Then we define

F occurs directly unguarded in B as follows:

F occurs direcly unguarded in F.

If F ococurs direcly unguarded in C then it does als
if F oceurs direcly unguarded in C or D then it doe
B=C+D, B=C|{D and B=if f then £ else D.

O In B=Che,
s also in

20

§3 Deriviations

Proposition 1.3
If F occurs direcly unguarded in in B and B is a program then F is a
program also.

We say that fix.XpE is directly in fix;X'B'E iff for some &
either fix;XpE(&) does itself occur directly unguarded in E/
or X;(&) does occur directly unguarded in E';

Now for the constraint. To shorten notation denote fix; X(J}Q(}}Eu\ by F(j).
Let F(1),. ,F{n) be the indexed recursion defintions in B. We than define

B to be guardely well-defined iff
there is no infinite sequence

g{h), F(Jgj, SF(}k}
such that for eack k, F(jg,J is directly in F(j,).
The constraint is then that behaviour expressions shall be quardedly
well-defined. By this it should be clear that if two behaviour expressions
are in an atomic action relation then it has a finite proof.

The following theoram establish an important connection between
substitution, conversion and the action relations:

Theorem 2
(a) ¢-Lse s qessic LA, ¢ ony [8/8]C

(b) The following diagram commutes in the sense that if BycnvB, -E;»Ei}
then B’y exists such that B, «LﬂB’anvBy and vice versa:

Bo Chv B,
ir ir
By cnv B
(c) 18/51C 15D implies that there exists I and I' such that

C-2Lpand (/81D cnv D, [8/81=T,

Notice that (a) and (c) in a way are each others reverses,

Proof:
{a) and (b) are proved by a rather complicated induction proof with
hypothesis:

if C[] is a context and By crw B;, then
1) el] LBy = elByy,] m«-aﬁ’x B B,
2) e[, Eop = (s/51c08,] L8105, cny o/6)8,

and where the induction involves recursion dept of C[B;l, structure of €[],

21

§3 Deriviations
and the length of the inferences which ensures * L and "env'. (a) and (b)
then follows as a special case: Cl] = [l. (¢} is proved by induction on the
length of the inferences which ensures 1", and uses (a) and (b)

i1

Pushdown Store

Now where we have presented atomic action relation we will study an
example of a pushdown store presented in [Mill].

Let V be a value set, for instance integers, with a,b € V and variables ¥,¥.
Then let tev™® - the set of sequences over V. 1 18 the emply sequence.As
prefixing operation over V¥ is used . The characteristics of

first,rest: V¥av¥ia first(at)=3, rest(@t)=t, first{i)=rest{1)=.1.

We expect the pushdown store to be acessed through {,0 where values are
pushed in via { and popped out via o. Furthermore an emply pushdown store
detiver a $¢V when popped to indicate emptiness.

if 1, is a variable over V¥ a suggestion is:

PO AR (R IHif =0 then olfirst(t,).X(rest(t,)else ol X (L)
Clearly 2{1) shall satisfy:

(1) A1) ~ 9% PR{T) + olf. PO(L)

(2 PO(ED) ~ 17V, PO(FEN) + 048, PO(1)

We want a simpel implementation PD of 2% which satisfy (1) and (2).

The pushdown store will consist of some slements E and a botiom B. We
extend % to range over Yu{tl. Then these can be specified by:

B = AxXE(S,BoRT XN\Bg> ,where
E = fhOWR, xod?9.(X (9,000 X (%,) N\ect0lR, wLNIL>

{assuming {,0,n,0¢ and B, are mutualy different)

The idea is that when the topelement emits it's value by a pop operation it
vanish afler signaling to the element just below. The element receiving the
signal then knows that it is the topelement. If the topelement instead
receives a valus by a push operalion il creales a new topelament with the
value and a link to the old topelement for signaling.

Al first we look at an example of how 5 and 8 is pushed via {, § is popped
via o, and how the configuration develops by that. A pop operation on an
emply pushdown store ls studied too. For the ~ equalities we refer 1o the
next section.

IR
Pl

Deriviations

“n
Lud

gﬁiﬁ; (Bol-NILIE?. BI\By -5 (NILIB)\B, ~ B

?(";('S,gy)tg;?. E(S,Bo))R IBe7. BBy, for a p,=Bg,i,0

gg{&ﬁg‘)lﬁg'?- EG,B0N8 0807 E(5,pINB 18,7 BNNBy, for a gy=p)40
(C0p LNILIE, 7. E(S, B 00NB 1B 7. E(S, RN IBo7. BB,
i{I{(M%L%E(iﬁ,iﬁ%;’})‘sﬁz'fﬁh'?‘s E(5,BaI03BIBo7. BINR,,

((ECS, BBy 7 E(§,R))\B IBe7. BIABy,

Now let us define t, = (8, .. '8,), &; € V thereby t, € V¥ (1, is 1) and define
PD(ty)= (E(@n,Bn)IBn? E(@n.1,Bp.)l1B27. E(E,B01B17. E(8,80)]807. B)\Bn.\Bos
where gy = g; for 1= jand g € {i,0,0].

and define:

PD(t,) =PD(1) =B

To write things short, denote (for na0):

Brer 7+ E (8, Br)IBn? E(pn.s B LB 7 E(AR)IB 7. E(8,80),
where g=p; (i=]) and By € {i,0,r},

by EE(Br.itn). EE(R,te) will thereby denote g,7.E($,8,)
Then PD{&,,t,.,) can be written:
(E(8pn Bl EE (1ny B)80 7 BB \By

We will prove that PDB(1) satisfy (1) and (2) in the secltion about
observational equivalence.

25

§4 strong Equivalence

The notion of strong equivalence between programs will now be presented
along the lines of the definition in the original version of CCS, {.e. in terms
of & decreasing sequence of equivalence relations. In later versions another
definition called strong bisimulation is used instead. One of the arguments
is that it admits an elegant proof technique. In spite of this we have found it
difficult, to use strong bisimulation in this framework. The reason is that
the proofs using strong bisimulation rely on the possibility to regard the
reault of a deriviation as beeing on the same form as the premise of the
deriviation. By Com-=(3) and Res-(2) this is not always the case here.

Definition 1 (Strong equvalence between programs)

BQ ~ B§ iff VK,ZO: BQ “k B; s Wh%f‘e BQ ik 81 iS deﬁﬂedi
By ~¢ By is always true
By ~.y By iff for all ' (i=0,1):
i) By - By = 3Byt Bigy o B'y and
B~ Blias JE T=nlv
Ve [v/xIBy ~p Iv/x]Blg, oif T=aPx

Noles:

i} Each v must, in accordance with earlier notes, be comparable to x in
the case I'=aTx,

ii} When By and B, are programs it is ensured that only programs are
considered in the future actions, since if B; is a program (FV(B,;)=0) and
=aPx then FV(B,JC{x} by 3.Prop.l.2.c. By the substitution [v/x] a
possible occurence of x in By vanish (becomes v).

The second note gives occasion for:
Proposition 1.1

In Def.1 above B (j=0,1) is a program if P=Alv and otherwise [v/xIB is
a program for all v comparable to x.

{1

if one interpret [v/x]B or B' (according to I') as the result of a deriviation

it follows from Prop.l.1 that the program property is invariant under

deriviation. The atomic action relation together with Def.1 thereby gives
mening to the programs.

Below we stale a collection of simple but important properties of strong
aquivalence.

Theorem £
(a) ~ is a equivalence relation
{b) By ~p. By implies By ~y By
{c) By ~ By implies B, ~, By for all k

(d) By cnv B, implies B, ~ B, ¥

24

§4 atrong Equivalence

Notes:

i} If we take strongly egquivalence among programs as an expression for
equal behaviour then (d) states that the requirement of behaviourly
independence of actual names of bound elements is met.

i1} (d) has another imporien consequence, namely that all the resulis of
the theory of conversion and substitution (section 2) can be lifted to
strong equivalence.

Proof:
{a), (b) and (¢} as in [Mil1]. (d) by induction on k in the defintion of ~ using
3.Th.2.b together with the convertability properties.

1

The following theorem is perhaps the hardest to accepl. It says that ~is a
congrunce with respect to substutution of labels, i.e. two strongly
eguivalent programs will remain strongly equivalent if one changes the
nate of a free occuring label. As long as the new name is chosen different
from other free occuring labels this should be clear. But it is much more
difficult to convince oneself if the new name occurs in one of the programs,
because it then no longer is a relabelling in the sence of the original CCS.
Later versions of CC§, e.g. In [MU3] has left out the constraint {function
bijective) imposed on the first version of relabelling.

Theorem 3

[
Proof:
By induction on k in the defintion of ~ using 3.Th.2. This and the following
proofs depends strongly on Th.Z2.d and the convertability properties.

{1
The next theorem states that ~ is a congrunce relation.
Theorem 4
[vixIB, ~ [vix]B, for all v implies
By ~ B, implies
?s.i\quQ -~ RiV.B; 3 ?:-80 o~ T:.B’;
50IC - 85’{; g C%Bg ~ QlB;
Bgloc ~ By
0

Proof:
Same technigues as in [Mill] - with some care in the order of proofs of
individual properties.

$54 atrong bquivatence

It the ECCS shall be useful, the algebrac laws of TCS must be preserved. We
therefore state and prove the following theorem which collect the algebraic
properties found in the original CCS

In the theorem ¢ will stand for a guard, f.e. 1, ale or a®x. It will turn out
that the summation operator + is commutative and assosiative. In the light
of this it makes sense to define a sum of guards as

E{BE : WEE}

where 1 is a finite index set. Each B, is called a summand (s. for short).

Theorem 5 (for programs)

Siﬁgﬂm {}) Bff"Bg o B{*'BQ {2} BQ"*“{B}”E"SQ} o~ (Bo+'8j)+gg
(2) BENIL ~ NIL (3) B+B ~ B

g@fﬁ:,, (2} ggzg; ~ Bf%BO (2) BQICB«;,B?) ~ (80{8’1)382
(3) BINIL ~ B {4) If By, By are sums of guards then
BolBy ~

240.(B'uiB,) 0.8y a summand of B, +
210.(BolB) 0.8 a summand of B} +
2 (B IvAXIBY) alviB'y a s, of By, a?x.BY a8, of By} +
S{r.(lvixIBylB) a?x.B'y as. of By, alv.B'y a s. of By}
Res~ (1) [NIL if g=odly
(g.BNx ~ {
| 9.B\ex if xgl{q)
(2) B\oc ~ B, provided oc#L(B) (3) B\ex\g ~ B\p\ex
(4) (Bo+By)\oe ~ Bo\eerB,\o {5) (ByiB,\oc ~ Bo\ex|B\ex, provided
el (B)nL{B,)
Rec~ fix¥pE(T) ~ [fixXpE/XIG/BIE;

Con~ Lt if true then B; else By ~ By Riif false then B, else By ~ B,

Remarks:

i} Remember that we are assuming the behaviour expressions fo be
programs when writing equations with ~. As a consequence the guards
in Com={4) and Res-(1) are on the form 1, Alv or APx. Similar in Recs
the actual parameters must be labels or values.

it} Res-{1) gives no equivalences for the guard g=nlx, A=,

Proof:
Same technigues as in [Milll. Order of individual proofs important.
0

We now want to extend the definition of ~ to arbitrary comparable
behaviour expressions. The reason is that we want to 1ift the previous
results to arbitrary subexpressions of a program in such a way that we for
instance can replace BINIL by B anywhere in a program.

26

84 atrong bEquivalence

We say that two behaviour expressions £ and E' are comparable iff
for each recursion variable X in FV(E)NFV(E), X occur with comparable
parameters in in £ and £, i.e. if X(&) occurs in £ and X{&") occurs in £
then & and & must be comparable.

It this constraint is not met for £ and E' on can in advance see thal it
makes no sence to replace £ by E' in fix XPE(V).

Refinition 6
Let X be the recursion varables of FV(E,JUFV(E,) and £ the remaining
variables., Then

(}) Eo ~ E, iff for all M,9: [M/XI9/21E, ~ (R/RM/%0E,

where FV{(M)=@ and Mi:ﬁxji?é(i)ﬁ:{i)ﬁ(i) an indexed recursion definition
such that B(i) is comparable with & for a occurence Xii{é) in £y or Ey.
£

By the way M and ¥V are chosen above we always obtain programs in (¥),

Up till now we have most used B for programs though it could denocte a
behaviour expression. The reason we have used £ here is to emphasize that
the defintion now includes expressions as well,

We state the generalization:

Theorem 7

(a) Th.2, Th.3 and Th.4 holds for comparable behaviour expressions
when \7x, Mv is exchanged with a?x, ale.

{b) Similar Th.S holds with the guards A7x, Alv exchanged with a%x,
ale and actual parameters (in Rec~) mav be &. Com~(4) shall be
adjusted with the following condition: in the first (second) term on
the right hand side of ~ no free variable in By {By) is bound by q.
The other conditions of Th.S reamins the same excepl g=wdv of
Res~(1} which becomes «le, and true,false of Con~ which may be f,

i

Proof:
Essential as in [Mil1], but with some additional difficulties. E.g. Eglec~E,\es
may look lke E.M\8~E' N8 upon substitution of « for a free variable in
Eqandk,

0

54 atrong Equivatence

By Res~ it makes sence to write B\A if A is a finite sel of labels, so we can

state the expansion theorem as:
Theorem 8 (The Expansion Theorem)

Let A be a finite sel of labels and B; a sum of guards, such that if alewBYy
is a summand of By then x¢A,
Then for B=(8,]. Bn)\A we have

B o~

Sio. (Bl IBLL. [BAN\A 50.BY a s, of By, L{g)nA=0}
vt

LB HesxdB L. BLl. [BANA a?x.By a s, of By,
ale.By a s. of By, i=j}

provided in the first term on the right hand side of ~ no free variable in
By , k=1 is bound by g.
B

Remarks:

i} The assumption that if ale.B' is a summand of By then x¢A is there fo
avoid terms on the right hand side of the form:
wi(ate, (B, IBL. IBRVA-{ed\e 50.BY a 5. of By such that agA,weAl,

ii} Notice that if a is not a label and v#A then L{alvinA = L{aPx)jnA = 0.

Proof:
Essential as in [Mil1]
i

In the nexi section we introduce a wider equivalence relation over
behaviour expressions called observational equivalence (=), We will end
this section with a theorem which is as important for the connexion
between ~ and = as Th.Z of section 3 was for the connexion belween cnv and

ot

Theorem 8
Strong equivalence “"satisfies it's definition”. lLe.

Bg ~ By iff for all T (i=0,1)
i) B'i ““E‘“’"’ E"i =3 '1@1 %1@1""“[:""} Exm and
B ~ Bl Lf D=y
Vi [v/xIBy ~Iv/xlBe Sif D=iTx
[
Proof:
Fssential as in [Milt] and does also depend critically on the assumption of
guardedly well-definedness, bul there is a further difficully which derives
from our notion of convertibility as inheridited in e.g. Lom-(3). The
problem is overcomed by conserning equivalence classes under cnv.
{

28

§5H Observational Equivalence

The idea of introducing observational equivalence is to define a relation
for "equal behaviours" where two programs cannot be destinguished by
their ability to perform t-actions. The t-actions thereby gets internal and
unobservable. The observable actions are then Alv and A%Px,

A gerle of actions can acoording to definition 1 of section 4 be written as:

By Lo #B, L2s xB, — ... Lnsap

and for short
S o mr:.i;iz’,{.‘:‘;;;;;;;:m,‘mwﬂw} aﬁs

where each *B; is By if I'y = Alv and [v/x]B; for som v if I'y = A %x.

&

Wa abbraviale

k
B-tB (k:0) by B=8= B

j k "y
B-teliT,p (j,ke0) by Bl B
and generaly

kg \ K‘; kﬁ
B T .F !n’}: &",..F' ﬂ&.’gmw»;, B‘ by

B =l oLines B op 4f §=0unn Tt B =528,

Notice that the intermediate programs are on the form *B; according to
.
Definition_ ! Observatinal Equivalence (») for programs.
By = By iff for all ka0t By & By, where By =, B, is defined by
By =g By 18 always true
By mg By Hiforalls
i) By =228y = Big, =2=B'yg, and By =y Blig

The vy's in the intermidiate *By's and *By,, 's shall of course be the same.
° 1 }
1

We extend the definition of » to include arbitrary comparable behavioiur
expressions as we did for ~.

One of the main differences between ~ and = is captured in the following
proposition:

Proposition 1.1

B~ 1B

Proof:

As in [Mill].

29

§

[

Observational Equivalence
Another difference is that = is not a congrunce relation.

Proposition 1.7

~ i a equivalence relation.

¥
Proof:
Lasely seen from the defintion of =,

i

The strong equivalence relation is contained in observational equivalencs:
Theorem 2
8553 o Esg = BQ b Bfg

{
Proof:
Similar to the one in [Mil1L

{1

These resulls are enough 1o prove the desired property of the pushdown
store . We have not considered the properties of observatinal equivalence
any further.

We will now take up the pushdown store example from the section about
deriviation. We revive the defintions.

B = fixX<(E(S, BollBo7.X00By> ,where

E = fix KR, X0d79. (K(V,00x 7. X(%, X1Vt olR, xLNIL>
({0,000 and B, are mutualy different)
We defined ty, = (4, .. 1,), a; € V whereby t,, € V¥ (1, is 1) and defined
PD(ty)= (E(@n,Bp)IBn? E(8n. BB ? E(E,B)IBe7. E(8,801807. BB, \Bg,

where gy = B; for 1= jand gy € {{,0,%].

and
PD(L,) =PD(L) =B

Furthermore we denoted {(for na0):

qu?qE(émﬁgm}lﬁﬂ?‘ E<§n-zs§%ﬁwi)}m§82?' E{éﬁﬁi}m??‘ Eifg‘ﬁﬁ))’ \ ; ;
where p=p; (i=]) and gy € {i,0,0},

by EE(Bn.tn), and EE{g,,t,) denoted g,2.E($,8,),
wherefore PD{&,t,.,) could be written:

(E(@p, 8| EE(th, Br.d|Bo?. BN\Bn.\By

85 Observational Equivalence

The property we wish o prove is:
{n PDCLY ~ i79.PD(T:L) + o} PD{L)
(22 PD(&L) » (79.PD(V:a:t) + 0l PD(1)
In doing this we will use a lemma which is staled and proved at the end of
this example.
We look at PD(1) in the case t = t,, n22, The cases n=1 and n=0 follow
similar.
PD(atn) = (E(En,Bn)] EE (B th)|Bo?. BI\BL- By
~ Py Rec~, Cong~

(77 (T, B B e (0, Br)) B’ * 0180, Bl NIL)]
EF(BW’ - I)SSG/ B)%‘ﬁn %‘Sﬂ

~ by the bxpansion theorem

179 CCECY, B M Bror 7. E(Bn Br)N\Bra | EE(Brytn)lBo? BN\BR.\By +
018 (Bl NILL EE (Bt HBo?: BI\Bp\By

~ by the lemma, the Expansion theorem and Cong~

{")\;‘E (Ei&' Qﬂd}zﬁﬁ‘j E, ﬁﬂsﬁ{})t ﬁF(Shi Y :’ ﬁ B)\‘Sﬂ#‘i \SQ
ol T. {NiL‘ E(a Hgm NEE(Bp.pstn.o)IBo? BN\Br\Eg

~ by Res~, Com~.

EE(Bnosstn MBo? BN\Bp.\Bo + B |
0lne T CE(85 B EE (Bross tnoa Bo e BB \Bo

Y CE(Y, By
179, P0(7E 0t) + 013, T, PDL,)
We have now shown that
PROL) ~ 7V, 0. PD(T) + ol$. 1. PD(L)
PD(a:t) ~ (77. 0. PR(y:&t) + old. . PD(L)

So if we can prove a) and b) below we are done, since ~ = = and = is
transitive.

a) 79 LPD(Ti) + ol T PDOL) & (79.PD(ViL) + ol PR(L)
o) {79. 1. PDy:at) + ol w. PR{L) ~ (7. PD{(¥:E:L) + ol&. PD(1)
We will do tm% by induction. So assume a) and b) holds for k. We shall then

prove that it holds for k+1,

Proof of b2
Let LHS {RHS) denote the left (right) hand side of b).

31

85 Observational Eguivalence

1) LHS =9=5 [, We split out in three cases:

5= ¢t Then L is LHS. But then also RHS =8 RHS », LHS by induction. So
LHS 2, RHS.

= {7581 and LHS 420, 1. pDp(biat) =8= L, But w.PD{B:E:t) &= [by
either s'=¢ and L is t PD(b at) or ©.PD(B:E) Xs PD(E:Et) == L. In both
cases we have RHS T.PD(B:Et). In case s'=¢ we have s=(7'b" and then
Rﬁ‘%"m@s’l}{h at) =y T, PDf{b #t) by Prop.1.1. In the latter case we have
RHSEZR., pp (Biat) =8 L or equivalently RHS =S= L,

= 015,51 and LHS -2, 1. pD(1) 8= 1. Similar as above we find
&H%”b PD(t) =, wi}{t) or RHS =8= |,

23 RHS =8= R, Cases:

5= g Then R is RHS, But LH5 == LHS ~ LHS by induction.

: RS 2B, pp(Biat) =2 R. Clearly LHS £7Bspp(5iEt) =S=p.
ER,

“"“U}
it
\J)

= {7'h.¢
e.LHS

C.')

8 = 01 : RHS 28, pp(t) =8 R, Then LHS =21@=pp(t) =8=R s0 LHS =S=R,
a) is proved in a similar way as b)
Lemma:

Given {B\e'|C)VA then there exist a o« such that

(Byoc|CISA ~ ([o/e IBCINVAU e}

Proof

if o ¢ L{L) then Res~(5) and Res~(2) gives the result with « = o« using
2.7h.b.a.

in general take a o« such that o = o and o« € L(B)UL(C). Then

we have by (o) [ed/ed[Bhot cnv Bhed so from 4.Th.2.d and the congruence
of ~ we then conclude {BA[CNA ~ ([o/edIBvexlCINAL Since w € L(C) the
rest then follows as in the special case

~

56 Expressiveness

The aim of this section is top get an idea of the expressive power of ECLE,
We have already seen how some problems have a natural solution using the
capabilities special to ECCS,

At first it is compared to the original CCS. Thereafter two more examples
are studied: translation and Erasiosthenes sieve.

When compared to CCS there is as already mentioned earlier g obvious lack
of one oprator: the postfixed relabelling operator [S] where §is a bijective
function over labels. This operator is a part of the syntax of CCS. Though
the idea {5 to replace each label A by S(A) ([Milt]p.23) no replacement is
actually done. The relabelling becomes "active” through a special inference
rule for the relabelling operator. With our generalized substitution prefix
(which is not a part of the syntax) we are able to change labels directly,
We have therefore omited the operator and the corresponding inference
rule,

As an example of how the same effect can be oblained we look at the
chaning combinator. In our framework one would wrile i as

([6/p1Boll6/IBINS ,66L(By)

To emphasize that our substitulion prefix is nol a part of the syntax it
should be mentioned that [6/g]B, denotes a new behaviour expression B,
where B is replaced by 8 in accordence o defintion 3 of section 2.

Translation

in chapter 9 of [Mill] a phrase-by-phrase translation of a language P into
CCS is presented. In the following we will show how we by our extension of
CCS cah overcome the problem of translating a procedure such that it
admils serveral concurrent activations. Furthermore it is shown how
another parameter mechanism as call by reference can be translated.
Though we assume the reader fo be familiar with the notation and concepts

introduced in that chapler, we revive some of the definitions relevant for
our examples,

The wvalues of wvariables from the programming language is kept in
registers:

LOC = o7, REG(x) ,with
REG = fixX<y><oe?x. X{x) + sly.X{yh»
LOCy is the register special devoled to Z by defining:

LOC7 = [ecz/ac][57/8]L0C

A value for Z is stored via «z and read via 8.
The scope of a variable is limited by restricting with

Lz =loz87)

33

50 Expressiveness

Translations of a expression E ({E]) are made such that they deliver the
result via ¢.

Be result B, denotes (B,lByJ\g

A translated program [C] signals it's completion via & whereafter it
"dies”. It is therfore convenient to define

daone = &LNIL
and
B, before By = ([p/81B,|p?.B AR

for a peL(By)uL(B,).
A procedure in ECCS is then translated as

[PROC GIVALUE X, RESULT Y) is Cgll =
fixX G’(%(GE?&C{GKLQﬁx‘E“QC Y!?«?x,oc ;{!xﬁ'fj GB)
beforedy?y. My NILJIAL yALy I

and the call

TCALL GE,Z)] = [ED result (oPx.«g? pn pix. p72.00 ylz.done)

Notes:

i) As opposed to [Mil1]l no special local version of G is needed for it to call
itself recursively, because it restores itselt even before il receives
it's argument and since o from the restored Gis accesible from inside
Icgl.

i) What happens in «glh.-~— is that the procedure by it's activation

refurns a communication link which 18 private o the caller and that
particular activation. The privacy is ensured by Com=(3) and the fact
that no communication of that label is done later by neither the caller
nor the corresponding activaton of 6.

We will now look at how the parameier mechanism call by reference can be

translated.
Assume the procedure decleration looks like PROC G(REF 7) is Cg = P Then

the transiation could bes

[Pl =
fixX gl (XGHAT 260 N7 2yl 2o /o7l 24/8710C D) before Al NILINAY

and the call

TCALL GIVI] = =7y plocy. ¥y, p2.done

34

56 Expressiveness

Motes:
i) The idea is to connect the labels through which Y is accessed in the
calling context to all the free occurences of o3 and ¥ in Cg at

‘runtime’. This is done by communicating oz and &7 from the calling
context via the private \ to the activated procedure and substitute it
for the variables z, and 2y which corresponds to the places where the

formal parameter Z is accessed.
i1} The substitution [z,/esllz5/85711C5] is ok even if there is a local

decieration of 7 in Cﬁ. The local decleration of 7 will occur on the form
(BN 7NB7 in Oy, 80 etg,87€L{(.B.)\« 7\87) and by 2.Th.6.a we have
Ié?&/&fzji 25/523((...3“)2@: 2\52) = {.B. N ZWZ

50 the local Z cannot access the outer formal parameter 7 as we
expect.

it1) Confusion with names in the calling context is avoided automatically
through Com-(3) and Res-(2). If for instance oy “on it's way” from the
calling context passes through it's own scope (the restriction of Lyl 1t
becomes a variable (Res»(Z)) and when 1t "arrives” at the destination a
new label name is chosen {according to Com={(3)) different from all
other in the new extended scope.

We have also made translations for call by name, but have not found it
possible to do it phrase-by-phrase.

Producing Primes

We will now descripe a program which emits the primes in increacing
order via the label A\. We are going to use the algorithm known as
Erastosthenes sieve. The program consists of two subprograms: INTEGERS
and SIEVE. INTEGERS (abbreviated as I in the program) produce in increasing
aorder all the integers from 2. SIEVE (8) sorts out the prime from the
integers comming from INTEGERS. In SIEVE the subprogram FILTER (F) is
used to filter oul all multipla of a certain integer.

Let p,y be variables over integers, and / o variables over the set of
labels. Then the program can be decribed as

(B(2)|5(8))\s, where

3 B
oY
and

§ = fixX< A7 Fp, 7o)X 0} e

o= fixXoyndly X+

30

86 Expressiveness

where
F = fixXip, 7, o< 17y.0f vy mod p=0 then oly.X(p, /, 0) else X(p, /, 0)»

A typical situation is
1) Flp) F(p,) FEDn)) S

where P;is the {'te prime, €.9. p=2, D=5 etlc.

Each F(p;) gets an ascending stream of integers from it's predecessor and
passes them on to it's successor, suppressing all multiples of P What
happens when SIEVE receives it's first integer can be demonstrated by the
following deriviation:

o , e T e,
‘ryt 1o { by
« [T n wrr w[\s\{%m : F@’ (s Y
1‘}: — A o e ’/’

s

ey

it 18 seen that the configuration contains as many FILTERs as primes found
and each fime a prime is found a new FILTER is created whereby the
configuration enlarges. Notice furthermore that all FILTERs ‘“works"
concurrently in the sence mentioned in [Millp.25.

§7 Conclusion

tCCS as presented here is one attempt at a smooth extension of CC8
satisfying the goals outlined in the introduction. In the process of defining
ECCS we have considered a great number of alternatives - slowly
converging to ECCS in it's present form. We feel, and we hope the reader
feels the same, that ECCS is reasonably in line with the elegancy of Milners
CCS - at least this has been one of our main guidelinees in the process. We
also fell there are some sound ideas underlying the calculus of ECCS, but we
certainly do not claim that ECCS is the end product. There are still aspects
with wich we feel uneasy, and lel us just mention a few.

One has to do with the fact that in ECCS, as presented here, only one value
may be communicaied at a time. As long as we are only concerned with
normal data-values, it is obvious how to extend the calculus to allow tuples
of values (as in CCS). But for label-values the situation is not quite so
obvious. At least, it requires some thought how to formulate "multi-change
of scope in connection with single communication’. We have chosen to
present ECCS without going into these problems. Also, we have deliberately
chosen not to consider the problems involved in generalizing CCS to allow
passing of processeas.

Another slightly unpleasing thing about FCCS is the fact that labels are
somehow considered both as variables (bound by restriction) and values
(to be substituted for label-varfables bound by input commands).

Furthermore, ECCS obviously needs to be tried out on more challenging
examples than the small toy problems we have considered in this paper.

Despite considerations like the above, which indicate that ECCS is maybe
not yet "quite right", we are confident that ECCS represents a step on the
right track in the process of solving the problems we set out to solve.

[AsZ]

[BAR]

[CFC]

References

E.Astesiano, E.Zucca, "Parametric Channels via Label Expressions in
CCSY Internal report, Universita di Genova , January 1984

H.P.Barendregt, "The Lambda Calculug”, Studies in logic and
Foundations of Mathematics, Vol 103, North Holland, 1984

HB.Curry, R.Feys, W.Cralg, "Combinatory Logic", Vol 1, Studies in
logic and Foundations of Mathematics, North Holland, 1958

T.W.Doeppner, A, Glacalone, "A Formal Description if the UNIX
Operating system”

JBR.Kennaway, M.R.Sleep,"LNET: syntax and semantics of a lanquage
for parallel processes”, Internal report, University of East Anglia,
Febuary 1983

R.Milner "A Calculus of Communicating Systems”, Springer-Verlag,
Lecture Notes in Computer Scilence 92, 1980

R.Milner "Calculli for Synchrony and Asynchrony’, Theoretical
Computer Science 25, 1983,0.267-310

R.Milner "Lectures on a Calculus for Communicating Systems”,
Springer-Verlag, Lecture Notes in Computer Science, 1984

38

	20051123081805_Page_01_Image_0001.tiff
	20051123081805_Page_02_Image_0001.tiff
	20051123081805_Page_03_Image_0001.tiff
	20051123081805_Page_04_Image_0001.tiff
	20051123081805_Page_05_Image_0001.tiff
	20051123081805_Page_06_Image_0001.tiff
	20051123081805_Page_07_Image_0001.tiff
	20051123081805_Page_08_Image_0001.tiff
	20051123081805_Page_09_Image_0001.tiff
	20051123081805_Page_10_Image_0001.tiff
	20051123081805_Page_11_Image_0001.tiff
	20051123081805_Page_12_Image_0001.tiff
	20051123081805_Page_13_Image_0001.tiff
	20051123081805_Page_14_Image_0001.tiff
	20051123081805_Page_15_Image_0001.tiff
	20051123081805_Page_16_Image_0001.tiff
	20051123081805_Page_17_Image_0001.tiff
	20051123081805_Page_18_Image_0001.tiff
	20051123081805_Page_19_Image_0001.tiff
	20051123081805_Page_20_Image_0001.tiff
	20051123081805_Page_21_Image_0001.tiff
	20051123081805_Page_22_Image_0001.tiff
	20051123081805_Page_23_Image_0001.tiff
	20051123081805_Page_24_Image_0001.tiff
	20051123081805_Page_25_Image_0001.tiff
	20051123081805_Page_26_Image_0001.tiff
	20051123081805_Page_27_Image_0001.tiff
	20051123081805_Page_28_Image_0001.tiff
	20051123081805_Page_29_Image_0001.tiff
	20051123081805_Page_30_Image_0001.tiff
	20051123081805_Page_31_Image_0001.tiff
	20051123081805_Page_32_Image_0001.tiff
	20051123081805_Page_33_Image_0001.tiff
	20051123081805_Page_34_Image_0001.tiff
	20051123081805_Page_35_Image_0001.tiff
	20051123081805_Page_36_Image_0001.tiff
	20051123081805_Page_37_Image_0001.tiff
	20051123081805_Page_38_Image_0001.tiff
	20051123081805_Page_39_Image_0001.tiff
	20051123081805_Page_40_Image_0001.tiff
	20051123081805_Page_41_Image_0001.tiff

