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FREE BLACKBOARDS AND ANARCHIC COMMUNITIES OF EXPERTS

Abstract

The natural way of structuring a large expert system is to
organize it as a collection of domain experts that communicate
via a blackboard. We describe a "free" blackboard system that
is being implemented on our Xerox 1108. A survey of the wide
variety of languages and logics for knowledge representation
and use motivates the freedom of the blackboard organisation:
the blackboard must not restrict the kind of specialist domain

experts that may be devised.
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Free Blackboards and Anarchic Communities of Experts

If an expert system is to be useful, it must have a large
knowledge base and this knowledge base must be structured.

The natural way of structuring a large expert system is to
organize it as a collection of domain experts that communicate
via a blackboard. The blackboard idea was introduced in HEARSAY
( BHR;LeEr) and there are many versions of the idea (NiAi,Hay,EnGo) ,
but most versions place severe restrictions on the freedom of
domain experts. The way a domain expert keeps and uses information
should depend on the domain of expertise, and it should not be
restricted by the blackboard information. In section 1 of this
paper we describe a simple "free" blackboard organisation, that
places no restrictions on how a domain expert keeps and uses

its information. In section 2 we present a panorama of languages
for domain experts: conventional programming languages, data
bases, logical programming languages, abstract data types, re-
writing rules, Petri nets, interface grammars. In section 3 we
present a panorama of static logics for domain experts: temporal,
spatial, fuzzy, multivalue, non-monotonic, belief and knowledge
logics. In section 4 we present three planning logics for domain
experts: Situational, dynamic, and action logics. In the last
section we indicate how the free blackbcoard organisation can

be implemented on the Xerox 1108 using LOOPS.
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Fig. 1A Free Blackboard




#1 Free Blackboards

The natural way to organise a large expert system is as a com-
munity of domain experts, "specialists", that communicate wvia

a blackboard. We will describe many kinds of domain experts and
the many ways that can keep, use and communicate information.
Internally domain experts vary greatly, and the motivation for
the free blackboard organisation is to enforce an "external"
uniformity on the wvariety of domain experts so that unruly
members of the community do not lead to deadlock, lack of pro-

gress and other disasters.

Externally each domain expert is responsible for a number of
relations. We distinguish between high level relations, which
have relations as arguments, and low level relations, which do
not. In later sections we will describe how one can provide
many powerful and useful tools for domain experts with high
level relations—- It is not surprising that such tools can be
provided, because there have been many advocates for "the power

of matalevels" in the past few years ( Bun, BoKo, Bow, FLM, Weh).

How does the free blackboard ask for information from a domain

expert? One way is to send it a message with the external form

? R (arg, ... argn)

and expect one substituiton ¢, such that "R holds for

<0(arg1) . o(argn)>", as the reply.



Another way of asking for information is to send a message

with the external form

?? R {arg1 “ argn)

and expect all substitutions o, such that

"R holds for <o(arg.) .. G(argn)>", as the reply.

.
Later we will explain how the free blackboard handles unexpected
replies to queries - no substition o for ? R messages, infinitely

many for ?? R messages.

How does the free blackboard tell new information to a domain

expert? The only way is to send it a message with the external

form

I R (arg1... argn)

and expect it to rearrange its knowledge base so that "R holds

for all substitution instances of <arg1 5d argn>.

Domain experts can be like elephants - monotonic, unable to
cancel, delete, annul or forget information - but they may be

able to handle messages with the external form
! Cancel (R(arg.i & ws argn))

appropriately. In section 4 we will discuss domain experts that
can execute more refined actions than just adding and deleting
information. Such experts may be able to respond appropriately

to messages with external form



! Execute (plan)

To explain the subtle distinction between "Cancel", "Execute"
and normal relations we must lock at the semantics of domain
experts. At any given time to a domain expert has a knowledge
base KU and a logic LO. Implicitly the expert has the structure
(theory, universe)

}

m.={instances of its relations that can be inferred from K, by L

0 0 0

and its response to a message is determined by MO'

For each relation R, maintained by the domain expert, we have

MO [ R = {instances R(a1 ...=am) that can be inferred from
KO by LO} and the complete replies to the messages ??R(a1 - am)
and ?S(b, ... b ) are
1 n
{substitutuion olR(o(a,) ... o(am)) € My [ R}

and if s(o(b,) .... o(b )) € M, [ s for some substitution o

1

then any such ¢ else none

respectively. If the blackboard sends the message !R(aT % o o am),

then the domain expert must change KO to K1 and LO to JL,1 so that
all substitution instances of R(a1 a4 ® am) can be inferred from
K1 by Lj. For many messages IR(a1 T am) the domain expert need

do no more than

L, = L. K, = K, U{substitution instances of R{a

1 g ™4 0 ap)

1 e Ay

but expert may have to be more subtle when R is a highlevel

relation. If the blackboard sends the message !Cancel(R(a1 ...am)),
then the domain expert must change K0 to K1 and LO to L1 so that
no substitution instance of R(a ...am)can be inferred from

r
K1 by L1. For some messages !Cancel (R(a ...am) the domain expert

1
need do no more than

Lq = LO K1 = KO - {substitution instances of R(a1...an)}



but this is insufficient when some substitution instances of

R(a ...an) can be inferred from K1 by LO. Now suppose the black-

boa;d sends the message !Execute(Plan). For each action in the
plan, the domain expert changes its knowledge base K and/or its
logic L. Thus high level relations like "Cancel" and "Execute"
are only used in !-messages to change the structure in a domain

expert, other high level relations can also be used in ?- and

??7-messages because they have instances in the structure of the

domain expert.

Gallery comment (May 1)

The signature ¥ of a domain expert is the collection of relations
managed by the expert; more precisely, £ has a name for each of
these relations and sufficient "sort" information to fix the set
of X-frames

FRM(Z) = {well formed formulae using only relation symbols in X}.
The set of Z-structures is defined to be

STR(Z) = {subsets of SENT(X)}
where SENT(X) = {e € FRM(XZ)| no free variables in e}.
The domain expert gallery is given by

Valg (m,e) = {substitutions o| o(e) € m}
for e € FRM(X) and m € STR(X). The complete response to the

message ?7e is the set ValZ(m,e), when m is the current structure;

if Valz(m,e) is empty, then none is a complete response to the

message ?e; if Valz(m,e) is not empty, then any of its elements
is a complete response to the message ?e. When a domain expert
is sent a !-message it has to revise its current structure ap-
propriately. For each such message !e we have a relation

@y < STR(Z)2 such that



m, s my iff for some KO’ LO, Kj, L? we have
<KO,L0> gives My & <K1,L1> gives my &
o changes <KG’L0> to <K1,L1>
For the message !e we must have
o € Val(e,m1]
for all substitutions for the message !Cancel(e) we must have

Val(e,m1) is empty

and there are no requirements on m, for the message !Execute(plan).

#2 Panorama of specialists

In expert systems one usually thinks of specialist, domain experts
as collections of facts, rules and heuristics encoded in LISP,
PROLOG or one of the many special programming languages for ex-
pert systems. This kind of specialist domain expert is described
in #2.3. but it is only one of the many answers to the question
"What kinds of specialists are useful in free blackboard expert
systems"? Another answer is "specialists that use an analogy or
diagram which they consult and change when they respond to

messages". Let us look at some of the other answers.

#2.1 Modules in conventional programming languages

Most modern programming languages allow one to write modules
with

- typed wvariables to keep values
— functions that return wvalues when called

- procedures that change values when called



In Ada these modules are called "packages", in object oriented
languages like Smalltalk these modules are called "classes".
Whatever the language a module is programmed in, the programmed
module is a specialist domain expert. If f is a function in a
module M, then M can handle a message ?f(IT"'xn’xO) by

(1) rejecting the message if the actual parameters XyeeoXy do
not satisfy the type and mode requirements for f

(2) computing the value Vo of f(xq...xn)

(3) returning f(rq...xn,v ) as the reply to the message.

0
If R is a procedure in a module M, then M can handle messages

|

.R(x1...xn) by

(1) rejecting the message if XqeeoX do not satisfy the parameter
requirements

(2) calling R(x,I

(3) replying done

P
»

If T is a type of variables in the module M, then M can reply
to messages ?T(a,v) with T(a,v) where v is the value of the
variable a:T and it can handle !T(a,v) messages by assigning

v as the value of the variable a.

Records, arrays and other structured types are no problem - for

each component s of T we have relation T.s

- the expert handles !T.sel(a,v) by a.sel:= v
- the expert handles ?T.5(a,v) by returning T[a,al[5])

The advantage of program experts is efficiency. The disadvantage
is higher order relations cannot only be captured with difficulty
because programming languages treat procedures and functions as

second class citizens.
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#2.2 Data bases as experts

The conceptual schema of a data base gives a number of relations.
The updating mechanism gives a way of handling !R-messages for
any R in the schema, and it may give a way of handling

ICancel (R(...)) and !(Replace (R{...),; R(ea... )) messages. The
quering mechanism gives a way of handling ?7?Query (F(..... ))
messages where F( ) is a query built from relations in the data

base scheme. In file systems we only have ??Query (R{....) which
is equivalent to ??R(..).

The disadvantage of database experts is that these are the only
messages; the advantage is that they are efficient with large
knowledge bases and the system can provide tools for handling

queries and updates.

#2.3 Prolog experts

Any collection or PROLOG facts and rules can be considered as an

expert system DE. Such a collection can handle any message what-

soever;
IR( ) is handled by adding R( ) as a fact
!R{ ) is handled by asking for one proof of R( )
??R( ) is handled by asking for all proofs of R( ).

In practice Prolog experts should be responsible for one set X
of relations R and the blackboard should reject R-messages to

Prolog expert E when E 1s not responsible for R.

Example

Several biological expert systems know how to reverse DNA se-

gquences (LHBG). This knowledge can be expressed in PROLOG as:

reverse (< >, < >).
reverse (<a>, <a>).
reverse (join(x,y), Jjoin(v,u)):- reverse(x,u) reversel(y,v).

jein (x,join(y,2)):— join(join(x,vy) ,2).
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#2.4 Abstract Datatypes

Sometimes it is convenient to represent knowledge using equations.

A collection of eguations S can handle any message:

IR(xO...xn) is handled by adding r(x1..xn) = X,
?R(xo...xn) is handled by asking for a proof of r(x ..xn) = X,
r
??R(XO...xn) is handled by asking for all proofs of r(x1..xn) = Xq-

A domain expert can have S as its knowledge base and it can derive
new equations by substitution and perhaps by conditional rules.
Software tools can provide efficient equation deriving techniques
like narrowing (GoMe) and the theory of equation solving, abstract

data types, is well developed.

Example

The knowledge of how to reverse DNA sequences can be represented

as the abstract data type

reverse (< >») = < >

reverse (<a>) = <a>

reverse (join(x,vy)) join (reverse(y), reverse(x))

join (x.joinly,z)) join(join(x,vy) ,2).

#2.5 Petri nets

Sometimes it is convenient to represent knowledge in the form of

a Petri net. A token with label (a1...an) at a place R represents
the fact R(a1...an), so a marking of the net represents the know-
ledge base of a domain expert. Transitions in the net represent
production rules, so an unmarked net represents the logic of a
domain expert. Facts which are true for all possible expert markings
can be represented by net facts (dead transitions, see fig. 2).
Software tools can provide analysis and synthesis techniques for

net experts (St.Th).
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Example

In figure 2 we show how simple logical propositions can be repre-
sented as net facts - the strange boxes are dead transitions,
transitions which never fire. Complex logical propositions tend

to have simple net representations.

B B ®
© o <®@% NG

~a —1(a A b) 1(a v b) Z1(a = b)
ONS Ondnaer

o &
. @___> _9@

Fig. 2. Logical facts in Petri Nets.

#2.6 Interface experts

How does society of domain experts interact with people and
mechanical devices in the real external world? There must be
some interface experts in the community if the community is to
be able to

(1) communicate with external users whether in natural language
or formal language
(2) accept information from sensors (thermostats, cameras, etc.)

(3) make changes in the external world by actuators (closing

values, lighting fires, etc.
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An interface expert will presumably send messages to other

domain experts in the community when it receives information

from a user or a sensor. An interface expert will occasiocnally
communicate with a user or an actuatcr, when it is sent a message
by other domain experts in the community (replies to interface
expert questions are also messages). Much work on (1) has been
done by database/expertsystem devisers and parsing language analysis

can be supported by software tools.

#3 Logics, Heuristics and Strategies

Specialist domain experts can have theilr own logics for handling
!|-,?-,?2?2- messages. In #1 we said that a specialist has a know-
ledge base KO and a logic LO at any given time t,. Each specialist

has an inference mechanism that determines a structure MO from

a knowledge base KO and a logic LO. For the conventional language
specialist of #2.1 the knowledge base KO is given by the wvalues

of variables and the logic LO is given by a collection of functions
and procedures. For the database specialists of #2.2 the knowledge
base KO is the stored data and the logic LO is given by "views"
defining derived relations. For the Prolog specialists of #2.3,
the knowledge base KO is a set of facts and the logic LO is given
by a set of rules. For the datatype specialists of #2.4, the

logic LO is given by equations and KO is empty. For the term re-
writing specialists of #2.5 the knowledge base KO is a set of
terms and the logic LO is given by term rewriting rules. For the
Petri net specialists of #2.6 the knowledge base K0 is a set of
facts and the logic LO is given by a Petri Net. For the interface
specialists of #2.7 the knowledge base KO is a set of "semantic"

facts and the logic LO is given by translation rules.

Clearly our notion of logic is rather broad but it should be
even broader - not only should it allow for "proof rules" but
also for heuristics and strategies. The inference mechanism for

a specialist domain expert should determine the structure MO
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as the extension of the knowledge base KO by applying the rules
and heuristics of the logic LO' In the LOOPS inference mechanism
rules are given in rule sets and the application of a rule set
is guided by one of four possible heuristics. The inference me-
chanism for PROLOG and some other rule systems allows for more

general heuristics by "going to the meta level". The basic idea

is that a heuristic or strategy "if P( ) then apply
L ):—R1( )..Rn( )" can be captured by the meta rule
HITEL Vi wewlid= EL ) H(R,]( b wswlpss HIR € ¥y wos)
n

This idea seems to come from Kowalski and it has become

very popular; in the rest of this section we shall see why ,

#3.1 Time

In many expert domains facts are not eternal truths, sometimes
they hold and sometimes they do not. The facts in the knowledge

base of a specialist in such a domain should be of the form
K(formula,t)

where t is either a time instance or a time interval. The logic
for the domain specialist should allow arguments about time.
There are many temporal logics available (All 1, All 2, AlHa,
Bur 1, Bur 2, Hum, KaGo, Kon, Reur, Sho, Vil) and the specialist

may decide to use a logic procided by a software tool.
Example

Every logic for time intervals has the rule

During (t1,t3):— Durlng(t1,t2) Durlng(tz,t3).
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A specialist domain expert may well use a software tool to
provide such temporal rules and general rules like

K(formula,t

) == K(formula,t3) During (t )

1 e By

that connect specialist knowledge with temporal rules.

#3.2 Space

In many expert domains facts are not global truths, they hold
at some regions and points in space and not at others. The facts
in the knowledge base of a specialist in such a domain should

be of the form

K{formula,s,....)

where s is either a point or a region in space. The logic for
the domain specialist should allow arguments about space.
Several spatial logics are available (MaBi, ReSi) and the
specialist may decide to use a logic provided by a software
tool.

Example
Every logic for spatial regions has the rule
Within (51,53):— wlthin(s1,52) Wlthin(SZ,SB).

A specialist domain expert may well use a software tool to

provide such spatial rules and general rules like

K(formula,sq,t1}:— K(formula,s3,t3) Wlthln(81,s3) Durlng(t1,t3).

that connect specialist knowledge with temporal and spatial rules.
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#3.3 Truth

In many expert domains facts are not absolute truths, they can
be imprecise and uncertain. The facts in the knowledge base of

a specialist in such a domain should be of the form
K{(formula,v,...)

where v is some kind of "truthvalue". The logic for the domain
specialist should allow arguments about truth values, in parti-
cular it should define the truth value of a compound formula
from the truth values of its components. Many kinds of exotic
truth values have been used in existing expert systems:
uncertainty factors, probabilities, possibilities, and "fuzzy
values". (Doy, FaPr, McC2, McDo, MoD2, OrPa, Prd, Rei, Zad).

In such an expert system we can have rules like

( #) Ky Elvyxev donlo= KB avpes) suvme KE Winrss

1°" "'m 1

(*%) K(F1&F2,(V1&v2,..}):— K(F1,V1..) K{F2,V s il

2
Note that logical operators like & in (**) can be used ambiguously
both as semantic functions for combining truth values and as syn-
tactic ways of building a complex formula from simple components.
This duality is so attractive that the truth values in most

exotic logics form a "pseudo" Boclean algebra and all expert

using the logic have syntactic variants of the rules

K(F1 A F2' VoA V2..):— K(F1,V1..} K(FZ’VZ"')'
K(F1 v F2, v, v V2..):— K(F1,V1..) K(F2,V2...).
K(FT = F,y V = v2..):— K(F1,v1..) K(Fz,vz...}.
K(F1 & F2, vye v2..) - K(F, v1..) K(Fz,vz...).
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For classical logic these rules can be

K(F1 A FZ’ min(v1,v2)..) 3= K(Fq,vj) K(Fz,vz).
K(F1 v Fyy max(v1,v2)..) g7 K(F1,v1) K(Fz,vz).
K(F1 = F2, max(1—v1,v2)..) HE K(E1,v1) K(Fz,vz).
K(FT & FZ’ 1—max(v1-V2,v2-v1)):- K(F1,v1) K(fZ'VZ)'
K(1F, 1=-v..) = K(F,v).

where the values 1 and 0 correspond to true and false respectively.

Recently there has been much discussion of incomplete and incon-
sistent knowledge bases, PROLOG's negation as failure, truth
maintenance systems and non-monotonic logic. When truth wvalues

are explicit, one gets a clearer view of the problems. Intuitively
there are several notions of when a knowledge base KO and a logic

LO are incomplete:

(1) there is a formula F such that K(F,v) € ﬁ)for all v

(2) there is a formula F such that K(F,v) ¢ MO for all v
(ie no K(F,v) can be derived from KO by LO)

(3) there is a formula F such that K(F,v), K(AF,v)¢§ KO for all v

(4) there is a formula F such that K(F,v), K(HF,v)¢ MO for all v.
The "negation as failure" convention rules out

! 1
(3) —-incompleteness by: K(F EK(F,false)¢KOv no K(F,v) &K

for some Ké.

false) € K

4™ 0

However there is no good reason to adopt such conventions;
specialist domain experts may well be incomplete. For each notion

of incompleteness there is a notion of when a knowledge base KO

and a logic LO are inconsistent:
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(1') there is a formula F such that K(F,v1), K(F,vz) € KO for v1#v
(2') there is a formula F such that K(F,v1), K(F,vz) € "y for PR

(3') there is a formula F such that K(F,v1), K(?F,VZ)E KO for v1#7v2

2
#v

(4') there is a formula F such that K(F,VT), K(TF,vz)E m. for v1#1v

0 2

where v1#v2 abbreviates "truth wvalues v, and v, are incompatible”.
A specialist domain expert is a "truth maintenance system" if it
tries to keep its knowledge base KO and its logic LO consistent.
Ideally such a specialist should check for consistency when it is
sent a !-message, before making the appropriate changes to its
knowledge base and logic. In practice the specialist can allow
temporary inconsistency and make its knowledge base and logic
consistent when it has free time, when it is not busy replying

to messages. The basic idea behind some truth maintenance systems

is that the facts in the knowledge base KO are of the forms
K(F, in) K (F,out)

the logic LO can only derive in-facts, and consistency is maintained

by converting in-facts to out-facts.

In such a system we can represent KO as a "four-truth valued

knowledge base KO'
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K{F dn), KHP,in) € KO = K(F,contradiction), KGF, cmﬁxadhﬁjon)EK'o

K(F,in) € KO’ KHF,in) € KO = K(F,true), K(HF,false) € K'O

0 KiaE in) E KO = K(F,false), K(OF,true) € K'O

KiFyin) , KOiFdn)] € KO = K(F,undefined), K(GF,undefined) € K'O

K(F,in) € K

and the logic LO can be converted to a four-valued logic L'O.

There is a close connection between truth maintenance systems
(. Goo, McD2) four valued logics (San) and non-monotonic
logics. A specialist domain expert uses non-monotonic logic if
1 such that

Non-monotonic logics, like

it can have knowledge bases KO,K and logics LO,L

1
Ky € K, and Ly = L, but not MO = H1.
fuzzy logics, are powerful ways of arguing abour uncertain and
imprecise knowledge. Specialist domain experts may well decide
to use an fuzzy Or non-monotonic logic provided by a software

tool.
Comment

We have discussed how the truth value of a formula F may be
independent of the truth value = F. For a discussion of the
distinction between uncertainty and imprecision see (Prd);
"Population (Arhus) < 1000000" is certain but imprecise,

Population (Arhus) = 150000" is precise but uncertain, both

precision and certainty can be reflected in truth wvalues.

Comment

The unified theory of many areas of computer science, being
developed by the author (May 1), the key notion is a gallery,

a function

G: Structure % Frame ——> Value

indexed by a set of signatures. Every gallery gives a specialist
domain expert for each signature X by



20

- F is a domain formula .=. F € frame(X)

- KO is possible knowledge base .=. K, < {K(F,v)I|G(M,

0

The semantics of every domain expert is given for some

m € Structure(Z) a gallery.

#3.4 Proof

F) = v} meM

In many expert domains imprecise and uncertain facts may be

supported by arguments or proofs from assumptions. The
in the knowledge base of a specialist in such a domain
be of the form

K(formula,p,....)

where p is some kind of proof, argument or endorsement.

for the domain specialist should allow arguments about
in particular it should define the proocf of a compound

from proofs of its components. Some appropriate logics

facts
should

The logic
proofs,
formula

are im-

plicit in recent expert systems - eg (Coh) - and professional

logicians have suggested others: intuitionistic type theory

(see May 2) and logics for provability (Boo). In such a logic

one might have syntactic variants of the rules

K(Fy A Fyy Py oA Py)i- K(Fpy) K(F,,p,).
K(F, v F,y, first(p)):-K (F,/pP).

K(F1 v F2, second (p) ) :— K(Fz,p).
K(F,,mp(p,,py)):i= K(F,,pq) K(F,>F,,p,).

A specialist domain expert may well decide to use a proof logic

provided by a software tool. One can buy many expert building

systems which have a tool for generating explanations from proofs

eg. LOOPS provides proofs in the form of "audit trails"
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Notice that specialists can learn from their experience when
proofs are explicit. Notice also that explicit proofs give a
natural way of revising the knowledge base and logic of a spe--
cialist domain expert when it discovers an inconsistency or it
receives a !-message that is incompatible with its current
knowledge base KO and logic LO' Clearly there is a close connection

between explicit proofs and non-monotonic logic.

#3.5 Belief

In many expert domains facts may only be beliefs of particular
individuals or common beliefs. The facts in the knowledge base

of a specialist in such a domain should be of the form
K(formula,j&:, ..... )

where ‘fk, is some kind of "believer". The logic for the domain
specialist should allow arguments about beliefs, in particular
it should allow for self belief, embedded belief - K(formula,
80 wews) K(K(Fo,john), ego) - and common belief: K(formula,j%)
when K(formula,Jé%.;.) for all‘i% . Among the logics for
belief in the literature, (Gar, KaFu, Kon, Lev, Weh), let us

glance at the knowledge logic in (Kon). His S [Si]p and

OI
<Si,F>p can be reformulated asuzk 7 K(p,fk) and

Proof (p,T, i%) "p follows from I' in the logic of;ﬁt "

and his sound and complete axiomatisation can also be reformulated.
In this logic one can express "J% only believes what he can prove

from T" by:
Kip, F) @ Proof(p,r,fc ).

Belief logics capture natural and powerful arguments, a specialist
domain expert may well decide to use a belief logic provided by

a software tool.
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#3.6 Knowledge

In many expert domains facts may only be what particular indiwvi-
duals or everybody knows. The facts in the knowledge base of a

specialist in such a domain should be of the form

K(formula, ﬁ% fees)

where‘ft is some kind of "knower". The logic for the domain
specialist should allow arguments about knowledge, in particular
it should allow for self-knowledge, embedded-knowledge, and
common knowledge:

K(F,ego), K(K(F,john) ,ego), K(Ey‘ft) - the same formulae as
before and we do not have to agree on whether knowledge is the
same as true belief or not. Among the many knowledge logics in
the literature (HaMo, MaSh, Ros, Sta, Var) the simplest is

"many-agents S4" with rules:

K(tautology,ﬁ)

Fo:=K(F, &)

KK, &) - K(EF, )

K(Fyr B =K(F,, _ﬁ:) K(F,= Fz,ﬁ)

A specialist domain expert may well decide to use a knowledge
logic provided by a software tool.
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#4. Dynamic Logics, Actions and Planning

Specialist domain experts can almost always perform actions that

change their internal knowledge base Koand logic L In cour free

0"
blackboard system specialists respond to a !-message by performing
an action, and some of them may perform a plan of actions when

they are sent a message
!Execute (plan)

where "plan" i1s an expression in some planning language. Where do

plans come from? There seem to be three possibilities

- from the human user
- from the specialist itself using KO and LO

- from the knowledge base and logic of a planning specialist.

If plans are to be created by the specialist itself or a planning
specialist, then a logic of plans and actions must be available.

Within such a logic one has an assertion like:

If a specialist with knowledge base KO and logic LO

performs "plan" then its knowledge base becomes K, and

1
its logic becomes L1.

That is true in the "ideal world" of the planner. Such an assertion
may or may not be true in the "real world"; when the specialist
actually executes the plan it may be interrupted and disturbed by
obstacles so that the changes to its knowledge base and logic are
not those intended and planned. We will ignore this distinction
between the ideal and the real world, when we discuss various

planning logics in this chapter.

When a domain expert with knowledge base KO and logic LO tries
to execute a plan, it may well change its knowledge base to K1
and its logic to L1 by

- executing a "production rule": if Condition then Action;

— choosing a PROLOG rule with impure features like assert and retract;

- executing and assignment .......
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A domain expert usually makes such changes when it receives a
!-message and may make them when it receives a ? - or ??-messages.
One way of modelling this is to let a logic L1 have predicates -
H —heuristics like Execute - such that an attempt to prove an H-formula
changes the knowledge base KO and/or the logic as a "side effect".
If the attempt is successful - H(...) € MO - the side effect may
depend on the actual proof; if it is unsuccessful, there may
still be a side effect. As the side effect may produce an incon-
sistent knowledge base and logic, specialist domain experts must
be designed with care; there is a need for software tools that
help in the design of specialist domain experts that react
appropriately and safely to sequences of messages and other plans

from humans and other experts in their environment.

#4.1 Situations

Many expert systems exploit the idea "actions are functions",
introduced by McCarthy in 1957 (McC1) and used in the STRIPS
planner soon after (FiN2). The idea is that the facts in a spe-

cialist domain should be of the form

K(formula, fq(..(fn(s)...))

where s 1s "situation" and f1"fn denote "actions". The logic
for the domain specialist should allow for arguments about

actions, it should allow rules like
K(on table(object), putdown(s)):- K(Inhand(object),s).

Such logics are plagued by the "frame" problem, the apparent
need for a plethora of rules abour facts that are not changed
by the performance of an action, such as "putdown". If this
frame problem is not unbearable, a specialist domain expert may
well decide to use a situation logic provided by some software
tool.
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Although time logics are sometimes used for planning -
used as if they were situation logics - situations are not the

same as time instants.

#4.2 Dynamic logic

Many expert systems exploit the idea "actions are procedures",
particularly those written in conventional programming languages
(see #2.1). The facts in a specialist domain expert can be of

the forms
K(formula, o,...)

where o denotes a procedure. The logic for such a domain spe-
cialist should allow for arguments about actions, it should
allow rules like

K(F,a ) i — K(K(F,uz),q

1#%2 1)
K(F,oq50,) := K(K(F,a,),p ).

One can find a multitude of suitable rules in the enormous
literature on dynamic logic and other "logics of programs"
(ClKo, Ko, Man, Par, Prt). In much of this research on programming

logics one distinguishs between

- [al F for K(F,o0) when "F always true after o"

- <o> F for K(F,o) when "F may be true after a"

and this distinction is often appropriate for domain experts. A
specialist domain expert may well use a programming logic pro-

vided by some software tool.
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#4.3 Structured actions

Many expert systems exploit the idea "plans and actions are
structured, they are built from more primitive plans and actions".

The facts in a specialist domain expert can be of the form

K(ao, combinator{a1...an))

where action g is built from more primitive actions Ggoeel -

The logic for such a domain specialist should allow for arguments
about combinations of actions, and some appropriate logics have
been suggested (Haa, McDl, Moo).

A good source of appropriate logics is recent work on the seman-
tics of programming languages. In the new action semantics (Mos)
one can find a deep analysis of the many ways in which programs
can be built up from primitive actions. In the literature on
Petri nets, CCS and CSP one can find a deep analysis of "plans

as concurrent sets of primitive actions". One can distinguish

between sequential and concurrent domain experts - the primitive

actions for a sequential domain expert assert or retract single
facts in its knowledge base and logic, the primitive actions of

a concurrent domain expert assert or retract sets of facts in its
knowledge base and logic. As fig. 3 shows, plans for a sequential
domain expert should be sequences of primitive actions, while
plans for a concurrent domain expert should be partially ordered
sets of primitive actions. The figure also shows the underlying
Kripke model of an expert system, the possible actions on the
family {<Ki Li>} of its knowledge bases and logics. The semantics
of most of the logics in section 3 and 4 can be given in terms

of Kripke models.
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Sequential Expert

Kripke Model

Concurrent Expert

Fig. 3. Sequential and Concurrent Experts

There is a close connection between plans and heuristics. Every
plan ™ determines a set of preconditions and a list of assertions
and retractions of facts in a knowledge base and a logic. This

can be captured by a heuristic H such that

H(A .o

(Ag A +«By A By A .. A B )i HFL) L) H(F )

where F1 . Fm are the preconditions, A1 . Al are the
assertions, and B1 win Bn are the retractions. We have given

the "PROLOG" form of the heuristic H, the production rule form
would be

if H(F1) and .. H(Fm) then assert H(A1) and ... retract H(Bn).

One could say that heuristics are "frozen" plans, and the heuristics
in #3 correspond to plans that do not change the knowledge base

and logic of the ecpert.
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The planning logics that are used in existing expert systems
connect actions with time and other "state parameters" so they
are not like the logic of "pure sets of actions" we have
described briefly. Nevertheless software tools can deliver

general planning logics to specialist domain experts that need

to plan.

Exanmple

Actions are primitive in (McD1). An expert jajdoing an action
is an event; Do(action,:ft). In this planning logic one has

actions, events, states, facts, tasks and chronicles; the logic
of actions is embedded in a logic of time; in (Mor) a logic of

actions is embedded in a logic of knowledge.
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#5. Implementation

Our free blackboard organisation will be implemented in LOOPS
on a Xerox 1108 (SB K). Most specialist domain experts will be
LOOPS objects with "methods" for each !-, ?-, ??-message that
the specialist can handle, Some specialist domain experts will
be implemented on other machines connected to the Xerex black-

board; other machines will be used because

- they provide PROLOG, data bases, REVE rewriting, Petri nets

and other convenient lanquages for writing efficient specilalists

- they provide laser printers, speech recognition and generation,
optical readers and other facilities for man-machine inter-

action

- many machines presumably give true parallelism and better

performance.

By better performance we mean not only faster and more capacity,
but also the improvement of the specialist by "learning from
experience" and "reestablighing consistency" in its time free

from handling blackboard messages.

What of our distinction between cbject level and metalevel facts

and rules? We can collapse the levels by

- incorporating time, space, truth value, proof, believer, knower
and other metalevel parameters as extra arguments to first

order predicates

- formulating metalevel facts and rules as "rule set methods"
for LOOPS objects.

Naturally we will provide software tools for each way of collapsing
levels into LOOPS. There should be toocls for some of the logics

we have discussed, that collapses the logic intc a LOOPS rule

set LOO' A specialist domain expert that uses the logic will

have LOO as its "unchangeable core"; during its life the specialist
will have many knowledge bases Ki and logics Li but LOO will

always be part of Li. There seem to be three possible locations

for LOO in LOOPS:
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- as another method in the specialist
- as a method inherited from a superclass of the specialist

- as a method in another "logic" specialist.

The choice between these possibilities is partly determined by
the LOOPS "audit trail" facility, by the specialist's need to
keep track of arguments so that it can learn from experience

and/or explain its reasoning to a user.

Our implementation of the free blackboard organisation will have

a number of disciplinary primitives for cancelling messages,
interrupting specialists providing infinite answers to ??-messages,
breaking deadlocks, and controlling anarchistic societies of spe-

cialists. These will be described in a later paper.

Epilog - from (Dea)

The most useful kind of expert system would an expert team con-

sisting of the following: a skilled secretary who captures ideas,

texts, and data items and arranges them neatly in labelled folders
- a professor who coachs gently, when needed and asks whether
something has been left out at times, but avoids imposing a
straight jacket on the investigator - a librarian to look up in-

formation - a statistician to process data and help interpret

the results - a writer to do the preliminary and final reports

- an artist to produce the graphs and charts. A.G. Dean.
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